JPH1157731A - Water treatment and water treatment plant - Google Patents

Water treatment and water treatment plant

Info

Publication number
JPH1157731A
JPH1157731A JP9220293A JP22029397A JPH1157731A JP H1157731 A JPH1157731 A JP H1157731A JP 9220293 A JP9220293 A JP 9220293A JP 22029397 A JP22029397 A JP 22029397A JP H1157731 A JPH1157731 A JP H1157731A
Authority
JP
Japan
Prior art keywords
bacteria
nucleic acid
water
labeled
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9220293A
Other languages
Japanese (ja)
Inventor
Tomoaki Miyanoshita
友明 宮ノ下
Takako Nogami
尊子 野上
Haruki Akega
春樹 明賀
Fudeko Tsunoda
ふで子 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP9220293A priority Critical patent/JPH1157731A/en
Publication of JPH1157731A publication Critical patent/JPH1157731A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable always performing proper control by adding solution containing bacteriophage which is singularly adsorbed by bacteria to be detected and in which nucleic acid is marked with a pigment or the like and detecting the marked bacteria by an optical detecting means to control the added quantity or the like of a disinfectant and a flocculant to untreated water taken in. SOLUTION: Downstream of a line in which water to be checked flows, a reactor 22 for mixing liquid to which marking phage solution is added in the water to be checked and an optical detector 23 for detecting bacteria are connected successively. And on the upstream side of the reactor 22 on the line 21, a pump 25 for supplying culture concentrated liquid 24 and a pump 27 for supplying phage solution 25 in which nucleic acid is marked with a pigment or fluorescent material are connected. And after the culture concentrated liquid 24 and the marked phage solution 26 are added to the line 21 to mix them, the reactor 22 reacts the phage and specified bacteria to inject the phage nucleic acid into bacterial cells. Then, the number of the specified bacteria is obtained by the optical detector 23 to control the operation of a pre-chlorination pump and an intake pump.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、飲料水を得るため
の浄水処理に関するものであり、特に河川、湖沼やダム
あるいは地下水を原水とする浄水処理方法および浄水処
理設備に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification process for obtaining drinking water, and more particularly to a water purification method and a water purification system using rivers, lakes, dams, or groundwater as raw water.

【0002】[0002]

【従来の技術】水道水は、人間の体内に直接摂取される
ものであり、「大腸菌群は検出されないこと」という基
準が定められている。従って、浄水処理場において、原
水に大腸菌または大腸菌群に代表される細菌を大量に含
む下水等が混入した場合は、取水を停止したり塩素等の
消毒剤の注入率を増加させる等の措置を行う必要があ
る。
2. Description of the Related Art Tap water is directly taken into the human body, and a standard for "no detection of coliform bacteria" is set. Therefore, if sewage or the like containing a large amount of Escherichia coli or bacteria represented by the coliform group is mixed in the raw water at the water treatment plant, take measures such as stopping the intake and increasing the injection rate of disinfectants such as chlorine. There is a need to do.

【0003】しかしながら、原水が大腸菌や大腸菌群に
より汚染されているかどうかを検査するためには、一般
的には培養法により行わなければならない。すなわち原
水を採取し、大腸菌や大腸菌群が選択的に増殖する培地
に接種して培養を行わなければならない。通常、培養は
24時間以上行わなければならず、大腸菌や大腸菌群の
汚染の有無を推定するだけでも1日を要し、混入してい
るのが大腸菌や大腸菌群であるのか否かを確定するのに
2日を要する。従って、原水中の大腸菌の有無を培養法
により検査し、その結果に基づいて塩素等の消毒剤の注
入率を制御して浄水処理を行うことは、実質的に不可能
であった。
[0003] However, in order to check whether or not raw water is contaminated with Escherichia coli or coliforms, it must be generally performed by a culture method. That is, it is necessary to collect raw water, inoculate it into a medium in which Escherichia coli or Escherichia coli selectively grows, and perform culture. Usually, cultivation must be carried out for 24 hours or more, and it takes one day just to estimate the presence or absence of contamination of Escherichia coli and coliforms, and it is determined whether or not the contamination is Escherichia coli or coliforms. It takes two days. Therefore, it was practically impossible to inspect the presence or absence of Escherichia coli in the raw water by a culture method, and control the injection rate of a disinfectant such as chlorine based on the result to perform the water purification treatment.

【0004】また、原水が大腸菌に代表される細菌等で
汚染されたかどうかを推定する方法として、過マンガン
酸カリウムや塩素の消費量を測定して有機物により汚染
されているかどうかを推定する方法があるが、過マンガ
ン酸カリウムや塩素はただ単に金属や無害な有機物の増
加によっても消費量が増加するため、過マンガン酸カリ
ウムや塩素の消費量の増加が必ずしも細菌の増加と結び
つくものではない。
As a method for estimating whether or not raw water has been contaminated with bacteria such as Escherichia coli, there is a method for estimating whether or not contaminated with organic matter by measuring the consumption of potassium permanganate or chlorine. However, increasing the consumption of potassium permanganate and chlorine is not necessarily linked to the increase of bacteria, because the consumption of potassium permanganate and chlorine is increased merely by increasing the amount of metals and harmless organic substances.

【0005】このような現状のもとでは、上水の大腸菌
や大腸菌群等の細菌の汚染を防ぐために、残留塩素濃度
が一定以上になるように塩素を多めに入れることが行わ
れている。しかし、塩素を過剰に添加することは、有害
なトリハロメタンが生成する原因となり、好ましいこと
ではない。
[0005] Under such circumstances, in order to prevent contamination of bacteria such as coliform bacteria and coliform bacteria in clean water, a large amount of chlorine is added so that the residual chlorine concentration becomes a certain level or more. However, excessive addition of chlorine is not preferable because it causes formation of harmful trihalomethane.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、浄水処理場に流入する原水が大腸菌や大腸
菌群等の細菌で汚染された場合に、浄水中に細菌が残留
しないようにする浄水処理方法および浄水処理設備を提
供することにある。
The problem to be solved by the present invention is to prevent bacteria from remaining in purified water when the raw water flowing into the water treatment plant is contaminated with bacteria such as Escherichia coli and coliform bacteria. It is an object of the present invention to provide a water purification method and a water purification facility.

【0007】[0007]

【課題を解決するための手段】本発明者らは、研究を重
ねた結果、標識バクテリオファージを用いることによ
り、リアルタイムで大腸菌や大腸菌群等の細菌を検出す
ることができることを見いだし、本発明を完成するに至
った。
Means for Solving the Problems As a result of repeated studies, the present inventors have found that bacteria such as Escherichia coli and coliform bacteria can be detected in real time by using a labeled bacteriophage. It was completed.

【0008】すなわち、本発明は、原水を殺菌する殺菌
工程および/または不純物をフロックとして沈澱により
除去する凝集沈澱工程を含む浄水処理方法において、検
出対象となる細菌に特異的に吸着しかつ核酸を色素又は
蛍光物質で標識したバクテリオファージを含む溶液を取
水原水に添加し、色素標識核酸又は蛍光標識核酸により
標識された細菌を光学的検出手段により検出し、検出さ
れた細菌の量に応じて取水原水への殺菌剤の添加量、凝
集剤の添加量、取水ポンプの運転のいずれか1つ以上を
制御して、原水中の細菌を殺菌除去することを特徴とす
る浄水処理方法と、原水に殺菌剤および/または凝集剤
を添加する浄水処理設備において、取水原水に検出対象
となる細菌に特異的に吸着しかつ核酸を色素又は蛍光物
質で標識したバクテリオファージを含む溶液を添加する
添加手段と、色素標識核酸又は蛍光標識核酸が注入され
た細菌を検出する光学的検出手段とを備えた細菌検出装
置と、細菌検出装置から送られてきた検出された細菌の
量に対応する信号に応じて細菌を殺菌する殺菌剤の添加
量、凝集剤の添加量、取水の断続を決定する論理演算手
段と、論理演算手段の結果により殺菌剤の添加量、凝集
剤の添加量、取水ポンプのいずれか1つ以上を制御する
手段からなる制御装置を備えたことを特徴とする浄水処
理設備、に関するものである。
That is, the present invention relates to a water purification method comprising a sterilization step of sterilizing raw water and / or a coagulation precipitation step of removing impurities as flocs by sedimentation. A solution containing a bacteriophage labeled with a dye or a fluorescent substance is added to the raw water, and bacteria labeled with the dye-labeled nucleic acid or the fluorescent-labeled nucleic acid are detected by optical detection means, and water is taken according to the amount of the detected bacteria. A water purification treatment method characterized by controlling at least one of an addition amount of a bactericide, an addition amount of a flocculant, and an operation of an intake pump to raw water to sterilize and remove bacteria in the raw water; In a water purification plant to which a bactericide and / or a flocculant is added, a bag that is specifically adsorbed to the bacteria to be detected in the raw water for intake and the nucleic acid is labeled with a dye or a fluorescent substance. A bacterium detection device provided with an addition device for adding a solution containing lyophage, and an optical detection device for detecting a bacterium into which the dye-labeled nucleic acid or the fluorescence-labeled nucleic acid has been injected; Logic operation means for determining the amount of bactericide added to kill bacteria, the amount of coagulant added, and the intermittent water withdrawal in accordance with the signal corresponding to the amount of bacteria, and the amount of bactericide added and coagulated based on the result of the logic operation means The present invention relates to a water purification treatment facility comprising a control device comprising means for controlling at least one of an addition amount of an agent and a water intake pump.

