JPS5810055Y2 - temperature expansion valve - Google Patents

temperature expansion valve

Info

Publication number
JPS5810055Y2
JPS5810055Y2 JP1595279U JP1595279U JPS5810055Y2 JP S5810055 Y2 JPS5810055 Y2 JP S5810055Y2 JP 1595279 U JP1595279 U JP 1595279U JP 1595279 U JP1595279 U JP 1595279U JP S5810055 Y2 JPS5810055 Y2 JP S5810055Y2
Authority
JP
Japan
Prior art keywords
valve body
valve
pressure
valve seat
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1595279U
Other languages
Japanese (ja)
Other versions
JPS55117670U (en
Inventor
金子守男
Original Assignee
株式会社鷺宮製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社鷺宮製作所 filed Critical 株式会社鷺宮製作所
Priority to JP1595279U priority Critical patent/JPS5810055Y2/en
Publication of JPS55117670U publication Critical patent/JPS55117670U/ja
Application granted granted Critical
Publication of JPS5810055Y2 publication Critical patent/JPS5810055Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【考案の詳細な説明】 この考案は温度式膨張弁において、年間を通じ何れの季
節においても同一過熱度に対する冷媒供給量を常に一定
に保つようにした膨張弁に関し、利用する冷凍冷房分野
一般において、夏季と冬季等、周囲温度の変動巾が大き
い条件下において継続して用いられる温度式膨張弁に適
用される。
[Detailed description of the invention] This invention relates to a thermostatic expansion valve that always maintains a constant supply of refrigerant for the same degree of superheat in any season throughout the year. Applicable to thermostatic expansion valves that are used continuously under conditions where the ambient temperature fluctuates widely, such as during summer and winter.

冷凍装置においては、蒸発圧力は周囲外気温度によって
変化することは少なく、はぼ一定であるが、凝縮圧力は
凝縮温度に関連して著しく変化し、特に空冷式凝縮器に
おいては、外気温度の差によって夏には冬の数倍の凝縮
圧力は生ずる。
In refrigeration equipment, the evaporation pressure does not change much depending on the ambient outside temperature and is almost constant, but the condensing pressure changes significantly in relation to the condensing temperature. This results in condensation pressure several times higher in summer than in winter.

膨張弁の開度を一定とした場合、圧力差が大きいことに
よって流量は増加するので、膨張弁が夏季用特性に適合
する如く設計されたものでは冬季においては所定の最大
過熱度に相当する最大弁開度を示していても、通過する
冷媒量は少量であり過ぎることになり、夏と冬、または
昼と夜などによって周囲温度の変動巾が大きい環境下に
おいて、継続して使用する場合には、周囲温度の変化に
よって一定の弁開度の通過冷媒量に差が生ずるので、こ
れを補正しなければならないという問題がある。
If the opening degree of the expansion valve is constant, the flow rate will increase due to a large pressure difference, so if the expansion valve is designed to suit summer characteristics, in winter it will not reach the maximum value corresponding to the predetermined maximum degree of superheat. Even if the valve opening is indicated, the amount of refrigerant that passes through will be too small, so if it is used continuously in an environment where the ambient temperature fluctuates widely depending on summer and winter, or day and night, etc. However, there is a problem in that a change in ambient temperature causes a difference in the amount of refrigerant passing through a constant valve opening, and this must be corrected.

これがために凝縮圧力の低い冬季などを基準とした膨張
弁で、第1の絞り個所に第2の絞り個所を直列に設け、
凝縮圧力の高い夏季などにおいては、第2の絞り個所が
強い絞り作用を発揮するようにし、第1の絞り個所は凝
縮圧力の低い場合の所定の過熱度に合わせて設計した発
明が、特公昭53−第13252号公報で示されている
For this reason, in an expansion valve designed for use in winter when the condensing pressure is low, a second throttle point is provided in series with the first throttle point.
In the summer when the condensing pressure is high, the second throttling point is designed to exert a strong throttling action, and the first throttling point is designed to match the predetermined degree of superheating when the condensing pressure is low. 53-13252.

