JPH1163694A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPH1163694A
JPH1163694A JP24042297A JP24042297A JPH1163694A JP H1163694 A JPH1163694 A JP H1163694A JP 24042297 A JP24042297 A JP 24042297A JP 24042297 A JP24042297 A JP 24042297A JP H1163694 A JPH1163694 A JP H1163694A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid
compressor
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24042297A
Other languages
Japanese (ja)
Inventor
Nobuhiko Suzuki
伸彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to JP24042297A priority Critical patent/JPH1163694A/en
Priority to PCT/JP1998/003556 priority patent/WO1999010686A1/en
Publication of JPH1163694A publication Critical patent/JPH1163694A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle having improved cooling performance by putting a liquid phase refrigerant in a gas/liquid separator even when a supercritical fluid is used as a refrigerant of a multiple stage cycle. SOLUTION: A main passage 6 is constructed by connecting a compressor 2, a heat radiator 3, a first throttle valve 4, a gas/liquid separator 5, a second throttle valve 6, and an evaporator 7 through piping, on which main passage 6 a bypass passage 9 is provided for returning a gas refrigerant from the gas/ liquid separator 5 to the compressor 2. When the liquid phase refrigerant in the gas/liquid separator is insufficient, opening of the first throttle valve 4 is reduced to increase the degree of pressure reduction of the refrigerant passing through the opening whereby the liquid phase refrigerant is present in the gas/ liquid separator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、CO2 等の超臨
界流体を冷媒として用い、気液分離装置からの気相冷媒
を圧縮室へ帰還するようにした多効サイクル(ガスイン
ジェクションサイクル)を備えた冷却サイクルに関す
る。
[Field of the Invention The invention uses a supercritical fluid such as CO 2 as a refrigerant, Ta Kou cycle so as to return the gas refrigerant from the gas-liquid separator to the compression chamber (gas injection cycle) Cooling cycle provided.

【0002】[0002]

【従来の技術】多効サイクル(ガスインジェクションサ
イクル)を備えた冷却サイクルとして、従来、特開平5
−45007号公報等に示される構成が公知となってい
る。これは、図7に示すような構成を有しているもの
で、以下においてこの図面に基づいて説明すると、冷却
サイクル1は、圧縮機2、放熱器3、第1の減圧手段
4、気液分離器5、第2の減圧手段6、蒸発器7を順次
接続して構成された主経路8を有すると共に、気液分離
器5と圧縮機2との間を接続するバイパス経路9を有し
ており、気液分離器5で分離された気相冷媒を圧縮機2
へ帰還させ、これにより冷却性能を向上するようにした
ものである。また、同公報には、バイパス経路9の途中
に、凝縮器3から流出される冷媒と気液分離器5から帰
還する気相冷媒とを熱交換させる熱交換器を設け、帰還
する気相冷媒に液滴冷媒が混在しているような場合で
も、完全なガス状態として圧縮機2へ戻すようにした構
成も開示されている。
2. Description of the Related Art Conventionally, a cooling cycle having a multi-effect cycle (gas injection cycle) is disclosed in
A configuration disclosed in JP-A-45007 is known. This has a configuration as shown in FIG. 7, and will be described below with reference to this drawing. The cooling cycle 1 includes a compressor 2, a radiator 3, a first pressure reducing means 4, a gas-liquid It has a main path 8 constituted by sequentially connecting the separator 5, the second decompression means 6, and the evaporator 7, and has a bypass path 9 connecting between the gas-liquid separator 5 and the compressor 2. The gas-phase refrigerant separated by the gas-liquid separator 5 is
And the cooling performance is thereby improved. Further, in the publication, a heat exchanger for exchanging heat between the refrigerant flowing out of the condenser 3 and the gas-phase refrigerant returning from the gas-liquid separator 5 is provided in the middle of the bypass path 9, There is also disclosed a configuration in which, even when droplet refrigerant is mixed in the compressor 2, the refrigerant is returned to the compressor 2 as a complete gas state.

【0003】ところで、自然環境に適した代替冷媒が模
索される昨今において、フロンガスを用いるよりも以前
に利用されていた炭酸ガス冷媒(CO2 )が再び注目さ
れている。このようなCO2 を用いた冷却サイクルは、
CO2 の臨界温度が31℃であることから、高圧側ライ
ンが超臨界領域で用いられる構成となっており、十分な
冷凍性能を得る必要から高圧側ラインの圧力を100K
g/cm2 前後に高めると共に、上述した多効サイクル
を利用することなどが検討されている
[0003] In recent years, in search of alternative refrigerants suitable for the natural environment, carbon dioxide refrigerant (CO 2 ), which has been used before using fluorocarbon gas, has attracted attention again. Such a cooling cycle using CO 2
Since the critical temperature of CO 2 is 31 ° C., the high pressure side line is configured to be used in a supercritical region.
It has been studied to increase the g / cm 2 to around g / cm 2 and to use the multi-effect cycle described above.

【0004】上述した多効サイクルの冷媒としてCO2
を用いた場合には、モリエール線図で見ると、図3の実
線で示されるような状態変化を呈する。つまり、A点で
示される圧縮機2で圧縮された高温高圧の冷媒は、放熱
器3によって液化されることなく冷却されてB点に至
り、その後、第1の減圧手段4で中間圧に減圧されてC
点で示す気液混合の冷媒となり、気液分離器5において
気相冷媒とD点で示す液相冷媒とに分離される。分離さ
れた液相冷媒は、更に第2の減圧手段6によって減圧さ
れてE点で示す低圧低温の湿り蒸気となり、蒸発器7で
蒸発気化されてF点に至り、再び圧縮機2で圧縮され
る。これと同時に気液分離器5で分離された気相冷媒
は、バイパス経路9を通過する過程においてH点を経て
完全な気相となり、圧縮機2に戻されて蒸発器7を通過
した低圧気相冷媒と混合する。即ち、F点から圧縮機2
で圧縮された気相冷媒は、中間圧まで圧縮された時点で
気液分離器5から帰還される気相冷媒と混合してI点か
らG点の気相状態となり、その後、A点に戻される。
[0004] CO 2 is used as a refrigerant in the above-described multi-effect cycle.
In the case where is used, when viewed in a Moliere diagram, a state change as shown by a solid line in FIG. 3 is exhibited. That is, the high-temperature and high-pressure refrigerant compressed by the compressor 2 indicated by the point A is cooled without being liquefied by the radiator 3 and reaches the point B, and then the first pressure reducing means 4 reduces the pressure to the intermediate pressure. Been C
The refrigerant becomes a gas-liquid mixed refrigerant indicated by a point, and is separated into a gas-phase refrigerant and a liquid-phase refrigerant indicated by a point D in the gas-liquid separator 5. The separated liquid-phase refrigerant is further decompressed by the second decompression means 6 to become low-pressure and low-temperature wet steam indicated by point E, vaporized by the evaporator 7 to point F, and compressed by the compressor 2 again. You. At the same time, the gas-phase refrigerant separated by the gas-liquid separator 5 passes through the point H in the course of passing through the bypass path 9, becomes a complete gas phase, and is returned to the compressor 2 and passes through the evaporator 7. Mix with phase refrigerant. That is, from the point F, the compressor 2
When compressed to the intermediate pressure, the gas-phase refrigerant compressed at the point is mixed with the gas-phase refrigerant returned from the gas-liquid separator 5 to be in a gas-phase state from the point I to the point G, and then returned to the point A. It is.