【0009】[0009]

【発明の実施の形態】本発明において、「蛍光物質等」
という場合は色素、蛍光物質の双方を含む場合を総称
し、「蛍光標識核酸等」という場合は色素標識核酸、蛍
光標識核酸の双方を含む場合を総称するものとする。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, "fluorescent substance, etc."
In this case, the case where both a dye and a fluorescent substance are included is generally referred to, and the case where “fluorescent-labeled nucleic acid or the like” is generally referred to as including both the dye-labeled nucleic acid and the fluorescent-labeled nucleic acid.

【0010】本発明における、バクテリオファージはD
NA(一重鎖,二重鎖)からなる遺伝子をもつDNAフ
ァージが一般的であるが、RNAからなる遺伝子をもつ
RNAファージを除外するものではなく、蛍光標識核酸
等はDNA,RNAのいずれでもよい。このような蛍光
物質等で標識された核酸を有するDNAファージ,RN
Aファージは、ファージ核酸(以下「ファージDNA」
と称する)に親和性を有する蛍光物質等(色素又は蛍光
物質)を添加した培地でバクテリオファージが感染した
細菌を増殖させることで得ることができる。蛍光物質等
としては、ファージDNAに結合でき、ファージから細
菌に注入されて該細菌を染色できる物質であれば特に限
定されることなく用いることができ、一例を挙げれば色
素としては、エチジウムブロミド,プロピジウムイオデ
ートなどを例示することができる。蛍光物質としては
4,6−ジアミノ−2−フェニルインドールハイドロク
ロライド(DAPI)を例示することができる。蛍光物
質のうち、長波長側に吸収帯をもつものは、色素として
も利用でき、このような色素で標識したファージを用い
れば、蛍光顕微鏡などの蛍光検出器を用いなくても、顕
微鏡,分光光度計などでの検出が可能である。
In the present invention, the bacteriophage is D
A DNA phage having a gene consisting of NA (single-stranded or double-stranded) is generally used, but an RNA phage having a gene consisting of RNA is not excluded, and the fluorescent-labeled nucleic acid may be either DNA or RNA. . DNA phage having a nucleic acid labeled with such a fluorescent substance or the like, RN
A phage is a phage nucleic acid (hereinafter “phage DNA”).
) In a culture medium to which a fluorescent substance or the like (a dye or a fluorescent substance) having an affinity for the bacteriophage has been added. As the fluorescent substance, any substance can be used without particular limitation as long as it can bind to phage DNA and can be injected from phage into bacteria to stain the bacteria. Examples of the dye include ethidium bromide, Examples include propidium iodide. Examples of the fluorescent substance include 4,6-diamino-2-phenylindole hydrochloride (DAPI). Among the fluorescent substances, those having an absorption band on the long wavelength side can also be used as a dye. If phage labeled with such a dye are used, the microscope, spectroscopy and spectroscopy can be performed without using a fluorescence detector such as a fluorescence microscope. Detection with a photometer or the like is possible.

【0011】ファージ核酸に蛍光物質等を標識させる方
法は、蛍光物質,色素のいずれを用いる場合でも、核酸
(DNA,RNA)に親和性を有する蛍光物質等をその
親和性を利用して核酸の立体構造の隙間に物理的に入れ
込むようにしてもよいし、蛍光物質等を標識したヌクレ
オチドをファージ核酸合成時に取り込ませて、化学的な
結合により標識するようにしてもよい。
In the method of labeling a phage nucleic acid with a fluorescent substance or the like, a fluorescent substance or the like having an affinity for a nucleic acid (DNA or RNA) is used by utilizing the affinity of a fluorescent substance or a dye regardless of whether a fluorescent substance or a dye is used. It may be physically inserted into the gap of the three-dimensional structure, or a nucleotide labeled with a fluorescent substance or the like may be incorporated at the time of phage nucleic acid synthesis and labeled by chemical bonding.

【0012】検出に用いるファージ溶液のファージ濃度
は、試料液に含まれる細菌に対して所定時間以内に少な
くとも1個のバクテリオファージが接触できる濃度を有
するものであればよく、その程度は、検出しようとする
試料液に含まれる細菌数のレベルや検出時間などにより
異なるため一律的には決められないが、実験的に容易に
決めることができる。一例的に言えば、飲料水中に含ま
れる大腸菌の検出のためには、試料液(被検水)1ml
当たり103個〜108個程度ないしそれ以上の濃度とす
ればよい場合が多い。なおファージ溶液のファージ濃度
を高くすれば複数のファージが細菌に接触する可能性が
増すので、検出する一つの細菌の色素による染色濃度が
増し、また一つの細菌の呈する蛍光強度を高くできて検
出をより高精度とできるので好ましい。
[0012] The phage concentration of the phage solution used for the detection may be a concentration of a phage capable of contacting at least one bacteriophage within a predetermined time with the bacteria contained in the sample solution. Although it cannot be determined uniformly because it varies depending on the level of the number of bacteria contained in the sample solution to be detected and the detection time, it can be easily determined experimentally. For example, in order to detect E. coli contained in drinking water, 1 ml of a sample solution (test water) is used.
In many cases, the concentration may be about 10 3 to 10 8 or more. In addition, if the phage concentration of the phage solution is increased, the possibility that a plurality of phages will come into contact with the bacterium increases, so that the staining concentration of one bacterium to be detected by the dye is increased, and the fluorescence intensity of one bacterium can be increased to detect the bacterium. Is more preferable because it is possible to achieve higher precision.

【0013】一般にバクテリオファージの感染(溶菌感
染)の過程は、宿主細菌への吸着結合、ファージDNA
の宿主細胞への注入、注入されたファージDNAを鋳型
としたファージ粒子の複製という3段階に分けられる。
[0013] In general, the process of bacteriophage infection (lytic infection) involves adsorption binding to host bacteria and phage DNA.
Into a host cell and replication of phage particles using the injected phage DNA as a template.

【0014】本発明における標識バクテリオファージの
特徴は、多くの場合細菌に吸着したファージが宿主細菌
細胞内にファージDNAを注入する過程が宿主細胞のエ
ネルギー状態に依存している点にある。すなわち、ファ
ージDNA(核酸)の注入は生物活性を失った宿主に対
しては起こらず、生細胞(生菌)だけにおいて起こると
いう点である。つまり、生菌ではファージDNAの注入
が起こるので光学的に検出できるようになるのに対し、
吸着してもファージDNAが注入されない死菌や断片で
は、検出される光学的情報が明瞭に識別できるからであ
る。ファージの活性と注入の有無を光学的に識別できる
現象を利用して生菌と死菌を区別する本発明の作用は、
放射性同位元素や酵素等を用いた従来法では期待できな
いものであり、処理操作の簡便化や検出精度の向上の点
で極めて有利である。
The feature of the labeled bacteriophage in the present invention is that in many cases, the process of injecting phage DNA into host bacterial cells by phage adsorbed on bacteria depends on the energy state of the host cells. That is, injection of phage DNA (nucleic acid) does not occur in a host that has lost biological activity, but only in living cells (live bacteria). In other words, in the case of live bacteria, phage DNA is injected, which enables optical detection.
This is because optical information to be detected can be clearly distinguished from killed bacteria or fragments to which phage DNA is not injected even after adsorption. The action of the present invention to distinguish between live bacteria and dead bacteria by utilizing the activity of phage and the phenomenon of optically distinguishing the presence or absence of injection,
This method cannot be expected by conventional methods using radioisotopes, enzymes, and the like, and is extremely advantageous in terms of simplification of processing operations and improvement of detection accuracy.

【0015】また非特異的に吸着したファージがあって
も、細菌へのファージDNAの注入は生じないので、フ
ァージDNAが注入された細菌のみが検出される本発明
の細菌検出装置は、高精度な検出ができる点で優れてい
る。
In addition, since phage DNA is not injected into bacteria even if nonspecifically adsorbed phages are present, the bacterium detection device of the present invention, which detects only bacteria into which phage DNA has been injected, is highly accurate. It is excellent in that it can perform accurate detection.

【0016】これらの理由により、本発明によれば蛍光
色素で核酸を標識したバクテリオファージを利用して、
原水中に含まれる特定の細菌をしかも生菌だけを、これ
に特異的に吸着するバクテリオファージを利用して染色
あるいは蛍光染色して検出し、浄水場の細菌の殺菌除去
処理をリアルタイムで制御することが可能となる。
For these reasons, according to the present invention, a bacteriophage in which a nucleic acid is labeled with a fluorescent dye is used.
Specific bacteria contained in the raw water, and only live bacteria, are detected by staining or fluorescent staining using bacteriophage that specifically adsorbs them, and the sterilization and removal of bacteria in the water purification plant is controlled in real time. It becomes possible.