この従来の発明の概要を第4図で説明すると、弁本体4
0内には第1の絞り個所41と第2の絞り個所42が直
接相前後して接続されている。
An overview of this conventional invention will be explained with reference to FIG.
0, a first throttle point 41 and a second throttle point 42 are connected directly one after the other.

第1の絞り個所は弁座43と鉢型の閉鎖体44とによっ
て制限されている。
The first throttle point is delimited by a valve seat 43 and a bowl-shaped closure 44 .

第2の絞り個所42は弁座45とピストン状の調節部材
47の絞り体46として構成された部分とから形成され
ている。
The second throttle point 42 is formed by a valve seat 45 and a part of a piston-shaped adjusting element 47 which is designed as a throttle body 46 .

鉢型の閉鎖体44は弁棒49の延長部48に固着してい
る。
A pot-shaped closure 44 is fixed to an extension 48 of a valve stem 49.

閉鎖体44の底には開口50があり、この開口50によ
って第1の絞り個所の前の室は閉鎖体44と調節部材4
7との間の内室51と接続し、調節部材47はプラステ
ィックからなっており、室51をシールするシールリッ
プ52を有している。
In the bottom of the closure body 44 there is an opening 50 by which the chamber in front of the first throttle point is connected to the closure body 44 and the adjustment member 4.
The adjustment member 47 is made of plastic and has a sealing lip 52 for sealing the chamber 51.

比較ばね52aは一方では調節部材47に支えられ、か
つ他方では弁棒49、ひいては閉鎖体44と結合された
結合面53に支えられている。
The comparison spring 52a rests on the one hand on the adjusting element 47 and on the other hand on the connecting surface 53 which is connected to the valve stem 49 and thus to the closing body 44.

弁の閉鎖をも行う第1の絞り個所41はダイアフラム3
1に関連して調節される。
The first throttle point 41, which also closes the valve, is located on the diaphragm 3.
1.

この運動には調節部材47も一緒に追従し、これによっ
て第2の絞り個所も変えられる。
This movement is also followed by the adjusting element 47, so that the second throttle point can also be changed.

孔50があるため室51には凝縮器圧力が作用し、調節
部材47は凝縮圧力と蒸発圧力との差圧と比較はね52
aによって負荷されている。
Due to the presence of the hole 50, the condenser pressure acts on the chamber 51, and the adjusting member 47 compares the pressure difference between the condensing pressure and the evaporation pressure with the pressure of the condenser 52.
loaded by a.

したがって凝縮圧力によって調節部材47は閉鎖体44
に対して所定の相対位置に調節され、これによって第2
の絞り個所は圧力に関連して修正されるものである。
Therefore, due to the condensation pressure, the adjusting member 47
is adjusted to a predetermined relative position with respect to the second
The constriction point of is modified as a function of the pressure.

ところでこの膨張弁の構造では、第1、第2の絞り個所
が二つの弁座と、これに対向する第1、第2の弁体の傾
斜面とによって形成されるので、第1、第2の絞り個所
間に流路断面積の大きい空間が形成され、膨張弁を通過
する冷媒は、第1の絞り個所を通過した後、上記の空間
で膨張減圧し、こNでフラッシュガスを発生し、ガス混
入の冷媒が第2の絞り個所を通過するようになっている
By the way, in the structure of this expansion valve, the first and second throttle points are formed by two valve seats and the inclined surfaces of the first and second valve bodies that face them. A space with a large flow path cross-sectional area is formed between the throttle points, and the refrigerant passing through the expansion valve is expanded and depressurized in the above space after passing through the first throttle point, and this N generates flash gas. , the gas-entrained refrigerant passes through the second throttling point.

このフラッシュガスの発生量は冷媒の過冷却度で左右さ
れ、過冷却度は外気温、風、ファンの運転状態等による
凝縮器の熱交換の良否によって変化し、過冷却度の小さ
い場合は、小さい減圧によってフラッシュガスを発生す
る。
The amount of flash gas generated depends on the degree of supercooling of the refrigerant, and the degree of supercooling changes depending on the quality of heat exchange in the condenser due to outside temperature, wind, fan operating conditions, etc. If the degree of supercooling is small, A small vacuum generates flash gas.

