JPH1147263A - Anticoagulant surface-treatment material - Google Patents

Anticoagulant surface-treatment material

Info

Publication number
JPH1147263A
JPH1147263A JP9202940A JP20294097A JPH1147263A JP H1147263 A JPH1147263 A JP H1147263A JP 9202940 A JP9202940 A JP 9202940A JP 20294097 A JP20294097 A JP 20294097A JP H1147263 A JPH1147263 A JP H1147263A
Authority
JP
Japan
Prior art keywords
active substance
anticoagulant
anticoagulation
base material
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9202940A
Other languages
Japanese (ja)
Inventor
Seiki Arikawa
清貴 有川
Hideaki Asai
秀昭 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP9202940A priority Critical patent/JPH1147263A/en
Publication of JPH1147263A publication Critical patent/JPH1147263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material that can sustainedly release an anticoagulation activate substance from the surface of a base material and can be treated in detail. SOLUTION: The antithrombotic property is given to the surface of a medical instrument by treating the surface of a base material using an application liquid, a mixture of an anticoagulation active substance and a dispersion liquid of polymer particles. When a polymer particle dispersion liquid mixed with an anticoagulation active substance is applied to a base material, the polymer particles form a matrix on the base material, and a layer where the anticoagulation active substance is dispersed uniformly in the matrix, is formed. The anticoagulation active substance can give the superior antithrombotic property to the surface of a base material by being released gradually by diffusion in the matrix.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は医療用具、手術用具
に抗血液凝固性能を付与する材料に関する。更に詳しく
は、人工血管、カテ―テル、人工心臓、人工腎臓等の表面に
抗血液凝固性能を付与する抗血液凝固表面処理材料に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for imparting anticoagulant properties to medical and surgical tools. More specifically, the present invention relates to an anti-coagulation surface treatment material which imparts anti-coagulation performance to surfaces of artificial blood vessels, catheters, artificial hearts, artificial kidneys and the like.

【従来の技術】医療用具表面を抗血液凝固活性物質を用
いて抗血栓性処理を行う場合、抗血液凝固活性物質は基
材表面に共有結合にて固定化されるか又は基材表面より
徐放されることで用いられる。共有結合にて基材表面に
抗血液凝固活性物質を固定化する場合、固定化による抗
血液凝固活性物質の運動性の束縛、固定化操作時に抗血
液凝固活性部位が反応する事による抗血液凝固活性の減
少が問題となり(J.Biomed.Mater.Res.29.1317-1329(19
95)、J.Biomater.Sci.4.217-234(1993))、また物質に
よっては固定化の効率が悪く、固定化量が少ないといっ
た事が問題となる。 抗血液凝固活性物質を基材表面上
より徐放させる場合、イオン結合により基材上に担持さ
れた抗血液凝固活性物質と血中の成分とのイオン交換反
応による徐放方法が利用される場合が多い。しかしなが
らこの方法は、徐放機構が複雑である他、非特異的に血
中成分を吸着してしまう問題点を有している。高分子マ
トリックス中に抗血液凝固活性物質を分散させ拡散によ
り徐放させる事も行われる。この場合、マトリックス層
の形成のために比較的粘度の高い塗布液を用いなればな
らず、処理される基材が微小である場合(例:細口径カ
テーテル)や複雑である場合(例:チューブ接続部)に
困難である問題点を有している。
2. Description of the Related Art When an antithrombotic treatment is performed on a medical device surface using an anticoagulant active substance, the anticoagulant active substance is immobilized on a substrate surface by covalent bonding or is gradually released from the substrate surface. Used by being released. When the anticoagulant active substance is immobilized on the substrate surface by covalent bonding, the motility of the anticoagulant active substance is immobilized by immobilization, and the anticoagulant active site reacts during the immobilization operation. The decrease in activity becomes a problem (J. Biomed. Mater. Res. 29.1317-1329 (19.
95), J. Biomater. Sci.4.217-234 (1993)), and the immobilization efficiency is poor and the amount of immobilization is small for some substances. When the anticoagulant active substance is slowly released from the surface of the base material, when a sustained release method is used by an ion exchange reaction between the anticoagulant active substance supported on the base material by ionic bonding and components in blood. There are many. However, this method has problems in that the sustained release mechanism is complicated and that blood components are nonspecifically adsorbed. An anticoagulant active substance may be dispersed in a polymer matrix and released slowly by diffusion. In this case, a relatively high-viscosity coating solution must be used to form the matrix layer, and the substrate to be treated is small (eg, a small-diameter catheter) or complicated (eg, a tube). Connection part).

