JPS58100729A - Confirming method for normality of cooling material leakage detector - Google Patents

Confirming method for normality of cooling material leakage detector

Info

Publication number
JPS58100729A
JPS58100729A JP19857781A JP19857781A JPS58100729A JP S58100729 A JPS58100729 A JP S58100729A JP 19857781 A JP19857781 A JP 19857781A JP 19857781 A JP19857781 A JP 19857781A JP S58100729 A JPS58100729 A JP S58100729A
Authority
JP
Japan
Prior art keywords
oscillation
simulated
detector
vibration
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19857781A
Other languages
Japanese (ja)
Other versions
JPH0678962B2 (en
Inventor
Yasunori Saiki
斉木 泰範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP56198577A priority Critical patent/JPH0678962B2/en
Publication of JPS58100729A publication Critical patent/JPS58100729A/en
Publication of JPH0678962B2 publication Critical patent/JPH0678962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Abstract

PURPOSE:To confirm the normality of the detector of an oscillation detecting device securely by simulating break oscillation through a piezoelectric exciter for simulated sound oscillation. CONSTITUTION:A piezoelectric exciter 16 for simulated sound oscillation is installed where a simultated sound propagates securely to an oscillation detector 4 as a confirmation object. By a signal from a random noise generator 18 installed outside of a storage container, simulated oscillation 17 of >2 MHz from said exciter 16 propagates to a water drum 7 through a waveguide rod 5. This simulated oscillation 17 is detected by an oscillation detector 4, whose output is led to a signal processing circuit 6 to detect whether the simulated oscillation is received or not, thus confirming the condition of the detector. Since the frequency of the simulated oscillation is other than the frequency of the object of detection, the normality of the detector is confirmed remotely at optional time and even during the confirmation test, the channel maintains the leakage detection function.

Description

【発明の詳細な説明】 本発明は、冷却材漏洩検出用振動検出装置の健全性確認
方法に係す、特に確実に振動検出器の健全性を確認する
に好適な確認方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for checking the health of a vibration detector for detecting coolant leakage, and particularly to a method suitable for reliably checking the health of a vibration detector.

常時振動のある場所に使用する振動検出装置の健全性確
認は、複数個の検出装置出力の相互比較や、同じ検出装
置においては、現状の検出器出力と過去の出力履歴との
比較により確認が可能であった。しかし、健全配管の破
断による冷却材漏洩を検出する目的で設けた場合は、配
管の振動が少ないので、通常時の信号出力は信号処理回
路の個有なノイズより極めて小さく、前記の方法が使え
ないという欠点があった。
The health of a vibration detection device used in a place where there is constant vibration can be confirmed by comparing the outputs of multiple detection devices or, for the same detection device, by comparing the current detector output with the past output history. It was possible. However, if it is installed for the purpose of detecting coolant leakage due to a rupture in a healthy pipe, the above method can be used because the pipe does not experience much vibration, and the signal output during normal operation is much smaller than the noise inherent in the signal processing circuit. There was a drawback that there was no

本発明の目的は、前記した従来技術の欠点をなくし、確
実な冷却材漏洩検出用振動検出装置の振動検出器の健全
性確認方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a reliable method for confirming the soundness of a vibration detector of a vibration detection device for detecting coolant leakage.

常時振動のある場所に使用する振動検出装置の健全性確
認は、複数個の検出装置出力の相互比較や同じ検出装置
においては、現状の検出器出力と過去の出力履歴との比
較により確認が可能であったが、健全配管の破断による
冷却材漏洩を検出する目的で設けた場合は、通常時の出
力信号は信号処理回路の個有なノイズ(電気ノイズ等)
より極めて小さく確認はできない。
The health of a vibration detection device used in a place with constant vibration can be confirmed by comparing the outputs of multiple detection devices or, for the same detection device, by comparing the current detector output with the past output history. However, if it is installed for the purpose of detecting coolant leakage due to a rupture in a healthy pipe, the output signal during normal operation will be due to noise unique to the signal processing circuit (electrical noise, etc.)
It is much smaller and cannot be confirmed.

本発明は、模擬音発振用圧電式加振器により検出対象物
に直接個有なノイズより大きく、かつ検出対象周波数帯
域外の破断模擬振動を与えることにより、振動検出装置
の検出器の確実な健全性の確認が可能である。
The present invention uses a piezoelectric vibrator for simulating sound oscillation to provide a simulated breaking vibration that is larger than the direct inherent noise to the object to be detected and is outside the frequency band of the object to be detected. It is possible to check the soundness.

以下、本発明の一実施例を第1図〜第6図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は、圧力管型原子炉に冷却材漏洩検出装置を取付
けた場合の略図を示す。
FIG. 1 shows a schematic diagram of a pressure tube reactor equipped with a coolant leak detection device.

