JPH113856A - Method and device for projection exposure - Google Patents

Method and device for projection exposure

Info

Publication number
JPH113856A
JPH113856A JP9171043A JP17104397A JPH113856A JP H113856 A JPH113856 A JP H113856A JP 9171043 A JP9171043 A JP 9171043A JP 17104397 A JP17104397 A JP 17104397A JP H113856 A JPH113856 A JP H113856A
Authority
JP
Japan
Prior art keywords
projection exposure
exposure apparatus
projection
vertical
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9171043A
Other languages
Japanese (ja)
Inventor
Hideo Haneda
英夫 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9171043A priority Critical patent/JPH113856A/en
Publication of JPH113856A publication Critical patent/JPH113856A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correct longitudinal and transversal magnification components, by providing a longitudinal and transversal magnification correcting mechanism which can generate an arbitrary projection magnification between one axis in a plane of projection and another axis perpendicular to the axis against a stepper and, at the same time, can arbitrarily set the directions of the axes. SOLUTION: In a longitudinal and transversal magnification correcting mechanism 5, an actuator 52 which bends a parallel flat plate 51 by an arbitrary bending amount is placed on a θ-stage 53 which can be rotated around the optical axis 6a of a projection lens, and a θ-driving motor 55 which rotates the stage 53 by a designated angle is fixed on a supporting base 54. When the plate 51 is symmetrically with respect to a specific axis (α-axis), a primary enlarging or reducing magnification change can be given in the β-axis direction which is perpendicular to the α-axis without giving any influence on the α-axis direction and, when the whole body of the mechanism 5 is rotated around the optical axis 6a by controlling the bending amount (h) of the plate 51 a as a variable amount, the α-axis can be made coincident with an arbitrary direction while the longitudinal and transversal magnifications are controlled. Therefore, longitudinal and transversal magnification components can be corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子製造用の
ステップ&リピート方式又はステップ&スキャン方式を
利用した投影露光方法及び投影露光装置に関し、特に投
影における倍率、及びディストーション等を高度に補正
し、投影露光することが可能な投影露光方法及び投影露
光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure method and a projection exposure apparatus using a step-and-repeat method or a step-and-scan method for manufacturing a semiconductor device. The present invention relates to a projection exposure method and a projection exposure apparatus that can perform projection exposure.

【0002】[0002]

【従来の技術】半導体集積回路の製造工程においては通
常10数工程のフォトリソグラフィ工程がある。フォト
リソグラフィ工程では投影露光装置としてステッパーと
呼ばれるステップ型投影露光装置が用いられ、前の工程
で形成されたパターンに対する位置合わせ、露光が行な
われる。
2. Description of the Related Art In a process of manufacturing a semiconductor integrated circuit, there are usually ten or more photolithography steps. In the photolithography process, a step-type projection exposure device called a stepper is used as a projection exposure device, and alignment and exposure are performed on the pattern formed in the previous process.

【0003】この時発生する重ね合わせ誤差に各ショッ
トの中心は一致しているが、周辺で位置ずれが発生する
ことがある。該位置ずれの要因には、大きく分けてショ
ットの回転誤差と倍率、ディストーションの誤差がある
ことが判明している。
[0003] Although the center of each shot coincides with the superposition error generated at this time, a position shift may occur at the periphery. It has been found that the causes of the positional deviation are roughly divided into a shot rotation error, a magnification error, and a distortion error.

【0004】回転誤差を補正する手段については種々の
提案がなされているが、倍率、ディストーションの補正
については未だ充分といえない状況がある。倍率、ディ
ストーションが発生する誤差要因には、 .ウエハーのプロセス上生じる熱処理等によるウエハ
ーの伸縮にともなうパターンの変化 .気圧等の環境変化、照明条件等の差による投影倍
率、ディストーションの変動 .工程により使用する投影露光装置が異なるため生じ
る各投影レンズの倍率、ディストーションの差 等がある。
[0004] Various proposals have been made for a means for correcting a rotation error, but there are situations in which correction of magnification and distortion is not yet sufficient. Factors that cause magnification and distortion include: Changes in the pattern due to expansion and contraction of the wafer due to the heat treatment that occurs during the wafer process. Changes in projection magnification and distortion due to environmental changes such as atmospheric pressure, differences in lighting conditions, etc. There is a difference in magnification, distortion, etc. of each projection lens caused by a different projection exposure apparatus used in each process.

【0005】通常、倍率、ディストーションの誤差を小
さくするため、投影露光装置には倍率可変機構を持つ投
影レンズが搭載される。倍率可変機構により投影レンズ
の光軸に対し中心対称な1次の倍率成分が補正され、上
記誤差要因,により発生する誤差が解消される。
Usually, in order to reduce errors in magnification and distortion, a projection lens having a magnification varying mechanism is mounted on a projection exposure apparatus. The variable magnification mechanism corrects the primary magnification component symmetrical with respect to the center of the optical axis of the projection lens, and eliminates the error caused by the above error factors.

【0006】一方、最近の半導体素子製造の高集積化の
流れは新たな要求、即ちショットサイズの拡大と、解像
線幅の均一化がある。該要求に対応するため、各ショッ
ト毎にレチクルとウエハーとを同期スキャンさせて露光
するステップ&スキャン型の投影露光装置が提案されて
いる。ステップ&スキャン型の投影露光装置は各ショッ
ト毎に一括で露光する従来のステッパー型の投影露光装
置に比較して、処理時間が長くなるため、工程毎に最適
な投影露光装置を組合せて使用することが考えられてい
る。
On the other hand, the recent trend of high integration of semiconductor device manufacturing has new requirements, namely, enlargement of shot size and uniformization of resolution line width. In order to meet the demand, there has been proposed a step & scan type projection exposure apparatus that synchronously scans and exposes a reticle and a wafer for each shot. A step-and-scan type projection exposure apparatus requires a longer processing time than a conventional stepper type projection exposure apparatus that performs exposure all at once for each shot. Therefore, an optimal projection exposure apparatus is used in combination for each process. It is thought that.

【0007】ステップ&スキャン型の投影露光装置では
従来のステッパーで知られている前述の誤差要因〜
の倍率、ディストーションに加えて新しい歪が存在す
る。即ちステップ&スキャン型の投影露光装置ではレチ
クルのスキャン軸とウエハーのスキャン軸が平行でな
く、ある角度を持つと、投影された矩型のレチクル像が
平行四辺形状に歪むスキューと呼ばれる歪が生じる。
[0007] In the step & scan type projection exposure apparatus, the above-mentioned error factors known in the related art steppers are used.
There is a new distortion in addition to the magnification and distortion. That is, in the step & scan type projection exposure apparatus, when the scan axis of the reticle is not parallel to the scan axis of the wafer and has a certain angle, a distortion called a skew occurs in which the projected rectangular reticle image is distorted into a parallelogram. .

【0008】従って従来の誤差要因〜に加えて更
に、 .投影露光装置の型の違いによる平行四辺形状のスキ
ュー歪 という誤差要因が新たに加わる。スキューが発生したウ
エハーパターンに対する重ね合わせに対して、ステップ
&スキャン型の投影露光装置は同量のスキューを発生さ
せて補正可能である。しかしながらステッパーでは光軸
に対して回転対称な倍率と回転しか補正できず、スキュ
ーを補正することは不可能であった。
Accordingly, in addition to the conventional error factors, A new error factor called skew distortion of a parallelogram due to the difference in the type of projection exposure apparatus is added. The step-and-scan projection exposure apparatus can correct the skew by overlapping the wafer pattern by generating the same amount of skew. However, the stepper can correct only the magnification and rotation that are rotationally symmetric with respect to the optical axis, and cannot correct the skew.

【0009】[0009]

【発明が解決しようとする課題】しかしながら重ね合わ
せ精度に対する要求が厳しくなるにつれ、従来補正でき
なかった、あるいは補正していなかった成分も補正を行
ないたいという要求が高まっている。前述の誤差要因
〜の倍率、ディストーションについては1次の倍率成
分補正後の残差をより小さくすること、また従来補正で
きなかった誤差要因のスキューの補正をステッパーに
おいても行ないたいという要求が課題である。
However, as the demands on the overlay accuracy become stricter, there is an increasing demand for correcting components which could not be corrected or have not been corrected conventionally. As for the magnification and distortion of the above-mentioned error factors, there is a problem that the residual after the first-order magnification component correction should be made smaller, and the skew of the error factor which could not be corrected conventionally should be corrected by a stepper. is there.