【発明が解決しようとする課題】本発明者らはこれらの
問題点すなわち抗血液凝固性物質の長期徐放性、微細部
への処理を鑑み、抗血液凝固活性物質を基材表面より徐
放することが可能で、しかも細部の処理が可能な材料を
鋭意研究し本発明に至った。
In view of these problems, that is, long-term sustained release of an anticoagulant substance and treatment of fine parts, the present inventors have proposed to release an anticoagulant active substance from the surface of a substrate. The inventors of the present invention have made extensive studies on materials that can be processed and that can process fine details, and have led to the present invention.

【課題を解決するための手段】本発明はすなわち、高分
子微粒子の分散液に抗血液凝固活性物質を混合した塗布
液を用いて基材表面を処理し、医療用具表面に抗血栓性
を付与する技術である。本発明の手法により処理を行う
と、抗血液凝固活性物質が均一に分散した高分子マトリ
ックスが表面に構築される。高分子マトリックスはエマ
ルジョンの高分子微粒子により形成される。抗血液凝固
活性物質は水溶性である為に、水系エマルジョンを用い
マトリックス形成させると、塗布層の乾燥時にマトリッ
クス中には抗血液凝固活性物質の超微粒子が形成し、均
一に分散した抗血液凝固層を得ることができる。抗血液
凝固活性物質は血液接触時より高分子マトリックスの含
水により徐放される。
According to the present invention, the surface of a substrate is treated with a coating solution obtained by mixing a dispersion of polymer fine particles with an anticoagulant active substance to impart antithrombotic properties to the surface of a medical device. Technology. When the treatment is performed according to the method of the present invention, a polymer matrix in which the anticoagulant active substance is uniformly dispersed is constructed on the surface. The polymer matrix is formed by the polymer particles of the emulsion. Since the anticoagulant active substance is water-soluble, when the matrix is formed using an aqueous emulsion, when the coating layer is dried, ultrafine particles of the anticoagulant active substance are formed in the matrix, and the anticoagulant is uniformly dispersed. Layers can be obtained. The anticoagulant active substance is gradually released by the water content of the polymer matrix from the time of blood contact.

【発明の実施の形態】まず、マトリックスとなる高分子
微粒子分散液を選択し、準備する。マトリックスとなる
高分子微粒子は特には限定しないがリン脂質系の界面活
性剤を用いて作成した微粒子が生体内の安全性が良いた
めに好ましく、高分子粒子材料は生体内非分解性の物が
よい。例えばポリメチルメタクリレート、ポリヒドロキ
シエチルメタクリレート、ポリビニルアルコール、酢酸
ビニル、ポリスチレン、ポリウレタン粒子が挙げられ
る。次に抗血液凝固性物質の水溶液を高分子微粒子分散
液に加える。このときに加える抗血液凝固性物質の水溶
液の量により高分子微粒子濃度の調節を行う。高分子微
粒子濃度は50wt%程度が望ましく、高分子微粒子濃度に
よりコーティング層の厚みの制御を行う。抗血液凝固活
性物質は特には限定しないがヘパリン、ウロキナーゼ、
ストレプトキナーゼ、トロンボモジュリン、プラスミノ
ーゲンアクチベータ、ヒルジン、プロスタサイクリン、
アンチトロンビンが好ましい。上述のようにして得られ
た塗布液を用いて基材を処理する事により抗血液凝固層
を基材表面に付与することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a polymer fine particle dispersion serving as a matrix is selected and prepared. The polymer microparticles serving as a matrix are not particularly limited, but microparticles prepared using a phospholipid-based surfactant are preferable because of their good safety in the living body. Good. Examples include polymethyl methacrylate, polyhydroxyethyl methacrylate, polyvinyl alcohol, vinyl acetate, polystyrene, and polyurethane particles. Next, an aqueous solution of the anticoagulant is added to the polymer fine particle dispersion. At this time, the concentration of the polymer fine particles is adjusted by the amount of the aqueous solution of the anticoagulant substance added. The concentration of the polymer fine particles is desirably about 50 wt%, and the thickness of the coating layer is controlled by the concentration of the polymer fine particles. The anticoagulant active substance is not particularly limited, but heparin, urokinase,
Streptokinase, thrombomodulin, plasminogen activator, hirudin, prostacyclin,
Antithrombin is preferred. By treating the substrate using the coating solution obtained as described above, an anticoagulant layer can be provided on the surface of the substrate.

