JPH1197724A - Solar cell and its manufacture - Google Patents

Solar cell and its manufacture

Info

Publication number
JPH1197724A
JPH1197724A JP9259471A JP25947197A JPH1197724A JP H1197724 A JPH1197724 A JP H1197724A JP 9259471 A JP9259471 A JP 9259471A JP 25947197 A JP25947197 A JP 25947197A JP H1197724 A JPH1197724 A JP H1197724A
Authority
JP
Japan
Prior art keywords
film
substrate
solar cell
aluminum
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9259471A
Other languages
Japanese (ja)
Inventor
Katsumi Aota
克己 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP9259471A priority Critical patent/JPH1197724A/en
Publication of JPH1197724A publication Critical patent/JPH1197724A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the short-circuiting current of a solar cell by arranging an aluminum oxide film layer with a roughened surface between an aluminum substrate and a lower electrode. SOLUTION: An aluminum oxide(Al2 O3 ) film 2 is electrochemically an insulation film is formed on a substrate 1 by anode oxidation. An aluminum substrate 1 is subjected to anode oxidation in a nitric acid bath. When a porous covering (Al2 O3 ) is grown to a thickness of 2-6 μm on the surface of the substrate 1, surface 2a of the film 2 is made recessed and projected (roughened). A P-I-N junction type amorphous silicon film 3 is formed on the Al2 O3 film 2 with a recessed and projected surface as an amorphous silicon generation layer and then an ITO film 4 that becomes a transparent electrode is formed. A solar beam with a wavelength of 550-800 mm is diffused and reflected on the recessed and projected surface for confining light and the optical path length in the amorphous silicon is extended, thus increasing the short-circuiting current of a solar cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池およびその
製造方法に関し、さらに詳細には、光電変換効率を向上
させたアモルファスシリコン太陽電池およびその製造方
法に関する。
The present invention relates to a solar cell and a method for manufacturing the same, and more particularly, to an amorphous silicon solar cell with improved photoelectric conversion efficiency and a method for manufacturing the same.

【0002】[0002]

【従来の技術】有害物質を出さないクリーンで非枯渇性
のエネルギーを利用する低コスト太陽電池としてアモル
ファス(非晶質)シリコン太陽電池が知られている。こ
のようなアモルファスシリコン太陽電池は、安価な基板
と、低温で形成できる厚さ1μm以下の薄膜とで構成で
きるため、低コストで製造できる特長がある。このよう
な特長を十分に活かすためには、光電変換効率を向上さ
せ、実用に供し得る性能にする必要がある。
2. Description of the Related Art Amorphous silicon solar cells are known as low-cost solar cells that use clean, non-depleting energy that does not emit harmful substances. Such an amorphous silicon solar cell has the advantage that it can be manufactured at low cost because it can be composed of an inexpensive substrate and a thin film having a thickness of 1 μm or less that can be formed at a low temperature. In order to make full use of such features, it is necessary to improve the photoelectric conversion efficiency so that the performance can be put to practical use.

【0003】従来このようなアモルファスシリコン太陽
電池の基板材料として、ステンレス鋼等の金属基板、ガ
ラス、高分子フィルム、セラミック等の絶縁性基板ある
いは金属基板表面に絶縁物をコ−ティングした絶縁性基
板等が知られている。あまり薄くできないガラス基板と
違って、軽量小型化を図ることが可能な金属基板に絶縁
膜をコ−ティングした構造を使用する場合、一般にステ
ンレス鋼基板上にポリイミド等の耐熱性樹脂膜等が使用
される。
Conventionally, as a substrate material of such an amorphous silicon solar cell, a metal substrate such as stainless steel, an insulating substrate such as glass, polymer film, ceramic or the like, or an insulating substrate obtained by coating an insulating material on the surface of the metal substrate. Etc. are known. When using a structure in which an insulating film is coated on a metal substrate that can be reduced in weight and size unlike a glass substrate that cannot be made too thin, a heat-resistant resin film such as polyimide is generally used on a stainless steel substrate. Is done.