【0010】更に製造コストを低減させるために、高生
産性の投影露光装置と高解像性能の投影露光装置を最適
に組合せて生産効率を上げるという要求も出ている。こ
のため、幾つかの装置を混ぜて使用する、いわゆる装置
間のマッチング込みでの重ね合わせ精度向上が必要とさ
れている。
In order to further reduce the manufacturing cost, there is a demand to increase the production efficiency by optimally combining a projection exposure apparatus with high productivity and a projection exposure apparatus with high resolution performance. For this reason, there is a need to improve the overlay accuracy in which several devices are mixed and used, so-called matching between devices.

【0011】数種の装置を使用した場合の装置間のショ
ット内の重ね合わせ誤差に対する本発明者の解析による
と、1次の倍率成分の補正後は3次のディストーション
成分と縦横倍率の誤差が支配的であることが判明した。
ここで縦横倍率とは本来方向性のない投影露光装置の投
影光学系の転写像の倍率の面内不均一性を表現したもの
で、以下倍率の大きい方向を長軸、直交する方向を短軸
と呼ぶことにする。
According to the inventor's analysis of an overlay error in a shot between devices when several types of devices are used, the error between the third-order distortion component and the vertical and horizontal magnifications after the correction of the primary magnification component is reduced. Turned out to be dominant.
Here, the vertical and horizontal magnifications express the in-plane non-uniformity of the magnification of the transferred image of the projection optical system of the projection exposure apparatus, which has essentially no direction, and hereinafter, the direction in which the magnification is large is the long axis, and the direction orthogonal to the short axis is the short axis. I will call it.

【0012】特に縦横倍率はその大きさばかりでなく、
長軸の方向が一致しているかどうかも装置間のマッチン
グ精度に大きく影響することが判明した。
[0012] In particular, the vertical and horizontal magnification is not only the size, but also
It has been found that whether or not the directions of the long axes match also greatly affects the matching accuracy between the devices.

【0013】縦横倍率に関しては、更に、重ね合わせの
対象となる工程が投影面内に取ったx軸方向とy軸方向
で異なる場合、プロセスを経て各工程毎に倍率変動が異
なると、1次の投影倍率を補正しただけでは、ショット
内で重ね合せ誤差が発生してしまうことが分かった。
Regarding the vertical and horizontal magnifications, furthermore, when the process to be superimposed is different in the x-axis direction and the y-axis direction taken in the projection plane, if the magnification change differs for each process through the process, the primary It has been found that simply correcting the projection magnification causes a superposition error in a shot.

【0014】また露光エネルギーが投影レンズ内で吸収
されてレンズ形状が変化し、投影倍率の変化を起こすこ
とも知られている。投影レンズ内に均一に露光光が入射
されれば倍率の変化は投影面内で均一になるが、回路パ
ターンの制約等により、露光光が投影レンズに不均一に
照射されると、投影倍率が縦と横で異なるという現象が
発生することも明らかとなってきた。
It is also known that the exposure energy is absorbed in the projection lens to change the lens shape, causing a change in the projection magnification. If the exposure light is uniformly incident on the projection lens, the change in magnification becomes uniform within the projection plane.However, if the exposure light is unequally irradiated on the projection lens due to circuit pattern restrictions, etc., the projection magnification will increase. It has also become clear that a phenomenon of vertical and horizontal differences occurs.

【0015】ステッパーでは重ね合わせ誤差を小さくす
るためには、従来対象としなかった成分まで補正するこ
とが必要である。その一つは既述の縦横倍率成分、そし
てもう一つはステッパーでは従来発生しなかったスキュ
ー成分である。
In the stepper, in order to reduce the overlay error, it is necessary to correct even the components which have not been targeted conventionally. One of them is the above-described vertical and horizontal magnification components, and the other is a skew component that has not conventionally occurred in a stepper.

【0016】スキュー成分の発生はステップ&スキャン
型の投影露光装置が出現し、該装置とステッパーとの重
ね合わせが求められてきたという新しい事情に基づいて
いる。ステップ&スキャン型の投影露光装置の固有に起
こるこの誤差に対し、従来のステッパーには当然補正機
能がない。しかしながら重ね合わせ精度の向上を図るた
めに、ステッパーにもスキューの補正機能を持つことが
必要となってきている。
The generation of the skew component is based on a new circumstance that a step & scan type projection exposure apparatus has appeared and it has been required to overlap the apparatus with a stepper. The conventional stepper naturally has no correction function for this error inherent in the step & scan type projection exposure apparatus. However, in order to improve the overlay accuracy, the stepper also needs to have a skew correction function.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するた
め、本発明の投影露光方法及び投影露光装置ではステッ
パーに対し新たに縦横倍率及びスキューを補正する手段
を設けることを特徴とする。
In order to achieve the above object, the projection exposure method and the projection exposure apparatus of the present invention are characterized in that a stepper is provided with a means for newly correcting the vertical and horizontal magnification and skew.

【0018】縦横倍率では投影倍率を補正する手段と、
直交する軸方向に対して互いに倍率差を発生させる手段
と、該軸を任意の方向に合わせる手段を持ち、補正量に
応じて縦横倍率を制御することを特徴とする。
Means for correcting the projection magnification in the aspect ratio;
It is characterized by having means for generating a magnification difference with respect to the orthogonal axis direction and means for adjusting the axis in an arbitrary direction, and controlling the vertical and horizontal magnification in accordance with the correction amount.

【0019】またスキューに関してはステッパーに一軸
のみが倍率可変でかつ投影レンズの光軸を中心にして回
転自在な機構を組み込み、スキューの量に応じて該機構
と投影レンズの倍率、縦横倍率及びレチクルまたはウエ
ハー回転を組合せて補正し、重ね合わせ精度を向上させ
ることを特徴としている。
Regarding the skew, the stepper incorporates a mechanism in which only one axis is variable in magnification and is rotatable around the optical axis of the projection lens. Alternatively, correction is performed by combining wafer rotation to improve the overlay accuracy.

【0020】上記の記述から分かるように、実際には縦
横倍率及びスキューの補正は同一の機構を従来のステッ
パーに組み込むことで達成することができる。
As can be seen from the above description, in practice, the correction of the aspect ratio and the skew can be achieved by incorporating the same mechanism into a conventional stepper.

【0021】補正に際してはステッパーに座標を測定す
る手段を持ち、該測定手段による測定値により投影倍
率、縦横倍率差、スキュー等を決定して補正を行なうこ
とができ、重ね合わせ精度の大幅な向上が可能としてい
る。
For correction, the stepper has a means for measuring coordinates, and the projection magnification, the difference between the horizontal and vertical magnifications, the skew, etc. can be determined and corrected based on the measured values by the measuring means, thereby greatly improving the overlay accuracy. Is possible.

【0022】[0022]

【発明の実施の形態】図1は本発明の実施形態1の投影
露光装置の要部概略図である。同図においてレチクル3
上に描かれた回路パターンは投影レンズ6によりウエハ
ーステージ7上に載置されたウエハー7aにステップ&
リピート方式又はステップ&スキャン方式で縮小投影さ
れる。
FIG. 1 is a schematic view of a main part of a projection exposure apparatus according to a first embodiment of the present invention. In the figure, reticle 3
The circuit pattern drawn above is stepped onto a wafer 7a placed on a wafer stage 7 by a projection lens 6.
Reduction projection is performed by a repeat method or a step & scan method.

【0023】投影レンズ6内には公知の倍率補正機構が
あり、気圧等の環境変化による投影倍率の変化や、プロ
セス等の影響によるウエハーの伸縮で発生するウエハー
上のパターン倍率とレチクル投影像との倍率誤差を補正
する。
A known magnification correction mechanism is provided in the projection lens 6, and changes in projection magnification due to environmental changes such as atmospheric pressure, and pattern magnification on the wafer and reticle projection images generated by expansion and contraction of the wafer due to the effects of processes and the like. Is corrected.