したがって過冷却度の変化により、ガスの混入量の異っ
た冷媒が第2の絞り個所で調整されることになるので、
この膨張弁を通過する流量は凝縮圧力と蒸発圧力の差に
よる上記の流量調整を行っても、過冷却度の変化による
フラッシュガスの発生量によって膨張弁を通過する流量
が変動する問題がある。
Therefore, depending on the change in the degree of supercooling, the refrigerant with a different amount of gas mixed in will be adjusted at the second throttling point.
Even if the flow rate that passes through the expansion valve is adjusted as described above based on the difference between the condensing pressure and the evaporation pressure, there is a problem in that the flow rate that passes through the expansion valve fluctuates depending on the amount of flash gas generated due to changes in the degree of supercooling.

本考案の解決すべき技術的課題は、第1の絞りと第2の
絞りの間に膨張減圧する前記空間が形成されないように
することである。
The technical problem to be solved by the present invention is to prevent the space that expands and depressurizes from being formed between the first throttle and the second throttle.

こ\に技術的課題を解決するために講じた本考案の技術
的手段は下記の通りである。
The technical means of the present invention taken to solve this technical problem are as follows.

(イ)絞り弁座を弁座通路に対して直角な平面弁座とし
、 (ロ)過熱度変化で動作する第1弁体の上記絞り弁座側
に対向する面を弁座面に平行にし、 ←→ 流量調整用の先端にニードル部を有する第2弁体
を第1の弁体内に摺動自在に収容し、第2の弁体先端の
ニードル部を前記弁座内に突出させ、弁座通路を円筒状
通路とし、 に)第2の弁体の背面に凝縮圧力を作用させ、第2弁体
の正面に第2弁体の中心導孔を介して蒸発圧力を作用さ
せ、さらに第2弁体を第1弁体内に後退させるように付
勢するばねと、凝縮圧力と蒸発圧力との差圧で、第2弁
体の弁座方向への移動を所定位置で規制する第1弁体と
の係合段部を第2弁体に設けることである。
(a) The throttle valve seat is a flat valve seat that is perpendicular to the valve seat passage, and (b) The surface of the first valve body that operates depending on the degree of superheating that faces the throttle valve seat is parallel to the valve seat surface. , ←→ A second valve body having a needle portion at its tip for flow rate adjustment is slidably accommodated in the first valve body, the needle portion at the tip of the second valve body is made to protrude into the valve seat, and the valve The seat passage is a cylindrical passage, and (b) condensation pressure is applied to the back surface of the second valve body, evaporation pressure is applied to the front face of the second valve body through the center guide hole of the second valve body, and A spring that urges the second valve body to retreat into the first valve body, and a first valve that restricts movement of the second valve body toward the valve seat at a predetermined position using a differential pressure between condensation pressure and evaporation pressure. The second valve body is provided with a stepped portion that engages with the body.

上記の技術的手段は次のように作用する。The above technical means works as follows.

夏季などで、凝縮圧力と蒸発圧力との差圧が、前記はね
で現定される所定の圧力より大きくなると、第2弁体は
ばねに抗して弁座側に押出され、係合段部で制止する所
定位置を占める。
When the pressure difference between the condensation pressure and the evaporation pressure becomes larger than the predetermined pressure expressed by the spring, such as in summer, the second valve body is pushed toward the valve seat against the spring, and the engagement stage is pushed out. occupies a predetermined position where it is stopped.

このとき第2弁体と弁座間に形成される第2絞りの断面
積は第1弁体と弁座で形成される第1絞りの断面積より
も小さく、かつ連続するので、第1、第2絞りとの間で
は、前記空間は存在せず、冷媒は膨張することなく第2
弁体によって流量の調整が行われ、第1弁体は流量の調
整に関与しなくなる。
At this time, the cross-sectional area of the second throttle formed between the second valve body and the valve seat is smaller than the cross-sectional area of the first throttle formed between the first valve body and the valve seat, and is continuous. The space does not exist between the two throttles and the refrigerant flows into the second throttle without expanding.
The flow rate is adjusted by the valve body, and the first valve body is no longer involved in adjusting the flow rate.