【0004】又、従来に於いては、基板に、例えば、S
US等のステンレス系金属材料を使用した場合には、複
数個のセル素子部間を直列に接続して容量の大きい太陽
電池を構成するに際して、当該基板と下部電極との間に
絶縁膜を介在させる必要がある。然しながら、従来に於
いては、当該絶縁膜として、有機材料からなる絶縁膜を
使用する場合が多く、当該有機材料からなる絶縁膜は、
熱電導性が大きく、又耐熱性に乏しい為、太陽電池とし
ての特性を悪化させるものであった。
[0004] Conventionally, for example, S
When a stainless metal material such as US is used, an insulating film is interposed between the substrate and the lower electrode when a large-capacity solar cell is formed by connecting a plurality of cell elements in series. Need to be done. However, conventionally, an insulating film made of an organic material is often used as the insulating film, and the insulating film made of the organic material is
Because of its high thermal conductivity and poor heat resistance, it deteriorated the characteristics as a solar cell.

【0005】しかも下地金属の表面加工や、膜厚を薄く
する必要があるため製造コストも高くなる。
[0005] In addition, since it is necessary to process the surface of the base metal and reduce the film thickness, the manufacturing cost is also increased.

【0006】[0006]

【発明が解決しようとする課題】上記問題を鑑み、本発
明の目的は、耐熱性を有する絶縁部位を備えた薄い金属
基板を備え、しかも光電変換効率の高い太陽電池および
その製造方法を提供することである。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a solar cell having a thin metal substrate provided with a heat-resistant insulating portion and having a high photoelectric conversion efficiency and a method of manufacturing the same. That is.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の態様は、金属基板上に下部電極、アモ
ルファス発電層および上部電極が順次配設してなる太陽
電池において、前記金属基板がアルミニウムからなり、
前記アルミニウム基板と該下部電極との間に粗面化され
たアルミニウム酸化膜層が配置されている太陽電池であ
り、又本発明の第2の態様は、金属基板上に下部電極、
アモルファス発電層および上部電極が順次配設してなる
太陽電池の製造方法において、金属基板としてアルミニ
ウムを選択する工程、当該アルミニウム基板表面に粗面
化された表面を有するアルミニウム酸化膜層を形成する
工程、当該粗面化されたアルミニウム酸化膜層の上に下
部電極、アモルファス発電層および上部電極を順次に形
成する工程とから構成されている太陽電池の製造方法で
ある。
According to a first aspect of the present invention, there is provided a solar cell comprising a metal substrate, on which a lower electrode, an amorphous power generation layer and an upper electrode are sequentially disposed. The metal substrate is made of aluminum,
A solar cell in which a roughened aluminum oxide film layer is disposed between the aluminum substrate and the lower electrode, and a second aspect of the present invention is a solar cell including a lower electrode on a metal substrate,
In a method for manufacturing a solar cell in which an amorphous power generation layer and an upper electrode are sequentially disposed, a step of selecting aluminum as a metal substrate and a step of forming an aluminum oxide film layer having a roughened surface on the aluminum substrate surface Forming a lower electrode, an amorphous power generation layer, and an upper electrode sequentially on the roughened aluminum oxide film layer.

【0008】[0008]

【発明の実施の形態】本発明では、アルミニウム基板表
面が陽極酸化によって酸化されるため、アルミニウム基
板表面に陽極酸化工程の酸を選択することによって表面
が凹凸になる面化した皮膜層を形成することができ
る。この凹凸表面で波長550〜800mmの太陽光が
拡散反射させ光を閉じ込め、アモルファスシリコン中の
行路長を長くし、その結果、太陽電池の短絡電流を大き
くすることができる。このことにより光電変換効率が高
い太陽電池を得ることができる。
In DETAILED DESCRIPTION OF THE INVENTION The present invention, since the aluminum substrate surface is oxidized by anodic oxidation, forming a coating layer surface was roughened becomes uneven by selecting the acid anodization step surface of the aluminum substrate can do. Sunlight having a wavelength of 550 to 800 mm is diffusely reflected on the uneven surface to confine the light, thereby increasing the path length in the amorphous silicon. As a result, the short-circuit current of the solar cell can be increased. Thereby, a solar cell with high photoelectric conversion efficiency can be obtained.