【実施例】【Example】

(実施例1)ポリウレタン70gをテトラヒドロフラン700
mlに溶解させた溶液に界面活性剤2g(ホスファチジルコ
リン)を混合した。この溶液を高箭断下に水に滴下する
ことでポリウレタンエマルジョンを得た。このエマルジ
ョンを遠心し上澄み液を純水に置換することで精製を行
いポリウレタンエマルジョン(0.66g/ml、100ml)を得
た。上記エマルジョンにヘパリン10gを溶解させ塗布液
とした。作成エマルジョンの粘度は50mPaであった。 (実施例2)実施例1にて作成したエマルジョン溶液を
用いてポリウレタンカテーテル(5Fr、75cm)への処理
(内外面)を行った。カテーテルの外表面はカテーテル
を溶液に浸漬し垂直に引き上げる事により行った。結果
を図1に示す。カテーテル内面への処理はカテーテル一
端より塗布液を吸引し、その後塗布液を吸引した側より
圧縮窒素を用いて塗布液をカテーテル内腔を貫通させそ
のまま乾燥する事により行った。結果を図1に示す。均
一な処理が可能であった。 (実施例3)実施例2により作成したカテーテルより放
出されるヘパリン量の経時変化を測定した。カテーテル
外面のみを処理したカテーテルを2cmに切断し(処理表
面積1cm2)測定用サンプルとした。ヘパリンの放出は
サンプルを50mlのPBS中に加え37℃に保持し攪拌して行
った。また2時間毎に新しい容器に移し替えた。ヘパリ
ンの定量はヘパリンが放出されたPBS液をテストチーム
ヘパリン(第一化学薬品)にて行った。測定結果を図2
に示す。200時間以上にわたりヘパリンを放出した。
(Example 1) 70 g of polyurethane was added to tetrahydrofuran 700
2 g of a surfactant (phosphatidylcholine) was mixed with the solution dissolved in ml. This solution was dropped into water under a high pressure to obtain a polyurethane emulsion. This emulsion was centrifuged, and the supernatant was purified by replacing the supernatant with pure water to obtain a polyurethane emulsion (0.66 g / ml, 100 ml). Heparin (10 g) was dissolved in the above emulsion to prepare a coating solution. The viscosity of the prepared emulsion was 50 mPa. (Example 2) Using the emulsion solution prepared in Example 1, treatment (inner and outer surfaces) of a polyurethane catheter (5 Fr, 75 cm) was performed. The outer surface of the catheter was prepared by immersing the catheter in the solution and lifting it vertically. The results are shown in FIG. The treatment on the inner surface of the catheter was performed by sucking the coating solution from one end of the catheter, and then penetrating the coating solution through the catheter lumen using compressed nitrogen from the side where the coating solution was sucked, and then drying it. The results are shown in FIG. Uniform processing was possible. (Example 3) The change over time of the amount of heparin released from the catheter prepared in Example 2 was measured. The catheter treated only on the outer surface of the catheter was cut into 2 cm (treated surface area: 1 cm 2) to obtain a measurement sample. Heparin was released by adding the sample to 50 ml of PBS, maintaining the temperature at 37 ° C., and stirring. They were transferred to new containers every two hours. Heparin was quantified by using test team heparin (Daiichi Pure Chemicals) on the PBS solution from which heparin was released. Figure 2 shows the measurement results.
Shown in Heparin was released for over 200 hours.