【0017】蛍光標識核酸等を有するバクテリオファー
ジの吸着−核酸注入によって色素,蛍光で染色された細
菌は、光学的手段によって検出することができる。光学
的手段は、色素,蛍光を検出できるものであれば特に形
式等には制限されることはなく、例えば色素を標識した
場合には通常の顕微鏡や分光光度計などを用いることが
でき、蛍光物質を標識した場合には、蛍光顕微鏡、蛍光
光度計、蛍光検出機などを用いることができる。
Adsorption of bacteriophage having fluorescently labeled nucleic acid and the like. Bacteria stained with a dye or fluorescence by nucleic acid injection can be detected by optical means. The optical means is not particularly limited as long as it can detect the dye and the fluorescence. For example, when the dye is labeled, an ordinary microscope or a spectrophotometer can be used. When the substance is labeled, a fluorescence microscope, a fluorometer, a fluorescence detector and the like can be used.

【0018】また検出画像を画像解析によって染色点や
蛍光点等を検出する方法、蛍光光度計を用いて蛍光強度
の違いを検出する方法、フローセルを用いて流動液中の
染色粒子や蛍光粒子の数を検出する方法などを用いるこ
とができる。
A method of detecting a stained point or a fluorescent point by image analysis of a detected image, a method of detecting a difference in fluorescence intensity using a fluorometer, and a method of detecting a stained particle or a fluorescent particle in a fluid using a flow cell. A method of detecting the number can be used.

【0019】忌避される主な細菌とファージの組合せを
例示すれば、大腸菌とT系ファージ,λファージ等、サ
ルモネラとP系ファージ等、シュードモナスとP系ファ
ージ等、クレブシアラとスタンフォード大学60,92
の各ファージ、クロストリジウムと70,71,72の
各ファージ、シゲラとφ80,スタンフォード大学3
7,D20、コリネバクテリウムとC系ファージ、マイ
クロコッカスとN系ファージ,ML53−40 ファー
ジなどが挙げられ、この場合には微量細菌を検出するた
めに濃縮工程が必要とされる場合が多い。
Examples of the combinations of the main bacteria and phages to be repelled are: Escherichia coli and T-type phages, λ phages, etc .; Salmonella and P-type phages; Pseudomonas and P-type phages; Klebsiala and Stanford University 60,92.
Phages, Clostridium and 70, 71, 72 phages, Shigella and φ80, Stanford University 3
7, D20, Corynebacterium and C-type phage, Micrococcus and N-type phage, ML53-40 phage, etc. In this case, an enrichment step is often required in order to detect a trace amount of bacteria.

【0020】ファージを細菌に感染させる条件は、好気
性条件下で、菌の種類にもよるが好熱性細菌では0〜1
20℃、一般の菌,ファージでは、失活しない50℃以
下とされる。これらの範囲内であれば温度が高い方が感
染の速度が速くなる。また試料液を攪拌して細菌とファ
ージの接触効率を高めることも好ましい。
The conditions for infecting the phage with the bacterium are aerobic conditions, and depending on the type of the bacterium, 0 to 1 for thermophilic bacteria.
The temperature is set to 20 ° C. and 50 ° C. or lower which is not inactivated by general bacteria and phages. Within these ranges, the higher the temperature, the faster the infection rate. It is also preferable to increase the contact efficiency between the bacteria and the phage by stirring the sample solution.

【0021】本願の請求項1記載の発明は、標識バクテ
リオファージを用いて、取水原水中の細菌を検出し、検
出された細菌の量により、殺菌剤の添加量、凝集剤の添
加量、取水ポンプの運転のいずれか1つ以上をフィード
フォワード制御するものである。
According to the first aspect of the present invention, a bacterium in a raw water for intake is detected by using a labeled bacteriophage, and the amount of a bactericide, the amount of a coagulant, and The feedforward control is performed for at least one of the operations of the pump.

【0022】請求項1に記載の発明において、細菌の検
出対象となる取水原水とは、河川、湖沼、ダムあるいは
地下水等の原水を取水し、殺菌剤が投入される点の手前
のものである。
In the first aspect of the present invention, the raw water to be detected as a bacterium is a raw water such as a river, a lake, a dam, or groundwater, which is before a point at which a disinfectant is introduced. .

【0023】用いる殺菌剤は、細菌を殺菌除去できるも
のでれば特に限定されないが、次亜塩素酸ナトリウム、
二酸化塩素、クロラミン等の塩素系化合物、オゾン、紫
外線等を挙げることができる。殺菌剤の添加が複数個所
で行なわれている場合、いずれの場所で添加量を制御し
てもかまわない。また、凝集沈澱処理工程を含む浄水処
理においては、凝集剤の量を制御し、細菌を沈澱分離す
ることによりトリハロメタンを生成するおそれのある殺
菌剤の添加量を減らすことができ、細菌を効率的に除去
することができる。凝集剤は浄水処理に用いられるもの
であれば特に限定されないが、PAC(ポリ塩化アルミ
ニウム)、硫酸バンド等のアルミニウム系凝集剤、硫化
鉄、塩化鉄等の鉄系凝集剤を挙げることができる。
The germicide to be used is not particularly limited as long as it can sterilize and remove bacteria, and sodium hypochlorite,
Examples thereof include chlorine compounds such as chlorine dioxide and chloramine, ozone, and ultraviolet rays. When the disinfectant is added at a plurality of locations, the amount of addition may be controlled at any location. In addition, in the water purification treatment including the coagulation sedimentation treatment step, the amount of a coagulant is controlled, and the amount of a bactericide that may generate trihalomethane can be reduced by sedimentation and separation of the bacteria. Can be removed. The coagulant is not particularly limited as long as it is used for water purification treatment, and examples thereof include aluminum-based coagulants such as PAC (polyaluminum chloride) and sulfuric acid band, and iron-based coagulants such as iron sulfide and iron chloride.

【0024】請求項1記載の浄水処理方法により、取水
原水中の細菌を検出し、その検出結果によって、殺菌剤
や凝集剤の添加量をフィードフォワード制御するので、
浄水プロセスへ細菌が混入することを防ぐことができ
る。
According to the first aspect of the present invention, the bacteria in the raw water for intake are detected, and the amount of the bactericide or the coagulant added is feedforward controlled based on the detection result.
Bacteria can be prevented from entering the water purification process.

【0025】なお、細菌の量が多量で、殺菌剤や凝集剤
の添加量があまり多くなる場合は、原水の取水を止める
ようにすればよい。
When the amount of bacteria is large and the amount of a bactericide or a flocculant is too large, the intake of raw water may be stopped.

【0026】請求項1に記載の本発明により、原水中の
細菌を殺菌除去して浄水処理する方法において、例えば
表1に示したように、原水中の細菌数に応じて、塩素化
合物の添加量および取水ポンプを制御すればよい。また
細菌数に応じて別に凝集剤の添加量を制御すればよい。
According to the first aspect of the present invention, in a method for purifying water by sterilizing and removing bacteria in raw water, for example, as shown in Table 1, addition of chlorine compounds according to the number of bacteria in raw water. The amount and the intake pump can be controlled. The amount of the coagulant to be added may be controlled separately according to the number of bacteria.

【0027】[0027]

【表1】 [Table 1]

【0028】請求項1に記載の発明により、細菌を除去
した原水は、通常の浄水方法により、浄水処理すればよ
い。浄水処理方法は限定されるものではないが、例えば
凝集剤を添加して不純物のフロックを形成し、フロック
を沈澱させた上澄液を濾過して浄水を製造する凝集沈澱
処理法を採用すればよい。
According to the first aspect of the present invention, the raw water from which bacteria have been removed may be subjected to a water purification treatment by an ordinary water purification method. The water purification treatment method is not limited.For example, if a flocculant is formed by adding a flocculant to form flocs of impurities, and filtering the supernatant obtained by precipitating the flocs to produce purified water, Good.

【0029】請求項6に記載の発明は、標識バクテリオ
ファージを用いた細菌検出装置を備えた浄水処理設備に
関するものである。
The invention according to claim 6 relates to a water purification treatment facility provided with a bacterium detection device using a labeled bacteriophage.

【0030】請求項6の浄水処理設備に用いられる細菌
検出装置の一実施形態を図2に基づいて説明する。図2
において、21は細菌を検出しようとする取水原水の一
部(以下「被検水」という)が流れるラインを示し、こ
の下流には、被検水中に標識ファージ溶液が添加された
液を混合するコイル状のリアクタ22、次いで細菌を検
出する光学的検出装置23が順次接続されている。ま
た、前記ライン21のリアクタ22の上流側には、アミ
ノ酸、糖類、無機塩類などを含む培養濃縮液(栄養源溶
液)24を供給するためのポンプ25、及び核酸を蛍光
物質等(色素又は蛍光物質)で標識したバクテリオファ
ージを含む溶液(以下「ファージ溶液」という)26を
供給するためのポンプ27が、それぞれ接続されてい
る。
An embodiment of the bacterium detection apparatus used in the water purification equipment of claim 6 will be described with reference to FIG. FIG.
In the figure, reference numeral 21 denotes a line through which a part of the raw water from which the bacteria are to be detected (hereinafter, referred to as "test water"), and downstream of this line, a liquid obtained by adding a labeled phage solution to the test water is mixed. A coil-shaped reactor 22 and an optical detection device 23 for detecting bacteria are sequentially connected. A pump 25 for supplying a culture concentrate (nutrient solution) 24 containing amino acids, saccharides, inorganic salts, and the like, and a nucleic acid to a fluorescent substance or the like (a dye or a fluorescent substance) are provided upstream of the reactor 22 in the line 21. Pumps 27 for supplying a solution (hereinafter, referred to as “phage solution”) 26 containing a bacteriophage labeled with a substance) are connected to each other.