【0009】[0009]

【実施例】以下、本発明の具体的な実施例を図面を参照
して詳細に説明する。図1は、本発明の太陽電池の第1
実施例の製造方法を説明するための工程断面図である。
図1(a)に示すように、先ず、表面をバフ研磨等によ
り研磨した後、リン酸−硝酸混合液で化学研磨して鏡面
性を持たせた約0.2mmの厚さのアルミニウム(A
l)基板1に、陽極酸化によって電気化学的に絶縁膜で
ある酸化アルミニウム(Al2 3 )膜2を形成する。
この陽極酸化はアルミニウム基板1を硝酸浴中で行なわ
れ、基板1表面にポ−ラス形皮膜(Al2 3 )を2〜
6μmの厚さに成長させたもので、その膜2の表面2a
が凹凸状態(粗面化)になっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a first example of the solar cell of the present invention.
It is a process sectional view for explaining the manufacturing method of an example.
As shown in FIG. 1A, first, the surface is polished by buffing or the like, and then chemically polished with a mixed solution of phosphoric acid and nitric acid to give mirror-like aluminum (A) having a thickness of about 0.2 mm.
1) An aluminum oxide (Al 2 O 3 ) film 2 which is an electrochemically insulating film is formed on a substrate 1 by anodic oxidation.
This anodic oxidation is performed on the aluminum substrate 1 in a nitric acid bath, and a porous film (Al 2 O 3 )
The surface 2a of the film 2 is grown to a thickness of 6 μm.
Are in an uneven state (roughened).

【0010】次に、図1(b)に示すように、凹凸面2
aを有するAl2 3 膜2上に通常と同様にプラズマC
VD法により約250℃の温度で5550Å(P層:4
00Å、I層:5000Å、N層:150Å、)の厚さ
のP−I−N接合型のアモルファスシリコン膜3を成膜
しアモルファスシリコン発電層とし、次に、DCスパッ
タ法によりArガス中、300℃で1000Åの厚さの
透明電極となるITO膜4を形成する。この透明電極か
ら光が入射される(矢印L)。
Next, as shown in FIG.
a on the Al 2 O 3 film 2 having a
5550 ° C. at a temperature of about 250 ° C. (P layer: 4
00Å, I layer: 5000Å, N layer: 150Å) to form a P-I-N junction type amorphous silicon film 3 to form an amorphous silicon power generation layer. An ITO film 4 serving as a transparent electrode having a thickness of 1000 ° is formed at 300 ° C. Light is incident from this transparent electrode (arrow L).

【0011】以上の工程により金属基板1上にアモルフ
ァス発電層3および透明電極4が順次配設してなる太陽
電池において、この金属基板1がアルミニウムからな
り、アルミニウム基板1上に凹凸面2aを有するアルミ
ニウム酸化膜2を具備した太陽電池を低コストで得るこ
とができる。なお図示していないが、Al2 3 膜2と
アモルファスシリコン膜3の間にこのアモルファスシリ
コン膜3とのオ−ミック接触を得るため金属膜を形成し
てもよい。その材料は、チタン、モリブデン、ニッケ
ル、クロム等が可能である。
In the solar cell in which the amorphous power generation layer 3 and the transparent electrode 4 are sequentially disposed on the metal substrate 1 by the above steps, the metal substrate 1 is made of aluminum and has the uneven surface 2a on the aluminum substrate 1. A solar cell having the aluminum oxide film 2 can be obtained at low cost. Although not shown, a metal film may be formed between the Al 2 O 3 film 2 and the amorphous silicon film 3 to obtain ohmic contact with the amorphous silicon film 3. The material can be titanium, molybdenum, nickel, chromium, and the like.

【0012】図2は本発明の太陽電池の第2実施例を示
す断面図である。図2に示した太陽電池は上記第1実施
例のアルミニウム基板11の表面に予め物理的、あるい
は化学的に凹凸面11aを設けた後に、第1実施例と同
様に、陽極酸化膜のAl2 3 膜2、アモルファスシリ
コン膜3、透明電極のITO膜4を順次形成した構造と
なっている。
FIG. 2 shows a second embodiment of the solar cell according to the present invention.
FIG. The solar cell shown in FIG.
Physically or in advance on the surface of the aluminum substrate 11 of the example.
Is the same as that of the first embodiment after chemically forming the uneven surface 11a.
Similarly, the Al of the anodic oxide filmTwoO ThreeFilm 2, amorphous silicon
A structure in which a capacitor film 3 and an ITO film 4 of a transparent electrode are sequentially formed;
Has become.