【0005】このような多効サイクルでは、気液分離器
5において気相冷媒と液相冷媒とに分離され、この液相
冷媒によってエンタルピーをC点からD点に減少させる
ところに意義があり、気液分離器5で分離された気相冷
媒が帰還される分だけ蒸発器7を流れる冷媒流量は減少
するものの、冷却能力をC点とD点とのエンタルピー差
に相当する能力分だけ高めることができる。
In such a multi-effect cycle, the gas-liquid separator 5 separates the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, and the liquid-phase refrigerant significantly reduces the enthalpy from the point C to the point D. Although the flow rate of the refrigerant flowing through the evaporator 7 is reduced by an amount corresponding to the return of the gas-phase refrigerant separated by the gas-liquid separator 5, the cooling capacity is increased by an amount corresponding to the enthalpy difference between the points C and D. Can be.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
多効サイクルによる超臨界流体の状態変化は、適切にサ
イクルが制御されている場合において形成されるもの
で、減圧手段の調節がうまくいかない場合には冷却性能
の低下を招く。これは、第1の減圧手段4の開度が第2
の減圧手段6の開度より非常に大きくなるような場合に
は、気液分離器5内の圧力が放熱器側の圧力(高圧側ラ
インの圧力)に近づき、図8に示されるようにC点が気
相領域に達して気液分離器内に液相冷媒が形成されない
状態となり、第2の減圧手段6では気相冷媒がそのまま
減圧されてしまうことによる。つまり、液相冷媒を気液
分離器内で形成することができないためにエンタルピー
をC点よりも小さくすることができず、結局、冷凍効果
(Q)は、放熱器3の出口側のエンタルピーによって決
定されてしまうためである。
However, the above-mentioned state change of the supercritical fluid due to the multi-effect cycle is formed when the cycle is properly controlled. This leads to a decrease in cooling performance. This is because the opening degree of the first pressure reducing means 4 is the second degree.
When the opening degree of the pressure reducing means 6 is very large, the pressure in the gas-liquid separator 5 approaches the pressure on the radiator side (pressure on the high-pressure side line), and as shown in FIG. This is because the point reaches the gas phase region and no liquid phase refrigerant is formed in the gas-liquid separator, and the gas pressure refrigerant is decompressed by the second pressure reducing means 6 as it is. That is, since the liquid-phase refrigerant cannot be formed in the gas-liquid separator, the enthalpy cannot be made smaller than the point C. Consequently, the refrigeration effect (Q) depends on the enthalpy on the outlet side of the radiator 3. This is because it is determined.

【0007】このような現象は、既存のサイクル構成を
CO2 等の超臨界流体にそのまま利用したのでは冷却性
能が保証されないことを示しており、したがって、この
点をいかに解決するかが超臨界流体を代替冷媒として有
効に利用できるか否かの重要なポイントとなってくる。
[0007] Such a phenomenon indicates that the cooling performance cannot be guaranteed if the existing cycle configuration is used as it is for a supercritical fluid such as CO 2. An important point is whether or not the fluid can be effectively used as a substitute refrigerant.

【0008】そこで、この発明においては、超臨界流体
を多効サイクルの冷媒として用いる場合でも、気液分離
器内に常に液相冷媒が存在するようにし、冷却性能の改
善を図るようにした冷却サイクルを提供することを課題
としている。また、冷却性能は、第1の減圧手段に入る
冷媒温度が低ければ低いほど向上することから、第1の
減圧手段に入る冷媒温度の改善をも併せて図るようにし
た冷却サイクルを提供する。
Therefore, in the present invention, even when a supercritical fluid is used as a refrigerant in a multi-effect cycle, a cooling system is designed so that the liquid-phase refrigerant always exists in the gas-liquid separator to improve the cooling performance. The task is to provide a cycle. Further, since the cooling performance is improved as the temperature of the refrigerant entering the first pressure reducing means is lower, the present invention provides a cooling cycle in which the temperature of the refrigerant entering the first pressure reducing means is also improved.

【0009】[0009]

【課題を解決するための手段】上記課題を達成するため
に、この発明にかかる冷却サイクルは、超臨界流体を冷
媒とし、この冷媒を昇圧する圧縮機と、この圧縮機で昇
圧された冷媒を冷却する第1の熱交換器と、この第1の
熱交換器よりも冷媒下流側に配されて冷媒を減圧する第
1の減圧手段と、前記第1の減圧手段で減圧された冷媒
を気液分離する気液分離装置と、この気液分離装置で分
離された液相冷媒を減圧する第2の減圧手段と、前記第
2の減圧手段で減圧された冷媒を蒸発気化する第2の熱
交換器とを含むように順次配管接続して主経路を構成
し、前記気液分離装置と前記圧縮機とを接続して前記気
液分離装置で分離された気相冷媒を前記圧縮機へ導くバ
イパス経路を設け、前記気液分離装置内の液相冷媒量に
応じて前記第1の減圧手段による減圧量を制御すること
を特徴としている(請求項1)。
To achieve the above object, a cooling cycle according to the present invention uses a supercritical fluid as a refrigerant, a compressor for increasing the pressure of the refrigerant, and a compressor for increasing the pressure of the refrigerant. A first heat exchanger for cooling, a first decompression unit arranged downstream of the first heat exchanger for decompressing the refrigerant, and a refrigerant decompressed by the first decompression unit. A gas-liquid separator for liquid separation, a second decompression means for decompressing the liquid-phase refrigerant separated by the gas-liquid separation apparatus, and a second heat for evaporating the refrigerant decompressed by the second decompression means. A main path is formed by sequentially connecting pipes so as to include an exchanger, and the gas-liquid separator and the compressor are connected to each other to guide the gas-phase refrigerant separated by the gas-liquid separator to the compressor. A bypass path is provided, and the first reduction is performed according to the amount of liquid refrigerant in the gas-liquid separation device. It is characterized by controlling the pressure reduction amount by means (claim 1).

