JPH11355249A - Optical signal transmission equipment and signal processor - Google Patents

Optical signal transmission equipment and signal processor

Info

Publication number
JPH11355249A
JPH11355249A JP10172141A JP17214198A JPH11355249A JP H11355249 A JPH11355249 A JP H11355249A JP 10172141 A JP10172141 A JP 10172141A JP 17214198 A JP17214198 A JP 17214198A JP H11355249 A JPH11355249 A JP H11355249A
Authority
JP
Japan
Prior art keywords
optical
optical signal
signal
transmission
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10172141A
Other languages
Japanese (ja)
Other versions
JP3622509B2 (en
Inventor
Tsutomu Hamada
勉 浜田
Masanori Hirota
匡紀 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP17214198A priority Critical patent/JP3622509B2/en
Publication of JPH11355249A publication Critical patent/JPH11355249A/en
Application granted granted Critical
Publication of JP3622509B2 publication Critical patent/JP3622509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Optical Integrated Circuits (AREA)
  • Multi Processors (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the signal transmission rate and to enable miniaturization and cost-down by transmitting the pulse stream optical signals of mutually different wavelengths from plural optical signal transmission parts, receiving the pulse stream optical signals at plural optical signal reception parts and separating the desired signal component from plural signal components. SOLUTION: Optical signal transmission parts 20a-20f generate optical signals and make the generated optical signals incident from correspondent transmission nodes A-F into an optical transmission medium 10. The optical signal transmission parts 20a-20f are respectively provided with two kinds of light emitting elements 21 and 22 for emitting the pulse stream optical signals of mutually different wavelength so as to generate the pulse train optical signals of mutually different wavelengths. Optical signal reception parts 40a-40f receive the optical signals emitted from the transmission nodes A-F, provide reception signals at different levels corresponding to the wavelengths of optical signals and separate the desired signal component from signal components contained in the provided reception signals corresponding to six optical signals generated by six optical signal transmission parts 20a-20f.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光信号の伝送を担
う光信号伝送装置、および光信号の伝送を含む信号処理
を行なう信号処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical signal transmission device for transmitting an optical signal and a signal processing device for performing signal processing including transmission of the optical signal.

【0002】[0002]

【従来の技術】従来、超大規模集積回路(VLSI)の
開発により、データ処理システムで使用する回路基板
(ドーターボード)の回路機能が大幅に増大してきてい
る。回路機能が増大するにつれて各回路基板に対する信
号接続数が増大するため、各回路基板(ドーターボー
ド)間をバス構造で接続するデータバスボード(マザー
ボード)には多数の接続コネクタと接続線を必要とする
並列アーキテクチャが採用されてきている。接続線の多
層化と微細化により並列化を進めることにより並列バス
の動作速度の向上が図られてきたが、接続配線間容量や
接続配線抵抗に起因する信号遅延により、システムの処
理速度が並列バスの動作速度によって制限されることも
ある。また、並列バス接続配線の高密度化による電磁ノ
イズ(EMI:Electromagnetic In
terference)の問題もシステムの処理速度向
上に対しては大きな制約となる。
2. Description of the Related Art Conventionally, with the development of very large scale integrated circuits (VLSI), circuit functions of circuit boards (daughter boards) used in data processing systems have been greatly increased. As the number of signal connections to each circuit board increases as circuit functions increase, a data bus board (mother board) that connects each circuit board (daughter board) with a bus structure requires a large number of connectors and connection lines. Parallel architecture has been adopted. Although the parallel bus has been improved by increasing the number of connection lines and miniaturization, the operation speed of the parallel bus has been improved.However, due to the signal delay caused by the capacitance between the connection lines and the resistance of the connection lines, the processing speed of the system becomes parallel. It may be limited by the operating speed of the bus. In addition, electromagnetic noise (EMI: Electromagnetic In
The problem of terence is also a major constraint on improving the processing speed of the system.

【0003】このような問題を解決し並列バスの動作速
度の向上を図るために、光インターコネクションと呼ば
れる、システム内光接続技術を用いることが検討されて
いる。光インターコネクション技術の概要は、『内田禎
二、回路実装学術講演大会15C01,pp.201〜
202』や『富室 久他.,“光インタコネクション技
術の現状と動向 ”,IEEE Tokyo Sect
ion DenshiTokyo No.33 pp.
81〜86,1994』に記載されているように、シス
テムの構成内容により様々な形態が提案されている 従来提案された様々な形態の光インターコネクション技
術のうち、特開平2−41042号公報には、高速、高
感度の発光/受光デバイスを用いた光データ伝送方式を
データバスに適用した例が開示されており、そこには、
各回路基板の表裏両面に発光/受光デバイスを配置し、
システムフレームに組み込まれた隣接する回路基板上の
発光/受光デバイス間を空間的に光で結合した、各回路
基板相互間のループ伝送用の直列光データ・バスが提案
されている。この方式では、ある1枚の回路基板から送
られた光信号が隣接する回路基板で光/電気変換され、
さらにその回路基板でもう一度電気/光変換されて、次
に隣接する回路基板に光信号を送るというように、各回
路基板が順次直列に配列され各回路基板上で光/電気変
換、電気/光変換を繰り返しながらシステムフレームに
組み込まれたすべての回路基板間に伝達される。
In order to solve such a problem and improve the operation speed of the parallel bus, use of an in-system optical connection technique called optical interconnection has been studied. The outline of the optical interconnection technology is described in "Seiji Uchida, Academic Lecture Meeting of Circuit Packaging 15C01, pp. 146-64". 201-
202 ”and“ Hisami Tomimuro. , "Current State and Trend of Optical Interconnection Technology", IEEE Tokyo Sect
ion DenshiTokyo No. 33 pp.
81-86, 1994], various forms are proposed depending on the configuration of the system. Among the optical interconnect technologies of various forms proposed in the past, Japanese Patent Application Laid-Open No. 2-41042 discloses Discloses an example in which an optical data transmission method using a high-speed, high-sensitivity light emitting / receiving device is applied to a data bus.
Light-emitting / light-receiving devices are placed on both sides of each circuit board,
There has been proposed a serial optical data bus for loop transmission between circuit boards, in which light emitting / receiving devices on adjacent circuit boards incorporated in a system frame are spatially coupled by light. In this method, an optical signal sent from one circuit board is optically / electrically converted by an adjacent circuit board,
Further, each circuit board is sequentially arranged in series, such that electric / optical conversion is performed once again on the circuit board and an optical signal is transmitted to the next adjacent circuit board, and optical / electric conversion and electric / optical conversion are performed on each circuit board. The data is transmitted between all the circuit boards incorporated in the system frame while repeating the conversion.