【0013】この第2実施例では陽極酸化膜のAl2
3 膜2の凹凸面2aを形成する下地アルミニウム表面が
予め凹凸面11aが設けられているため、第1実施例よ
りさらに粗面のAl2 3 膜2が得られアモルファスシ
リコン発電層内に光を閉じ込め、光電変換効率の高い太
陽電池を得ることができる。上記本実施例では透明電極
4としてITOを使用したが、可視光に対する透明性と
電気伝導性に優れた特性を有する材料、例えば、SnO
2 膜およびIn2 3 膜等も利用することができる。
In this second embodiment, the anodic oxide film AlTwoO
ThreeThe underlying aluminum surface forming the uneven surface 2a of the film 2 is
Since the uneven surface 11a is provided in advance, the first embodiment is different from the first embodiment.
Even rougher AlTwoOThreeFilm 2 is obtained
Light is confined within the recon power generation layer and has a high photoelectric conversion efficiency.
A positive battery can be obtained. In the above embodiment, the transparent electrode
Although ITO was used as No. 4, transparency to visible light and
Materials having excellent electrical conductivity, such as SnO
TwoFilm and InTwoO ThreeA membrane or the like can also be used.

【0014】上記実施例ではアモルファスシリコン膜3
は、アモルファスシリコンSi膜中に水素を取り込ませ
るようにプラズマCVD法により水素化アモルファスシ
リコン膜を形成させている。水素化アモルファスシリコ
ン膜のp層およびn層は、SiH4 ガスにそれぞれB2
6 ガスおよびPH3 ガスを不純物添加(ド−ピング)
により得られ、I層はSiH4 ガスのみのグロ−放電分
解によって形成した。
In the above embodiment, the amorphous silicon film 3
Discloses that a hydrogenated amorphous silicon film is formed by a plasma CVD method so that hydrogen is taken into an amorphous silicon Si film. The p-layer and the n-layer of the hydrogenated amorphous silicon film are formed by adding B 2 to SiH 4 gas, respectively.
Impurity addition (doping) of H 6 gas and PH 3 gas
The I layer was formed by glow discharge decomposition of only SiH 4 gas.

【0015】さらに本実施例においては、P−I−N接
合型の水素化アモルファスシリコン積層膜としたが、S
iとの結合力がより強いフッ素Fをアモルファスシリコ
ン膜に取り込んだフッ素化アモルファスシリコン膜など
も可能である。本実施例では実施していないが、透明電
極4とアモルファスシリコン発電層3の間にSiNX
どの絶縁膜を形成することによって、より化学的に安定
で平坦性を有するアモルファスシリコン発電層を得るこ
とができる。しかしながらその場合、絶縁膜は透明電極
4との対応のため透光性に優れたものでなくてはならな
い。
Further, in this embodiment, a PIN junction type hydrogenated amorphous silicon laminated film is used.
A fluorinated amorphous silicon film in which fluorine F having a stronger bonding force with i is incorporated into the amorphous silicon film is also possible. Although not implemented in the present embodiment, by forming an insulating film such as SiN X between the transparent electrode 4 and the amorphous silicon photovoltaic layer 3, to obtain an amorphous silicon photovoltaic layer having a more chemically stable flatness be able to. However, in that case, the insulating film must be excellent in light transmission in order to correspond to the transparent electrode 4.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
低コストで金属基板に高耐熱性の絶縁膜を形成した光電
変換効率が高いアモルファスシリコン太陽電池を得るこ
とができる。
As described above, according to the present invention,
An amorphous silicon solar cell with high photoelectric conversion efficiency in which a high heat-resistant insulating film is formed on a metal substrate at low cost can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の太陽電池の第1実施例の製造
工程を示す工程断面図。
FIG. 1 is a process cross-sectional view showing a manufacturing process of a first embodiment of a solar cell of the present invention.

【図2】図2は、本発明の太陽電池の第2実施例を示す
断面図。
FIG. 2 is a sectional view showing a second embodiment of the solar cell of the present invention.

【符号の説明】[Explanation of symbols]