【0031】本例のこの装置を用いた細菌の検出操作に
ついて説明すると、まず、細菌を検出しようとする被検
水が流れているライン21に、前記培養濃縮液24と、
標識ファージ溶液26をそれぞれポンプ25,27によ
り連続的に添加する。
The operation of detecting bacteria using this apparatus according to the present embodiment will be described. First, the culture concentrate 24 and the culture concentrate 24 are placed in a line 21 through which test water from which bacteria are to be detected flows.
The labeled phage solution 26 is continuously added by pumps 25 and 27, respectively.

【0032】上記の各液が添加された被検水は、ライン
21を流れながら2種類の添加液と混合され、微生物反
応の至適環境である37℃に保持したコイル状のリアク
タ22に入り、被検水中に特定の細菌が存在している場
合には、ファージと該特定細菌とが反応し、色素標識又
は蛍光標識されたファージ核酸(例えばファージDN
A)が細菌細胞内に注入される。
The test water to which each of the above liquids has been added is mixed with the two kinds of additional liquids while flowing through the line 21 and enters the coiled reactor 22 maintained at 37 ° C., which is the optimum environment for the microbial reaction. When a specific bacterium is present in the test water, the phage reacts with the specific bacterium, and a dye-labeled or fluorescent-labeled phage nucleic acid (for example, phage DN)
A) is injected into bacterial cells.

【0033】次いでリアクタ22を出た細菌は、その下
流に設けられている色素検出用の顕微鏡,分光光度計あ
るいは蛍光検出用の蛍光検出装置などの光学的検出装置
23に流入し、ここでファージの核酸注入により蛍光物
質等で染色された特定細菌の検出が行われる。この光学
的検出装置23の形式は、顕微鏡や蛍光顕微鏡のように
静止した試料液中の染色された粒子を検出する方式のも
のでもよいし、またフローセル中を流動する染色粒子を
検出するものでもよい。
Next, the bacteria that have exited the reactor 22 flow into an optical detection device 23 provided downstream thereof, such as a microscope for detecting a dye, a spectrophotometer, or a fluorescence detection device for detecting fluorescence. The detection of a specific bacterium stained with a fluorescent substance or the like is performed by the nucleic acid injection. The type of the optical detection device 23 may be a type that detects stained particles in a stationary sample solution such as a microscope or a fluorescence microscope, or a type that detects stained particles flowing in a flow cell. Good.

【0034】また、図2において、原水ライン、培養液
濃縮ライン、標識ファージ溶液ライン、光学的検出装置
において、それぞれ洗浄ラインを設け、熱水あるいは酸
化剤、還元剤、アルカリ溶液等の汚れを剥離する効力を
持った薬剤を系内に添加して、測定を妨害する汚れを洗
浄するようにしてもよい。
In FIG. 2, a washing line is provided in each of a raw water line, a culture solution concentration line, a labeled phage solution line, and an optical detection device to remove dirt such as hot water or an oxidizing agent, a reducing agent, or an alkaline solution. A drug having an effect of adding to the system may be added to the system to remove stains that interfere with the measurement.

【0035】さらに、測定後の廃液出口に活性炭充填槽
等の吸着手段、酸化剤や還元剤等の薬剤添加手段、加熱
手段等の廃液処理機構を設けてもよい。
Further, a waste liquid treatment mechanism such as an adsorption means such as an activated carbon filling tank, a chemical addition means such as an oxidizing agent or a reducing agent, and a heating means may be provided at the waste liquid outlet after the measurement.

【0036】光学的検出手段により検出された結果はデ
ジタル信号化装置によりデジタル信号化される。
The result detected by the optical detecting means is converted into a digital signal by a digital signal converting device.

【0037】光学的検出装置が顕微鏡や蛍光顕微鏡等の
場合は、CCD素子等により画像をデジタル化し、MP
Uで画像処理を行い、デジタル化された画像信号から細
菌数を計算し出力すればよい。出力された信号は、後述
の制御装置へ送信する。
When the optical detection device is a microscope or a fluorescence microscope, the image is digitized by a CCD element or the like, and the
The image processing may be performed in U, and the number of bacteria may be calculated and output from the digitized image signal. The output signal is transmitted to a control device described later.

【0038】また、光学的検出装置が分光光度計等の場
合は、分光光度計等の出力値をA/D変換器でデジタル
化し、MPUで処理して細菌数を計算し出力すればよ
い。
When the optical detection device is a spectrophotometer or the like, the output value of the spectrophotometer or the like may be digitized by an A / D converter, processed by the MPU, and the number of bacteria may be calculated and output.

【0039】制御装置の概略の一実施形態を図3に基づ
いて説明する。細菌検出装置から送られてきた細菌数を
表すデジタル信号は、制御装置18(図1参照)内の演
算器に入力される。次に演算結果と、予め設定しておい
た細菌数とフィードフォワード制御との設定値とを比較
し、それに対応する塩素濃度または取水ポンプの運転/
停止を制御するためのデジタル信号をアナログ変換し、
前塩素ポンプ9(図1参照)を制御するか取水ポンプを
停止させる。
An embodiment of the control device will be described with reference to FIG. The digital signal indicating the number of bacteria sent from the bacteria detection device is input to a calculator in the control device 18 (see FIG. 1). Next, the calculation result is compared with the preset number of bacteria and the set value of the feedforward control, and the corresponding chlorine concentration or the operation of the intake pump /
The digital signal for controlling the stop is converted to analog,
Control the pre-chlorine pump 9 (see FIG. 1) or stop the water intake pump.

【0040】本願の請求項2の発明は、核酸を色素又は
蛍光物質で標識したバクテリオファージを試料液中で宿
主細菌に接触させ、色素標識核酸又は蛍光標識核酸が注
入された細菌を流動細胞計測法により検出することを特
徴とし、請求項7の発明は、試料液をフローセル中に連
続的に通過させる通液手段と、核酸を色素又は蛍光物質
で標識したバクテリオファージを含むファージ溶液を前
記フローセルの前段において試料液に添加するファージ
溶液添加手段と、色素標識核酸又は蛍光標識核酸が注入
された細菌をフローセルで検出する光学的検出手段と、
光学的検出結果をデジタル信号化する信号化手段を備え
た細菌検出装置を備えたことを特徴とする。
According to the invention of claim 2 of the present application, a bacteriophage in which a nucleic acid is labeled with a dye or a fluorescent substance is brought into contact with a host bacterium in a sample solution, and the bacterium into which the dye-labeled nucleic acid or the fluorescent-labeled nucleic acid is injected is subjected to flow cell measurement. The invention according to claim 7, wherein the phage solution containing a bacteriophage in which a nucleic acid is labeled with a dye or a fluorescent substance is passed through the flow cell. Phage solution addition means to be added to the sample solution in the previous stage, optical detection means for detecting the bacteria in which the dye-labeled nucleic acid or fluorescence-labeled nucleic acid has been injected with a flow cell,
The present invention is characterized in that a germ detecting device provided with a signaling means for converting the optical detection result into a digital signal is provided.

【0041】これらの発明によれば、フローセルを通過
する流動する溶液中の蛍光粒子数、すなわち細菌数を検
出することができ、オンラインによるリアルタイムの検
出を連続的に行うことができる。
According to these inventions, the number of fluorescent particles, ie, the number of bacteria, in the flowing solution passing through the flow cell can be detected, and online real-time detection can be continuously performed.

【0042】本願の請求項3の発明は、上記の各方法発
明において、蛍光標識核酸が注入された細菌の蛍光強度
又は蛍光光源の大きさを計測し、その計測値と予め定め
た閾値とを比較することにより閾値を越えた光源を細菌
として検出することを特徴とする。また請求項4の発明
は、光学的検出手段を用いて計測した蛍光強度又は蛍光
光源の大きさが、予め定めた蛍光強度閾値又は光源の大
きさ閾値以下の光源を除く画像処理をした後、処理後の
画像から細菌細菌の有無又は細菌数を検出することを特
徴とする。更に、請求項9の発明は、上記の各装置発明
において、光学的検出手段を撮像手段とし、この撮像手
段で得た撮像画像から予め定めた蛍光強度閾値以下又は
蛍光光源の大きさ閾値以下の光源を除く画像処理手段を
設けたことを特徴とする。
According to a third aspect of the present invention, in each of the above-described method inventions, the fluorescence intensity or the size of the fluorescent light source of the bacteria into which the fluorescent-labeled nucleic acid has been injected is measured, and the measured value is compared with a predetermined threshold value. A light source exceeding the threshold is detected as bacteria by comparison. Further, the invention according to claim 4, the fluorescence intensity measured by using the optical detection means or the size of the fluorescent light source, after performing the image processing excluding the light source less than a predetermined fluorescence intensity threshold or light source size threshold, The method is characterized in that the presence or absence or the number of bacteria is detected from the processed image. Further, according to the ninth aspect of the present invention, in each of the above-described device inventions, the optical detection means is an imaging means, and a fluorescence intensity threshold or less or a fluorescence light source size threshold or less is determined from a captured image obtained by the imaging means. An image processing unit excluding a light source is provided.