【0004】このため、信号伝達速度は各回路基板上に
配置された受光/発光デバイスの光/電気変換・電気/
光変換速度に依存すると同時にその制約を受ける。ま
た、各回路基板相互間のデータ伝送には各回路基板上に
配置された受光/発光デバイスによる、自由空間を介在
させた光結合が用いられているため、隣接する回路基板
表裏両面に配置されている発光/受光デバイスの光学的
位置合わせが行なわれすべての回路基板が光学的に結合
されている必要がある。また、各回路基板は自由空間を
介して光結合されているため、隣接する光データ伝送路
間に干渉(クロストーク)が発生しデータの伝送不良が
起きることが予想される。また、システムフレーム内の
環境、例えば埃などにより光信号が散乱することにより
データの伝送不良が起きることも予想される。さらに、
各回路基板が直列に配置されているため、いずれかのボ
ードが取り外された場合にはそこで接続が途切れてしま
い、それを補うための余分な回路基板が必要となる。す
なわち、回路基板を自由に抜き差しすることができず、
回路基板の数が固定されてしまうという問題がある。
For this reason, the signal transmission speed is controlled by the light / electric conversion / electricity / light / light conversion of the light receiving / light emitting device arranged on each circuit board.
It depends on the light conversion speed and at the same time is constrained. In addition, since data transmission between each circuit board is performed by optical coupling via a free space by a light receiving / light emitting device arranged on each circuit board, it is arranged on both front and back sides of an adjacent circuit board. It is necessary that the light emitting / receiving devices are optically aligned and all circuit boards are optically coupled. In addition, since each circuit board is optically coupled via a free space, it is expected that interference (crosstalk) will occur between adjacent optical data transmission paths and data transmission failure will occur. In addition, it is expected that data transmission failure occurs due to scattering of an optical signal due to an environment in the system frame, for example, dust or the like. further,
Since each circuit board is arranged in series, if any one of the boards is removed, the connection is interrupted there, and an extra circuit board is required to compensate for the disconnection. That is, the circuit board cannot be freely inserted and removed,
There is a problem that the number of circuit boards is fixed.

【0005】2次元アレイデバイスを利用し自由空間を
介して回路基板相互間のデータ伝送を行う技術が特開昭
61−196210号公報に開示されている。ここに開
示されている技術は、平行な2面を有する、光源に対置
されたプレートを具備し、プレート表面に配置された回
折格子、反射素子により構成された自由空間を利用した
光路を介して回路基板間を光学的に結合する方式であ
る。しかし、この方式では、1点から発せられた光を固
定された1点にしか接続できず電気バスのように全ての
回路基板間を網羅的に接続することができないという問
題がある。また、自由空間を利用しているので複雑な光
学系が必要となり、位置合わせなども難しいため、光学
素子の位置ずれに起因して、隣接する光データ伝送路間
の干渉(クロストーク)が発生しデータの伝送不良が起
きることが予想されるという問題もある。また、回路基
板間の接続情報はプレート表面に配置された回折格子、
反射素子により決定されるため、回路基板を自由に抜き
差しすることができず装置の拡張性が低いという問題も
ある。
A technique for transmitting data between circuit boards through a free space using a two-dimensional array device is disclosed in Japanese Patent Application Laid-Open No. 61-196210. The technology disclosed herein includes a plate having two parallel surfaces, opposed to a light source, a diffraction grating arranged on the plate surface, and an optical path using free space constituted by a reflective element. This is a method of optically coupling between circuit boards. However, this method has a problem that light emitted from one point can be connected to only one fixed point, and it is not possible to exhaustively connect all circuit boards like an electric bus. In addition, since a free space is used, a complicated optical system is required, and it is difficult to perform positioning. For example, interference (crosstalk) between adjacent optical data transmission lines occurs due to a displacement of an optical element. There is also a problem that data transmission failure is expected to occur. In addition, the connection information between the circuit boards is a diffraction grating placed on the plate surface,
Since it is determined by the reflective element, there is also a problem that the circuit board cannot be freely inserted and removed and the expandability of the device is low.

【0006】特開平4−134415号公報には、2次
元アレイデバイスを利用した回路基板相互間のデータ伝
送に関する他の技術が開示されている。この公報には、
空気よりも屈折率の高い透明な物質の中に、負の曲率を
有する複数個のレンズを上記物質の表面に形成したレン
ズアレイと、光源から出射した光を上記レンズアレイの
側面から入射せしめるための光学系とを組み込んで構成
した光信号伝送装置が開示されている。また、この公報
には、負の曲率を有する複数個のレンズの代わりに屈折
率の低い領域やホログラムを構成した光信号伝送方式も
開示されている。この方式では、側面から入射した光が
上記負の曲率を有する複数個のレンズやこれに代わる屈
折率の低い領域やホログラムの構成された部分から面上
に分配されて出射する作用を利用している。従って、光
の入射位置と複数個のレンズおよびこれに代わる屈折率
の低い領域やホログラムの構成された面上の出射位置と
の位置関係により出射信号の強度がバラツクことが考え
られる。また、側面から入射した光が、対向する側面か
ら抜け出てしまう割合も高いと考えられ、信号伝搬に利
用される光の利用効率は低いものと予想される。さら
に、面上に構成される負の曲率を有する複数個のレンズ
やこれに代わる屈折率の低い領域やホログラムの構成さ
れた位置に回路基板の光入力素子を配置する必要がある
ため、回路基板を配置するための自由度が少なく装置の
拡張性が低いという問題もある。
Japanese Patent Application Laid-Open No. 4-134415 discloses another technique relating to data transmission between circuit boards using a two-dimensional array device. In this publication,
In a transparent substance having a higher refractive index than air, a lens array in which a plurality of lenses having a negative curvature are formed on the surface of the substance, and light emitted from a light source is made to enter from a side surface of the lens array. An optical signal transmission device configured by incorporating the above optical system is disclosed. This publication also discloses an optical signal transmission system in which a region having a low refractive index or a hologram is formed instead of a plurality of lenses having a negative curvature. In this method, the light incident from the side is distributed on the surface from a plurality of lenses having the above negative curvature, a region having a low refractive index and a portion where the hologram is formed, and the light is emitted from the side. I have. Therefore, it is conceivable that the intensity of the outgoing signal varies depending on the positional relationship between the light incident position and the plurality of lenses and the low refractive index area and the outgoing position on the surface where the hologram is formed. In addition, it is considered that the ratio of light incident from the side surface to escape from the opposite side surface is high, and it is expected that the efficiency of use of light used for signal propagation is low. Further, it is necessary to dispose the optical input element of the circuit board at a position where a plurality of lenses having a negative curvature formed on the surface, a region having a low refractive index instead of the lens, and a hologram are formed. There is also a problem that the degree of freedom for arranging the devices is small and the expandability of the device is low.