1,11…アルミニウム基板 2…Al2 3 膜(陽極酸化膜) 2a…凹凸面(Al2 3 膜) 3…アモルファスシリコン膜(発電層) 4…ITO膜(透明電極) 11a…凹凸面(アルミニウム基板)1, 11: aluminum substrate 2: Al 2 O 3 film (anodic oxide film) 2a: uneven surface (Al 2 O 3 film) 3: amorphous silicon film (power generation layer) 4: ITO film (transparent electrode) 11a: uneven surface (Aluminum substrate)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属基板上に下部電極、アモルファス発
電層および上部電極が順次配設してなる太陽電池におい
て、前記金属基板がアルミニウムからなり、前記アルミ
ニウム基板と該下部電極との間に粗面化されたアルミニ
ウム酸化膜層が配置されていることを特徴とする太陽電
池。
1. A solar cell in which a lower electrode, an amorphous power generation layer, and an upper electrode are sequentially disposed on a metal substrate, wherein the metal substrate is made of aluminum, and a rough surface is provided between the aluminum substrate and the lower electrode. A solar cell, wherein a converted aluminum oxide film layer is disposed.
【請求項2】 金属基板上に下部電極、アモルファス発
電層および上部電極が順次配設してなる太陽電池の製造
方法において、金属基板としてアルミニウムを選択する
工程、当該アルミニウム基板表面に粗面化された表面を
有するアルミニウム酸化膜層を形成する工程、当該粗面
化されたアルミニウム酸化膜層の上に下部電極、アモル
ファス発電層および上部電極を順次に形成する工程とか
ら構成されていることを特徴とする太陽電池の製造方
法。
2. A method for manufacturing a solar cell in which a lower electrode, an amorphous power generation layer, and an upper electrode are sequentially disposed on a metal substrate, wherein aluminum is selected as the metal substrate, and the surface of the aluminum substrate is roughened. Forming an aluminum oxide film layer having a roughened surface, and sequentially forming a lower electrode, an amorphous power generation layer and an upper electrode on the roughened aluminum oxide film layer. Solar cell manufacturing method.
【請求項3】 当該アルミニウム基板表面に粗面化され
たアルミニウム酸化膜を形成する工程は、前記アルミニ
ウム基板表面を陽極酸化する工程である事を特徴とする
請求項2記載の太陽電池の製造方法。
3. The method according to claim 2, wherein the step of forming a roughened aluminum oxide film on the surface of the aluminum substrate is a step of anodizing the surface of the aluminum substrate. .
【請求項4】 金属基板として、アルミニウムを選択す
る工程、当該アルミニウム基板表面を粗面化する工程、
当該粗面化されたアルミニウム基板表面に陽極酸化を施
して、粗面化されたアルミニウム酸化膜層を形成する工
程、当該粗面化されたアルミニウム酸化膜層の上に下部
電極、アモルファス発電層および上部電極を順次に形成
する工程とから構成されていることを特徴とする太陽電
池の製造方法。
4. A step of selecting aluminum as the metal substrate, a step of roughening the surface of the aluminum substrate,
Performing anodization on the surface of the roughened aluminum substrate to form a roughened aluminum oxide film layer, a lower electrode, an amorphous power generation layer, and an upper electrode on the roughened aluminum oxide film layer; Forming a top electrode sequentially.
JP9259471A 1997-09-25 1997-09-25 Solar cell and its manufacture Pending JPH1197724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9259471A JPH1197724A (en) 1997-09-25 1997-09-25 Solar cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9259471A JPH1197724A (en) 1997-09-25 1997-09-25 Solar cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH1197724A true JPH1197724A (en) 1999-04-09