【0024】本発明の投影露光装置では従来の倍率補正
機構に加えてレチクル3と投影レンズ6との間に縦横倍
率補正機構5が搭載されているのが特徴である。
The projection exposure apparatus of the present invention is characterized in that a vertical and horizontal magnification correcting mechanism 5 is mounted between the reticle 3 and the projection lens 6 in addition to a conventional magnification correcting mechanism.

【0025】図2は本発明に係る縦横倍率補正機構5の
構成図である。平行平板のガラス板(平行平板)51と
該ガラス板51を任意のたわみ量でたわますアクチュエ
ータ52が、投影レンズ6の光軸6a中心に回転可能な
θステージ53に搭載されている。θステージ53を指
定された角度に回転させるθ駆動モータ55は支持台5
4に固定されている。
FIG. 2 is a configuration diagram of the vertical and horizontal magnification correcting mechanism 5 according to the present invention. A parallel flat glass plate (parallel flat plate) 51 and an actuator 52 for bending the glass plate 51 by an arbitrary deflection amount are mounted on a θ stage 53 rotatable about the optical axis 6 a of the projection lens 6. The θ drive motor 55 for rotating the θ stage 53 to the designated angle
4 is fixed.

【0026】平行平板51を特定の軸(α軸)に関し対
称に2次曲線上にたわませると、α軸方向には影響を与
えず、α軸に垂直なβ軸方向に拡大または縮小方向の1
次の倍率変化を与えることができる。平行平板51のた
わみ量hと投影倍率の変化量γには所定の関係があり、
たわみ量hを可変量としてコントロールして縦横倍率補
正機構5全体を光軸6a中心に回転させることにより、
縦横倍率を制御しながらα軸を任意の方向に一致させる
ことができる。たわみ量hが小さい範囲ではたわみ量h
と変化量γは比例関係にあると考えてよい。
When the parallel flat plate 51 is flexed on a quadratic curve symmetrically with respect to a specific axis (α axis), there is no effect on the α axis direction, and the enlargement or reduction direction is changed in the β axis direction perpendicular to the α axis. Of 1
The following magnification changes can be given: There is a predetermined relationship between the deflection amount h of the parallel plate 51 and the change amount γ of the projection magnification,
By controlling the deflection amount h as a variable amount and rotating the entire vertical / horizontal magnification correction mechanism 5 about the optical axis 6a,
The α axis can be made to coincide with an arbitrary direction while controlling the vertical and horizontal magnifications. In the range where the deflection amount h is small, the deflection amount h
And the change amount γ may be considered to be in a proportional relationship.

【0027】図1に示した下向きのたわみはβ軸方向の
倍率を拡大させるが、反対側にたわませれば縮小とな
る。たわみ量hの量を正負2方向に可変にすると、縦横
倍率補正機構5の光軸回りの回転ストロークを小さくす
ることができる。
The downward bending shown in FIG. 1 enlarges the magnification in the β-axis direction, but decreases when it is bent to the opposite side. By making the amount of deflection h variable in the positive and negative directions, the rotation stroke of the vertical and horizontal magnification correcting mechanism 5 around the optical axis can be reduced.

【0028】縦横倍率差は投影面内で所定の投影倍率に
対して、最も大きい方向に倍率誤差が発生している方向
を長軸とし、長軸に直交する方向を短軸とすることで定
義する。縦横倍率差Δkを Δk=(長軸の投影倍率)/(短軸の投影倍率) とし、長軸の方向θを投影面に設定した直交座標x、y
のy軸に対する偏差として定義する。
The vertical / horizontal magnification difference is defined by defining a direction in which a magnification error occurs in the largest direction with respect to a predetermined projection magnification in a projection plane as a long axis and a direction orthogonal to the long axis as a short axis. I do. The vertical / horizontal magnification difference Δk is represented by Δk = (projection magnification of long axis) / (projection magnification of short axis), and rectangular coordinates x, y in which the direction θ of the long axis is set on the projection plane
With respect to the y-axis.

【0029】図3は縦横倍率の補正手法である。図3
(A)の様に補正対象となる投影レンズの持つ縦横倍率
差をΔk1とし、長軸方向をθ1とする。縦横倍率の影
響で本来矩型の回路パターンは投影レンズにより平行四
辺形に歪んで転写される。図3(A)で発生している縦
横倍率は図2の縦横倍率補正機構のα軸をθ1に一致さ
せ、たわみ量hをΔk1/(γ/h)とすることで補正
できる。
FIG. 3 shows a method of correcting the vertical and horizontal magnifications. FIG.
As shown in (A), the vertical and horizontal magnification difference of the projection lens to be corrected is Δk1, and the major axis direction is θ1. Under the influence of the vertical and horizontal magnifications, the originally rectangular circuit pattern is transferred by being distorted into a parallelogram by the projection lens. The vertical / horizontal magnification generated in FIG. 3A can be corrected by making the α axis of the vertical / horizontal magnification correcting mechanism of FIG. 2 coincide with θ1, and setting the deflection amount h to Δk1 / (γ / h).

【0030】従って図2の縦横倍率補正機構をステッパ
ーに搭載すれば、縦横倍率の絶対値を小さくできる。ま
た装置間の組み合わせにおいても縦横倍率差が補正可能
なため考慮する必要がなくなる。
Therefore, if the vertical / horizontal magnification correcting mechanism shown in FIG. 2 is mounted on a stepper, the absolute value of the vertical / horizontal magnification can be reduced. Further, the difference between the vertical and horizontal magnifications can be corrected even in a combination between apparatuses, so that it is not necessary to consider it.

【0031】ここで実際に装置間の組み合わせにおいて
図2の縦横倍率補正機構5を働かす手順について説明す
る。通常の重ね合わせでは、基準となる工程に対し工程
間の相対的なずれが最小になるように縦横倍率差を設定
する。ここでは基準工程を装置Aで作成し、重ね合わせ
る工程を装置Bで行なう場合を例に図3を用いて説明す
る。
Here, a procedure for actually operating the vertical / horizontal magnification correcting mechanism 5 of FIG. 2 in a combination between apparatuses will be described. In normal superposition, the vertical / horizontal magnification difference is set so that the relative deviation between the processes with respect to the reference process is minimized. Here, an example in which the reference process is created by the device A and the superimposing process is performed by the device B will be described with reference to FIG.

【0032】図3(A)に示す様に、装置Aの投影レン
ズの持つ縦横倍率差をΔk1とし、長軸方向をθ1、ま
た縦横倍率差の表示として長軸方向に長さk1のベクト
ルを定義する。
As shown in FIG. 3A, the vertical and horizontal magnification difference of the projection lens of the apparatus A is set to Δk1, the major axis direction is set to θ1, and the vector of the length k1 in the major axis direction is displayed as the vertical and horizontal magnification difference. Define.

【0033】また、図3(B)に示す様に、装置Bの投
影レンズの持つ縦横倍率差をΔk2とし、長軸方向をθ
2、縦横倍率差の表示として長軸方向に長さk2のベク
トルを定義する。図3(A)と図3(B)を重ねて描い
たのが図3(C)で、従来の縦横倍率の補正機構がない
場合には単に全体の倍率のみを補正して重ね合わせるた
め、k1のベクトルとk2のベクトルの差分であるk3
の縦横倍率差が発生する。この量をΔk3として長軸方
向をθ3とすると図3(D)に示す様な重ね合わせ誤差
が発生する。
As shown in FIG. 3B, the difference between the vertical and horizontal magnifications of the projection lens of the apparatus B is set to Δk2, and the major axis direction is set to θ.
2. A vector having a length k2 is defined in the major axis direction as the display of the vertical / horizontal magnification difference. FIG. 3 (C) is a drawing in which FIG. 3 (A) and FIG. 3 (B) are overlapped. In the case where there is no conventional mechanism for correcting the vertical and horizontal magnifications, only the entire magnification is corrected and superimposed. k3 which is the difference between the vector of k1 and the vector of k2
The vertical and horizontal magnification difference occurs. If this amount is Δk3 and the major axis direction is θ3, an overlay error as shown in FIG. 3D occurs.