【0007】これらの諸問題を解決する手段として、信
号光の入射ないし出射を担う複数の信号光入出力部と、
これら複数の信号光入出力部のうちのいずれかの信号光
入出力部から入射した信号光を拡散して伝播し他の信号
光入出力部から出射する、これら複数の信号光入出力部
相互間で伝達される光信号の共通信号路を形成してなる
光バス本体を備えたシート状の光データバスが考えられ
る。このシート状光データバスは、共通信号路において
入射した光信号を拡散して伝搬するものであるため、こ
のシート状光データバスに、受発光部が配置された複数
の回路基板を簡易な取付け方法で確実に光結合させるこ
とができるため、精密な光学的位置合わせを必要としな
いという利点がある。また、回路基板の数や取付け位置
を自由に変えることができるので、拡張性に富んだ自由
度の高いシステムを構築することができる。また、光信
号の伝送は伝送路内でのみ行われるため埃などに対する
耐環境性を有しており、光学的位置合わせを必要としな
いため温度変化などにも強いという長所をも備えてい
る。
As means for solving these problems, there are provided a plurality of signal light input / output units for inputting or outputting signal light,
The signal light input / output sections, which are input from any of the plurality of signal light input / output sections, diffuse and propagate, and emit from other signal light input / output sections. A sheet-shaped optical data bus provided with an optical bus main body that forms a common signal path for optical signals transmitted between the optical buses is conceivable. Since the sheet-shaped optical data bus diffuses and propagates an optical signal incident on a common signal path, a plurality of circuit boards on which light receiving and emitting units are arranged can be easily attached to the sheet-shaped optical data bus. Since the optical coupling can be ensured by the method, there is an advantage that precise optical alignment is not required. In addition, since the number of circuit boards and the mounting position can be freely changed, a highly scalable and highly flexible system can be constructed. Further, since the transmission of the optical signal is performed only in the transmission path, the optical signal has an environment resistance to dust and the like, and has an advantage that it is resistant to a temperature change due to no need for optical alignment.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記のシート
状光データバスにおいては、光データバス内のあらゆる
方向に光が拡散されるため、光の大半は受光素子の存在
しないところに放出されてしまう。従って、受光部にお
ける光強度が非常に弱くなってしまうため、信号伝送の
高速化や低消費電力化を図る上で問題がある。この問題
を解決するために、シート状光データバスの任意の辺に
設けられた光信号入射部より入射した光信号を、各光信
号入射部に対応して設けた光拡散部において拡散させ、
シート状光データバスで形成された光伝送路を介して、
光光信号入射部に対向して配置された光信号出射部に伝
搬する方式が考えられる。この方式では、光信号入射部
と光信号出射部の配置により各光信号入射部に対応した
光拡散部における光の拡散分布を制御することにより、
光伝送路を介して光信号を光信号出射部方向に有効に導
光することが可能となるため、シート状光データバスに
おける伝送効率が向上し信号伝送速度の高速化や低消費
電力化が可能となる。
However, in the above-mentioned sheet-shaped optical data bus, since light is diffused in all directions in the optical data bus, most of the light is emitted to a place where no light receiving element exists. I will. Therefore, the light intensity in the light receiving section becomes very weak, and thus there is a problem in increasing the speed of signal transmission and reducing power consumption. In order to solve this problem, an optical signal incident from an optical signal incident portion provided on an arbitrary side of the sheet-shaped optical data bus is diffused in a light diffusing portion provided for each optical signal incident portion,
Through an optical transmission path formed by a sheet-shaped optical data bus,
A method of propagating light to an optical signal output unit disposed opposite to the optical signal input unit is conceivable. In this system, by controlling the diffusion distribution of light in the light diffusion unit corresponding to each optical signal incidence unit by the arrangement of the optical signal incidence unit and the optical signal emission unit,
Since the optical signal can be effectively guided to the optical signal emitting portion through the optical transmission line, the transmission efficiency of the sheet-shaped optical data bus is improved, and the signal transmission speed is increased and the power consumption is reduced. It becomes possible.

【0009】このシート状光データバスの伝送速度をさ
らに高速化する方法として、多重化伝送方式を取り入れ
ることが考えられる。多重化伝送方式の一つとして光波
長多重化通信方式が知られている。従来の光波長多重化
通信方式では、例えば、特開平9−98137号公報に
開示されているように、複数の光信号を互いに異なる波
長の光信号に変換してこれら複数の光信号を多重化して
伝送することにより伝送路の伝送速度を実質的に複数倍
に向上させることができる。しかしながら、光波長多重
化通信方式においては、複数の波長を受/発信するため
の装置、具体的には複数の発信素子および特定の波長を
通過させる複数の波長フィルタを用意するか、あるいは
それらの素子を可変波長のものとすることが必要であ
り、また特定の波長に対応した複数の受信素子が必要と
なり、受信素子数の増加や構成の複雑化により装置のサ
イズが大きくなったり、コストの上昇を招いてしまうと
いう問題がある。本発明は、上記の事情に鑑み、信号伝
送速度が高く小型で低コストの光信号伝送装置およびそ
の光信号伝送装置を用いた信号処理装置を提供すること
を目的とする。
As a method of further increasing the transmission speed of the sheet-like optical data bus, it is conceivable to adopt a multiplex transmission system. An optical wavelength multiplex communication system is known as one of the multiplex transmission systems. In a conventional optical wavelength division multiplexing communication system, for example, as disclosed in Japanese Patent Application Laid-Open No. 9-98137, a plurality of optical signals are converted into optical signals having mutually different wavelengths, and these optical signals are multiplexed. , The transmission speed of the transmission path can be substantially improved several times. However, in the optical wavelength division multiplexing communication system, a device for receiving / transmitting a plurality of wavelengths, specifically, a plurality of transmitting elements and a plurality of wavelength filters for passing a specific wavelength are prepared, or a combination thereof is provided. It is necessary to use a device with a variable wavelength, and a plurality of receiving devices corresponding to a specific wavelength are required, so that the number of receiving devices and the complexity of the configuration increase the size of the device and reduce the cost. There is a problem that it causes a rise. In view of the above circumstances, an object of the present invention is to provide a small and low-cost optical signal transmission device having a high signal transmission speed and a signal processing device using the optical signal transmission device.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成する本
発明の光信号伝送装置は、光信号の伝送を担う光伝送媒
体であって、光伝送媒体への信号光の入射を担う複数の
送信ノードおよび光伝送媒体からの光信号の出射を担う
少なくとも1つの受信ノードを備えた光伝送媒体と、上
記複数の送信ノードそれぞれに対応して備えられた、光
信号を生成して生成した光信号を対応する送信ノードか
ら上記光伝送媒体内へ入射する複数の光信号送信部であ
って、上記複数の光信号送信部間で互いに波長の異なる
パルス列光信号を生成する光信号送信部と、上記受信ノ
ードに対応して備えられた、受信ノードに出射した光信
号を受信して光信号の波長に応じてレベルの異なる受信
信号を得るとともに、得られた受信信号に含まれる、上
記複数の光信号送信部で生成された複数の光信号に対応
する複数の信号成分の中から所望の信号成分を分離する
分離手段を有する光信号受信部とを備えたことを特徴と
する。
An optical signal transmission apparatus according to the present invention, which achieves the above object, is an optical transmission medium for transmitting an optical signal, and includes a plurality of optical transmission media for transmitting signal light to the optical transmission medium. An optical transmission medium including a transmission node and at least one reception node responsible for emitting an optical signal from the optical transmission medium; and an optical signal generated and generated corresponding to each of the plurality of transmission nodes. A plurality of optical signal transmission units that enter a signal from the corresponding transmission node into the optical transmission medium, an optical signal transmission unit that generates pulse train optical signals having different wavelengths from each other between the plurality of optical signal transmission units, Provided corresponding to the receiving node, while receiving an optical signal emitted to the receiving node to obtain a received signal of a different level according to the wavelength of the optical signal, included in the obtained received signal, the plurality of Optical signal transmission Characterized by comprising an optical signal receiving unit from a plurality of signal components corresponding to the plurality of optical signals generated by the part having a separating means for separating a desired signal component.