【発明の効果】本発明は抗凝固活性物質を徐放すること
が可能なマトリックスを基材表面に均一に構築する事が
可能な材料を提供する物である。本発明の塗布材料を用
いれば従来困難であった細径カテーテルの内腔の処理、
複雑な形状への処理が可能となる。エマルジョンの空隙
に抗血液凝固活性物質が存在するために塗布層中には均
一に抗血液凝固活性物質を分散することが可能である。
更に分散媒が水系であり有機溶剤を使用しない為に安全
性の高い材料を得ることができる。
According to the present invention, there is provided a material capable of uniformly constructing a matrix capable of releasing an anticoagulant active substance on a substrate surface uniformly. The treatment of the lumen of a small-diameter catheter, which was conventionally difficult using the coating material of the present invention,
Processing into complicated shapes becomes possible. Since the anticoagulant active substance is present in the voids of the emulsion, it is possible to uniformly disperse the anticoagulant active substance in the coating layer.
Further, since the dispersion medium is aqueous and does not use an organic solvent, a highly safe material can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は75cmのカテーテルの外表面、内腔を実施
例1で作成した塗布液を用いて処理し、形成された塗布
厚を測定した結果である。図の縦軸は塗布厚を示し、横
軸はカテーテルの軸方向を示している。コーティング層
の測定はn=5で行った。外表面は約30μm、内腔は15μm
に塗布された。長さ方向の厚み変化を測定した結果、均
一に塗布されていることが分かる。
FIG. 1 shows the results obtained by treating the outer surface and inner lumen of a 75 cm catheter with the coating solution prepared in Example 1 and measuring the formed coating thickness. The vertical axis in the figure indicates the coating thickness, and the horizontal axis indicates the axial direction of the catheter. The measurement of the coating layer was performed at n = 5. Outer surface about 30μm, lumen 15μm
Was applied. As a result of measuring the thickness change in the length direction, it can be seen that the coating is applied uniformly.

【図2】図2は実施例2にて処理したカテーテルより放
出されたヘパリン量の経時変化を示している。測定はn=
3で行った。図の縦軸はヘパリン放出速度を示してい
る。横軸は放出時間を示している。カテーテルの外表面
のみを処理したサンプルはヘパリンを200時間以上放
出した。
FIG. 2 shows the change over time in the amount of heparin released from the catheter treated in Example 2. Measurement is n =
3 went. The vertical axis of the figure shows the heparin release rate. The horizontal axis shows the release time. Samples treated only on the outer surface of the catheter released heparin for more than 200 hours.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 抗血液凝固活性物質を高分子微粒子分散
液に混合し、これを用いて医療用具の基材表面に処理
し、抗血液凝固表面を付与することを特徴とする抗血液
凝固表面処理材料。
1. An anti-coagulant surface characterized by mixing an anti-coagulant active substance with a polymer fine particle dispersion and treating the substrate surface of a medical device with the mixture to give an anti-coagulant surface. Processing material.
【請求項2】 抗血液凝固活性物質がヘパリンである請
求項1記載の抗血液凝固表面処理材料。
2. The anticoagulant surface-treated material according to claim 1, wherein the anticoagulant active substance is heparin.
【請求項3】 高分子微粒子が生体内非分解性である請
求項1又は2記載の抗血液凝固表面処理材料。
3. The anticoagulant surface treatment material according to claim 1, wherein the polymer fine particles are non-degradable in vivo.
JP9202940A 1997-07-29 1997-07-29 Anticoagulant surface-treatment material Pending JPH1147263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9202940A JPH1147263A (en) 1997-07-29 1997-07-29 Anticoagulant surface-treatment material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9202940A JPH1147263A (en) 1997-07-29 1997-07-29 Anticoagulant surface-treatment material