図において1はカランドリャタンク、2は圧力管、3は
入口管、4は振動検出器、5は導波棒、6は信号処理回
路、7はウォータドラムである。
In the figure, 1 is a calandria tank, 2 is a pressure pipe, 3 is an inlet pipe, 4 is a vibration detector, 5 is a waveguide rod, 6 is a signal processing circuit, and 7 is a water drum.

第1図で入口管3で破断し冷却材が漏洩すると漏洩によ
り発生した振動が入口管3及びウォータドラム7、導波
棒5を伝幡し、振動検出器4に伝わり、振動検出器4で
振動が電気信号に変換され、信号処理回路6で信号処理
が行われ漏洩の有無が判定される。
In Fig. 1, when the inlet pipe 3 breaks and the coolant leaks, the vibration generated by the leak propagates through the inlet pipe 3, water drum 7, and waveguide rod 5, and is transmitted to the vibration detector 4. The vibration is converted into an electrical signal, and the signal processing circuit 6 performs signal processing to determine the presence or absence of leakage.

第2図は、ウォータドラム上振動検出器取付は位置を示
したものである。
FIG. 2 shows the mounting position of the vibration detector on the water drum.

振動検出器4は、入口管の接続部附近に取付けられてい
る。
The vibration detector 4 is attached near the connection part of the inlet pipe.

第3図に信号処理回路構成を示す。FIG. 3 shows the configuration of the signal processing circuit.

図において4は振動検出器、8は増幅器、9はバンドパ
スフィルタ、10は実効値変換器、11は信号処理部比
較器、12は信号処理部タイマ、13は信号処理部出力
回路、14は信号処理部比較器設定値、15は信号処理
部タイマ設定値である。
In the figure, 4 is a vibration detector, 8 is an amplifier, 9 is a bandpass filter, 10 is an effective value converter, 11 is a signal processing unit comparator, 12 is a signal processing unit timer, 13 is a signal processing unit output circuit, and 14 is a signal processing unit output circuit. The signal processing section comparator setting value 15 is the signal processing section timer setting value.

第3図で振動検出器4の出力信号は、増幅器8で信号処
理可能なレベルまで増幅し、・・ンドバスフイル!9で
漏洩の判定を行いやすい周波数(300KHg〜2MH
g)のみを選出し、実効値変換器10で雑音処理を行う
。実効1直変換器10の出力信号は、信号処理部比較器
11及び信号処理部タイマ12を介して漏洩の判定が行
われ、漏洩時信号処理部出力回路13より漏洩信号が出
力される。
In Fig. 3, the output signal of the vibration detector 4 is amplified to a level that can be processed by the amplifier 8, and... Frequency (300KHg to 2MH) that makes it easy to judge leakage
g) is selected, and the effective value converter 10 performs noise processing. The output signal of the effective single-direction converter 10 is subjected to a leakage determination via a signal processing section comparator 11 and a signal processing section timer 12, and a leakage signal is outputted from a signal processing section output circuit 13 at the time of leakage.

なお、振動検出器4及び増幅器8は格納容器内部に設置
される。またバンドパスフィルタ9以降の健全性確認は
、従来の方法と同じく模擬信号をバンドパスフィルタ9
の入力側に入力することにより確認ができる。
Note that the vibration detector 4 and amplifier 8 are installed inside the containment vessel. In addition, to check the health of the bandpass filter 9 and beyond, the simulated signal is sent to the bandpass filter 9 as in the conventional method.
You can check by inputting it to the input side of .

第4図に本発明の模擬音発振用圧電式加振器の設置場所
を示す。
FIG. 4 shows the installation location of the piezoelectric vibrator for simulating sound oscillation of the present invention.

第4図で16は模擬音発振用圧電式加振器である。図で
模擬音発振用圧電式加振器16は、確認対象とする振動
検出器4に模擬音が確実に伝幡する位置に設置する。
In FIG. 4, 16 is a piezoelectric exciter for oscillating simulated sound. In the figure, the piezoelectric vibrator 16 for oscillating simulated sound is installed at a position where the simulated sound is reliably transmitted to the vibration detector 4 to be checked.

第5図に検出器健全性確認法原理図を示す。Figure 5 shows a diagram of the principle of the detector integrity confirmation method.

第5図で17は模擬音発振用圧電式加振器で発生した模
擬振動、18はランダムノイズ発生器である。
In FIG. 5, 17 is a simulated vibration generated by a piezoelectric exciter for oscillating simulated sound, and 18 is a random noise generator.

第5図において、格納容器外に設置されたランダムノイ
ズ発生器18よりの信号により、模擬音発振用圧電式加
振器16から2MHgを超える模擬振動17が導波棒5
を介してウォータドラム7に伝幡される。
In FIG. 5, a signal from a random noise generator 18 installed outside the containment vessel causes a simulated sound oscillation piezoelectric exciter 16 to generate a simulated vibration 17 exceeding 2 MHg on a waveguide rod 5.
The signal is transmitted to the water drum 7 via.