【0010】超臨界流体としては、臨界温度が常温付近
にあるCO2 、エチレン等の流体が用いられ、第1の減
圧手段による減圧量を制御する手法としては、気液分離
装置内の液相冷媒量を検出する冷媒量検出センサからの
信号によって、又は、気液分離装置内の圧力と温度を検
出する圧力センサ及び温度センサからの信号に基づく演
算によって、気液分離装置内の液相冷媒が不足している
か否かを検出し、液相冷媒が不足していると判定された
場合に第1の減圧手段による減圧の程度を大きくする構
成が考えられる。
As the supercritical fluid, a fluid such as CO 2 or ethylene having a critical temperature near normal temperature is used. As a method for controlling the amount of pressure reduction by the first pressure reducing means, a liquid phase in a gas-liquid separation device is used. The liquid-phase refrigerant in the gas-liquid separator is obtained by a signal from a refrigerant amount detection sensor that detects the amount of refrigerant, or by a calculation based on signals from a pressure sensor and a temperature sensor that detect pressure and temperature in the gas-liquid separator. It is conceivable that the degree of pressure reduction by the first pressure reducing means may be increased by detecting whether or not the pressure is insufficient and determining that the liquid refrigerant is insufficient.

【0011】したがって、圧縮機で昇圧されて超臨界状
態となる高温高圧の冷媒は、第1の熱交換器によって冷
却され、第1の減圧手段によって減圧されて中間圧の気
液混合冷媒となり、気液分離装置内で気液分離される。
この気液分離装置によって分離された気相冷媒は、バイ
パス経路を通って圧縮機に帰還し、分離された液相冷媒
は、さらに第2の減圧手段によって減圧されて低温低圧
の湿り蒸気となり、蒸発器において蒸発気化されて圧縮
機へ導かれる。
Therefore, the high-temperature and high-pressure refrigerant which is pressurized by the compressor to be in a supercritical state is cooled by the first heat exchanger and decompressed by the first decompression means to become an intermediate-pressure gas-liquid mixed refrigerant. Gas-liquid separation is performed in the gas-liquid separation device.
The gas-phase refrigerant separated by the gas-liquid separation device returns to the compressor through the bypass path, and the separated liquid-phase refrigerant is further decompressed by the second decompression means to become low-temperature low-pressure wet steam, In the evaporator, it is vaporized and guided to the compressor.

【0012】第1の減圧手段は、気液分離装置内の液相
冷媒量に応じて減圧量が調節されることから、気液分離
装置内の液相冷媒量が不足するような場合には、気液分
離装置に流入される冷媒を気液混合冷媒としてここに液
相冷媒が存在しなくなるような事態を避けることがで
き、もって、図3の実線で示されるような状態変化を保
って合理的なレベルの冷却性能を維持することができ
る。
The first decompression means adjusts the decompression amount in accordance with the amount of the liquid-phase refrigerant in the gas-liquid separation device. Therefore, when the amount of the liquid-phase refrigerant in the gas-liquid separation device becomes insufficient, Therefore, it is possible to avoid a situation in which the refrigerant flowing into the gas-liquid separation device becomes a gas-liquid mixed refrigerant and there is no liquid-phase refrigerant, thereby maintaining the state change as shown by the solid line in FIG. A reasonable level of cooling performance can be maintained.

【0013】冷却性能を高めるにあっては、気液分離装
置内に液相冷媒を確保することに加え、第1の減圧手段
に流入する冷媒温度をできるだけ低くするようにしても
よい。即ち、減圧手段の冷媒下流側において分離される
気相冷媒を、第1の熱交換器と第1の減圧手段との間を
流れる冷媒と熱交換させるようにしてもよい( 請求項
2)。このような構成によれば、第1の熱交換器で冷却
された冷媒が減圧手段より下流側の気相冷媒によってさ
らに冷却されることとなり、結果として蒸発器に流入さ
れる冷媒のエンタルピーを小さくして冷凍効果を高める
ことができる。
In order to enhance the cooling performance, the temperature of the refrigerant flowing into the first pressure reducing means may be set as low as possible, in addition to securing the liquid-phase refrigerant in the gas-liquid separator. That is, the gas-phase refrigerant separated on the downstream side of the refrigerant from the pressure reducing means may be heat-exchanged with the refrigerant flowing between the first heat exchanger and the first pressure reducing means. According to such a configuration, the refrigerant cooled in the first heat exchanger is further cooled by the gas-phase refrigerant downstream of the decompression means, and as a result, the enthalpy of the refrigerant flowing into the evaporator is reduced. To improve the freezing effect.

【0014】減圧手段の冷媒下流側において分離される
気相冷媒を第1の熱交換器と第1の減圧手段との間を流
れる冷媒と熱交換させる構成としては、第1及び第2の
減圧手段の間に設けられる気液分離装置から圧縮機へ帰
還する気相冷媒を第1の減圧手段の流入側において主経
路内の冷媒と熱交換させる構成や、蒸発器の冷媒下流側
に第2の気液分離装置(アキュムレータ)を設け、ここ
で分離された低温の気相冷媒を第1の減圧手段の流入側
において主経路内の冷媒と熱交換させる構成が考えられ
る。
The structure in which the gaseous phase refrigerant separated on the downstream side of the refrigerant from the decompression means exchanges heat with the refrigerant flowing between the first heat exchanger and the first decompression means is constituted by first and second decompression. A gas-phase refrigerant returning to the compressor from a gas-liquid separator provided between the first and second pressure reducing means, and a heat exchange with a refrigerant in a main path at an inflow side of the first decompression means, and a second refrigerant at a downstream side of the refrigerant of the evaporator. It is conceivable to provide a gas-liquid separation device (accumulator) and heat exchange the separated low-temperature gas-phase refrigerant with the refrigerant in the main path on the inflow side of the first pressure reducing means.