Family

ID=17334546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9259471A Pending JPH1197724A (en) 1997-09-25 1997-09-25 Solar cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH1197724A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155713A (en) * 1999-09-16 2001-06-08 Fujimori Kogyo Co Ltd Electrode lead member and battery
JP2008288467A (en) * 2007-05-19 2008-11-27 Taiyo Yuden Co Ltd Thin film resistor and its manufacturing method
WO2010082642A1 (en) * 2009-01-16 2010-07-22 Fujifilm Corporation Photoelectric conversion device and solar cell using the same
EP2248662A1 (en) 2009-05-01 2010-11-10 Fujifilm Corporation Metal composite substrate and method of producing the same
WO2011119618A3 (en) * 2010-03-24 2012-01-19 Sionyx, Inc. Devices having enhanced electromagnetic radiation detection and associated methods
CN102569517A (en) * 2012-01-10 2012-07-11 北京航空航天大学 Nano silicon film solar battery elliptic polarized light real-time monitoring preparation method
US8865507B2 (en) 2011-09-16 2014-10-21 Sionyx, Inc. Integrated visible and infrared imager devices and associated methods
CN104393116A (en) * 2014-11-20 2015-03-04 北京航空航天大学 Spectroscopic ellipsometry real-time monitoring preparation method of nano-silicon thin film solar cells
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9673250B2 (en) 2013-06-29 2017-06-06 Sionyx, Llc Shallow trench textured regions and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9741761B2 (en) 2010-04-21 2017-08-22 Sionyx, Llc Photosensitive imaging devices and associated methods
US9761739B2 (en) 2010-06-18 2017-09-12 Sionyx, Llc High speed photosensitive devices and associated methods
US9762830B2 (en) 2013-02-15 2017-09-12 Sionyx, Llc High dynamic range CMOS image sensor having anti-blooming properties and associated methods
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155713A (en) * 1999-09-16 2001-06-08 Fujimori Kogyo Co Ltd Electrode lead member and battery
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US10741399B2 (en) 2004-09-24 2020-08-11 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
JP2008288467A (en) * 2007-05-19 2008-11-27 Taiyo Yuden Co Ltd Thin film resistor and its manufacturing method
JP2010165878A (en) * 2009-01-16 2010-07-29 Fujifilm Corp Photoelectric conversion element, and solar cell using the same
JP4550928B2 (en) * 2009-01-16 2010-09-22 富士フイルム株式会社 Photoelectric conversion element and solar cell using the same
WO2010082642A1 (en) * 2009-01-16 2010-07-22 Fujifilm Corporation Photoelectric conversion device and solar cell using the same
EP2248662A1 (en) 2009-05-01 2010-11-10 Fujifilm Corporation Metal composite substrate and method of producing the same
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US10361232B2 (en) 2009-09-17 2019-07-23 Sionyx, Llc Photosensitive imaging devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
WO2011119618A3 (en) * 2010-03-24 2012-01-19 Sionyx, Inc. Devices having enhanced electromagnetic radiation detection and associated methods
US10229951B2 (en) 2010-04-21 2019-03-12 Sionyx, Llc Photosensitive imaging devices and associated methods
US9741761B2 (en) 2010-04-21 2017-08-22 Sionyx, Llc Photosensitive imaging devices and associated methods
US9761739B2 (en) 2010-06-18 2017-09-12 Sionyx, Llc High speed photosensitive devices and associated methods
US10505054B2 (en) 2010-06-18 2019-12-10 Sionyx, Llc High speed photosensitive devices and associated methods
US10269861B2 (en) 2011-06-09 2019-04-23 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9666636B2 (en) 2011-06-09 2017-05-30 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US8865507B2 (en) 2011-09-16 2014-10-21 Sionyx, Inc. Integrated visible and infrared imager devices and associated methods
CN102569517A (en) * 2012-01-10 2012-07-11 北京航空航天大学 Nano silicon film solar battery elliptic polarized light real-time monitoring preparation method
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US10224359B2 (en) 2012-03-22 2019-03-05 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9762830B2 (en) 2013-02-15 2017-09-12 Sionyx, Llc High dynamic range CMOS image sensor having anti-blooming properties and associated methods
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US9673250B2 (en) 2013-06-29 2017-06-06 Sionyx, Llc Shallow trench textured regions and associated methods
US10347682B2 (en) 2013-06-29 2019-07-09 Sionyx, Llc Shallow trench textured regions and associated methods
US11069737B2 (en) 2013-06-29 2021-07-20 Sionyx, Llc Shallow trench textured regions and associated methods
CN104393116A (en) * 2014-11-20 2015-03-04 北京航空航天大学 Spectroscopic ellipsometry real-time monitoring preparation method of nano-silicon thin film solar cells

Similar Documents

Publication Publication Date Title
JPH1197724A (en) Solar cell and its manufacture
EP1724840B1 (en) Photoelectric cell
JP4257332B2 (en) Silicon-based thin film solar cell
EP2095429B1 (en) Solar cell and method for manufacturing the same
US4644091A (en) Photoelectric transducer
US20030172967A1 (en) Solar battery cell and manufacturing method thereof
JPS6248928A (en) Photocell device
JP2001345460A (en) Solar cell device
JPH09172196A (en) Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
JP3469729B2 (en) Solar cell element
KR20030081662A (en) Solar cell with double layer antireflection coating
JP2003142709A (en) Laminated solar battery and method for manufacturing the same
KR100624765B1 (en) Light sensitized and P-N junction silicon complexed solar cell and manufacturing method thereof
JPH0361348B2 (en)
CN115084299A (en) P-type solar cell, manufacturing method thereof, cell module and photovoltaic system
JPH0583199B2 (en)
KR20090101395A (en) Solar cell device porous antireflection layer and method of manufacture
JPH09102623A (en) Photovoltaic device
KR100581840B1 (en) Light sensitized and P-N junction complexed solar cell and manufacturing method thereof
JPS59125669A (en) Solar battery
KR100446593B1 (en) Silicon solar cell and its manufacturing method
JP2892929B2 (en) Manufacturing method of integrated photoelectric conversion element
JPS59152675A (en) Amorphous silicon photovoltaic element
KR100326584B1 (en) Silicon solar cell and fabricating method thereof
JPH0481350B2 (en)