【0043】これらの発明によれば、蛍光物質が細菌に
注入されたときの例えば光源の大きさは、該蛍光物質が
ファージ中に存在しているとき光源の大きさに比べて有
意な差をもって区別できるので、面積や長さなどの大き
さを示す指標として前者よりも小さくかつ後者よりも大
きい値として予め定めた閾値を基準として細菌の有無や
数を計数することができる。また撮像した画像につい
て、閾値以下の大きさの光源を除く画像処理を行うよう
にすれば、蛍光を発する細菌のみの画像を得ることがで
きて高精度の検出が可能となり、また検出の自動化を図
るためにも有効である。なお、閾値以下の大きさの光源
を「除く」画像処理とは、例えば閾値以下の光源を背景
と同じとみなすようにすることをいう。この閾値との比
較は光源の大きさに限定されず、光源の蛍光強度を用い
て同様に行うことができる。
According to these inventions, for example, the size of the light source when the fluorescent substance is injected into the bacterium is significantly different from the size of the light source when the fluorescent substance is present in the phage. Since they can be distinguished, the presence or absence and the number of bacteria can be counted based on a predetermined threshold as a value that is smaller than the former and larger than the latter as an index indicating the size such as area or length. In addition, if image processing is performed on a captured image except for a light source having a size equal to or smaller than the threshold, an image of only bacteria that emit fluorescence can be obtained, and highly accurate detection can be performed. It is also effective for planning. Note that the image processing “excluding” the light source having the size equal to or smaller than the threshold value refers to, for example, assuming that the light source having the size equal to or smaller than the threshold value is the same as the background. The comparison with this threshold value is not limited to the size of the light source, and can be similarly performed using the fluorescence intensity of the light source.

【0044】なお、本発明における、試料液中の細菌数
を標識バクテリオファージにより測定して殺菌剤の添加
量を制御する方法は、浄水処理方法のみならず、水耕栽
培、魚介類の養殖、冷却塔等の管理など、細菌を増殖さ
せてはいけない分野に適用することができる。
In the present invention, the method of measuring the number of bacteria in a sample solution using a labeled bacteriophage to control the amount of a bactericide added is not limited to water purification, but also includes hydroponic cultivation, cultivation of fish and shellfish, and the like. The present invention can be applied to fields in which bacteria are not allowed to grow, such as management of cooling towers.

【0045】すなわち、図5に示したような細菌殺菌装
置により水耕栽培用水槽、養殖槽、冷却塔等の環境中の
監視すべき細菌の数をリアルタイムで計測し、最適な殺
菌剤量を添加することができる。図5に示した装置は、
測定対象の試料液は監視すべき環境50から試料採取ラ
イン51を介して試料採取ポンプ52によりリアクタ5
7へ送られる。リアクタ57の手前で栄養溶液槽54か
ら栄養液供給ポンプ53により栄養液が、次いで標識フ
ァージ溶液槽56より標識ファージ供給ポンプ55より
標識ファージが注入され、リアクタ57で混合され、試
料液中の細菌が標識される。標識された細菌は、光学的
検出手段58により検出され、制御手段59の論理演算
手段に予め設定された細菌数と殺菌剤添加量の関係式に
基づき、計測された細菌数に応じて殺菌剤の添加量を制
御するように殺菌剤供給ポンプ61を制御して殺菌剤槽
60より殺菌剤供給ライン62を介して監視すべき環境
50に殺菌剤を添加すればよい。
That is, the number of bacteria to be monitored in the environment such as a hydroponics tank, aquaculture tank, cooling tower and the like is measured in real time by a bacteria sterilizing apparatus as shown in FIG. Can be added. The device shown in FIG.
The sample liquid to be measured is supplied from the environment 50 to be monitored to a reactor 5 by a sampling pump 52 via a sampling line 51.
It is sent to 7. Before the reactor 57, a nutrient solution is injected from the nutrient solution tank 54 by the nutrient solution supply pump 53, and then a labeled phage is injected from the labeled phage solution tank 56 by the labeled phage supply pump 55, mixed by the reactor 57, and mixed with bacteria in the sample solution. Is labeled. The labeled bacteria are detected by the optical detection means 58, and based on the relation between the number of bacteria and the amount of the bactericide added to the logical operation means of the control means 59, the bactericide is determined in accordance with the measured number of bacteria. The disinfectant supply pump 61 is controlled so as to control the addition amount of the disinfectant, and the disinfectant is added from the disinfectant tank 60 to the environment 50 to be monitored via the disinfectant supply line 62.

【0046】図5に示したような装置を用いることによ
り、水耕栽培、魚介類の養殖、冷却塔等の管理におい
て、最適な殺菌剤量を添加することができ、殺菌剤の過
剰添加による弊害を防ぐことができる。
By using the apparatus as shown in FIG. 5, an optimum amount of a bactericide can be added in hydroponics, cultivation of fish and shellfish, and management of a cooling tower. Evil can be prevented.

【0047】[0047]

【実施例】【Example】

実施例1 図1に、河川水を原水とする場合の本発明の浄水処理設
備の一例を示す。河川1から取水点17において取水ポ
ンプ3により取水された原水4は、原水送水管5を通
り、着水井6に送られる。着水井6より送られた原水は
薬品混和池7にて消毒剤である次亜塩素酸ナトリウム8
が前塩素注入ポンプ9により注入され、凝集剤10が凝
集剤注入ポンプ11により注入される。これらの薬品が
混和された被処理水はフロック形成池12で不純物のフ
ロックを形成し、フロックは沈澱池13で沈澱し、上澄
水は急速砂濾過池14を経て途中再び次亜塩素酸ナトリ
ウム8が後塩素注入ポンプ15により注入されたのち、
配水池16に貯留される。
Embodiment 1 FIG. 1 shows an example of a water purification treatment facility of the present invention when river water is used as raw water. The raw water 4 taken from the river 1 at the water intake point 17 by the water intake pump 3 passes through the raw water transmission pipe 5 and is sent to the landing well 6. Raw water sent from the landing well 6 is disinfectant sodium hypochlorite 8 in the chemical mixing pond 7
Is injected by the pre-chlorine injection pump 9, and the coagulant 10 is injected by the coagulant injection pump 11. The water to be treated mixed with these chemicals forms flocs of impurities in the floc forming pond 12, the flocs settle in the sedimentation pond 13, and the supernatant water passes through the rapid sand filtration pond 14 and returns to sodium hypochlorite 8 on the way. Is injected by the post chlorine injection pump 15,
It is stored in the reservoir 16.

【0048】このような一般的な浄水処理設備2に、原
水の取水点17から標識ファージを用いた細菌検出装置
18に原水(被験水)が送水され、任意の時間的間隔で
細菌が測定され、その測定結果は電気的な信号として、
制御盤19に送信される。制御盤19内には細菌の測定
結果を入力信号として、予め入力されたプログラムによ
り論理演算手段で論理演算し、前塩素注入ポンプ9、凝
集剤注入ポンプ11、取水ポンプ3の運転のいずれか1
つ以上を制御して、原水中の細菌を殺菌除去し、細菌が
殺菌剤で殺菌しきれないほど多量の場合あるいは凝集剤
の添加量があまりにも多くなる場合は、取水ポンプ3を
停止する。
[0048] Raw water (test water) is supplied to the general water purification equipment 2 from a raw water intake point 17 to a bacteria detection device 18 using labeled phages, and bacteria are measured at arbitrary time intervals. , The measurement result is an electrical signal,
It is transmitted to the control panel 19. In the control panel 19, the result of the measurement of the bacteria is used as an input signal, and a logical operation is performed by a logical operation means according to a previously input program, and any one of the operations of the pre-chlorine injection pump 9, the coagulant injection pump 11, and the water intake pump 3 is performed.
By controlling at least one of them, the bacteria in the raw water are sterilized and removed. If the amount of bacteria is too large to be sterilized by the germicide or if the amount of the coagulant added is too large, the intake pump 3 is stopped.

【0049】具体的には、原水の取水点17で標識ファ
ージを用いた細菌測定装置18で測定された監視すべき
細菌の数に応じて、前塩素ポンプ9の出力を調整し、大
腸菌が一定数以上になったときは、取水ポンプ3を停止
し、細菌で汚染された原水の浄水処理を行わないように
し、細菌数が一定数以下になったときに、取水ポンプ3
の運転を再開する。細菌の殺菌除去をフィードフォワー
ド制御することができるので、浄水処理設備2の工程で
細菌の処理が不十分となる危険性のある原水が流入する
ことがないため、安全性の高い浄水つまり水道水を供給
することが可能となる。
Specifically, the output of the pre-chlorine pump 9 is adjusted according to the number of bacteria to be monitored measured by the bacteria measuring device 18 using labeled phage at the raw water intake point 17 so that E. coli can be maintained at a constant level. When the number of bacteria becomes less than a certain number, the intake pump 3 is stopped so as not to purify the raw water contaminated with bacteria.
Resumes operation. Since the sterilization and removal of bacteria can be feed-forward controlled, raw water that may cause insufficient treatment of bacteria in the process of the water purification treatment equipment 2 does not flow in, so highly safe purified water, that is, tap water. Can be supplied.