【0015】[0015]

【発明の実施の形態】以下、この発明の実施の形態を図
面に基づいて説明する。図1において、冷却サイクル1
の第1の構成例が示され、この冷却サイクル1は、冷媒
を圧縮する圧縮機2、この圧縮機2で圧縮された冷媒を
冷却する放熱器3、この放熱器3の冷媒下流側に配され
た第1の絞り弁4、第1の絞り弁4によって減圧された
冷媒を気液分離する第1の気液分離器5、この気液分離
器5の下流側に配された第2の絞り弁6、この第2の絞
り弁6によって減圧された冷媒を蒸発気化する蒸発器7
をこの順で直列に配管接続してなる主経路8を備えてい
る。この主経路8に対して、第1の気液分離器5に一端
を接続し、他端を圧縮機2の中間段に接続するバイパス
経路9が設けられており、気液分離器5で分離された気
相冷媒をこのバイパス経路9を介して圧縮機2へ導くよ
うになっている。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, cooling cycle 1
The cooling cycle 1 includes a compressor 2 for compressing a refrigerant, a radiator 3 for cooling the refrigerant compressed by the compressor 2, and a refrigerant downstream of the radiator 3. The first throttle valve 4, a first gas-liquid separator 5 for separating the refrigerant decompressed by the first throttle valve 4 into gas and liquid, and a second gas-liquid separator 5 disposed downstream of the gas-liquid separator 5. A throttle valve 6; an evaporator 7 for evaporating the refrigerant decompressed by the second throttle valve 6
Are connected in series in this order. The main path 8 is provided with a bypass path 9 having one end connected to the first gas-liquid separator 5 and the other end connected to an intermediate stage of the compressor 2. The compressed gas-phase refrigerant is guided to the compressor 2 via the bypass path 9.

【0016】このサイクルでは、冷媒としてCO2 が用
いられており、圧縮機2によって圧縮された冷媒は、高
温高圧の冷媒として放熱器3に入り、ここで放熱して冷
却する。この冷媒は、高圧側ラインにおいて100Kg/c
m2前後まで高められて超臨界状態となっており、放熱器
3によっても液化されることなく第1の絞り弁4へ送ら
れる。そして、この第1の絞り弁4において、蒸発器7
が配される低圧ラインの圧力よりも高い圧力(中間圧)
に減圧され、この減圧された冷媒が気液混合冷媒であれ
ば、第1の気液分離器5において気相冷媒と液相冷媒に
分離され、気相冷媒はバイパス通路9を通って圧縮機2
へ帰還され、液相冷媒は第2の絞り弁6でさらに減圧さ
れて低温低圧(0℃前後、約35Kg/cm2)の気液混合冷
媒となり、蒸発器7において気化してガス状となり、圧
縮機2へ戻される。この状態変化は、前述した図3の実
線で示すモリエール線図によって示されるようになる。
In this cycle, CO 2 is used as a refrigerant, and the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure refrigerant, where it radiates heat and is cooled. This refrigerant is 100 kg / c in the high pressure side line.
The pressure is raised to about m 2 and is in a supercritical state, and is sent to the first throttle valve 4 without being liquefied by the radiator 3. Then, in the first throttle valve 4, the evaporator 7
Higher than the pressure of the low pressure line (intermediate pressure)
If the depressurized refrigerant is a gas-liquid mixed refrigerant, the refrigerant is separated into a gaseous refrigerant and a liquid-phase refrigerant in the first gas-liquid separator 5, and the gaseous refrigerant is passed through the bypass passage 9 to the compressor. 2
The liquid-phase refrigerant is further reduced in pressure by the second throttle valve 6 to become a low-temperature and low-pressure (about 0 ° C., about 35 kg / cm 2 ) gas-liquid mixed refrigerant, and is vaporized in the evaporator 7 to be gaseous. It is returned to the compressor 2. This state change is shown by the above-described Mollier diagram shown by a solid line in FIG.

【0017】第1の気液分離器5には、内部の液相冷媒
量が不足した状態にあるか否かを検出するセンサ10が
取り付けられており、このセンサ10は、液相冷媒の液
レベルを直接検知するものであってもいいが、この例で
は、気液分離器内の冷媒圧力と冷媒温度とを検出し、こ
れら検出結果から演算によって液位を間接的に検出する
ようにしている。センサ10によって検出された液位に
関する信号は、コントロールユニット11に入力され、
第1の絞り弁4の開度を制御するために利用される。
The first gas-liquid separator 5 is provided with a sensor 10 for detecting whether or not the amount of the liquid refrigerant inside is in an insufficient state. Although it is possible to directly detect the level, in this example, the refrigerant pressure and the refrigerant temperature in the gas-liquid separator are detected, and the liquid level is indirectly detected by calculation from these detection results. I have. A signal related to the liquid level detected by the sensor 10 is input to the control unit 11,
It is used to control the opening of the first throttle valve 4.

【0018】コントロールユニット11は、図示しない
中央演算処理装置(CPU)、読出専用メモリ(RO
M)、ランダムアクセスメモリ(RAM)、入出力ポー
ト(I/O)、駆動回路等より成り、ROMに与えられ
た所定のプログラムにしたがって、図2に示すフローチ
ャートの処理を行うようになっている。
The control unit 11 includes a central processing unit (CPU) (not shown) and a read-only memory (RO).
M), a random access memory (RAM), an input / output port (I / O), a drive circuit, etc., and perform the processing of the flowchart shown in FIG. 2 according to a predetermined program given to the ROM. .

【0019】以下において、コントロールユニット11
による第1の絞り弁4の制御動作例を説明すると、コン
トロールユニット11はサイクルの稼動に伴ってこのル
ーチンの処理を行い、ステップ50において圧力及び温
度を検出するセンサ10からの信号を入力してRAMに
格納し、次のステップ52において、センサ10によっ
て検出されたサンプリングデータに基づき、気液分離器
内の冷媒量(L)を演算する。
In the following, the control unit 11
The control unit 11 performs the processing of this routine in accordance with the operation of the cycle, and inputs a signal from the sensor 10 for detecting pressure and temperature in step 50. It is stored in the RAM, and in the next step 52, the amount of refrigerant (L) in the gas-liquid separator is calculated based on the sampling data detected by the sensor 10.