【0011】また、上記の目的を達成する本発明の信号
処理装置は、信号光の伝送を担う光伝送媒体であって、
光伝送媒体への信号光の入射を担う複数の送信ノードお
よび光伝送媒体からの光信号の出射を担う少なくとも1
つの受信ノードを備えた光伝送媒体と、上記複数の送信
ノードそれぞれに対応して備えられた、光信号を生成し
て生成した光信号を対応する送信ノードから上記光伝送
媒体内へ入射する複数の光信号送信部であって、上記複
数の光信号送信部間で互いに波長の異なるパルス列光信
号を生成する光信号送信部を分担して搭載してなる複数
枚の第1の回路基板と、上記受信ノードに対応して備え
られた、受信ノードに出射した光信号を受信して光信号
の波長に応じてレベルの異なる受信信号を得るととも
に、得られた受信信号に含まれる、上記複数の光信号送
信部で生成された複数の光信号に対応する複数の信号成
分の中から所望の信号成分を分離する分離手段を有する
光信号受信部を搭載してなる少なくとも1枚の第2の回
路基板と、上記第1の回路基板に搭載された光信号発信
部から出射した光信号が上記送信ノードから上記光伝送
媒体内に入射し上記受信ノードに出射した信号光が上記
第2の回路基板に搭載された光信号受信部に入射するよ
うに、上記第1の回路基板および上記第2の回路基板を
上記光伝送媒体に対し位置決めされた状態に支持する支
持体とを備えたことを特徴とする。
A signal processing apparatus according to the present invention for achieving the above object is an optical transmission medium for transmitting signal light,
A plurality of transmission nodes responsible for the injection of the signal light into the optical transmission medium and at least one transmission node responsible for the emission of the optical signal from the optical transmission medium
An optical transmission medium having one receiving node, and a plurality of optical transmission media provided corresponding to each of the plurality of transmitting nodes, for generating an optical signal and injecting the generated optical signal from the corresponding transmitting node into the optical transmission medium. A plurality of first circuit boards, each of which includes an optical signal transmitting unit that generates a pulse train optical signal having a different wavelength among the plurality of optical signal transmitting units. Provided corresponding to the receiving node, while receiving an optical signal emitted to the receiving node to obtain a received signal of a different level according to the wavelength of the optical signal, included in the obtained received signal, the plurality of At least one second circuit including an optical signal receiving unit having a separating unit for separating a desired signal component from a plurality of signal components corresponding to a plurality of optical signals generated by the optical signal transmitting unit; A substrate and the first An optical signal emitted from an optical signal transmitting unit mounted on a circuit board enters the optical transmission medium from the transmitting node, and a signal light emitted to the receiving node receives an optical signal received on the second circuit board. And a support for supporting the first circuit board and the second circuit board in a state where the first circuit board and the second circuit board are positioned with respect to the optical transmission medium.

【0012】[0012]

【発明の実施の形態】以下に、本発明の実施形態につい
て説明する。図1は、本発明の光信号伝送装置の第1の
実施形態の概要構成図である。図1に示すように、この
光信号伝送装置100は、光信号の伝送を担うシート状
の光伝送媒体10と、光信号を生成して光伝送媒体10
内へ入射する光信号送信部20a,20b,…,20f
と、光伝送媒体10からの光信号を受信する光信号受信
部40a,40b,…,40fとを備えている。光伝送
媒体10は、光伝送媒体10への信号光の入射を担う6
つの送信ノードA,B,…,Fおよび光伝送媒体10か
らの光信号の出射を担う6つの受信ノードA,B,…,
Fを備えている。なお、本実施形態では、各送信ノード
は受信ノードをも兼ねたものとして構成されているが、
送信ノードおよび受信ノードはそれぞれ専用のものとし
てもよい。また、送信ノードは複数備える必要がある
が、受信ノードは少なくとも1つ備えていればよい。
Embodiments of the present invention will be described below. FIG. 1 is a schematic configuration diagram of a first embodiment of the optical signal transmission device of the present invention. As shown in FIG. 1, an optical signal transmission device 100 includes a sheet-shaped optical transmission medium 10 for transmitting an optical signal, and an optical transmission medium 10 for generating an optical signal.
, 20f, optical signal transmitting units 20a, 20b,.
, And 40f for receiving an optical signal from the optical transmission medium 10. The optical transmission medium 10 is responsible for inputting signal light to the optical transmission medium 10.
, F and six receiving nodes A, B,..., Which are responsible for emitting optical signals from the optical transmission medium 10.
F is provided. In this embodiment, each transmitting node is configured to also serve as a receiving node.
The transmitting node and the receiving node may each be dedicated. Although it is necessary to provide a plurality of transmitting nodes, it is sufficient that at least one receiving node is provided.

【0013】光信号送信部20a,20b,…,20f
は、6つの送信ノードA,B,…,Fそれぞれに対応し
た回路基板50a,50b,…,50f上に設けられて
おり、光信号を生成して生成した光信号を対応する送信
ノードA,B,…,Fから光伝送媒体10内へ入射する
ものであって、6つの光信号送信部20a,20b,
…,20f間で互いに波長の異なるパルス列光信号を生
成することができるように、各光信号送信部20a,2
0b,…,20fは、互いに波長の異なるパルス列光信
号を出射する2種類の発光素子21,22をそれぞれ備
えている。光信号受信部40a,40b,…,40f
は、各受信ノードA,B,…,Fに対応した回路基板5
0a,50b,…,50f上に設けられており、送信ノ
ードA,B,…,Fから出射した光信号を受信して光信
号の波長に応じてレベルの異なる受信信号を得るととも
に、得られた受信信号に含まれる、6つの光信号送信部
20a,20b,…,20fで生成された6つの光信号
に対応する信号成分の中から所望の信号成分を分離する
分離手段(図示せず)を有している。
The optical signal transmitting units 20a, 20b,..., 20f
Are provided on circuit boards 50a, 50b,..., 50f respectively corresponding to the six transmission nodes A, B,..., F, and generate optical signals and transmit the generated optical signals to the corresponding transmission nodes A, B,..., F to enter the optical transmission medium 10 and include six optical signal transmission units 20a, 20b,
, 20f so that pulse train optical signals having different wavelengths from each other can be generated.
, 20f respectively include two types of light emitting elements 21 and 22 that emit pulse train optical signals having different wavelengths from each other. Optical signal receiving units 40a, 40b, ..., 40f
Is a circuit board 5 corresponding to each of the receiving nodes A, B,.
, 50f, and receives optical signals emitted from the transmitting nodes A, B,..., F to obtain received signals having different levels according to the wavelengths of the optical signals. Separating means (not shown) for separating desired signal components from the signal components corresponding to the six optical signals generated by the six optical signal transmitting units 20a, 20b,..., 20f included in the received signal. have.

【0014】本実施形態では、各光信号受信部40a,
40b,…,40fに、波長の異なる光信号に対して分
光透過率の異なるフィルタ(図示せず)と、このフィル
タを透過した光信号を受光する受光素子41と、受光素
子41により得られた受信信号の時系列的な信号レベル
を複数のしきい値と比較することにより受信信号の中か
ら所望の信号成分を分離するための信号分離回路(図示
せず)が備えられている。これらのフィルタおよび信号
分離回路は、本発明にいう分離手段に相当するものであ
る。光伝送媒体10は、光信号の伝送を担うシート形状
の、いわゆる光データバスであり、本実施形態では、材
料として、層厚0.5mmの光透過率の高いPMMA
(ポリメチルメタクリレート)が用いられている。この
ようなシート形状の光データバスは、予め型を用意しそ
の型を加熱してPMMAが十分に溶ける温度にしてお
き、十分に加熱され溶融状態にあるPMMAをその型に
流し込むことによって作製することができる。
In this embodiment, each optical signal receiving section 40a,
At 40b,..., 40f, a filter (not shown) having a different spectral transmittance for an optical signal having a different wavelength, a light receiving element 41 for receiving an optical signal transmitted through the filter, and a light receiving element 41 are provided. A signal separation circuit (not shown) for separating a desired signal component from the received signal by comparing a time-series signal level of the received signal with a plurality of thresholds is provided. These filters and signal separating circuits correspond to the separating means according to the present invention. The optical transmission medium 10 is a so-called optical data bus having a sheet shape for transmitting an optical signal. In the present embodiment, PMMA having a layer thickness of 0.5 mm and a high light transmittance is used as a material.
(Polymethyl methacrylate) is used. Such a sheet-shaped optical data bus is manufactured by preparing a mold in advance, heating the mold to a temperature at which PMMA can be sufficiently melted, and pouring PMMA in a sufficiently heated and molten state into the mold. be able to.