この模擬振動17を振動検出器4で検出し、信号処理回
路6に導き模擬振動が受信されたか否かを検出し検出器
の確認を行う。
This simulated vibration 17 is detected by the vibration detector 4 and guided to the signal processing circuit 6 to detect whether or not the simulated vibration has been received, thereby confirming the detector.

以上の方法による検出器4の確認方法を第6図により説
明する。
A method for checking the detector 4 using the above method will be explained with reference to FIG.

第6図は、本発明適用時の各部信号状態図である。図に
おいて、19は模擬信号確認装置、20は通常検出され
る配管よりの流動雑音レベル、21は信号処理回路の個
有なノイズである。
FIG. 6 is a diagram showing the signal state of each part when the present invention is applied. In the figure, 19 is a simulated signal confirmation device, 20 is a normally detected flow noise level from piping, and 21 is a noise specific to the signal processing circuit.

第6図で、通常、検出器4の出力は、出力レベルが小さ
い流動雑音20のみを検出し、増幅器8に送っている。
In FIG. 6, the output of the detector 4 normally detects only the flowing noise 20 with a low output level and sends it to the amplifier 8.

増幅器8では、前検出器4の信号が増幅されるとともに
、流動雑音20を上まわる信号処理回路の個有なノイズ
21が出力され、バンドパスフィルタ9に送っている。
In the amplifier 8, the signal from the pre-detector 4 is amplified, and the unique noise 21 of the signal processing circuit, which exceeds the flow noise 20, is outputted and sent to the bandpass filter 9.

バンドパスフィルタ9では300KHg〜2MHg間の
信号のみを取り出しており、それ以外の周波数帯域の信
号は減衰される。本状態において模擬信号が入力される
と、振動検出器4及び増幅器8の出力に模擬信号による
出力が現われてくる。したがって増幅器8の出力側の信
号を入力している模擬信号確認装置19にも模擬振動が
現われてくる。以上により模擬振動を発信した際に模擬
信号確認装置に模擬振動が現われた場合には振動検出器
4が健全であると言える。また、模擬振動を発信しても
、模擬振動の周波数は2MHgを超えるために、バンド
パスフィルタ9を介した出力には変化が現われず、以後
の信号処理には影響はない。
The bandpass filter 9 extracts only signals between 300KHg and 2MHg, and signals in other frequency bands are attenuated. When a simulated signal is input in this state, outputs of the simulated signal appear at the outputs of the vibration detector 4 and the amplifier 8. Therefore, simulated vibrations also appear in the simulated signal confirmation device 19 that receives the signal from the output side of the amplifier 8. As described above, if a simulated vibration appears on the simulated signal confirmation device when the simulated vibration is transmitted, it can be said that the vibration detector 4 is healthy. Further, even if the simulated vibration is transmitted, since the frequency of the simulated vibration exceeds 2 MHg, no change appears in the output via the bandpass filter 9, and subsequent signal processing is not affected.

本発明によれば、検出対象周波数以外の周波数を用いる
ことにより、以下の効果がある。
According to the present invention, the following effects can be achieved by using frequencies other than the detection target frequency.

(1)任意な時に検出器の健全性確認が可能である。(1) It is possible to check the health of the detector at any time.

(2)遠方より検出器の健全性確認が可能である。(2) It is possible to check the integrity of the detector from a distance.

(3)健全性確認試験中においても、そのチャンネルは
漏洩検出機能を維持できる。
(3) The channel can maintain its leak detection function even during the integrity verification test.

(4)  プラント運転中に任意のチャンネルのみの健
全性確認が可能である。
(4) It is possible to check the health of only any channel during plant operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷却材漏洩検出装置取付略図、第2図はウォー
タドラム上振動検出器設置場所説明図、第3図は信号処
理回路構成図、第4図は模擬音発振用圧電式加振器設置
場所説明図、第5図は検出器健全性確認法原理図、第6
図は本発明適用時の各部信号状態図である。
Figure 1 is a schematic diagram of the installation of the coolant leakage detection device, Figure 2 is an illustration of the installation location of the vibration detector on the water drum, Figure 3 is a configuration diagram of the signal processing circuit, and Figure 4 is the piezoelectric exciter for simulating sound oscillation. Installation location explanatory diagram, Figure 5 is a principle diagram of the detector integrity confirmation method, Figure 6
The figure is a diagram showing the signal state of each part when the present invention is applied.