【0020】そして、気液分離器内の冷媒量(L)が零
ないしはそれよりも大きく設定された所定量αより多い
場合には、通常の開度制御を継続し(ステップ54,5
6)、L≦αであれば、第1の絞り弁4の開度を小さく
して第1の絞り弁4での圧力降下を大きくし、モリエー
ル線図で示す点Cが、図3で示されるように、気液混合
冷媒領域となるように設定する(ステップ54,5
8)。そして、この構成例では、ステップ56,58の
処理の後にステップ50以下の処理が繰り返され、第1
の気液分離器内の冷媒を常時モニタリングして冷媒不足
が生じないようになっている。
If the refrigerant amount (L) in the gas-liquid separator is larger than a predetermined amount α set to zero or larger, normal opening control is continued (steps 54 and 5).
6) If L ≦ α, the opening degree of the first throttle valve 4 is reduced to increase the pressure drop at the first throttle valve 4, and the point C shown in the Mollier diagram is shown in FIG. (Steps 54 and 5).
8). Then, in this configuration example, the processing of step 50 and subsequent steps is repeated after the processing of steps 56 and 58, and the first
The refrigerant in the gas-liquid separator is constantly monitored to prevent shortage of the refrigerant.

【0021】したがって、超臨界流体を用いた場合にお
いても、図8で示すような冷房性能が大きく低下するよ
うな状態を回避できると共に、経時的に冷媒がサイクル
から漏れ出るような場合においても、第1の絞り弁4の
開度が自動調節されて第1の気液分離器内の液相冷媒が
絶えることがなくなり、長期において安定した性能を確
保することができる。
Therefore, even when the supercritical fluid is used, it is possible to avoid a state in which the cooling performance is greatly reduced as shown in FIG. 8 and to prevent the refrigerant from leaking out of the cycle with time. The opening degree of the first throttle valve 4 is automatically adjusted, so that the liquid-phase refrigerant in the first gas-liquid separator does not run out, and stable performance can be secured for a long period of time.

【0022】図4において、この発明の第2の構成例が
示されており、主として前記構成例と異なる点について
説明し、同一構成においては、同一番号を付して説明を
省略する。
FIG. 4 shows a second configuration example of the present invention, in which mainly different points from the above-mentioned configuration example will be described. In the same configuration, the same reference numerals will be given and the description will be omitted.

【0023】このサイクル構成では、主経路8を流れる
冷媒とバイパス経路内の気相冷媒とを熱交換する補助熱
交換器12が放熱器3と第1の絞り弁4との間に設けら
れており、放熱器3から流出される冷媒を第1の絞り弁
4より下流側のより低温の冷媒によってさらに冷却する
ようになっている。
In this cycle configuration, an auxiliary heat exchanger 12 for exchanging heat between the refrigerant flowing in the main path 8 and the gas-phase refrigerant in the bypass path is provided between the radiator 3 and the first throttle valve 4. In addition, the refrigerant flowing out of the radiator 3 is further cooled by a lower-temperature refrigerant downstream of the first throttle valve 4.

【0024】このような構成によれば、サイクルの状態
変化は図3の破線で示されるようになり、A’点で示さ
れる圧縮機2で圧縮された高温高圧の冷媒は放熱器3に
よってB点まで冷却されるが、さらに補助熱交換器12
によってさらにB’点まで冷却され、第1の絞り弁4で
C’点で示す中間圧に減圧されて気液混合の冷媒とな
り、第1の気液分離器5によって気相冷媒とD’点で示
す液相冷媒とに分離される。液相冷媒は、更に第2の絞
り弁6によって減圧されてE点よりもエンタルピーの小
さいE’点で示す低圧低温の湿り蒸気となり、その後、
蒸発器7で蒸発気化されてF点に至る。これと同時に気
液分離器5で分離された気相冷媒は、補助熱交換器12
で高圧側ラインの冷媒から熱を吸収してH’点を経て完
全なガス状となり、圧縮機2によって中間圧まで圧縮さ
れたI’点で示す気相冷媒と混合してG’点で示す気相
状態となる。そして、その混合された気相冷媒は、さら
に圧縮機2によって昇圧され、再びA’点に戻される。
According to such a configuration, the state change of the cycle is as shown by the broken line in FIG. 3, and the high-temperature and high-pressure refrigerant compressed by the compressor 2 indicated by the point A ' Is cooled to the point,
Is further cooled to the point B ', the pressure is reduced to the intermediate pressure indicated by the point C' by the first throttle valve 4, and the refrigerant becomes gas-liquid mixed refrigerant. And a liquid-phase refrigerant indicated by. The liquid-phase refrigerant is further decompressed by the second throttle valve 6 and becomes low-pressure low-temperature wet steam indicated by a point E ′ having a smaller enthalpy than the point E.
The evaporator 7 evaporates and reaches the point F. At the same time, the gas-phase refrigerant separated by the gas-liquid separator 5 is supplied to the auxiliary heat exchanger 12.
Absorbs heat from the refrigerant in the high-pressure side line to become a complete gaseous state via point H ', and is mixed with a gas-phase refrigerant indicated by point I' compressed to an intermediate pressure by the compressor 2 and indicated by point G ' It is in a gaseous state. Then, the mixed gas-phase refrigerant is further pressurized by the compressor 2 and returned to the point A 'again.

【0025】したがって、このような多効サイクルによ
れば、第1の絞り弁4の開度がコントロールユニット1
1によって調節されて気液分離器内に液相冷媒が確保さ
れると同時に、冷凍効果をE点とE’点とのエンタルピ
ー差(Q2−Q1)に相当する能力分だけ高めることが
できる。
Therefore, according to such a multi-effect cycle, the opening of the first throttle valve 4 is controlled by the control unit 1.
As a result, the liquid-phase refrigerant is secured in the gas-liquid separator by the adjustment of 1, and at the same time, the refrigeration effect can be increased by the capacity corresponding to the enthalpy difference (Q2-Q1) between the points E and E '.