【0015】光伝送媒体10には、光信号送信部20
a,20b,…,20fから入射した光信号を光伝送媒
体10のシート面に沿って拡散させる光拡散部30a,
30b,…,30fが備えられている。本実施形態にお
けるこれら光拡散部30a,30b,…,30fは、本
発明にいう光拡散手段に相当するものである。本実施形
態では、光拡散部30a,30b,…,30fは透過型
の拡散体から形成されている。光拡散部30a,30
b,…,30fに用いられる拡散体は、入射光線を効率
よく拡散するものであればよく、シート形状あるいは任
意の形状を持つものでもよい。光拡散部30a,30
b,…,30fのシート厚み方向の厚みは、光伝送媒体
10のシート厚み全体を覆うものであることが望まし
い。光拡散部30a,30b,…,30fの大きさは、
位置ずれなどのばらつきが許容される数mm程度の大き
さとすることが好ましい。次に、本実施形態の光信号伝
送装置100の動作について説明する いま、送信ノードAの回路基板50a上の発光素子21
から、あるデータに基づいて変調された第1の光信号2
3aが出射されるとともに、送信ノードCの回路基板5
0c上の発光素子22から、他のデータに基づいて変調
された第2のパルス列光信号23bが出射されるものと
する。
The optical transmission medium 10 includes an optical signal transmitting unit 20
, 20f, the light diffusers 30a, which diffuse the optical signal incident along the sheet surface of the optical transmission medium 10.
, 30f are provided. The light diffusing portions 30a, 30b, ..., 30f in the present embodiment correspond to the light diffusing means according to the present invention. In this embodiment, the light diffusing portions 30a, 30b,..., 30f are formed of a transmissive diffuser. Light diffusion units 30a, 30
The diffusers used for b,..., 30f need only diffuse the incident light rays efficiently, and may have a sheet shape or an arbitrary shape. Light diffusion units 30a, 30
The thickness of b,..., 30f in the sheet thickness direction desirably covers the entire sheet thickness of the optical transmission medium 10. The size of the light diffusion units 30a, 30b,.
It is preferable that the size is about several mm, in which variation such as displacement is allowed. Next, the operation of the optical signal transmission device 100 according to the present embodiment will be described. The light emitting element 21 on the circuit board 50a of the transmission node A will now be described.
From the first optical signal 2 modulated based on certain data
3a is emitted and the circuit board 5 of the transmitting node C
It is assumed that the second pulse train optical signal 23b modulated based on other data is emitted from the light emitting element 22 on 0c.

【0016】図2は、図1に示した光信号伝送装置の光
信号送信部に備えられた2つの発光素子から出力される
光信号の強度を示すグラフである。この光信号伝送装置
100の各光信号送信部20a,20b,…,20fに
は、発振波長がλ1である発光素子21と、発振波長が
λ2である発光素子22が備えられている。図2に示す
ように、送信ノードAの発光素子21からは波長λ1の
パルス列光信号23a、送信ノードCの発光素子22か
らは波長λ2のパルス列光信号23bが出射される。こ
れら2種類のパルス列信号23a,23bは、それぞれ
一定レベルの光信号強度で出射される。すなわち、図2
に示すように、送信ノードAから出射される波長λ1の
パルス列光信号23aの“1”レベルの光信号強度は
“H1”、“0”レベルの光信号強度は“L1”であ
り、送信ノードCから出射される波長λ2のパルス列光
信号23bの“1”レベルの光信号強度は“H2”、
“0”レベルの光信号強度は“L2”である。
FIG. 2 is a graph showing the intensity of an optical signal output from two light emitting elements provided in the optical signal transmission unit of the optical signal transmission device shown in FIG. Each of the optical signal transmission units 20a, 20b,..., 20f of the optical signal transmission device 100 includes a light emitting element 21 having an oscillation wavelength of λ1 and a light emitting element 22 having an oscillation wavelength of λ2. As shown in FIG. 2, the light emitting element 21 of the transmission node A emits a pulse train optical signal 23a of wavelength λ1, and the light emitting element 22 of the transmission node C emits a pulse train optical signal 23b of wavelength λ2. These two types of pulse train signals 23a and 23b are respectively emitted with a constant optical signal intensity. That is, FIG.
As shown in the figure, the “1” level optical signal intensity and the “0” level optical signal intensity of the pulse train optical signal 23a of wavelength λ1 emitted from the transmission node A are “L1”, and the transmission node The “1” level optical signal intensity of the pulse train optical signal 23b of wavelength λ2 emitted from C is “H2”,
The optical signal intensity at the “0” level is “L2”.

【0017】送信ノードA,Cから出射されたパルス列
光信号23a,23bは、光伝送媒体10の端部に配置
された光拡散部30a,30cにそれぞれ入射する。光
拡散部30a,30cに入射したパルス列光信号23
a,23bは光伝送媒体10のシート面に沿って拡散
し、光伝送媒体10内を伝搬する。このとき、光信号の
光伝送媒体10の厚さ方向の広がりが全反射条件を満た
すものが光伝送媒体10内に伝搬される。光拡散部30
a,30bで拡散されたこれらの2種類のパルス列光信
号23a,23bは光伝送媒体10内で互いに重畳され
パルス列光信号24となって伝搬される。このパルス列
光信号24は光拡散部30a,30cに対向して設置さ
れた出射端より出射され、受信ノードDおよび受信ノー
ドFのそれぞれの受光素子41に入射する。このとき、
光信号の光伝送媒体10の厚さ方向の広がりが全反射条
件以下であれば、すべての入射光を利用することができ
る。
The pulse train optical signals 23a and 23b emitted from the transmission nodes A and C enter the light diffusion units 30a and 30c arranged at the ends of the optical transmission medium 10, respectively. Pulse train optical signal 23 incident on light diffusion units 30a and 30c
a and 23b diffuse along the sheet surface of the optical transmission medium 10 and propagate in the optical transmission medium 10. At this time, an optical signal in which the spread of the optical signal in the thickness direction of the optical transmission medium 10 satisfies the condition of total reflection is propagated into the optical transmission medium 10. Light diffusion unit 30
These two types of pulse train optical signals 23a and 23b diffused by a and 30b are superimposed on each other in the optical transmission medium 10 and propagated as a pulse train optical signal 24. The pulse train optical signal 24 is emitted from an emission end provided to face the light diffusion units 30a and 30c, and enters the respective light receiving elements 41 of the receiving nodes D and F. At this time,
If the spread of the optical signal in the thickness direction of the optical transmission medium 10 is equal to or less than the total reflection condition, all the incident light can be used.