Claims (1)

【特許請求の範囲】[Claims] 1、振動検出器、信号処理回路からなる冷却材漏洩検出
用振動検出装置において、振動検出器の健全性を確認す
るために、遠隔より操作可能な圧電式加振器を設けたこ
とを特徴とする冷却材漏洩検出装置用健全性確認方法。
1. A vibration detection device for detecting coolant leakage consisting of a vibration detector and a signal processing circuit is characterized by being equipped with a piezoelectric vibrator that can be operated remotely in order to confirm the soundness of the vibration detector. A method for confirming the integrity of a coolant leak detection device.
JP56198577A 1981-12-11 1981-12-11 Soundness confirmation method for coolant leakage detector Expired - Lifetime JPH0678962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56198577A JPH0678962B2 (en) 1981-12-11 1981-12-11 Soundness confirmation method for coolant leakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56198577A JPH0678962B2 (en) 1981-12-11 1981-12-11 Soundness confirmation method for coolant leakage detector

Publications (2)

Publication Number Publication Date
JPS58100729A true JPS58100729A (en) 1983-06-15
JPH0678962B2 JPH0678962B2 (en) 1994-10-05

Family

ID=16393484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56198577A Expired - Lifetime JPH0678962B2 (en) 1981-12-11 1981-12-11 Soundness confirmation method for coolant leakage detector

Country Status (1)

Country Link
JP (1) JPH0678962B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370139A (en) * 1986-09-12 1988-03-30 Hitachi Ltd Sound pressure level measuring type fluid leak detector
JPS63289435A (en) * 1987-05-21 1988-11-25 Babcock Hitachi Kk Tube leak monitor system of boiler
EP1522839A1 (en) * 2003-10-08 2005-04-13 INNOVA AirTech Instruments A/S Ultrasonic gas leak detector including a detector testing device
CN103604570A (en) * 2013-11-20 2014-02-26 北京理工大学 Supersonic wave airtight detection method and supersonic wave airtight detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253441A (en) * 1975-10-27 1977-04-30 Koji Toda Process for detecting physical states
JPS53110891A (en) * 1977-03-08 1978-09-27 Shell Int Research Inspection apparatus for leakage in pipe lines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253441A (en) * 1975-10-27 1977-04-30 Koji Toda Process for detecting physical states
JPS53110891A (en) * 1977-03-08 1978-09-27 Shell Int Research Inspection apparatus for leakage in pipe lines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370139A (en) * 1986-09-12 1988-03-30 Hitachi Ltd Sound pressure level measuring type fluid leak detector
JPS63289435A (en) * 1987-05-21 1988-11-25 Babcock Hitachi Kk Tube leak monitor system of boiler
EP1522839A1 (en) * 2003-10-08 2005-04-13 INNOVA AirTech Instruments A/S Ultrasonic gas leak detector including a detector testing device
WO2005036120A1 (en) * 2003-10-08 2005-04-21 Innova Airtech Instruments A/S Ultrasonic gas leak detector including a detector testing device
US7318335B2 (en) 2003-10-08 2008-01-15 Gassonics A/S Ultrasonic gas leak detector including a detector testing device
CN103604570A (en) * 2013-11-20 2014-02-26 北京理工大学 Supersonic wave airtight detection method and supersonic wave airtight detection device

Also Published As

Publication number Publication date
JPH0678962B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
EP0091087B1 (en) Method of detecting a leakage of fluid
US5625150A (en) Integrated acoustic leak detection sensor subsystem
US6480793B1 (en) Flow condition monitor
EP0697586B1 (en) Integrated acoustic leak detection processing system
JPH08226988A (en) Device and method for detecting abnormality in volume to be monitored
US3831561A (en) Device for early detection of rupture of the pressure part of a boiler
US4570489A (en) Apparatus for detecting the evolution of an acoustic signal
US4176543A (en) Sonic leak detector and method
JPS58100729A (en) Confirming method for normality of cooling material leakage detector
KR900006011B1 (en) Method and means for monitoring the continuity of a fluid-filled network of conduits and valves
US4372151A (en) Automatic fault locating apparatus for a pressurized pipeline
JPH0566172A (en) Method and device for detecting leakage acoustically
KR20000072013A (en) leakage monitoring apparatus for valve
JPS6128097B2 (en)
JP2000088693A (en) Method and apparatus for inspection of pipe
JPS6184540A (en) Method for checking non-defectiveness of oscillation detector for detecting leakage of coolant
JPS61153539A (en) Detecting method of leak in boiler heat conduction pipe
JPS60105931A (en) Leakage detecting apparatus for gas piping and gas appliance
JPS5868581A (en) Abnormality detector for fluid circuit
JPH07306114A (en) Acoustic-type leakage detecting method and apparatus
JPH07140032A (en) Method and apparatus for detecting abrupt leakage of fluid
JPS58200122A (en) Device for detecting leakage of cooling material
JPH09310803A (en) Leakage detector for fluidized bed boiler
RU2241901C2 (en) Tube burst detector
JPH06281492A (en) Measuring method for water level within pipeline of steam generator and the like