このことを第5図の弁リフトと弁開口面積との関係を示
す開口特性図に基づいて、さらに説明すると次のようで
ある。
This will be further explained based on the opening characteristic diagram shown in FIG. 5 which shows the relationship between the valve lift and the valve opening area.

す、なわち、図中イの線が第1弁体の開口特性図で、口
の線が第2弁体の開口特性図である。
In other words, the line A in the figure is the opening characteristic diagram of the first valve body, and the line at the opening is the opening characteristic diagram of the second valve body.

上記の凝縮圧力と蒸発圧力の差圧が所定圧力より大きい
場合は、イ線の開口は口線の開口より大きいので流量の
調整は口線の特性に従って行われる。
If the pressure difference between the condensation pressure and the evaporation pressure is greater than the predetermined pressure, the opening of the line A is larger than the opening of the opening, so the flow rate is adjusted according to the characteristics of the opening.

冬季なとて凝縮圧力が低下し、蒸発圧力との差圧が所定
圧力より小さくなると、第2の弁体はばねによって第1
弁体内に後退し、先端のニードル部の小径の部分が弁座
内に突出し、流路を拡げ第2弁体の開口特性はハになり
、第1弁体のリフトaまでの範囲においては第1弁体の
開口は第2弁体の開口よりも小さく、かつ両開[]には
連続しており、流量調整は第1弁体の開口特性イに従い
、このとき第2弁体は流量調整に関与しない。
When the condensing pressure decreases in winter and the pressure difference between it and the evaporating pressure becomes less than a predetermined pressure, the second valve body is moved by the spring to close the first valve body.
It retreats into the valve body, and the small-diameter portion of the needle at the tip protrudes into the valve seat, expanding the flow path, and the opening characteristic of the second valve body becomes C. In the range up to the lift a of the first valve body, The opening of the first valve body is smaller than the opening of the second valve body, and is continuous with both openings.The flow rate adjustment follows the opening characteristic A of the first valve body, and at this time, the second valve body adjusts the flow rate. not be involved.

冷媒は第1絞りから、第1絞りより僅かに大きい第2絞
りに流れるので、圧力の変化は少なくフラッシュガスは
発生し難いが、たとえ第1絞りでガスが発生しても第2
絞りで絞ることはないので、第1絞りによる流量の調整
のま\蒸発器に流れ流量の変動はない。
Since the refrigerant flows from the first throttle to the second throttle, which is slightly larger than the first throttle, there is little change in pressure and it is difficult to generate flash gas, but even if gas is generated at the first throttle, the second throttle
Since there is no throttling, there is no fluctuation in the flow rate in the evaporator unless the flow rate is adjusted by the first restrictor.

第1弁体のリフトが図中a点を越えると第1弁体の開口
は第2弁体の開口より大きくなり、流量調整は第2弁体
の開口特性ノ\に従い凝縮圧力の低下に従って開口は大
きくなり、例えばリフl−1においては開口面積はbと
なる。
When the lift of the first valve body exceeds point a in the figure, the opening of the first valve body becomes larger than the opening of the second valve body, and the flow rate is adjusted according to the opening characteristic of the second valve body as the condensing pressure decreases. becomes large, and for example, in the riff l-1, the opening area becomes b.

開口特性ハの範囲における冷媒の流れは第1絞りからこ
れより小さい第2絞りに連続して流れるので膨張するこ
とはない。
The flow of the refrigerant in the range of opening characteristic C continuously flows from the first aperture to the second aperture which is smaller than the first aperture, and therefore does not expand.

本考案は下記の特有の効果を生ずる。The present invention produces the following unique effects.

本膨張弁はフラッシュガス混入の冷媒を絞ることがない
ので、従来例の膨張弁のガス混入の冷媒が絞り個所を通
過する際発生した弁鳴現象を著しく減少できる効果を生
ずる。
Since the present expansion valve does not throttle the flash gas-containing refrigerant, it has the effect of significantly reducing the valve squealing phenomenon that occurs when the gas-containing refrigerant passes through the throttle point of the conventional expansion valve.