【0018】パルス列光信号24は、受信ノードD,F
の各受光素子41の手前に備えられたフィルタを透過し
た後、受光素子41で受光され受信信号が得られる。得
られた受信信号は信号分離回路に入力される。信号分離
回路は受信信号の時系列的な信号レベルを複数のしきい
値と比較することにより、受信信号の中から所望の信号
成分を分離する。なお、ここでは、2つの発光素子から
出射された2つのパルス列光信号が光伝送媒体に入射さ
れた場合の例について説明したが、光信号の数は2つに
限られるものではなく任意の複数でよい。図3は、図1
に示した光信号伝送装置の各光信号受信部に備えられた
フィルタの分光透過率特性を示すグラフである。本実施
形態の光信号伝送装置100の各光信号受信部には、図
3に示すような分光透過率特性を持つフィルタが備え付
けられている。このフィルタは、波長λ1の光信号に対
する透過率がT1であり、波長λ2の光信号に対する透
過率がT2であるというように、波長の異なる光信号に
対して分光透過率が異なる特性を有している。
The pulse train optical signal 24 is transmitted to the receiving nodes D and F
After passing through a filter provided in front of each light receiving element 41, light is received by the light receiving element 41 and a reception signal is obtained. The obtained reception signal is input to the signal separation circuit. The signal separation circuit separates a desired signal component from the received signal by comparing a time-series signal level of the received signal with a plurality of thresholds. Here, an example in which two pulse train optical signals emitted from two light emitting elements are incident on the optical transmission medium has been described. However, the number of optical signals is not limited to two, and an arbitrary plural number may be used. Is fine. FIG.
6 is a graph showing spectral transmittance characteristics of filters provided in each optical signal receiving unit of the optical signal transmission device shown in FIG. Each optical signal receiving unit of the optical signal transmission device 100 of the present embodiment is provided with a filter having a spectral transmittance characteristic as shown in FIG. This filter has characteristics such that the transmittance for an optical signal of wavelength λ1 is T1, and the transmittance for an optical signal of wavelength λ2 is T2, and the spectral transmittance is different for optical signals of different wavelengths. ing.

【0019】このようなフィルタが備えられた各受信ノ
ードの受光素子41に、2種類のパルス列光信号23
a,23bが重畳されてなるパルス列光信号24が入射
されると、ノードAから出射された波長λ1のパルス列
光信号23aの信号成分は、出射された時の光信号強度
“H1”、“L1”が、フィルタ透過後各受光素子41
で受光された時にはそれぞれ“H1’”(=“H1×T
1”)、“L1’”(=“L1×T1”)となり、ノー
ドCから出射された波長λ2のパルス列光信号23bの
信号成分は、出射された時の光信号強度“H2”、“L
2”が、フィルタ透過後各受光素子41で受光された時
にはそれぞれ“H2’”(=“H2×T2”)、“L
2’”(=“L2×T2”)となる。これらの、互いに
波長の異なるパルス列光信号23a,23bは光伝送媒
体10内で重畳されてパルス列光信号24となっている
ので、受光素子41で受光して得られた受信信号の光強
度レベルはこれら“H1’”、“L1’”、“H
2’”、“L2’”の4レベルの信号成分が組み合わさ
れて、次に示すような波形の受信信号が得られる。
The light receiving element 41 of each receiving node provided with such a filter is provided with two types of pulse train optical signals 23.
When the pulse train optical signal 24 in which the pulse trains a and 23b are superimposed is incident, the signal components of the pulse train optical signal 23a having the wavelength λ1 emitted from the node A have the optical signal intensities “H1” and “L1” when emitted. "Indicates that each light receiving element 41 has passed through the filter.
When the light is received at “H1 ′” (= “H1 × T
1)) and “L1 ′” (= “L1 × T1”), and the signal components of the pulse train optical signal 23b having the wavelength λ2 emitted from the node C have the optical signal intensities “H2” and “L” when emitted.
When “2” is received by each light receiving element 41 after passing through the filter, “H2 ′” (= “H2 × T2”) and “L”, respectively.
2 ′ ”(=“ L2 × T2 ”). Since these pulse train optical signals 23a and 23b having different wavelengths are superposed in the optical transmission medium 10 to form the pulse train optical signal 24, the light receiving element 41 is provided. The light intensity level of the received signal obtained by receiving the light at "H1 '", "L1'", "H
By combining the four-level signal components 2 '"and"L2'", a received signal having the following waveform is obtained.

【0020】図4は、第1の実施形態の光信号伝送装置
の各受光素子により得られる受信信号の波形を示すグラ
フである。本実施形態の光信号伝送装置100の各受光
素子により得られる受信信号の波形は、図4に示すよう
に、A,B,C,Dの4つの光強度レベルを有する。こ
れら4つの光強度レベルA,B,C,Dのうちの互いに
隣り合う2つの光強度レベルの組合わせ、すなわちA
B,BC,CDの3つの組合わせについて、例えば、各
組合わせにおける光強度レベルの中央値をそれぞれのし
きい値T1,T2,T3として予め設定しておくことに
より、各光信号受信部に備えられた信号分離回路が、各
受光素子41により得られた受信信号の時系列的な信号
レベルをこれら3つのしきい値T1,T2,T3と比較
することにより、受信信号の中から元の2つのパルス列
光信号23a,23bを分離して取り出すことができ
る。
FIG. 4 is a graph showing a waveform of a reception signal obtained by each light receiving element of the optical signal transmission device according to the first embodiment. The waveform of the received signal obtained by each light receiving element of the optical signal transmission device 100 of this embodiment has four light intensity levels A, B, C, and D as shown in FIG. Of the four light intensity levels A, B, C, and D, a combination of two light intensity levels adjacent to each other, that is, A
For each of the three combinations of B, BC, and CD, for example, by presetting the median of the light intensity levels in each combination as the thresholds T1, T2, and T3, each optical signal receiving unit The provided signal separation circuit compares the time-series signal levels of the received signals obtained by the respective light receiving elements 41 with these three thresholds T1, T2, T3, thereby obtaining the original signal from the received signals. The two pulse train optical signals 23a and 23b can be separated and extracted.

【0021】すなわち、図4に示した受信信号の波形に
おける最も高いレベルAの信号成分は“H1’+H
2’”であり、2番目に高いレベルBの信号成分は“H
2’+L1’”であり、3番目に高いレベルCの信号成
分は“H1’+L2’”であり、最も低いレベルDの信
号成分は“L1’+L2’”である。従って、図4に示
すように、受信信号レベルがレベルDからレベルAに変
わったt1時点では、パルス列光信号23aが“L1”
から“H1”に変わるとともにパルス列光信号23bが
“L2”から“H2”に変わったことを意味している。
次に、受信信号レベルがレベルAからレベルBに変わっ
たt2時点では、パルス列光信号23aが“H1”から
“L1”に変わったことを意味している。次に、受信信
号レベルがレベルBからレベルCに変わったt3時点で
は、パルス列光信号23aが“L1”から“H1”に変
わるとともにパルス列光信号23bが“H2”から“L
2”に変わったことを意味している。以下同様にして、
この受信信号レベルの時系列的な変化から元のパルス列
光信号23a,23bを分離して取り出すことができ
る。
That is, the signal component of the highest level A in the waveform of the received signal shown in FIG.
2 ′ ”, and the second highest level B signal component is“ H ”.
2 ′ + L1 ′ ”, the third highest level C signal component is“ H1 ′ + L2 ′ ”, and the lowest level D signal component is“ L1 ′ + L2 ′ ”, and is shown in FIG. As described above, at the time t1 when the received signal level changes from the level D to the level A, the pulse train optical signal 23a changes to “L1”.
From "L2" to "H1" and the pulse train optical signal 23b from "L2" to "H2".
Next, at time t2 when the received signal level changes from level A to level B, it means that the pulse train optical signal 23a has changed from "H1" to "L1". Next, at time t3 when the received signal level changes from level B to level C, the pulse train optical signal 23a changes from "L1" to "H1" and the pulse train optical signal 23b changes from "H2" to "L".
2 ”.
The original pulse train optical signals 23a and 23b can be separated and extracted from the time-series change of the received signal level.