【0050】また、図1に示した実施例では、細菌測定
装置18を取水点17に設置して取水ポンプ3を制御し
ているが、細菌測定装置18を浄水設備2内に設置し着
水井6あるいは原水送水管5より原水の一部を被験水と
して採取して細菌を測定し、前塩素注入ポンプ9の出力
を調整したり、取水ポンプ3の運転と停止制御を行って
もよい。この場合取水ポンプ3を停止しても、着水井6
には既に細菌で汚染された原水が流入しているので、着
水井6に原水の戻し配管および浄水処理のラインとの切
替え弁を設け、細菌で汚染された原水を河川に戻すこと
が必要となる。 実施例2 図1に示した浄水処理設備により原水中の大腸菌数を測
定し、塩素による殺菌処理を行った。
Further, in the embodiment shown in FIG. 1, the bacteria measuring device 18 is installed at the water point 17 to control the water intake pump 3, but the bacteria measuring device 18 is installed in the water purification facility 2 and Alternatively, a part of the raw water may be collected from the raw water supply pipe 5 as test water to measure bacteria, and the output of the pre-chlorine injection pump 9 may be adjusted, or the operation of the water intake pump 3 may be controlled to start and stop. In this case, even if the intake pump 3 is stopped,
Since raw water contaminated with bacteria has already flowed into the well, it is necessary to provide a return pipe for raw water and a switching valve with a line for water purification treatment at the landing well 6 to return raw water contaminated with bacteria to the river. Become. Example 2 The number of Escherichia coli in raw water was measured by the water purification equipment shown in FIG. 1 and sterilized by chlorine.

【0051】浄水処理設備の運転条件は以下のように行
った。
The operating conditions of the water purification equipment were as follows.

【0052】・運転条件 原水:河川水 処理量:700m3/日 消毒剤:NaClO 凝集剤:PAC(ポリ塩化アルミニウム) なお、細菌検出装置に用いた標識バクテリオファージ
は、特願平9−88781号明細書記載の方法により調
製した大腸菌に特異的に吸着する蛍光標識バクテリオフ
ァージを用いた。
Operating conditions Raw water: river water Treatment amount: 700 m 3 / day Disinfectant: NaClO Flocculant: PAC (polyaluminum chloride) The labeled bacteriophage used in the bacteria detection device is disclosed in Japanese Patent Application No. 9-88781. A fluorescently labeled bacteriophage that specifically adsorbs to Escherichia coli prepared by the method described in the specification was used.

【0053】細菌検出装置はフローセルを用い、リアク
タ温度を37℃に設定し、フローサイトメトリー(バイ
オラット社製、「BRYTE HS」)を検出装置と
し、塩素注入ポンプと取水ポンプを制御した。塩素注入
量は前記の表1に従って決定した。
The bacteria detection apparatus used a flow cell, the reactor temperature was set at 37 ° C., the flow cytometry (manufactured by Biorat, “BRYTE HS”) was used as the detection apparatus, and the chlorine injection pump and the water intake pump were controlled. The chlorine injection amount was determined according to Table 1 above.

【0054】原水中に含まれる大腸菌数の経時変化を図
4に示す。図4に示したように、では大腸菌数が10
0個/ml以下なので前塩素濃度は3mg/lとし、
では大腸菌数が101〜200個/mlの範囲なので4
mg/lとし、では201〜500個/mlの範囲な
ので5mg/lとし、では大腸菌数が501個/以上
であったため大腸菌数が500個/以下となるまで取水
ポンプを停止した。フィードフォワード制御により原水
に含まれている大腸菌の殺菌除去を行ったため、浄水処
理プロセスに大腸菌が混入することはなく、運転期間中
処理された浄水中に大腸菌は検出されなかった。
FIG. 4 shows the change over time in the number of E. coli contained in the raw water. As shown in FIG.
Since it is 0 / ml or less, the pre-chlorine concentration is 3 mg / l,
Since the E. coli count is in the range of 101 to 200 cells / ml,
The water intake pump was stopped until the number of Escherichia coli became 500 or less because the number of Escherichia coli was 501 or more. Escherichia coli contained in the raw water was sterilized and removed by feedforward control, so that Escherichia coli did not enter the water purification process, and Escherichia coli was not detected in the treated purified water during the operation period.

【0055】[0055]

【発明の効果】本発明の浄水処理方法および浄水処理設
備によれば、原水が大腸菌等の細菌により汚染されて
も、リアルタイムに細菌を検出することができ、速やか
に細菌を殺菌除去できる。細菌に汚染された原水であっ
ても、浄水処理を自動的に制御することが可能となる。
また、原水中の細菌を検出して最適な殺菌剤の添加量を
決定できるので、過剰に塩素剤を添加する必要がないた
め、トリハロメタン等の有害物質の発生を抑制すること
ができる。
According to the water treatment method and the water treatment equipment of the present invention, even if the raw water is contaminated with bacteria such as Escherichia coli, the bacteria can be detected in real time, and the bacteria can be rapidly sterilized and removed. Even if the raw water is contaminated with bacteria, the water purification process can be automatically controlled.
Further, since the optimum amount of the bactericide to be added can be determined by detecting the bacteria in the raw water, it is not necessary to add an excessive amount of the chlorinating agent, so that the generation of harmful substances such as trihalomethane can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の浄水処理設備の構成概要の一例を示す
フロー図。
FIG. 1 is a flowchart showing an example of a configuration outline of a water purification treatment facility of the present invention.

【図2】本発明の浄水設備に用いる細菌検出装置の構成
概要の一例を示すフロー図。
FIG. 2 is a flowchart showing an example of a schematic configuration of a bacteria detection device used in the water purification equipment of the present invention.

【図3】本発明の上水設備に用いる制御装置の構成概要
の一例を示すフロー図。
FIG. 3 is a flowchart showing an example of a configuration outline of a control device used in the water supply facility of the present invention.

【図4】実施例2の取水原水中の大腸菌数と経過時間の
関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the number of Escherichia coli in the raw water for intake and the elapsed time in Example 2.

【図5】浄水処理設備以外の設備に、標識バクテリオフ
ァージ測定システムを適用した細菌殺菌装置の説明図。
FIG. 5 is an explanatory view of a bactericidal apparatus in which a labeled bacteriophage measurement system is applied to equipment other than the water purification treatment equipment.

【符号の説明】[Explanation of symbols]

1 河川 2 浄水処理設備 3 取水ポンプ 4 原水 5 原水送水管 6 着水井 7 薬品混和池 8 次亜塩素酸ナトリウム貯留槽 9 前塩素注入ポンプ 10 凝集剤貯留槽 11 凝集剤注入ポンプ 12 フロック形成池 13 沈澱池 14 急速砂濾過池 15 後塩素注入ポンプ 16 配水池 17 取水点 18 細菌検出装置 19 制御装置 21 原水ライン 22 リアクタ 23 光学的検出装置 24 培養濃縮液 25 標識ファージ溶液 26,27 ポンプ 51 試料液採取ライン 52 試料液採取ポンプ 53 栄養液供給ポンプ 54 栄養液槽 55 標識バクテリオファージ供給ポンプ 56 標識バクテリオファージ槽 57 リアクタ 58 光学的検出手段 59 制御手段 60 殺菌剤槽 61 殺菌剤供給ポンプ 62 殺菌剤供給ライン DESCRIPTION OF SYMBOLS 1 River 2 Water treatment equipment 3 Intake pump 4 Raw water 5 Raw water transmission pipe 6 Landing well 7 Chemical mixing pond 8 Sodium hypochlorite storage tank 9 Pre-chlorine injection pump 10 Coagulant storage tank 11 Coagulant injection pump 12 Floc formation pond 13 Sedimentation basin 14 rapid sand filtration basin 15 post chlorine injection pump 16 water distribution reservoir 17 water intake point 18 bacteria detection device 19 control device 21 raw water line 22 reactor 23 optical detection device 24 culture concentrate 25 labeled phage solution 26, 27 pump 51 sample solution Sampling line 52 Sample liquid sampling pump 53 Nutrient liquid supply pump 54 Nutrient liquid tank 55 Labeled bacteriophage supply pump 56 Labeled bacteriophage tank 57 Reactor 58 Optical detection means 59 Control means 60 Disinfectant tank 61 Disinfectant supply pump 62 Disinfectant supply line

フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/50 550 C02F 1/50 550L 560 560Z B01D 21/01 B01D 21/01 B 102 102 21/30 21/30 A C02F 1/52 C02F 1/52 Z C12M 1/34 C12M 1/34 A C12Q 1/68 C12Q 1/68 Z G01N 15/00 G01N 15/00 C 33/58 33/58 A (72)発明者 角田 ふで子 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社総合研究所内Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/50 550 C02F 1/50 550L 560 560Z B01D 21/01 B01D 21/01 B 102 102 21/30 21/30 A C02F 1/52 C02F 1/52 Z C12M 1/34 C12M 1/34 A C12Q 1/68 C12Q 1/68 Z G01N 15/00 G01N 15/00 C 33/58 33/58 A (72) Inventor Fuedo Kakuda Toda, Saitama 1-4-9 Ichikawagishi Organo Research Institute

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 原水を殺菌する殺菌工程および/または
不純物をフロックとして沈澱により除去する凝集沈澱工
程を含む浄水処理方法において、検出対象となる細菌に
特異的に吸着しかつ核酸を色素又は蛍光物質で標識した
バクテリオファージを含む溶液を取水原水に添加し、色
素標識核酸又は蛍光標識核酸により標識された細菌を光
学的検出手段により検出し、検出された細菌の量に応じ
て取水原水への殺菌剤の添加量、凝集剤の添加量、取水
ポンプの運転のいずれか1つ以上を制御して、原水中の
細菌を殺菌除去することを特徴とする浄水処理方法。
1. A water purification method comprising a sterilization step of sterilizing raw water and / or a coagulation precipitation step of removing impurities as flocs by precipitation, wherein the nucleic acid is specifically adsorbed to the bacteria to be detected and the nucleic acid is a dye or a fluorescent substance. The solution containing the bacteriophage labeled in step is added to the raw water, the bacteria labeled with the dye-labeled nucleic acid or the fluorescent-labeled nucleic acid are detected by optical detection means, and sterilization in the raw water is performed according to the amount of the detected bacteria. A water purification treatment method comprising controlling at least one of an addition amount of an agent, an addition amount of a flocculant, and operation of a water intake pump to sterilize and remove bacteria in raw water.
【請求項2】 核酸を色素又は蛍光物質で標識したバク
テリオファージを原水中で細菌に接触させ、色素標識核
酸又は蛍光標識核酸が注入された細菌を流動細胞計測法
により検出することを特徴とする請求項1に記載の浄水
処理方法。
2. A method in which a bacteriophage in which a nucleic acid is labeled with a dye or a fluorescent substance is brought into contact with bacteria in raw water, and the bacteria into which the dye-labeled nucleic acid or the fluorescent labeled nucleic acid has been injected are detected by a flow cytometry. The water purification method according to claim 1.
【請求項3】 請求項1または請求項2において、蛍光
標識核酸が注入された細菌の蛍光強度又は蛍光光源の大
きさを計測し、その計測値と予め定めた閾値とを比較す
ることにより閾値を越えた光源を細菌として検出するこ
とを特徴とすること浄水処理方法。
3. The threshold according to claim 1, wherein the fluorescence intensity or the size of the fluorescent light source of the bacteria into which the fluorescent-labeled nucleic acid has been injected is measured, and the measured value is compared with a predetermined threshold. Detecting a light source exceeding the limit as bacteria.
【請求項4】 請求項1ないし請求項3のいずれかにお
いて、光学的検出手段を用いて計測した蛍光強度又は蛍
光光源の大きさが、予め定めた蛍光強度閾値又は光源の
大きさ閾値以下の光源を除く画像処理をした後、処理後
の画像から細菌細菌の有無又は細菌数を検出することを
特徴とする浄水処理方法。
4. The method according to claim 1, wherein the fluorescence intensity or the size of the fluorescent light source measured using the optical detection means is equal to or less than a predetermined fluorescence intensity threshold value or a light source size threshold value. A water purification method comprising: performing image processing excluding a light source; and detecting presence or absence of bacterial bacteria or the number of bacteria from the processed image.
【請求項5】 請求項1ないし請求項4のいずれかにお
いて、バクテリオファージの細菌に対する溶菌感染初期
の吸着−核酸注入に必要な栄養源を該細菌に対して供給
することを特徴とする浄水処理方法。
5. The water purification treatment according to claim 1, wherein a nutrient source necessary for adsorption-nucleic acid injection in the initial stage of lytic infection of the bacteriophage with the bacterium is supplied to the bacterium. Method.
【請求項6】 原水に殺菌剤および/または凝集剤を添
加する浄水処理設備において、取水原水に検出対象とな
る細菌に特異的に吸着しかつ核酸を色素又は蛍光物質で
標識したバクテリオファージを含む溶液を添加する添加
手段と、色素標識核酸又は蛍光標識核酸が注入された細
菌を検出する光学的検出手段とを備えた細菌検出装置
と、細菌検出装置から送られてきた検出された細菌の量
に対応する信号に応じて細菌を殺菌する殺菌剤の添加
量、凝集剤の添加量、取水の断続を決定する論理演算手
段と、論理演算手段の結果により殺菌剤の添加量、凝集
剤の添加量、取水ポンプのいずれか1つ以上を制御する
手段からなる制御装置を備えたことを特徴とする浄水処
理設備。
6. A water purification treatment system for adding a bactericide and / or a flocculant to raw water, comprising bacteriophage which is specifically adsorbed to the bacteria to be detected in the raw water for intake and whose nucleic acid is labeled with a dye or a fluorescent substance. A bacteria detection device including an addition unit for adding a solution, and an optical detection unit for detecting bacteria into which the dye-labeled nucleic acid or the fluorescence-labeled nucleic acid has been injected, and the amount of the detected bacteria sent from the bacteria detection device Logic operation means for determining the amount of disinfectant added to disinfect bacteria, the amount of coagulant added, and the intermittent water withdrawal according to the signal corresponding to the signal, A water purification treatment facility comprising a control device comprising means for controlling at least one of an amount and a water intake pump.
【請求項7】 請求項6に記載の浄水処理設備の細菌検
出装置において、取水原水をフローセル中に連続的に通
過させる通液手段と、核酸を色素又は蛍光物質で標識し
たバクテリオファージを含むファージ溶液を前記フロー
セルの前段において取水原水に添加するファージ溶液添
加手段と、色素標識核酸又は蛍光標識核酸が注入された
細菌をフローセルで検出する光学的検出手段とを備えた
細菌検出装置であることを特徴とする浄水処理設備。
7. The bacterium detection device according to claim 6, wherein a phage containing a bacteriophage in which the nucleic acid is labeled with a dye or a fluorescent substance is passed through the flow cell for continuously passing the raw water from the intake water through the flow cell. A phage solution adding means for adding a solution to raw water at the upstream of the flow cell, and an optical detection means for detecting in the flow cell a bacterium into which the dye-labeled nucleic acid or the fluorescent-labeled nucleic acid has been injected. Characterized water treatment facilities.
【請求項8】 請求項6または請求項7に記載の浄水処
理設備の細菌検出装置において、光学的検出手段が撮像
手段であり、この撮像手段で得た撮像画像から予め定め
た蛍光強度閾値又は蛍光光源の大きさ閾値以下の光源を
除く画像処理手段を設けたことを特徴とする浄水処理設
備。
8. The bacteria detection device for a water purification treatment facility according to claim 6, wherein the optical detection means is an imaging means, and a fluorescence intensity threshold or a fluorescence intensity threshold determined in advance from an image obtained by the imaging means. A water purification facility, comprising: an image processing unit for removing a light source having a size equal to or smaller than a threshold value of a fluorescent light source.
【請求項9】 請求項6ないし請求項8のいずれかに記
載の浄水処理設備の細菌検出装置において、バクテリオ
ファージの細菌に対する溶菌感染初期の吸着−核酸注入
に必要な栄養源を取水原水に供給する栄養源供給手段を
設けたことを特徴とする細菌の浄水処理設備。
9. The bacteria detection device for a water purification treatment facility according to any one of claims 6 to 8, wherein a nutrient source necessary for adsorption-nucleic acid injection during the initial stage of lytic infection of bacteriophage bacteria is supplied to the raw water. Bacterial water purification treatment equipment provided with a nutrient source supply means.
JP9220293A 1997-08-15 1997-08-15 Water treatment and water treatment plant Pending JPH1157731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9220293A JPH1157731A (en) 1997-08-15 1997-08-15 Water treatment and water treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9220293A JPH1157731A (en) 1997-08-15 1997-08-15 Water treatment and water treatment plant

Publications (1)

Publication Number Publication Date
JPH1157731A true JPH1157731A (en) 1999-03-02

Family

ID=16748901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9220293A Pending JPH1157731A (en) 1997-08-15 1997-08-15 Water treatment and water treatment plant

Country Status (1)