以下前記の技術的手段の一具体例を示すために図示の実
施例について説明する。
Hereinafter, an illustrated embodiment will be described to show a specific example of the above-mentioned technical means.

第1図は外部均圧型膨張弁の破断面図を示し、第2図は
要部の部分拡大断面図を示したものである。
FIG. 1 shows a broken sectional view of an external pressure equalization type expansion valve, and FIG. 2 shows a partially enlarged sectional view of the main parts.

弁本体1には冷媒入口Aと、同出口Bを有し、両口A、
Bを連通する連通絞り孔2の平面弁座26を開閉する第
1弁体3が弁本体内壁に摺動自在に設けられており、第
1弁体の前記弁座26に対向する面3aを弁座面に平行
としている。
The valve body 1 has a refrigerant inlet A and an outlet B, and both ports A,
A first valve body 3 that opens and closes a flat valve seat 26 of a communicating throttle hole 2 communicating with B is slidably provided on the inner wall of the valve body, and a surface 3a of the first valve body facing the valve seat 26 is It is parallel to the valve seat surface.

弁本体上方端部にはダイアフラム4、上カバー7、弁本
体に結合する十カバー8を有する圧力応動部Cが設けら
れ、ダイアフラl、4上方の空室5には蒸発器出口配管
に添設される感温部10の温度に相当する封入ガスの飽
和圧力P1が毛細管9を介して導入されており、ダイア
フラム下面の空室6には当金12を介してダイアフラム
4の動作を第1弁体3に伝える弁棒11が設けられてい
ると共に空室6には蒸発器出口の圧力P6を伝える外均
管13が開口している。
A pressure responsive part C is provided at the upper end of the valve body, and includes a diaphragm 4, an upper cover 7, and a cover 8 that is coupled to the valve body. A saturation pressure P1 of the sealed gas corresponding to the temperature of the temperature sensing part 10 is introduced through the capillary tube 9, and the operation of the diaphragm 4 is controlled by the first valve A valve rod 11 is provided for transmitting the pressure to the body 3, and an equalizing pipe 13 for transmitting the pressure P6 at the outlet of the evaporator is opened in the chamber 6.

第1弁体3下面には過熱度調節はね14が設定された弾
力P1で第1弁体3を常に閉方向に付勢しており、ばね
14の弾力を調節する調節ビス15が弁本体に螺設され
、P1P6−△P(過熱度)変化で、はね14に対抗し
、第1弁体3の開度を調整する通常の温変式膨張弁の動
作を上記の構造で行なうものである。
On the lower surface of the first valve body 3, a superheat degree adjusting spring 14 always biases the first valve body 3 in the closing direction with a set elasticity P1, and an adjusting screw 15 that adjusts the elasticity of the spring 14 is attached to the valve body. The above structure operates a normal temperature variable expansion valve that adjusts the opening degree of the first valve body 3 against the spring 14 by changing P1P6-△P (degree of superheat). It is.

第1弁体3は両端開放した段付中空円筒状をなし、小径
部の先端が前記過熱度の変化で連通絞り孔2の平面弁座
26を開閉する平井3aを形成し、大径部の開放口は前
記調節はね14のばね受18が周縁を溶接して固着して
おり、弁内室17内には一端を前記はね受18に固着し
たベローズ20が設けられ、該ベローズ内には、ベロー
ズ自由端に固着し、ベローズを縦貫し、一方をベローズ
外に突出−して後述する第2弁体ニードル弁23と結合
する螺子部21aを有し、他方は前記はね受18を貫通
して前記はね14内に挿設されるばね受24を螺止する
ロッド21が設けられ、ロッド21は、ばね受18とば
ね受24との間に介設されるはね22で常時下方へ付勢
されている。
The first valve body 3 has a stepped hollow cylindrical shape with both ends open, and the tip of the small diameter portion forms a flat plate 3a that opens and closes the flat valve seat 26 of the communicating throttle hole 2 depending on the change in the degree of superheat, and the tip of the large diameter portion The opening opening is fixed to the spring receiver 18 of the adjustment spring 14 by welding the periphery thereof, and a bellows 20 with one end fixed to the spring receiver 18 is provided in the valve inner chamber 17. has a threaded portion 21a that is fixed to the free end of the bellows, passes through the bellows longitudinally, and has one end protruding outside the bellows to be connected to a second valve body needle valve 23, which will be described later, and the other end is attached to the spring receiver 18. A rod 21 is provided to screw a spring receiver 24 that penetrates and is inserted into the spring 14, and the rod 21 is always connected to the spring 22 interposed between the spring receiver 18 and the spring receiver 24. It is biased downward.