【0026】尚、上記構成において、過熱度制御を更に
付加したい場合には、蒸発器7に関する温度に応じて第
2の絞り弁6の開度を調節するようにすればよく、たと
えば、第5図に示されるように、第2の絞り弁6を感熱
膨張弁とし、蒸発器6から流出する冷媒の過熱度の変化
を感温筒13で感知し、蒸発器6に流入する冷媒量を調
節して過熱度を一定に保つようにするとよい。
In the above configuration, if it is desired to add superheat control, the degree of opening of the second throttle valve 6 may be adjusted in accordance with the temperature of the evaporator 7. As shown in the figure, the second throttle valve 6 is a heat-sensitive expansion valve, and a change in the degree of superheat of the refrigerant flowing out of the evaporator 6 is sensed by the temperature-sensitive cylinder 13 to adjust the amount of refrigerant flowing into the evaporator 6. It is preferable to keep the degree of superheat constant.

【0027】図6において、この発明の第3の構成例が
示されており、この構成例においては、第1の気液分離
器5と圧縮機2との間を接続するバイパス経路9が図1
で示す構成と同様になっているが、蒸発器7と圧縮機2
との間に第2の気液分離器(アキュムレータ)14を配
し、ここで、蒸発器7から流出した冷媒に混在する液相
冷媒を分離し、気相冷媒のみを圧縮機2へ戻すようにな
っている。
FIG. 6 shows a third configuration example of the present invention. In this configuration example, a bypass path 9 connecting between the first gas-liquid separator 5 and the compressor 2 is illustrated. 1
The configuration is the same as that shown in FIG.
A second gas-liquid separator (accumulator) 14 is arranged between the second gas-liquid separator and the liquid-phase refrigerant mixed with the refrigerant flowing out of the evaporator 7, and only the gas-phase refrigerant is returned to the compressor 2. It has become.

【0028】そして、放熱器3と第1の絞り弁4との間
には、高圧側ラインの冷媒と第2の気液分離器(アキュ
ムレータ)14によって分離された気相冷媒とを熱交換
する補助熱交換器12’が設けられており、放熱器3か
ら流出される冷媒が蒸発器下流側の冷媒によってさらに
冷却されるようになっている。
Then, between the radiator 3 and the first throttle valve 4, heat exchange is performed between the refrigerant in the high-pressure side line and the gas-phase refrigerant separated by the second gas-liquid separator (accumulator) 14. An auxiliary heat exchanger 12 'is provided, and the refrigerant flowing out of the radiator 3 is further cooled by the refrigerant on the downstream side of the evaporator.

【0029】このような構成によれば、上述したごとく
第1の気液分離器内に液相冷媒を確保することができる
と共に、放熱器3から流出した冷媒をさらに冷却してサ
イクルの冷却性能を高めることができ、運転効率を向上
させることができる。
According to such a configuration, as described above, the liquid-phase refrigerant can be ensured in the first gas-liquid separator, and the refrigerant flowing out of the radiator 3 is further cooled to reduce the cycle cooling performance. And operation efficiency can be improved.

【0030】[0030]

【発明の効果】以上述べたように、この発明によれば、
多効サイクル(ガスインジェクションサイクル)に超臨
界流体を冷媒として用いるような場合に、気液分離装置
内の液相冷媒量に応じて、第1の減圧手段による減圧量
を制御し、もって気液分離装置内に液相冷媒が存在しな
くなる事態を避けることができ、合理的なレベルの冷却
性能を維持することができる。
As described above, according to the present invention,
In the case where a supercritical fluid is used as a refrigerant in a multi-effect cycle (gas injection cycle), the amount of decompression by the first decompression means is controlled in accordance with the amount of liquid-phase refrigerant in the gas-liquid separation device, and the gas-liquid A situation in which the liquid-phase refrigerant does not exist in the separation device can be avoided, and a reasonable level of cooling performance can be maintained.

【0031】また、冷媒が少々漏れても、気液分離装置
には常に液相冷媒が存在することとなるので、サイクル
バランスが経時的に変化して冷却性能が低下するような
事態もなくすことができる。
Also, even if the refrigerant leaks a little, the liquid-phase refrigerant always exists in the gas-liquid separation device, so that the cycle balance changes with time and the cooling performance does not deteriorate. Can be.

【0032】さらに、減圧手段の冷媒下流側において分
離される気相冷媒を、第1の熱交換器と第1の減圧手段
との間を流れる冷媒と熱交換させる場合には、第1の減
圧手段に流入される冷媒の温度をさらに低下させること
ができ、サイクルの冷却性能を一層向上させることが可
能となる。
Further, when the gaseous phase refrigerant separated on the downstream side of the refrigerant from the pressure reducing means is subjected to heat exchange with the refrigerant flowing between the first heat exchanger and the first pressure reducing means, the first pressure reducing means is used. The temperature of the refrigerant flowing into the means can be further reduced, and the cooling performance of the cycle can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明にかかる冷却サイクルの第1の
構成例を示す構成図である。
FIG. 1 is a configuration diagram showing a first configuration example of a cooling cycle according to the present invention.

【図2】図2は、図1で示す冷却サイクルのコントロー
ルユニットによる第1の絞り弁を制御する制御動作例を
示すフローチャートである。
FIG. 2 is a flowchart illustrating an example of a control operation of controlling a first throttle valve by a control unit of the cooling cycle illustrated in FIG. 1;

【図3】図3は、本発明にかかる冷却サイクルのモリエ
ール線図である。
FIG. 3 is a Mollier diagram of a cooling cycle according to the present invention.

【図4】図4は、本発明にかかる冷却サイクルの第2の
構成例を示す構成図である。
FIG. 4 is a configuration diagram showing a second configuration example of the cooling cycle according to the present invention.

【図5】図5は、図4の構成例の変形例を示す構成図で
ある。
FIG. 5 is a configuration diagram illustrating a modified example of the configuration example of FIG. 4;

【図6】図6は、本発明にかかる冷却サイクルの第3の
構成例を示す構成図である。
FIG. 6 is a configuration diagram showing a third configuration example of the cooling cycle according to the present invention.

【図7】図7は、従来の多効サイクル(ガスインジェク
ションサイクル)を示す構成図である。
FIG. 7 is a configuration diagram showing a conventional multi-effect cycle (gas injection cycle).

【図8】図8は、従来の多効サイクル(ガスインジェク
ションサイクル)によって生じ得る冷媒の状態変化を示
すモリエール線図である。
FIG. 8 is a Mollier diagram showing a refrigerant state change that can be caused by a conventional multi-effect cycle (gas injection cycle).