【0034】そこで装置Aで作成された基準工程に対し
て装置Bで重ね合わせを行なう際には、図2の縦横倍率
補正機構5でα軸をθ3に一致させ、かつたわみ量をΔ
k3の補正を行なうように制御する。この結果、装置間
の投影レンズの持つ縦横倍率差の歪を補正し、重ね合わ
せ誤差を低減することができる。
Therefore, when the reference process created by the apparatus A is superimposed by the apparatus B, the α-axis is made coincident with θ3 by the vertical / horizontal magnification correction mechanism 5 in FIG.
Control is performed so as to correct k3. As a result, it is possible to correct the distortion of the difference between the vertical and horizontal magnifications of the projection lenses between the devices, and reduce the overlay error.

【0035】縦横倍率差を補正する過程で発生する光軸
に対し回転対称な倍率誤差は、従来からある投影レンズ
内の倍率補正機能で補正される。また図3(D)で示し
たように補正する縦横倍率の方向によっては微小ではあ
るが、ショット内にrot3で示す回転誤差が発生す
る。この量は縦横倍率差とその方向から容易に算出でき
るため、重ね合わせ動作を行なうときにレチクルもしく
はウエハーをその量だけ回転補正駆動することにより、
重ね合わせ誤差をより低減することができる。
A magnification error which is rotationally symmetric with respect to the optical axis and is generated in the process of correcting the difference between the vertical and horizontal magnifications is corrected by a magnification correcting function in a conventional projection lens. Further, as shown in FIG. 3D, a rotation error indicated by rot3 is generated in the shot although it is minute depending on the direction of the vertical and horizontal magnifications to be corrected. Since this amount can be easily calculated from the vertical and horizontal magnification difference and the direction, by performing the rotation correction driving of the reticle or the wafer by the amount when performing the overlapping operation,
Overlay errors can be further reduced.

【0036】縦横倍率補正機構5はスキューの補正にも
使用することができる。本発明の実施形態2はスキュー
補正である。図4はスキューを補正する手順を示すもの
である。図4(A)に示す様にy軸に対し角度θaを持
つスキューが発生したウエハーパターンがあるものとす
る。該ウエハーパターンは例えばステップ&スキャン型
の投影露光装置によって焼き付けられたものである。縦
横倍率補正機構5で発生させる縦横倍率差をΔkaと
し、Δkaに図4(B)の様に Δka=0.5×tanθa なるたわみ量を設定し、かつ長軸の方向が45度になる
ようにβ軸をあわせる。
The vertical / horizontal magnification correction mechanism 5 can also be used for skew correction. Embodiment 2 of the present invention is skew correction. FIG. 4 shows a procedure for correcting skew. Assume that there is a wafer pattern in which a skew having an angle θa with respect to the y-axis has occurred as shown in FIG. The wafer pattern is printed by, for example, a step & scan type projection exposure apparatus. The difference between the vertical and horizontal magnifications generated by the vertical and horizontal magnification correcting mechanism 5 is defined as Δka, and a deflection amount of Δka = 0.5 × tan θa is set as Δka as shown in FIG. 4B, and the direction of the long axis is 45 degrees. Adjust the β axis to.

【0037】ここで全体の倍率を振り分けるように投影
倍率を補正したのが図4(C)である。この状態ではシ
ョット回転θcが残っているため、θcをレチクル回転
で補正したのが図4(D)の補正結果で、図4(A)の
パターン歪が実現されてスキューの補正を行なうことが
できる。
Here, FIG. 4C shows that the projection magnification is corrected so that the entire magnification is distributed. In this state, since the shot rotation θc remains, the correction of θc by the reticle rotation is the correction result of FIG. 4D, and the pattern distortion of FIG. 4A is realized and the skew can be corrected. it can.

【0038】画面サイズが□20mm、スキューの量が
1ppmで他の誤差が全くないウエハーパターンに対
し、収差のないステッパーで重ね合わせを行なう場合を
例にとると、コーナー部で発生する位置合わせ誤差は1
0nmである。ステッパーで本発明の縦横倍率補正機構
5により45度方向を長軸とする縦横倍率差を0.5p
pm発生させ、レチクルを0.5ppm回転させると、
丁度1ppmのスキューを発生させることができ、コー
ナーでの位置合わせ誤差を殆ど0にすることができる。
蛇足ながら、スキューの方向が図4と反対の右下がり方
向の場合には、長軸の方向を135度になるようにβ軸
を合わせる。あとは同様に補正できる。
In the case of superposing a wafer pattern having a screen size of □ 20 mm, a skew amount of 1 ppm and no other error at all with a stepper having no aberration, an alignment error generated at a corner portion is obtained. Is 1
0 nm. The vertical / horizontal magnification difference having the major axis in the 45-degree direction is set to 0.5p by the vertical / horizontal magnification correcting mechanism 5 of the present invention using a stepper.
pm and rotating the reticle by 0.5 ppm,
A skew of exactly 1 ppm can be generated, and a positioning error at a corner can be almost zero.
If the direction of the skew is a downward-sloping direction opposite to that of FIG. 4, the β axis is adjusted so that the direction of the long axis becomes 135 degrees. The rest can be similarly corrected.

【0039】実際にはステップ&スキャン装置に投影倍
率誤差、スキャン倍率誤差があり、ステッパーにも投影
倍率誤差、縦横倍率誤差等がある。従ってステッパー側
で補正を行なうときは投影倍率補正量、縦横倍率の補正
角度及び補正量、ウエハーまたはレチクルの回転補正量
を最適に選ぶことが必要となる。
Actually, the step & scan apparatus has a projection magnification error and a scan magnification error, and the stepper also has a projection magnification error and a vertical and horizontal magnification error. Therefore, when performing the correction on the stepper side, it is necessary to optimally select the projection magnification correction amount, the correction angle and correction amount of the vertical and horizontal magnifications, and the rotation correction amount of the wafer or reticle.

【0040】以上の投影光学系での補正に対し、投影光
学系の状態をモニターする手順を実施形態3として示
す。図1の投影露光装置にはTTLアライメントスコー
プ2が搭載されている。該アライメントスコープ2は投
影レンズ6を通して図5に示すレチクル3上のマーク3
aと、ウエハーステージ7上に載置された基準プレート
9上のマーク9aとの位置ずれを計測することができる
ので、投影レンズ6の状態がモニターできる。
A procedure for monitoring the state of the projection optical system for the above correction by the projection optical system will be described as a third embodiment. The TTL alignment scope 2 is mounted on the projection exposure apparatus of FIG. The alignment scope 2 passes through a projection lens 6 to mark 3 on a reticle 3 shown in FIG.
Since the position deviation between a and the mark 9a on the reference plate 9 placed on the wafer stage 7 can be measured, the state of the projection lens 6 can be monitored.

【0041】TTLアライメントスコープ2は対物位置
を駆動しながら、基準レチクル3上の複数個のマークと
基準プレート9上にあってレチクル3上のマークと対応
する位置に配置されている複数個のマークの位置関係を
計測することができる。該計測により投影レンズ6の倍
率等の投影格子の変化をモニターすることが可能であ
る。基準プレート9はウエハーステージ7上にあるの
で、基準プレート9上のマークは1点でもよい。1点で
あっても、ウエハーステージ7を駆動しながらレチクル
3上の複数のマークを計測すれば、ステージ座標基準で
投影レンズ6の倍率等の投影格子の変化を計測すること
が可能である。
The TTL alignment scope 2 drives a plurality of marks on the reference reticle 3 and a plurality of marks on the reference plate 9 at positions corresponding to the marks on the reticle 3 while driving the object position. Can be measured. It is possible to monitor a change in the projection grating such as the magnification of the projection lens 6 by the measurement. Since the reference plate 9 is on the wafer stage 7, the mark on the reference plate 9 may be one point. Even at one point, by measuring a plurality of marks on the reticle 3 while driving the wafer stage 7, it is possible to measure a change in the projection grating such as the magnification of the projection lens 6 based on the stage coordinates.