又はね受18にはベローズ20内部と弁内室外部の一次
側(入口A側)と導通する小孔19が設けられている。
Alternatively, the spring bearing 18 is provided with a small hole 19 that communicates with the inside of the bellows 20 and the primary side (inlet A side) of the outside of the valve inner chamber.

ロッド21の頭部には螺子部21aと螺合結合し、小径
部の中心孔16に摺設する第2弁体ニードル弁23が設
けられ、該ニードル弁23は一端が二次側(出口B側)
に開口し他端が弁内室17内に開口する中心導孔25を
有すると共に弁体3の内壁と係合する段部23aが形成
され一定範囲以−ヒのニードル弁23の上昇を阻止して
いる。
The head of the rod 21 is provided with a second valve body needle valve 23 which is threadedly connected to the threaded part 21a and slid into the center hole 16 of the small diameter part, and one end of the needle valve 23 is connected to the secondary side (outlet B). side)
It has a central guide hole 25 whose other end opens into the valve inner chamber 17, and a stepped portion 23a that engages with the inner wall of the valve body 3 to prevent the needle valve 23 from rising beyond a certain range. ing.

又第2弁体ニードル弁23は前記ニードル弁段部23a
が弁体内壁に係合した位置に於て、弁体小径部の先端位
置から先細の勾配部23bが形成されて弁座26内に直
角に突出している。
Further, the second valve body needle valve 23 is connected to the needle valve step portion 23a.
At a position where the small diameter portion of the valve body engages with the inner wall of the valve body, a tapered slope portion 23b is formed from the tip of the small diameter portion of the valve body and projects into the valve seat 26 at a right angle.

上記構成により出口B側の圧力pbは中心導孔25を通
って弁内室17に導入されベローズ200外面に作用し
、ばね22の弾性Psとの合成力Pb+Psがニードル
弁23を下方へ付勢し、又入口A側の圧力Paは弁体3
の外面と弁本体内壁との間隙eから進入し、前記弁受1
8の小孔19を通ってベローズ20内に作用し、ベロー
ズ内圧力はPaとなり、ベローズを上方へ付勢する。
With the above configuration, the pressure pb on the outlet B side is introduced into the valve inner chamber 17 through the center guide hole 25 and acts on the outer surface of the bellows 200, and the combined force Pb+Ps with the elasticity Ps of the spring 22 urges the needle valve 23 downward. In addition, the pressure Pa on the inlet A side is
The valve receiver 1 enters from the gap e between the outer surface of the valve body and the inner wall of the valve body.
The pressure inside the bellows becomes Pa through the small hole 19 of No. 8, and the pressure inside the bellows becomes Pa, which urges the bellows upward.

よってベローズ内外の圧力差Pa−Pb=△Pを所定値
に設定し、△Pに等しくばね22の弾力Psを調節すれ
ば、P a−P b=P sで平衡し、第2弁体ニード
ル弁2゛3は第2図図示の如く段部23aが弁体内壁に
係合した位置で静止し、圧力差△PがPsより犬なる場
合(Paが犬となった場合)は第2弁体23は段部23
aで制止されて上方へは移動せず原状を維持するが、圧
力差△PがPsより小となる場合(Paが小となった場
合)は、第2弁体ニードル弁23は下降し勾配部23b
の細い部分が流路内に現われるので流路面積は拡大され
る。
Therefore, if the pressure difference between the inside and outside of the bellows Pa - Pb = △P is set to a predetermined value and the elasticity Ps of the spring 22 is adjusted to be equal to △P, then the balance will be established as Pa - P b = P s, and the second valve needle As shown in FIG. 2, the valve 2-3 stops at a position where the stepped portion 23a engages with the wall of the valve body, and when the pressure difference △P is smaller than Ps (when Pa becomes smaller), the second valve The body 23 is a stepped portion 23
It is stopped by a and does not move upward and maintains its original state. However, when the pressure difference △P becomes smaller than Ps (when Pa becomes smaller), the second valve body needle valve 23 descends and the slope Part 23b
Since a narrow portion of the flow path appears within the flow path, the flow path area is expanded.