【符号の説明】[Explanation of symbols]

1 冷却サイクル 2 圧縮機 3 放熱器 4 第1の絞り弁 5 第1の気液分離器 6 第2の絞り弁 7 蒸発器 8 主経路 9 バイパス経路 10 センサ 11 コントロールユニット 12,12’ 補助熱交換器 14 第2の気液分離器 DESCRIPTION OF SYMBOLS 1 Cooling cycle 2 Compressor 3 Radiator 4 First throttle valve 5 1st gas-liquid separator 6 2nd throttle valve 7 Evaporator 8 Main path 9 Bypass path 10 Sensor 11 Control unit 12, 12 'Auxiliary heat exchange Vessel 14 second gas-liquid separator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超臨界流体を冷媒とし、 この冷媒を昇圧する圧縮機と、この圧縮機で昇圧された
冷媒を冷却する第1の熱交換器と、この第1の熱交換器
よりも冷媒下流側に配されて冷媒を減圧する第1の減圧
手段と、前記第1の減圧手段で減圧された冷媒を気液分
離する気液分離装置と、この気液分離装置で分離された
液相冷媒を減圧する第2の減圧手段と、前記第2の減圧
手段で減圧された冷媒を蒸発気化する第2の熱交換器と
を含むように順次配管接続して主経路を構成し、 前記気液分離装置と前記圧縮機とを接続して前記気液分
離装置で分離された気相冷媒を前記圧縮機へ導くバイパ
ス経路を設け、 前記気液分離装置内の液相冷媒量に応じて、前記第1の
減圧手段による減圧量を制御するようにしたことを特徴
とする冷却サイクル。
1. A compressor that uses a supercritical fluid as a refrigerant and pressurizes the refrigerant, a first heat exchanger that cools the refrigerant pressurized by the compressor, and a refrigerant that is higher than the first heat exchanger. A first decompression means disposed on the downstream side for decompressing the refrigerant, a gas-liquid separation device for gas-liquid separation of the refrigerant decompressed by the first decompression means, and a liquid phase separated by the gas-liquid separation device Forming a main path by sequentially connecting pipes so as to include a second decompression means for decompressing the refrigerant and a second heat exchanger for evaporating the refrigerant decompressed by the second decompression means; A bypass path is provided to connect the liquid separation device and the compressor, and to guide the gas-phase refrigerant separated by the gas-liquid separation device to the compressor, according to a liquid-phase refrigerant amount in the gas-liquid separation device, A cooling cycle wherein the amount of pressure reduction by the first pressure reducing means is controlled.
【請求項2】 前記減圧手段よりも冷媒下流側において
分離される気相冷媒を、前記第1の熱交換器と前記第1
の減圧手段との間を流れる冷媒と熱交換させるようにし
たことを特徴とする請求項1記載の冷却サイクル。
2. The method according to claim 1, wherein the gaseous phase refrigerant separated downstream of the pressure reducing means is supplied to the first heat exchanger and the first heat exchanger.
2. The cooling cycle according to claim 1, wherein heat is exchanged with a refrigerant flowing between said cooling means and said pressure reducing means.
JP24042297A 1997-08-21 1997-08-21 Refrigeration cycle Pending JPH1163694A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24042297A JPH1163694A (en) 1997-08-21 1997-08-21 Refrigeration cycle
PCT/JP1998/003556 WO1999010686A1 (en) 1997-08-21 1998-08-11 Cooling cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24042297A JPH1163694A (en) 1997-08-21 1997-08-21 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPH1163694A true JPH1163694A (en) 1999-03-05

Family

ID=17059251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24042297A Pending JPH1163694A (en) 1997-08-21 1997-08-21 Refrigeration cycle

Country Status (2)