【0042】定期的に上記計測を行ない、投影格子の変
化量に基づいて、投影倍率及び縦横倍率差を制御するこ
とにより、常に安定した投影状態を保つことができる。
このような計測で、例えば、露光等による投影レンズの
投影座標の変化を補正することも可能である。
By performing the above measurement periodically and controlling the projection magnification and the difference between the vertical and horizontal magnifications based on the amount of change in the projection grid, a stable projection state can be always maintained.
With such measurement, for example, it is also possible to correct a change in the projection coordinates of the projection lens due to exposure or the like.

【0043】本発明の実施形態4は投影格子を計測する
手法としてフォトクロミック材料を使用した方式であ
る。フォトクロミック材料はある波長の光を当てると、
その場所の透過率が変化する材料である。
Embodiment 4 of the present invention is a system using a photochromic material as a method of measuring a projection grating. When photochromic material is exposed to light of a certain wavelength,
It is a material whose transmittance changes at that location.

【0044】その原理を利用してウエハー上にフォトク
ロミック材料を塗布してウエハーステージ7上に搭載
し、投影レンズ6の下に送り込んだ後、照明系1から露
光光を照射して、レチクル像をウエハー上のフォトクロ
ミック材料に焼き付ける。そのままウエハーステージ7
を駆動してオフアクシスアライメントスコープ8で焼き
付けられたレチクル像を計測すれば、ウエハーステージ
7の座標基準で投影レンズの投影格子が計測できる。
Using the principle, a photochromic material is coated on a wafer, mounted on a wafer stage 7 and sent under a projection lens 6, and then irradiated with exposure light from an illumination system 1 to form a reticle image. Bake on the photochromic material on the wafer. Wafer stage 7 as it is
Is driven to measure the reticle image printed by the off-axis alignment scope 8, the projection grating of the projection lens can be measured based on the coordinates of the wafer stage 7.

【0045】定期的に上記計測を行ない、投影格子の計
測値に基づいて投影倍率及び縦横倍率差を制御すること
で常に安定した投影状態を保つことができる。
By performing the above measurement periodically and controlling the projection magnification and the difference between the vertical and horizontal magnifications based on the measured value of the projection grid, a stable projection state can be always maintained.

【0046】次にステップ&スキャン型の投影露光装置
で前の工程が作成されたウエハーに対して本発明のステ
ッパーで位置合わせを行なう方法を実施形態5として説
明する。
Next, a fifth embodiment of the present invention will be described with reference to a method for aligning a wafer on which a previous process has been performed by a step & scan type projection exposure apparatus with a stepper according to the present invention.

【0047】オフアクシスアライメントスコープ8はウ
エハーステージ7上に載置されたウエハー上のアライメ
ントマーク10aを計測する。該ウエハーは図6に示す
様にテップ&スキャン型の投影露光装置で前の工程が露
光されている。アライメントマーク10aの計測に当た
っては複数ショット内の複数マークを計測することによ
り、ウエハー内のショット配列誤差(位置ずれ、倍率、
回転、直交度)とショット内誤差(倍率、回転、スキュ
ー、縦横倍率差)を分離することができる。
The off-axis alignment scope 8 measures the alignment mark 10a on the wafer placed on the wafer stage 7. The wafer has been exposed in a previous step by a step-and-scan type projection exposure apparatus as shown in FIG. By measuring a plurality of marks in a plurality of shots when measuring the alignment mark 10a, a shot arrangement error (position shift, magnification,
Rotation, orthogonality) and intra-shot errors (magnification, rotation, skew, difference in vertical and horizontal magnification) can be separated.

【0048】複数ショットの選択はウエハーの中心に対
してバランスよく選択することが好ましく、複数マーク
の選択ではショットのコーナー近辺の4ケ所を含む選択
が好ましい。
It is preferable to select a plurality of shots in a well-balanced manner with respect to the center of the wafer, and to select a plurality of marks, it is preferable to select four shots near the corner of the shot.

【0049】この結果、ショット配列に関してはウエハ
ーステージの座標補正、ショット内の誤差に関しては投
影倍率、縦横倍率補正(角度、量)及びウエハーまたは
レチクルの回転補正を行なえば、ステップ&スキャン型
の投影露光装置で作成されたウエハーパターンに対して
も、精度よく位置合わせし露光することができる。
As a result, if the coordinates of the wafer stage are corrected for the shot arrangement, the projection magnification, the vertical and horizontal magnification correction (angle and amount), and the rotation of the wafer or reticle are corrected for the errors in the shot, the step-and-scan type projection is performed. Even a wafer pattern created by an exposure apparatus can be accurately aligned and exposed.

【0050】実施形態5ではオフアクシスアライメント
スコープを用いてウエハーを観察する方式を示したが、
同様のことは実施形態6としてTTLアライメントスコ
ープ2を用いても実現できる。TTLアライメントスコ
ープ2には露光光を用いて位置計測可能なシステムが搭
載されており、レチクル3とウエハーの重ね合わせずれ
を直接検出することができる。アライメントスコープ2
ではウエハーの誤差と装置の誤差が重畳した状態で観察
されるため、補正量を直接求めることができる。この場
合、縦横倍率補正機構と倍率補正機構とレチクルまたは
ウエハーの回転補正の駆動量がショット内補正成分とし
てTTLアライメントスコープによる計測値で決定され
る。
In the fifth embodiment, a method of observing a wafer using an off-axis alignment scope has been described.
The same can be realized by using the TTL alignment scope 2 as the sixth embodiment. The TTL alignment scope 2 is equipped with a system capable of position measurement using exposure light, and can directly detect misalignment between the reticle 3 and the wafer. Alignment scope 2
In this case, since the error of the wafer and the error of the apparatus are observed in a superimposed state, the correction amount can be directly obtained. In this case, the drive amount of the vertical and horizontal magnification correction mechanism, the magnification correction mechanism, and the rotation correction of the reticle or the wafer is determined by the measurement value by the TTL alignment scope as the in-shot correction component.

【0051】実施形態5及び6ではショット内の複数点
を計測し、該計測結果より補正を行なう例を示したが、
先行ウエハーを用いて予め重ね合わせの評価を行ない、
該評価結果を用いることも可能である。先行ウエハーと
は生産に先だって試験的に実際に対象となるウエハーを
露光処理するものである。該評価結果よりショット内の
誤差に関しては一定の投影倍率、縦横倍率(角度、量)
及びウエハーまたはレチクルの回転補正を行ない、ショ
ット配列の補正のみをウエハー毎に行なうことにより、
ショット内のアライメントマークの計測点数を減らすこ
とができ、スループットの向上を達成することができ
る。
In the fifth and sixth embodiments, an example has been described in which a plurality of points in a shot are measured and correction is performed based on the measurement results.
The overlay is evaluated in advance using the preceding wafer,
It is also possible to use the evaluation result. The precedent wafer is a wafer that is actually subjected to exposure processing on a trial basis prior to production. Based on the evaluation results, a certain projection magnification and a certain horizontal and vertical magnification (angle, amount) are used for errors in the shot.
By performing the rotation correction of the wafer or the reticle, and performing only the shot arrangement correction for each wafer,
The number of alignment mark measurement points in a shot can be reduced, and an improvement in throughput can be achieved.

【0052】[0052]

【発明の効果】以上述べてきたように本発明ではステッ
プ型の投影露光装置であるステッパーにおいて、投影面
内の一つの軸と該軸に直交する軸との間に任意の投影倍
率を発生させるとともに該軸の方向を任意に設定できる
機構を投影光学系内に設けることにより、従来補正の対
象としなかっ縦横の倍率成分とスキュー成分を補正する
ことを可能とした。このため複数の装置を用いたときの
装置間のマッチングや、ステップ&スキャン型の投影露
光装置で作成されたウエハーパターンとの重ね合わせ精
度が飛躍的に向上し、高集積化が求められている半導体
素子製作上の要求に対応することが可能となった。
As described above, according to the present invention, in a stepper which is a step-type projection exposure apparatus, an arbitrary projection magnification is generated between one axis in a projection plane and an axis orthogonal to the axis. In addition, by providing a mechanism in the projection optical system that can arbitrarily set the direction of the axis, it is possible to correct vertical and horizontal magnification components and skew components that have not been conventionally corrected. For this reason, matching between devices when a plurality of devices are used, and overlay accuracy with a wafer pattern created by a step-and-scan type projection exposure device are dramatically improved, and high integration is required. It has become possible to meet the demands for semiconductor device fabrication.