前記過熱度によって平面弁座26と平井3aとの間の弁
開度1が示されている場合、人口側A(−次側)と出口
側B(二次側)の圧力差が所定値より犬なるときは、第
2の弁体ニードル弁23は第3図点線で示す位置にある
が、圧力差が所定値より小さくなると実線で示す位置と
なり、第1弁体の弁開度1は変化しないが、流路は拡大
されて圧力差の減少を補償して流量の変化を小範囲にと
どめ又はゼロとするものであり、さらに膨張弁通過時に
おける冷媒にはフラッシュガスは生じないか又は生じて
も流量の変動はない。
When the degree of superheat indicates a valve opening degree of 1 between the flat valve seat 26 and the flat valve 3a, the pressure difference between the population side A (-next side) and the outlet side B (secondary side) is less than a predetermined value. When the needle valve 23 is closed, the second valve body needle valve 23 is at the position shown by the dotted line in Figure 3, but when the pressure difference becomes smaller than a predetermined value, it is at the position shown by the solid line, and the valve opening degree 1 of the first valve body changes. However, the flow path is enlarged to compensate for the decrease in pressure difference and keep the change in flow rate within a small range or to zero, and furthermore, the refrigerant does not generate flash gas or does not generate flash gas when passing through the expansion valve. However, there is no fluctuation in flow rate.

したがって夏季特性用に設計された膨張弁に於て、本考
案による膨張弁を用いるならば、冬季外気温低下による
一次側圧力の低下があっても所定過熱度に於ける冷媒流
路は一定に保つことができ、もしくは変動量を小範囲に
押えることができ、膨張弁を凝縮圧力の変動にかかわら
ず通年して使用できるものである。
Therefore, in an expansion valve designed for summer characteristics, if the expansion valve according to the present invention is used, the refrigerant flow path at a predetermined degree of superheat will remain constant even if the primary pressure decreases due to the drop in outside temperature in winter. The expansion valve can be used all year round regardless of fluctuations in condensing pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例の破断面図、第2図は要部の部分
拡大断面図、第3図はニードル弁の動作を説明する部分
断面図、第4図は従来例の要部断面図、第5図は本考案
の弁の開口特性図である。 1・・・・・・弁本体、2・・・・・・連通絞り孔、3
・・・・・・第1弁体、4・・・・・・ダイアフラム、
14・・・・・・過熱度調整ばね、15・・・・・・調
節ビス、17・・・・・・弁内室、20・・・・・・ベ
ローズ、21・・・・・・ロッド、22・・・・・・ば
ね、23・・・・・・第2弁体ニードル弁、24・・・
・・・ばね受、25・・・・・・中心導孔、26・・・
・・・平面弁座。
Fig. 1 is a broken cross-sectional view of the embodiment of the present invention, Fig. 2 is a partially enlarged cross-sectional view of the main part, Fig. 3 is a partial cross-sectional view explaining the operation of the needle valve, and Fig. 4 is a cross-section of the main part of the conventional example. FIG. 5 is an opening characteristic diagram of the valve of the present invention. 1... Valve body, 2... Communication throttle hole, 3
...First valve body, 4...Diaphragm,
14... Superheat degree adjustment spring, 15... Adjustment screw, 17... Valve interior, 20... Bellows, 21... Rod , 22... Spring, 23... Second valve body needle valve, 24...
... Spring holder, 25 ... Center guide hole, 26 ...
...Flat valve seat.