Country Link
JP (1) JPH1163694A (en)
WO (1) WO1999010686A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065615A (en) * 2001-08-23 2003-03-05 Daikin Ind Ltd Refrigerating machine
EP1389723A1 (en) * 2001-05-22 2004-02-18 Daikin Industries, Ltd. Refrigerator
EP1445551A1 (en) * 2001-11-13 2004-08-11 Daikin Industries, Ltd. Freezer
EP1441185A3 (en) * 2003-01-16 2004-10-06 Matsushita Electric Industrial Co., Ltd. Refrigerator
US6923011B2 (en) 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
JP2006071178A (en) * 2004-09-02 2006-03-16 Sanyo Electric Co Ltd Refrigerator
US7096679B2 (en) 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
CN100360875C (en) * 2005-09-26 2008-01-09 浙江春晖智能控制股份有限公司 Heat pump type central and household central air regulating equipment refrigerating system
CN100412465C (en) * 2002-08-30 2008-08-20 三洋电机株式会社 Refrigerant cycling device
JP2008214190A (en) * 2001-01-31 2008-09-18 Mayekawa Mfg Co Ltd Method and apparatus for preparing dry ice
EP1984680A2 (en) * 2006-02-15 2008-10-29 LG Electronics Inc. Air-conditioning system and controlling method for the same
JP2009524797A (en) * 2006-09-29 2009-07-02 キャリア コーポレイション Refrigerant vapor compression system with flash tank receiver
JP2013002722A (en) * 2011-06-16 2013-01-07 Sanyo Electric Co Ltd Refrigerator
WO2015107876A1 (en) * 2014-01-14 2015-07-23 株式会社デンソー Heat pump cycle
WO2016117946A1 (en) * 2015-01-23 2016-07-28 Lg Electronics Inc. Cooling cycle apparatus for refrigerator
WO2018168158A1 (en) * 2017-03-17 2018-09-20 株式会社デンソー Refrigeration cycle device
US10254025B2 (en) * 2007-10-10 2019-04-09 Carrier Corporation Refrigerating system and method for controlling the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257237A (en) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Refrigeration unit
DK1794510T3 (en) 2004-08-09 2012-05-21 Carrier Corp CO2 refrigeration circuit with subcooling of the liquid refrigerant with the receiver flash gas and method for operating it
DE102004038640A1 (en) 2004-08-09 2006-02-23 Linde Kältetechnik GmbH & Co. KG Refrigeration circuit and method for operating a refrigeration cycle
US20070151269A1 (en) * 2005-12-30 2007-07-05 Johnson Controls Technology Company System and method for level control in a flash tank
DE102006037385A1 (en) * 2006-08-09 2008-02-14 Leipoldt, Matthias, Dipl.-Ing. Cooling system for cooling preferably liquid cooling or working media for use in machine tools has evaporator unit, consisting of evaporator and vacuum collection bottle connected to it, completely filled with coolant
DE102006050232B9 (en) * 2006-10-17 2008-09-18 Bitzer Kühlmaschinenbau Gmbh refrigeration plant
JP2010526985A (en) * 2007-05-14 2010-08-05 キャリア コーポレイション Refrigerant vapor compression system with flash tank economizer
CN103994596A (en) * 2014-05-28 2014-08-20 合肥美的电冰箱有限公司 Refrigeration equipment and refrigeration system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120155A (en) * 1983-12-02 1985-06-27 三菱電機株式会社 Refrigeration cycle device
JP2548962B2 (en) * 1988-01-28 1996-10-30 株式会社荏原総合研究所 heat pump
JPH0545007A (en) * 1991-08-09 1993-02-23 Nippondenso Co Ltd Freezing cycle
BR9107318A (en) * 1991-09-16 1995-11-07 Sinvent As High side pressure modulation process in a transcritical vapor compression device, and vapor compression cycle device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214190A (en) * 2001-01-31 2008-09-18 Mayekawa Mfg Co Ltd Method and apparatus for preparing dry ice
EP1736721A2 (en) * 2001-05-22 2006-12-27 Daikin Industries, Ltd. Refrigeration apparatus
EP1389723A1 (en) * 2001-05-22 2004-02-18 Daikin Industries, Ltd. Refrigerator
EP1389723A4 (en) * 2001-05-22 2005-12-14 Daikin Ind Ltd Refrigerator
EP1736721A3 (en) * 2001-05-22 2007-03-14 Daikin Industries, Ltd. Refrigeration apparatus
JP2003065615A (en) * 2001-08-23 2003-03-05 Daikin Ind Ltd Refrigerating machine
EP1445551A1 (en) * 2001-11-13 2004-08-11 Daikin Industries, Ltd. Freezer
EP1445551A4 (en) * 2001-11-13 2005-04-13 Daikin Ind Ltd Freezer
US7481067B2 (en) 2001-11-13 2009-01-27 Daikin Industries, Ltd. Freezer
CN100412465C (en) * 2002-08-30 2008-08-20 三洋电机株式会社 Refrigerant cycling device
EP1441185A3 (en) * 2003-01-16 2004-10-06 Matsushita Electric Industrial Co., Ltd. Refrigerator
US7024879B2 (en) 2003-01-16 2006-04-11 Matsushita Electric Industrial Co., Ltd. Refrigerator
US6923011B2 (en) 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
US7096679B2 (en) 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
JP2006071178A (en) * 2004-09-02 2006-03-16 Sanyo Electric Co Ltd Refrigerator
CN100360875C (en) * 2005-09-26 2008-01-09 浙江春晖智能控制股份有限公司 Heat pump type central and household central air regulating equipment refrigerating system
EP1984680A4 (en) * 2006-02-15 2010-01-13 Lg Electronics Inc Air-conditioning system and controlling method for the same
EP1984680A2 (en) * 2006-02-15 2008-10-29 LG Electronics Inc. Air-conditioning system and controlling method for the same
JP2009524797A (en) * 2006-09-29 2009-07-02 キャリア コーポレイション Refrigerant vapor compression system with flash tank receiver
US8459052B2 (en) 2006-09-29 2013-06-11 Carrier Corporation Refrigerant vapor compression system with flash tank receiver
US10254025B2 (en) * 2007-10-10 2019-04-09 Carrier Corporation Refrigerating system and method for controlling the same
JP2013002722A (en) * 2011-06-16 2013-01-07 Sanyo Electric Co Ltd Refrigerator
WO2015107876A1 (en) * 2014-01-14 2015-07-23 株式会社デンソー Heat pump cycle
JP2015132428A (en) * 2014-01-14 2015-07-23 株式会社デンソー Heat pump cycle
WO2016117946A1 (en) * 2015-01-23 2016-07-28 Lg Electronics Inc. Cooling cycle apparatus for refrigerator
KR20160091107A (en) * 2015-01-23 2016-08-02 엘지전자 주식회사 Cooling Cycle Apparatus for Refrigerator
US10215469B2 (en) 2015-01-23 2019-02-26 Lg Electronics Inc. Cooling cycle apparatus for refrigerator
WO2018168158A1 (en) * 2017-03-17 2018-09-20 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
WO1999010686A1 (en) 1999-03-04

Similar Documents

Publication Publication Date Title
JPH1163694A (en) Refrigeration cycle
US9951974B2 (en) Flash tank economizer cycle control
US7000413B2 (en) Control of refrigeration system to optimize coefficient of performance
US7424807B2 (en) Supercritical pressure regulation of economized refrigeration system by use of an interstage accumulator
JPH11193967A (en) Refrigerating cycle
EP1367344A2 (en) Method for operating a transcritical refrigeration system
US20130042640A1 (en) Refrigeration cycle apparatus and refrigerant circulation method
JPH09178274A (en) Refrigerating system
WO1990007683A1 (en) Trans-critical vapour compression cycle device
WO2008019689A2 (en) A transcritical refrigeration system with a booster
JP2010007975A (en) Economizer cycle refrigerating apparatus
AU2005327828A1 (en) Control of a refrigeration circuit with an internal heat exchanger
JP3983520B2 (en) Supercritical vapor compression system and suction line heat exchanger for adjusting the pressure of the high pressure component of the refrigerant circulating in the supercritical vapor compression system
WO2020208714A1 (en) Refrigeration device
JPH1163686A (en) Refrigeration cycle
US20060230773A1 (en) Method for determining optimal coefficient of performance in a transcritical vapor compression system
EP3762664A1 (en) Cascade system for use in economizer compressor and related methods
JP6712766B2 (en) Dual refrigeration system
JP2002228282A (en) Refrigerating device
JP2002022298A (en) Refrigeration cycle device and method for controlling the same
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP2004225924A (en) Refrigeration cycle control system
JPH11248294A (en) Refrigerating machine
JPH1163687A (en) Air conditioner cycle
JP2002349976A (en) Cooling system