【0053】また本発明では、複数の装置間の重ね合わ
せ精度を向上させたため、製造コストを低減させるため
に求められている高生産性の装置と高解像性能の装置の
最適組み合わせの幅を広げることが可能となり、生産効
率の向上にも寄与するところが大きい。
In the present invention, since the overlay accuracy between a plurality of devices is improved, the width of the optimum combination of a high-productivity device and a high-resolution device required to reduce the manufacturing cost is reduced. It can be expanded, which greatly contributes to the improvement of production efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の投影露光装置の構成図、FIG. 1 is a configuration diagram of a projection exposure apparatus according to a first embodiment of the present invention,

【図2】本発明の縦横倍率補正機構、FIG. 2 is a vertical and horizontal magnification correction mechanism of the present invention;

【図3】縦横倍率が発生した時の補正手順を示す図、FIG. 3 is a diagram showing a correction procedure when an aspect ratio occurs;

【図4】スキューが発生した時の補正手順を示す図、FIG. 4 is a diagram showing a correction procedure when skew occurs;

【図5】レチクル及び基準プレート上のマークの一例、FIG. 5 shows an example of a mark on a reticle and a reference plate;

【図6】ステップ&スキャン投影露光装置で作成したウ
エハーパターン。
FIG. 6 is a wafer pattern created by a step & scan projection exposure apparatus.

【符号の説明】[Explanation of symbols]

1 照明系、 2 アライメントスコープ、 3 レチクル、 4 レチクルステージ、 5 縦横倍率補正機構、 6 投影レンズ、 7 ウエハーステージ、 8 オフアクシスアライメントスコープ、 9 基準プレート、 10 ウエハーアライメントマーク、 51 ガラス板、 52 たわみ駆動アクチュエータ、 53 θステージ、 54 支持台、 55 θ駆動モータ。 Reference Signs List 1 illumination system, 2 alignment scope, 3 reticle, 4 reticle stage, 5 vertical / horizontal magnification correction mechanism, 6 projection lens, 7 wafer stage, 8 off-axis alignment scope, 9 reference plate, 10 wafer alignment mark, 51 glass plate, 52 deflection Drive actuator, 53θ stage, 54 support base, 55θ drive motor.

Claims (35)