【0022】ただし、厳密には、受信信号の光強度レベ
ルは、入射部での結合効率、伝送効率、出射部での結合
効率などのファクタを掛け合わせたものとなるので、上
記説明のように単純に中央値をしきい値とするわけには
いかない場合もあるが、ここでは、説明を簡単にするた
めにこれらのファクタの影響についての説明は省略す
る。なお、本実施形態では、光信号受信部が、波長の異
なる光信号に対して分光透過率の異なるフィルタと、そ
のフィルタを透過した光信号を受光する受光素子とを備
えた方式の例について説明したが、上記の方式のほか
に、次に説明する方式もまた本発明の光信号伝送装置の
好ましい実施態様の一つである。すなわち、各光信号受
信部が、波長の異なる光信号に対して分光感度の異なる
受光素子を備えたものであり、分離手段が、上記受光素
子により得られた受信信号の時系列的な信号レベルを複
数のしきい値と比較することにより受信信号の中から所
望の信号成分を分離する方式である。
However, strictly speaking, the light intensity level of the received signal is determined by multiplying factors such as the coupling efficiency at the input part, the transmission efficiency, and the coupling efficiency at the output part. In some cases, it is not possible to simply use the median value as the threshold value, but the description of the influence of these factors is omitted here for the sake of simplicity. In this embodiment, an example of a system in which an optical signal receiving unit includes a filter having a different spectral transmittance for an optical signal having a different wavelength and a light receiving element for receiving an optical signal transmitted through the filter will be described. However, in addition to the above method, the method described below is also one of the preferred embodiments of the optical signal transmission device of the present invention. That is, each of the optical signal receiving units includes a light receiving element having a different spectral sensitivity to an optical signal having a different wavelength, and the separating unit operates in a time-series signal level of the received signal obtained by the light receiving element. Is compared with a plurality of thresholds to separate a desired signal component from the received signal.

【0023】この方式では、受光素子の、波長λ1の光
信号に対する感度がα1であり、波長λ2の光信号に対
する感度がα2であるとすると、波長λ1の光信号を受
光して得られる受信信号の光強度は、“H1’=H1×
α1”、“L1’=L1×α1”となり、波長λ2の光
信号を受光して得られる受信信号の光強度は、“H2’
=H2×α2”、“L2’=L2×α2”となる。前述
のように、これら4つの光強度レベルのうちの互いに隣
り合う2つの光強度レベルの組合わせ3組について、例
えば各組合わせにおける光強度レベルの中央値をしきい
値として予め設定しておくことにより、各光信号受信部
に備えられた信号分離回路が、各受光素子により得られ
た受信信号の時系列的な信号レベルを上記3つのしきい
値T1,T2,T3と比較することにより受信信号の中
から元の複数の光信号を分離して取り出すことができ
る。
In this method, assuming that the sensitivity of the light receiving element to the optical signal of wavelength λ1 is α1 and the sensitivity of the light receiving element to the optical signal of wavelength λ2 is α2, the received signal obtained by receiving the optical signal of wavelength λ1 is obtained. Is “H1 ′ = H1 ×
α1 ”,“ L1 ′ = L1 × α1 ”, and the light intensity of the received signal obtained by receiving the optical signal of wavelength λ2 is“ H2 ′
= H2 × α2 ”and“ L2 ′ = L2 × α2 ”As described above, three combinations of two adjacent light intensity levels among these four light intensity levels are, for example, each combination. By preliminarily setting the median of the light intensity levels at the threshold value as a threshold value, the signal separation circuit provided in each optical signal receiving unit allows the time-series signal level of the received signal obtained by each light receiving element. Is compared with the above three threshold values T1, T2, and T3, a plurality of original optical signals can be separated and extracted from the received signal.

【0024】次に、本発明の光信号伝送装置の第2の実
施形態について説明する。図5は、本発明の光信号伝送
装置の第2の実施形態を示す模式図である。この実施形
態の光信号伝送装置200には、図1に示したものと同
様の光伝送媒体10および回路基板50a,50b,
…,50hが備えられているほかに、各回路基板に備え
られた光信号送信部および光信号受信部(図示せず)で
生成される光信号の波長が相互に異なる波長となるよう
に各光信号送信部間の調停を行う調停部60と、調停部
60と各光信号送信部および各光信号受信部との間の情
報通知を担う信号線70とが備えられている。なお、本
実施形態における信号線70は、本発明にいう波長通知
手段に相当するものであり、各光信号送信部による光信
号の生成に先立って、各光信号送信部で生成される光信
号の波長を各光信号受信部に通知する役割を果たす。こ
の実施形態では、各光信号送信部が、その光信号送信部
で生成される光信号の波長を自在に変更することができ
るようになっている。各回路基板に対応する各送信ノー
ドおよび各受信ノードは、調停部60に対して光伝送媒
体10の使用権を獲得するだけでなく、複数の波長のう
ちどの波長が使用可能であるかについて問い合わせを行
う。調停部60は、各送信ノードおよび受信ノードから
の問い合せに対して、現在どの送信ノードがどの波長の
光信号を使用して送信中であり、どの受信ノードがどの
波長の光信号を受信中であるかについての情報を発信す
る。このような調停部60を設けることにより、複数の
送信ノードおよび複数の受信ノードの間で同時に複数の
光信号の送受信を円滑に行うことができる。
Next, a second embodiment of the optical signal transmission device of the present invention will be described. FIG. 5 is a schematic diagram showing a second embodiment of the optical signal transmission device of the present invention. The optical signal transmission device 200 of this embodiment has the same optical transmission medium 10 and circuit boards 50a, 50b, and 50 as those shown in FIG.
, 50h, and each of the optical signal transmitting sections and the optical signal receiving sections (not shown) provided on each of the circuit boards has a different wavelength so that the wavelengths of the optical signals are different from each other. An arbitration unit 60 for arbitrating between the optical signal transmission units, and a signal line 70 for notifying information between the arbitration unit 60 and each of the optical signal transmission units and each of the optical signal reception units are provided. Note that the signal line 70 in the present embodiment corresponds to the wavelength notifying means according to the present invention, and the optical signal generated by each optical signal transmitting unit prior to the generation of the optical signal by each optical signal transmitting unit. To notify each optical signal receiving unit of the wavelength. In this embodiment, each optical signal transmitting unit can freely change the wavelength of the optical signal generated by the optical signal transmitting unit. Each transmitting node and each receiving node corresponding to each circuit board not only acquires the right to use the optical transmission medium 10 to the arbitration unit 60, but also inquires about which wavelength among a plurality of wavelengths can be used. I do. The arbitration unit 60 responds to inquiries from the transmitting nodes and the receiving nodes by transmitting which of the transmitting nodes is currently using the optical signal of which wavelength, and which receiving node is currently receiving the optical signal of which wavelength. Disseminate information about whether there is. By providing such an arbitration unit 60, it is possible to smoothly transmit and receive a plurality of optical signals simultaneously between a plurality of transmitting nodes and a plurality of receiving nodes.