Claims (1)

【実用新案登録請求の範囲】 蒸発器出口側冷媒の過熱度に関連して絞り弁座の開閉を
行う弁体を有する温度式膨張弁において、(イ)絞り弁
座を弁座通路に対し直角な平面弁座とし、 (ロ)過熱度に関連して動作する第1弁体の上記絞り弁
座面に対向する面を弁座面に平行とし、(ハ)流量調整
用の先端にニードル部を有する第2弁体を、前記第1弁
体内に摺動自在に収容し、第2弁体先端のニードJし部
を前記弁座内に突出させ、弁座通路を円筒状通路とし、 に)第2弁体の背面に凝縮圧力を作用させ、第2弁体の
正面に第2弁体の中心導孔を介して蒸発圧力を作用させ
、第2弁体を第1弁体内に後退させるよう付勢するばね
と、凝縮圧力と蒸発圧力との差圧による第2弁体の弁座
方向の移動を所定位置で規制する第1弁体との係合段部
を第2弁体に設けた、 温度式膨張弁
[Scope of Claim for Utility Model Registration] In a thermostatic expansion valve having a valve body that opens and closes the throttle valve seat in relation to the degree of superheating of the refrigerant at the outlet side of the evaporator, (a) the throttle valve seat is perpendicular to the valve seat passage; (b) The surface of the first valve body that operates in relation to the degree of superheat, which faces the throttle valve seat surface, is parallel to the valve seat surface, and (c) A needle portion is provided at the tip for adjusting the flow rate. A second valve body having a second valve body is slidably housed in the first valve body, a needled portion at the tip of the second valve body projects into the valve seat, and the valve seat passage is a cylindrical passage. ) Apply condensation pressure to the back surface of the second valve body, apply evaporation pressure to the front surface of the second valve body through the center guide hole of the second valve body, and retreat the second valve body into the first valve body. The second valve body is provided with a spring that biases the second valve body and a step portion that engages with the first valve body that restricts movement of the second valve body toward the valve seat at a predetermined position due to a pressure difference between the condensing pressure and the evaporation pressure. Thermostatic expansion valve
JP1595279U 1979-02-13 1979-02-13 temperature expansion valve Expired JPS5810055Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1595279U JPS5810055Y2 (en) 1979-02-13 1979-02-13 temperature expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1595279U JPS5810055Y2 (en) 1979-02-13 1979-02-13 temperature expansion valve

Publications (2)

Publication Number Publication Date
JPS55117670U JPS55117670U (en) 1980-08-20
JPS5810055Y2 true JPS5810055Y2 (en) 1983-02-23

Family

ID=28838575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1595279U Expired JPS5810055Y2 (en) 1979-02-13 1979-02-13 temperature expansion valve

Country Status (1)

Country Link
JP (1) JPS5810055Y2 (en)

Also Published As

Publication number Publication date
JPS55117670U (en) 1980-08-20

Similar Documents

Publication Publication Date Title
US5303864A (en) Expansion valve
US5005370A (en) Thermal expansion valve
US7980482B2 (en) Thermostatic expansion valve having a restricted flow passage for noise attenuation
JPS61105066A (en) Expansion valve
US3037362A (en) Compound pressure regulating system for refrigeration
US4032070A (en) Thermostatic expansion valve for refrigeration installations
US3667247A (en) Refrigeration system with evaporator outlet control valve
GB1564072A (en) Thermostatic expansion valve assemblies
JP2008138812A (en) Differential pressure valve
US4750334A (en) Balanced thermostatic expansion valve for refrigeration systems
US3054273A (en) Thermal expansion valve
JPS5810055Y2 (en) temperature expansion valve
US5931377A (en) Air conditioning system for a vehicle incorporating therein a block type expansion valve
US2410795A (en) Expansion valve
US4254634A (en) Control valve to be employed for refrigerator and air conditioner
US4335742A (en) Evaporator pressure regulator
US4236669A (en) Thermostatic expansion valve with lead-lag compensation
JP3146722B2 (en) Expansion valve
US4112704A (en) Pilot valve-type evaporating pressure-regulating valve used in refrigerators
JPH02254270A (en) Temperature actuating type expansion valve
JP2000186870A (en) Control valve for refrigeration cycle
JPH05196324A (en) Expansion valve for refrigerating cycle
JP2001153499A (en) Control valve for refrigerating cycle
JPH05118711A (en) Expansion valve
JPS5810056Y2 (en) expansion valve