Country Link
JP (1) JPH1157731A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054865A1 (en) * 2001-01-09 2002-07-18 Kurita Water Industries Ltd. Method of selecting antimicrobial agent and method of using the same
JP2003519390A (en) * 1999-12-30 2003-06-17 ナルコ ケミカル カンパニー Measurement and control of adherent and planktonic microbial activity in industrial water systems
JP2008504816A (en) * 2004-07-02 2008-02-21 サイトリ セラピューティクス インコーポレイテッド System and method for isolating and using clinically safe adipose tissue-derived regenerative cells
JP2008541047A (en) * 2005-05-02 2008-11-20 ナルコ カンパニー How to use an all-solid fluorometer to measure and control chemicals in water
JP2011512861A (en) * 2008-03-14 2011-04-28 ビオメリュー A method for real-time detection of microorganisms in liquid media by agglutination
US8691216B2 (en) 2001-12-07 2014-04-08 Cytori Therapeutics, Inc. Methods of using regenerative cells to promote wound healing
JP2014097493A (en) * 2011-03-30 2014-05-29 Crystal Lagoons (Curacao) Bv Method and system for sustainable cooling in industrial process
US8883499B2 (en) 2001-12-07 2014-11-11 Cytori Therapeutics, Inc. Systems and methods for isolating and using clinically safe adipose derived regenerative cells
US9133431B2 (en) 2009-05-01 2015-09-15 Bimini Technologies Llc Systems, methods and compositions for optimizing tissue and cell enriched grafts
JP2015202446A (en) * 2014-04-14 2015-11-16 株式会社日立製作所 Control system for injecting disinfectant in water service
US9198937B2 (en) 2001-12-07 2015-12-01 Cytori Therapeutics, Inc. Adipose-derived regenerative cells for treating liver injury
JP2016043344A (en) * 2014-08-27 2016-04-04 株式会社日立製作所 Disinfection control system for clean water
US9463203B2 (en) 2001-12-07 2016-10-11 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of cartilage defects
US9470007B2 (en) 2008-12-24 2016-10-18 Crystal Lagoons (Curacao) B.V. Efficient filtration process of water in a tank for recreational and ornamental uses, where the filtration is performed over a small volume of water and not over the totality of the water from the tank
US9480718B2 (en) 2001-12-07 2016-11-01 Cytori Therapeutics, Inc. Methods of using adipose-derived regenerative cells in the treatment of peripheral vascular disease and related disorders
US9486484B2 (en) 2008-08-19 2016-11-08 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease
US9597395B2 (en) 2001-12-07 2017-03-21 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
JP2018069197A (en) * 2016-11-02 2018-05-10 共立機巧株式会社 Controller for operation of reciprocating pump
US11000885B2 (en) 2016-08-31 2021-05-11 Takenaka Corporation Contaminated soil purification method
US11231406B2 (en) 2016-11-14 2022-01-25 Takenaka Corporation Ground injection agent concentration estimation method
US11679425B2 (en) 2016-11-08 2023-06-20 Takenaka Civil Engineering & Construction Co., Ltd. Subsurface soil purification method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703082B2 (en) * 1999-12-30 2011-06-15 ナルコ ケミカル カンパニー Measurement and control of adherent and planktonic microbial activity in industrial water systems.
JP2003519390A (en) * 1999-12-30 2003-06-17 ナルコ ケミカル カンパニー Measurement and control of adherent and planktonic microbial activity in industrial water systems
WO2002054865A1 (en) * 2001-01-09 2002-07-18 Kurita Water Industries Ltd. Method of selecting antimicrobial agent and method of using the same
US9463203B2 (en) 2001-12-07 2016-10-11 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of cartilage defects
US9597395B2 (en) 2001-12-07 2017-03-21 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
US9872877B2 (en) 2001-12-07 2018-01-23 Cytori Therapeutics, Inc. Methods of using regenerative cells to promote epithelialization or neodermis formation
US9849149B2 (en) 2001-12-07 2017-12-26 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of erectile dysfunction
US8691216B2 (en) 2001-12-07 2014-04-08 Cytori Therapeutics, Inc. Methods of using regenerative cells to promote wound healing
US9511094B2 (en) 2001-12-07 2016-12-06 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of stroke and related diseases and disorders
US8883499B2 (en) 2001-12-07 2014-11-11 Cytori Therapeutics, Inc. Systems and methods for isolating and using clinically safe adipose derived regenerative cells
US9511096B2 (en) 2001-12-07 2016-12-06 Cytori Therapeutics, Inc. Methods of using regenerative cells to treat an ischemic wound
US9504716B2 (en) 2001-12-07 2016-11-29 Cytori Therapeutics, Inc. Methods of using adipose derived regenerative cells to promote restoration of intevertebral disc
US9198937B2 (en) 2001-12-07 2015-12-01 Cytori Therapeutics, Inc. Adipose-derived regenerative cells for treating liver injury
US9492483B2 (en) 2001-12-07 2016-11-15 Cytori Therapeutics, Inc. Methods of using regenerative cells to treat a burn
US9480718B2 (en) 2001-12-07 2016-11-01 Cytori Therapeutics, Inc. Methods of using adipose-derived regenerative cells in the treatment of peripheral vascular disease and related disorders
JP2008504816A (en) * 2004-07-02 2008-02-21 サイトリ セラピューティクス インコーポレイテッド System and method for isolating and using clinically safe adipose tissue-derived regenerative cells
JP4731556B2 (en) * 2004-07-02 2011-07-27 サイトリ セラピューティクス インコーポレイテッド System and method for isolating and using clinically safe adipose tissue-derived regenerative cells
JP2008541047A (en) * 2005-05-02 2008-11-20 ナルコ カンパニー How to use an all-solid fluorometer to measure and control chemicals in water
JP2011512861A (en) * 2008-03-14 2011-04-28 ビオメリュー A method for real-time detection of microorganisms in liquid media by agglutination
US9486484B2 (en) 2008-08-19 2016-11-08 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease
US9470007B2 (en) 2008-12-24 2016-10-18 Crystal Lagoons (Curacao) B.V. Efficient filtration process of water in a tank for recreational and ornamental uses, where the filtration is performed over a small volume of water and not over the totality of the water from the tank
US9133431B2 (en) 2009-05-01 2015-09-15 Bimini Technologies Llc Systems, methods and compositions for optimizing tissue and cell enriched grafts
JP2014097493A (en) * 2011-03-30 2014-05-29 Crystal Lagoons (Curacao) Bv Method and system for sustainable cooling in industrial process
JP2015202446A (en) * 2014-04-14 2015-11-16 株式会社日立製作所 Control system for injecting disinfectant in water service
JP2016043344A (en) * 2014-08-27 2016-04-04 株式会社日立製作所 Disinfection control system for clean water
US11000885B2 (en) 2016-08-31 2021-05-11 Takenaka Corporation Contaminated soil purification method
JP2018069197A (en) * 2016-11-02 2018-05-10 共立機巧株式会社 Controller for operation of reciprocating pump
US11679425B2 (en) 2016-11-08 2023-06-20 Takenaka Civil Engineering & Construction Co., Ltd. Subsurface soil purification method
US11231406B2 (en) 2016-11-14 2022-01-25 Takenaka Corporation Ground injection agent concentration estimation method

Similar Documents

Publication Publication Date Title
JPH1157731A (en) Water treatment and water treatment plant
LeChevallier et al. Evaluating the performance of biologically active rapid filters
Thurston et al. Fate of indicator microorganisms, Giardia and Cryptosporidium in subsurface flow constructed wetlands
KR101370689B1 (en) Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
Jeffrey et al. The status of potable water reuse implementation
Farhat et al. Application of monochloramine for wastewater reuse: Effect on biostability during transport and biofouling in RO membranes
Guo et al. Preliminary investigation on safety of post-UV disinfection of wastewater: bio-stability in laboratory-scale simulated reuse water pipelines
Mohammed et al. Non-chemical biofouling mitigation systems for seawater cooling tower using granular activated carbon biofiltration and ultrafiltration
Vlasov et al. Research into bacterial contamination of the coolant of the chemical demineralization scheme at Kazan CHPP-1
JP2006272233A (en) Water treatment system utilizing ultraviolet irradiation
CN106770093B (en) A method of viable bacteria content and composition in evaluation sludge ozone treatment process
MaCkey et al. Comparing Cryptosporidium and MS2 bioassays—implications for UV reactor validation
Azhdarpoor et al. Relationship between turbidity and microbial load of water in salman Farsi Dam Reservoir
CN209583911U (en) A kind of laboratory integration waste water treatment system
CN104591450B (en) A kind of running water low temperature Intelligent antibacterial pipe-line system
Simpson et al. Investigation of potential surrogate organisms and public health risk in UV irradiated secondary effluent
Dymaczewski et al. Redefining the purpose, goals and methods of disinfection in contemporary water supply systems
Arabzadeh et al. Wastewater quality index (WWQI) as an indicator for the assessment of sanitary effluents from the oil and gas industries for reliable and sustainable water reuse
Munoz et al. Effect of sodium silicate on drinking water biofilm development
Babiker et al. Evaluation of Water Purification Plant at Kosti City-Sudan
Snicer UV inactivation of viruses in natural waters
JP2004188273A (en) Ultraviolet irradiation system
Netshidaulu Impact of Chlorine and Wastewater Contact Time, Chlorine Residual and Mixing on Microorganism Inactivation
Chiwetalu STATUS OF POLLUTANTS IN NSUDU-RIVER, OKWOYI ISIEKE IBEKU UMUAHIA NORTH, LOCAL GOVERNMENT AREA OF ABIA STATE FOR DRINKING PURPOSE
Khan et al. Water Quality Analysis and Treatment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120514

LAPS Cancellation because of no payment of annual fees