【特許請求の範囲】[Claims] 【請求項1】 第1物体の像を第2物体に投影光学系に
より露光転写する投影露光装置おいて、該投影光学系が
像を形成する投影面内の一軸方向と該一軸方向と直交す
る直交軸との間に、任意の投影倍率差を発生させる縦横
倍率補正機構を備えていることを特徴とする投影露光装
置。
1. A projection exposure apparatus for exposing and transferring an image of a first object onto a second object by a projection optical system, wherein the projection optical system is orthogonal to one axis direction in a projection plane on which an image is formed. A projection exposure apparatus comprising a vertical / horizontal magnification correction mechanism for generating an arbitrary projection magnification difference between the orthogonal axes.
【請求項2】 該縦横倍率補正機構が前記投影面内の一
軸方向を任意に選択することが可能なことを特徴とする
請求項1記載の投影露光装置。
2. The projection exposure apparatus according to claim 1, wherein the vertical / horizontal magnification correction mechanism can arbitrarily select one axial direction in the projection plane.
【請求項3】 前記投影光学系が倍率補正機構を備えて
いることを特徴とする請求項2記載の投影露光装置。
3. The projection exposure apparatus according to claim 2, wherein said projection optical system includes a magnification correction mechanism.
【請求項4】 前記縦横倍率補正機構が第1物体と該投
影光学系との間に配置されていることを特徴とする請求
項3記載の投影露光装置。
4. The projection exposure apparatus according to claim 3, wherein the vertical / horizontal magnification correction mechanism is disposed between the first object and the projection optical system.
【請求項5】 前記縦横倍率補正機構が平行平板を所定
の量、可変にたわませることのできる機構により構成さ
れていることを特徴とする請求項4記載の投影露光装
置。
5. The projection exposure apparatus according to claim 4, wherein said vertical / horizontal magnification correction mechanism comprises a mechanism capable of variably bending a parallel plate by a predetermined amount.
【請求項6】 前記縦横倍率補正機構が平行平板を所定
の軸に対して対称な2次曲線状にたわませることを特徴
とする請求項5記載の投影露光装置。
6. The projection exposure apparatus according to claim 5, wherein said vertical / horizontal magnification correcting mechanism deflects the parallel plate into a quadratic curve symmetrical with respect to a predetermined axis.
【請求項7】 前記縦横倍率補正機構の平行平板のたわ
み量が正負2方向に制御可能なことを特徴とする請求項
6記載の投影露光装置。
7. The projection exposure apparatus according to claim 6, wherein the amount of deflection of the parallel plate of the vertical / horizontal magnification correction mechanism can be controlled in two positive and negative directions.
【請求項8】 前記縦横倍率補正機構を駆動する際、前
記倍率補正機構を同時に駆動することを特徴とする請求
項3記載の投影露光装置。
8. The projection exposure apparatus according to claim 3, wherein when driving the vertical and horizontal magnification correcting mechanism, the magnification correcting mechanism is simultaneously driven.
【請求項9】 前記縦横倍率補正機構と前記倍率補正機
構を駆動する際、前記第1物体の回転を行なうことを特
徴とする請求項8記載の投影露光装置。
9. The projection exposure apparatus according to claim 8, wherein when driving the vertical and horizontal magnification correcting mechanism and the magnification correcting mechanism, the first object is rotated.
【請求項10】 前記縦横倍率補正機構と前記倍率補正
機構を駆動する際、前記第2物体の回転を行なうことを
特徴とする請求項8記載の投影露光装置。
10. The projection exposure apparatus according to claim 8, wherein when driving the vertical and horizontal magnification correcting mechanism and the magnification correcting mechanism, the second object is rotated.
【請求項11】 前記縦横倍率補正機構の軸を前記投影
露光装置の投影面内に設定されたx、y軸に対し概ね4
5度方向に設定するとともに、縦横倍率差Δk1をスキ
ューの発生方向をy軸に対しθ1としたとき、 Δk1=0.5×tanθ1 発生させることを特徴とする請求項3記載の投影露光装
置。
11. The apparatus according to claim 1, wherein the axis of the vertical / horizontal magnification correcting mechanism is approximately 4 with respect to the x and y axes set in the projection plane of the projection exposure apparatus.
4. The projection exposure apparatus according to claim 3, wherein the direction is set to 5 degrees, and the vertical / horizontal magnification difference Δk1 is generated by Δk1 = 0.5 × tan θ1 when the skew generation direction is θ1 with respect to the y-axis.
【請求項12】 前記縦横倍率補正機構の軸を前記投影
露光装置の投影面内に設定されたx、y軸に対し概ね4
5度方向に設定するとともに、前記倍率補正機構と前記
第1物体の回転を同時に駆動することを特徴とする請求
項11記載の投影露光装置。
12. The apparatus according to claim 1, wherein the axis of the vertical / horizontal magnification correction mechanism is approximately 4 with respect to the x and y axes set in the projection plane of the projection exposure apparatus.
The projection exposure apparatus according to claim 11, wherein the projection exposure apparatus is set to a direction of 5 degrees and simultaneously drives rotation of the magnification correction mechanism and the first object.
【請求項13】 前記縦横倍率補正機構の軸を前記投影
露光装置の投影面内に設定されたx、y軸に対し概ね4
5度方向に設定するとともに、前記倍率補正機構と前記
第2物体の回転を同時に駆動することを特徴とする請求
項12記載の投影露光装置。
13. The apparatus according to claim 1, wherein the axis of the vertical / horizontal magnification correction mechanism is approximately 4 with respect to the x and y axes set in the projection plane of the projection exposure apparatus.
13. The projection exposure apparatus according to claim 12, wherein the direction is set to 5 degrees and the magnification correction mechanism and the rotation of the second object are simultaneously driven.
【請求項14】 前記縦横倍率補正機構と前記倍率補正
機構を駆動量を、前記投影露光装置に備えられたTTL
アライメントスコープによる計測値を用いて決定するこ
とを特徴とする請求項8記載の投影露光装置。
14. A TTL provided in the projection exposure apparatus, wherein a drive amount of the vertical / horizontal magnification correction mechanism and the magnification correction mechanism is controlled.
9. The projection exposure apparatus according to claim 8, wherein the determination is performed using a measurement value obtained by an alignment scope.
【請求項15】 前記TTLアライメントスコープの計
測を基準となる第1物体上のマークと投影面上に設けら
れた基準マークで行なうことを特徴とする請求項14記
載の投影露光装置。
15. The projection exposure apparatus according to claim 14, wherein the measurement by the TTL alignment scope is performed using a mark on the first object serving as a reference and a reference mark provided on a projection plane.
【請求項16】 前記TTLアライメントスコープの計
測を、該第1物体上に設けられた複数個のマークと該投
影面上の対応する位置に設けられた複数個の基準マーク
で行なうことを特徴とする請求項15記載の投影露光装
置。
16. The measurement of the TTL alignment scope is performed using a plurality of marks provided on the first object and a plurality of reference marks provided at corresponding positions on the projection plane. 16. The projection exposure apparatus according to claim 15, wherein:
【請求項17】 前記TTLアライメントスコープの計
測を、該第1物体上に設けられた複数個のマークに対し
該投影面上に設けられた一つの基準マークを駆動しなが
ら行なうことを特徴とする請求項15記載の投影露光装
置。
17. The method according to claim 1, wherein the measurement of the TTL alignment scope is performed while driving one reference mark provided on the projection plane with respect to a plurality of marks provided on the first object. The projection exposure apparatus according to claim 15.
【請求項18】 前記縦横倍率補正機構と前記倍率補正
機構と前記第1または第2物体の回転補正駆動量を、前
記投影露光装置に備えられたTTLアライメントスコー
プによる計測値を用いて決定することを特徴とする請求
項14記載の投影露光装置。
18. A method for determining a rotation correction drive amount of the vertical / horizontal magnification correction mechanism, the magnification correction mechanism, and the first or second object using a measurement value of a TTL alignment scope provided in the projection exposure apparatus. The projection exposure apparatus according to claim 14, wherein:
【請求項19】 前記TTLアライメントスコープの計
測を該第1物体上に設けられた複数個のマークとウエハ
ーを観察した結果に基づいて行なうことを特徴とする請
求項18記載の投影露光装置。
19. The projection exposure apparatus according to claim 18, wherein the measurement of the TTL alignment scope is performed based on a result of observing a plurality of marks provided on the first object and a wafer.
【請求項20】 前記縦横倍率補正機構と前記倍率補正
機構の駆動量を、前記投影露光装置に備えられたオフア
クシスアライメントスコープによる計測値を用いて決定
することを特徴とする請求項8記載の投影露光装置。
20. The apparatus according to claim 8, wherein the drive amounts of the vertical and horizontal magnification correcting mechanism and the magnification correcting mechanism are determined by using a measurement value obtained by an off-axis alignment scope provided in the projection exposure apparatus. Projection exposure equipment.
【請求項21】 前記縦横倍率補正機構と前記倍率補正
機構と前記第1または第2物体の回転補正の駆動量を、
前記投影露光装置に備えられたオフアクシスアライメン
トスコープによる計測値を用いて決定することを特徴と
する請求項20記載の投影露光装置。
21. A driving amount of the vertical and horizontal magnification correction mechanism, the magnification correction mechanism, and the rotation correction of the first or second object,
21. The projection exposure apparatus according to claim 20, wherein the determination is performed using a measurement value obtained by an off-axis alignment scope provided in the projection exposure apparatus.
【請求項22】 前記オフアクシスアライメントスコー
プによる計測を前記投影露光装置によって露光されたフ
ォトクロミック材料を用いて行なうことを特徴とする請
求項21記載の投影露光装置。
22. The projection exposure apparatus according to claim 21, wherein the measurement by the off-axis alignment scope is performed using a photochromic material exposed by the projection exposure apparatus.
【請求項23】 前記オフアクシスアライメントスコー
プによる計測をウエハー上に形成されたアライメントマ
ークを観察して行なうことを特徴とする請求項21記載
の投影露光装置。
23. The projection exposure apparatus according to claim 21, wherein the measurement by the off-axis alignment scope is performed by observing an alignment mark formed on a wafer.
【請求項24】 前記観察するアライメントマークが複
数のショット内の複数個のマークであることを特徴とす
る請求項23記載の投影露光装置。
24. The projection exposure apparatus according to claim 23, wherein the alignment marks to be observed are a plurality of marks in a plurality of shots.
【請求項25】 前記オフアクシスアライメントスコー
プによる計測に従い、前記投影露光装置の投影ショット
の配列に関しては第2物体の搭載されたステージ座標で
補正し、該ショット内の補正に関しては該縦横倍率補正
機構と前記倍率補正機構と前記第1または第2物体の回
転機構を駆動して行なうことを特徴とする請求項24記
載の投影露光装置。
25. According to the measurement by the off-axis alignment scope, the arrangement of the projection shots of the projection exposure apparatus is corrected by the coordinates of the stage on which the second object is mounted, and the correction within the shots is performed by the vertical / horizontal magnification correction mechanism. 25. The projection exposure apparatus according to claim 24, wherein the driving is performed by driving a magnification correction mechanism and a rotation mechanism of the first or second object.
【請求項26】 前記第1物体と第2物体の位置合わせ
露光において、先行して露光した第2物体の評価に基づ
いて、該ショット内誤差については第1または第2物体
の回転補正と前記投影光学系の倍率補正及び縦横倍率補
正を一定値で行ない、ショット配列の誤差のみを前記第
2物体の搭載されたステージの座標で補正することを特
徴とする請求項8記載の投影露光装置。
26. In the alignment exposure of the first object and the second object, the in-shot error is corrected based on the evaluation of the second object that has been exposed earlier, by performing rotation correction of the first or second object. 9. The projection exposure apparatus according to claim 8, wherein magnification correction and vertical / horizontal magnification correction of the projection optical system are performed at fixed values, and only an error of the shot arrangement is corrected by coordinates of a stage on which the second object is mounted.
【請求項27】 第1物体の像を第2物体に投影光学系
により露光転写する投影露光装置を用いた投影露光方法
において、該投影光学系が像を形成する投影面内の一軸
方向と該一軸方向と直交する直交軸との間に投影倍率差
を発生させる縦横倍率補正機構を設け、該投影倍率差を
制御しながら露光することを特徴とする投影露光方法。
27. A projection exposure method using a projection exposure apparatus for exposing and transferring an image of a first object onto a second object by a projection optical system. A projection exposure method comprising: providing a vertical / horizontal magnification correction mechanism for generating a projection magnification difference between an orthogonal axis and an orthogonal axis orthogonal to one axis direction, and performing exposure while controlling the projection magnification difference.
【請求項28】 前記縦横倍率補正機構を駆動する際、
前記投影光学系に備えられた倍率補正機構の駆動と前記
第1又は第2物体の回転を合わせて行なうことを特徴と
する請求項27記載の投影露光方法。
28. When driving the vertical and horizontal magnification correcting mechanism,
28. The projection exposure method according to claim 27, wherein the driving of the magnification correction mechanism provided in the projection optical system and the rotation of the first or second object are performed together.
【請求項29】 前記縦横倍率補正機構の軸を前記投影
露光装置の投影面内に設定されたx、y軸に対し概ね4
5度方向に設定するとともに、縦横倍率差Δk1をスキ
ューの発生方向をy軸に対しθ1としたとき、 Δk1=0.5×tanθ1 発生させるとともに、前記倍率補正機構と前記第1又は
第2物体の回転を同時に駆動することを特徴とする請求
項28記載の投影露光方法。
29. The axis of the vertical / horizontal magnification correcting mechanism is approximately 4 with respect to the x and y axes set in the projection plane of the projection exposure apparatus.
When the direction of the skew is set to θ1 with respect to the y axis, Δk1 = 0.5 × tanθ1 is generated, and the magnification correction mechanism and the first or second object are set. 29. The projection exposure method according to claim 28, wherein the rotation of the projection exposure is simultaneously performed.
【請求項30】 前記縦横倍率補正機構と前記倍率補正
機構と前記第1または第2物体の回転補正の駆動量を、
前記投影露光装置に備えられたTTLアライメントスコ
ープによる計測値を用いて決定することを特徴とする請
求項29記載の投影露光方法。
30. A driving amount for the vertical and horizontal magnification correction mechanism, the magnification correction mechanism, and the rotation correction of the first or second object,
30. The projection exposure method according to claim 29, wherein the determination is performed using a measurement value obtained by a TTL alignment scope provided in the projection exposure apparatus.
【請求項31】 前記TTLアライメントスコープの計
測を基準となる第1物体上のマークと投影面上に設けら
れた基準マークで行なうことを特徴とする請求項30記
載の投影露光方法。
31. The projection exposure method according to claim 30, wherein the measurement of the TTL alignment scope is performed using a mark on the first object serving as a reference and a reference mark provided on a projection plane.
【請求項32】 前記TTLアライメントスコープの計
測を該第1物体上に設けられた複数個のマークとウエハ
ーを観察した結果に基づいて行なうことを特徴とする請
求項30記載の投影露光方法。
32. The projection exposure method according to claim 30, wherein the measurement of the TTL alignment scope is performed based on a result of observing a plurality of marks provided on the first object and a wafer.
【請求項33】 前記縦横倍率補正機構と前記倍率補正
機構と前記第1または第2物体の回転補正駆動量を、前
記投影露光装置に備えられたオフアクシスアライメント
スコープによる計測値を用いて決定することを特徴とす
る請求項29記載の投影露光方法。
33. The vertical and horizontal magnification correction mechanism, the magnification correction mechanism, and the rotation correction drive amount of the first or second object are determined using values measured by an off-axis alignment scope provided in the projection exposure apparatus. 30. The projection exposure method according to claim 29, wherein:
【請求項34】 前記オフアクシスアライメントスコー
プによる計測に従い、前記投影露光装置の投影ショット
の配列に関しては第2物体の搭載されたステージの座標
で補正し、該ショット内の補正に関しては該縦横倍率補
正機構と前記倍率補正機構と前記第1または第2物体の
回転機構を駆動して行なうことを特徴とする請求項33
記載の投影露光方法。
34. According to the measurement by the off-axis alignment scope, the arrangement of the projection shots of the projection exposure apparatus is corrected by the coordinates of the stage on which the second object is mounted, and the correction within the shots is performed by the vertical and horizontal magnification correction. 34. The method according to claim 33, wherein the driving is performed by driving a mechanism, the magnification correction mechanism, and a rotation mechanism of the first or second object.
The projection exposure method as described in the above.
【請求項35】 前記第1物体と第2物体の位置合わせ
露光において、先行して露光した第2物体の評価に基づ
いて、該ショット内誤差については第1または第2物体
の回転補正と前記投影光学系の倍率補正及び縦横倍率補
正を一定値で行ない、ショット配列の誤差のみを前記第
2物体の搭載されたステージの座標で補正することを特
徴とする請求項27記載の投影露光方法。
35. In the alignment exposure of the first object and the second object, the in-shot error is corrected based on the evaluation of the second object that has been exposed earlier, by performing the rotation correction of the first or second object. 28. The projection exposure method according to claim 27, wherein magnification correction and vertical / horizontal magnification correction of the projection optical system are performed at fixed values, and only an error in the shot arrangement is corrected based on coordinates of a stage on which the second object is mounted.
JP9171043A 1997-06-11 1997-06-11 Method and device for projection exposure Withdrawn JPH113856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9171043A JPH113856A (en) 1997-06-11 1997-06-11 Method and device for projection exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9171043A JPH113856A (en) 1997-06-11 1997-06-11 Method and device for projection exposure