Publications (1)

Publication Number Publication Date
JPH1147263A true JPH1147263A (en) 1999-02-23

Family

ID=16465690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9202940A Pending JPH1147263A (en) 1997-07-29 1997-07-29 Anticoagulant surface-treatment material

Country Status (1)

Country Link
JP (1) JPH1147263A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002355A (en) * 2002-04-26 2004-01-08 Chisso Corp New anti-blood coagulating agent
US10016532B2 (en) 2010-06-09 2018-07-10 Arrow International, Inc. Non-fouling, anti-microbial, anti-thrombogenic graft compositions
US10117974B2 (en) 2010-06-09 2018-11-06 Arrow International, Inc. Non-fouling, anti-microbial, anti-thrombogenic graft-from compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002355A (en) * 2002-04-26 2004-01-08 Chisso Corp New anti-blood coagulating agent
US10016532B2 (en) 2010-06-09 2018-07-10 Arrow International, Inc. Non-fouling, anti-microbial, anti-thrombogenic graft compositions
US10117974B2 (en) 2010-06-09 2018-11-06 Arrow International, Inc. Non-fouling, anti-microbial, anti-thrombogenic graft-from compositions

Similar Documents

Publication Publication Date Title
US3826678A (en) Method for preparation of biocompatible and biofunctional materials and product thereof
Hoffman Ionizing radiation and gas plasma (or glow) discharge treatments for preparation of novel polymeric biomaterials
CN109731137A (en) The preparation method of albumin coating with biological functions and material with biological functions
US5416131A (en) Article with a coating having friction-reducing properties in wet condition as well as a method for the production of such a coated article
JP5799023B2 (en) Medical device for short-term use with a rapidly releasable antimicrobial agent
US20160101130A1 (en) Silver nanoplate compositions and methods
US20160215171A1 (en) Use of Nanoparticles For Gluing Gels
US20110008404A1 (en) Modification Of Biomaterials With Microgel Films
EP1465740A4 (en) Reagent and method for providing coatings on surfaces
JPH02229839A (en) Hydrophilic material and production thereof
JPH0687968A (en) Method for grafting previously formed hydrophilic polymer onto base hydrophobic polymer, and coating composition therefor
WO2001017575A1 (en) Graft polymerization of substrate surfaces
CN108480650A (en) A kind of liquid metal nano particle and preparation method thereof
JPH0370725A (en) Amine-rich fluorinated polyurethane-urea and its use in the method for fixing antithrombogen drug on the surface of device
JPS63302908A (en) Fliter medium low in protein adsorbability
Bigot et al. Facile grafting of bioactive cellulose derivatives onto PVC surfaces
CN109821076A (en) A kind of preparation method of anticoagulant anti-infectious multi-functional coatings and anticoagulant anti-infectious multifunctional material
JPH1147263A (en) Anticoagulant surface-treatment material
Kabanov Preparation of polymeric biomaterials with the aid of radiation-chemical methods
Tan et al. Antithrombotic and Flow Drag‐Reducing Material for Blood‐Contacting Medical Devices
JPH0523391A (en) Antithrombogen surface, its manufacturing process and its material
FI93610B (en) Object having a blood compatible surface layer and method for making articles having such a surface layer
JPH03223377A (en) Functional group-containing substrate, preparation of the same, and medical material and equipment using the substrate
DE2438436B2 (en) Shaped article with an enzymatically active surface and process for its production
Kamath et al. Albumin grafting on dimethyldichlorosilane-coated glass by gamma-irradiation