Publications (1)

Publication Number Publication Date
JPH113856A true JPH113856A (en) 1999-01-06

Family

ID=15916038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9171043A Withdrawn JPH113856A (en) 1997-06-11 1997-06-11 Method and device for projection exposure

Country Status (1)

Country Link
JP (1) JPH113856A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286064A (en) * 2004-03-29 2005-10-13 Advantest Corp Charged particle beam exposure system, substrate for reference thereof, correcting method thereof, and manufacturing method of electronic device
JP2009124139A (en) * 2007-11-09 2009-06-04 Asml Netherlands Bv Device manufacturing method and lithography apparatus, computer program product
US8009271B2 (en) 2004-12-16 2011-08-30 Nikon Corporation Projection optical system, exposure apparatus, exposure system, and exposure method
JP2013511843A (en) * 2009-11-20 2013-04-04 コーニング インコーポレイテッド Magnification control of lithographic imaging system
TWI400576B (en) * 2005-04-08 2013-07-01 Ushio Electric Inc Exposure device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2005286064A (en) * 2004-03-29 2005-10-13 Advantest Corp Charged particle beam exposure system, substrate for reference thereof, correcting method thereof, and manufacturing method of electronic device
US8009271B2 (en) 2004-12-16 2011-08-30 Nikon Corporation Projection optical system, exposure apparatus, exposure system, and exposure method
TWI400576B (en) * 2005-04-08 2013-07-01 Ushio Electric Inc Exposure device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2009124139A (en) * 2007-11-09 2009-06-04 Asml Netherlands Bv Device manufacturing method and lithography apparatus, computer program product
US8218130B2 (en) 2007-11-09 2012-07-10 Asml Netherlands B.V. Device manufacturing method and lithographic apparatus,and computer program product
JP2013511843A (en) * 2009-11-20 2013-04-04 コーニング インコーポレイテッド Magnification control of lithographic imaging system
JP2015180945A (en) * 2009-11-20 2015-10-15 コーニング インコーポレイテッド Magnification control for lithographic imaging system

Similar Documents

Publication Publication Date Title
US6842230B2 (en) Exposing method
WO1999034255A1 (en) Method and apparatus for manufacturing photomask and method of fabricating device
KR100471461B1 (en) Exposure method and exposure apparatus
US8384900B2 (en) Exposure apparatus
JP2008263194A (en) Exposure apparatus, exposure method, and method for manufacturing electronic device
JPH113856A (en) Method and device for projection exposure
JPH10223528A (en) Projection aligner and aligning method
JP2001296667A (en) Scanning exposure method and scanning type aligner, and mask
JP3706951B2 (en) Exposure equipment
JPH06349702A (en) Method for adjusting projection optical system
KR102372650B1 (en) Projection optical system, exposure apparatus, method of manufacturing article, and adjusting method
JP2001085321A (en) Aligner and exposure method, and method for manufacturing microdevice
JP4396032B2 (en) Exposure method and scanning exposure apparatus
JP2015070057A (en) Exposure device, exposure method, and device manufacturing method
JP3350400B2 (en) Projection exposure equipment
JP3576722B2 (en) Scanning exposure apparatus and device manufacturing method using the same
JP3344426B2 (en) Measurement method and device manufacturing method
JP3068785B2 (en) Projection exposure apparatus or projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method
JP3092732B2 (en) Projection exposure apparatus and projection exposure method
US6562528B2 (en) Method for determining and calibrating image plane tilt and substrate plane tilt in photolithography
JPH0883743A (en) Lighting optical device
JPH10233358A (en) Scanning aligner
JP6853700B2 (en) Exposure equipment, exposure method, program, determination method and article manufacturing method
JP5632685B2 (en) Exposure apparatus and device manufacturing method
JP3530716B2 (en) Scanning projection exposure equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061012