【0025】次に、本発明の光信号伝送装置の第3の実
施形態について説明する。図6は、本発明の光信号伝送
装置の第3の実施形態を示す模式図である。この実施形
態の光信号伝送装置300には、図1に示すようにシー
ト1層のみからなる光伝送媒体10とは異なり、シート
状の光伝送層310および光伝送層310を両側から挟
むクラッド層320からなる光伝送媒体層と光吸収層3
30とを複数層積層して形成した光伝送媒体340と、
光伝送媒体340の両端面に形成された光拡散部350
とが備えられている。このように、それぞれが光信号の
伝送を担う複数のシート状の光伝送層310が積層され
てなる光伝送媒体340を備えることにより、光信号伝
送装置300の信号伝送速度を大幅に増加させることが
できる。次に、本発明の信号処理装置の実施形態につい
て説明する。
Next, a third embodiment of the optical signal transmission device of the present invention will be described. FIG. 6 is a schematic diagram showing a third embodiment of the optical signal transmission device of the present invention. The optical signal transmission device 300 of this embodiment has a sheet-shaped optical transmission layer 310 and a clad layer sandwiching the optical transmission layer 310 from both sides unlike the optical transmission medium 10 having only one sheet as shown in FIG. Optical transmission medium layer and optical absorption layer 3 comprising 320
30 and an optical transmission medium 340 formed by laminating a plurality of layers;
Light diffusion portions 350 formed on both end surfaces of optical transmission medium 340
And are provided. As described above, the signal transmission speed of the optical signal transmission device 300 can be significantly increased by providing the optical transmission medium 340 in which the plurality of sheet-shaped optical transmission layers 310 each carrying the transmission of an optical signal are provided. Can be. Next, an embodiment of the signal processing device of the present invention will be described.

【0026】図7は、本発明の信号処理装置の一実施形
態を示す模式図である。この信号処理装置400には、
図6に示した光伝送装置と同様、光伝送層を複数層積層
して形成された、信号光の伝送を担う光伝送媒体410
と、パルス列光信号を生成する光信号送信部を分担して
搭載してなる4枚の第1の回路基板420と、複数の信
号成分の中から所望の信号成分を分離する分離手段を有
する光信号受信部を搭載してなる4枚の第2の回路基板
430と、第1の回路基板420および第2の回路基板
430を支持する支持体440とが備えられている。光
伝送媒体410は、光伝送媒体410への信号光の入射
を担う複数の送信ノードおよび光伝送媒体410からの
光信号の出射を担う少なくとも1つの受信ノードを備え
ている。第1の回路基板420には、複数の光信号送信
部(図示せず)および各種のVLSI420aなどの素
子が搭載されている。これら複数の光信号送信部は、上
記複数の送信ノードそれぞれに対応して備えられてお
り、光信号を生成して生成した光信号を対応する送信ノ
ードから光伝送媒体410内へ入射するものである。こ
れら光信号送信部は、上記複数の光信号送信部間で互い
に波長の異なるパルス列光信号を生成する。
FIG. 7 is a schematic diagram showing an embodiment of the signal processing device of the present invention. The signal processing device 400 includes:
As in the optical transmission apparatus shown in FIG. 6, an optical transmission medium 410 for transmitting signal light, which is formed by laminating a plurality of optical transmission layers.
A light having four first circuit boards 420 each having a shared optical signal transmitting unit for generating a pulse train optical signal and a separating means for separating a desired signal component from a plurality of signal components; There are provided four second circuit boards 430 on which a signal receiving unit is mounted, and a support body 440 supporting the first circuit board 420 and the second circuit board 430. The optical transmission medium 410 includes a plurality of transmission nodes responsible for inputting signal light to the optical transmission medium 410 and at least one reception node responsible for emitting optical signals from the optical transmission medium 410. On the first circuit board 420, a plurality of optical signal transmission units (not shown) and elements such as various VLSIs 420a are mounted. The plurality of optical signal transmission units are provided corresponding to the plurality of transmission nodes, respectively, and generate an optical signal and input the generated optical signal into the optical transmission medium 410 from the corresponding transmission node. is there. These optical signal transmitting units generate pulse train optical signals having different wavelengths from each other among the plurality of optical signal transmitting units.

【0027】第2の回路基板430は、上記受信ノード
に対応して備えられており、受信ノードから出射した光
信号を受信して光信号の波長に応じてレベルの異なる受
信信号を得るとともに、得られた受信信号に含まれる、
上記複数の光信号送信部で生成された複数の光信号に対
応する複数の信号成分の中から所望の信号成分を分離す
る分離手段を有する複数の光信号受信部(図示せず)お
よび各種のVLSI430aなどの素子が搭載されてい
る。これらの光伝送媒体、光信号送信部、および光信号
受信部の構成および動作は、図1から図6までを参照し
て説明した本発明の光伝送装置と同様であるので説明は
省略する。
The second circuit board 430 is provided corresponding to the receiving node, receives an optical signal emitted from the receiving node, and obtains a receiving signal having a different level according to the wavelength of the optical signal. Included in the obtained received signal,
A plurality of optical signal receiving units (not shown) having separating means for separating a desired signal component from a plurality of signal components corresponding to the plurality of optical signals generated by the plurality of optical signal transmitting units; An element such as VLSI 430a is mounted. The configurations and operations of the optical transmission medium, the optical signal transmitting unit, and the optical signal receiving unit are the same as those of the optical transmission device of the present invention described with reference to FIGS.

【0028】支持体440は、第1の回路基板420に
搭載された光信号発信部から出射した光信号が上記送信
ノードから光伝送媒体410内に入射し上記受信ノード
から出射した信号光が第2の回路基板430に搭載され
た光信号受信部に入射するように、第1の回路基板42
0および第2の回路基板430を光伝送媒体410に対
し位置決めされた状態に支持するものである。このよう
に、信号処理装置の中に、図1〜図6を参照して説明し
た光信号伝送装置を組み込むことにより、光信号の伝送
速度を高速化することができるので、を信号処理装置の
信号処理能力を向上させることができる。
The support 440 is configured such that the optical signal emitted from the optical signal transmitting unit mounted on the first circuit board 420 enters the optical transmission medium 410 from the transmitting node, and the signal light emitted from the receiving node is the optical signal. The first circuit board 42 so as to be incident on the optical signal receiving unit mounted on the second circuit board 430.
The zero and second circuit boards 430 are supported in a state where they are positioned with respect to the optical transmission medium 410. As described above, by incorporating the optical signal transmission device described with reference to FIGS. 1 to 6 into the signal processing device, the transmission speed of the optical signal can be increased. The signal processing ability can be improved.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
互いに波長の異なるパルス列光信号を送信することので
きる複数の発光素子を備えた複数の光信号送信部と、パ
ルス列光信号を受信して得られた受信信号に含まれる複
数の信号成分の中から所望の信号成分を分離する分離手
段を有する複数の光信号受信部とを備えたことにより、
光信号送受信部相互間の送受信を複数組間で同時に行う
ことが可能となり、信号伝送速度が高く小型で低コスト
の光信号伝送装置および信号処理装置を実現することが
できる。
As described above, according to the present invention,
A plurality of optical signal transmission units including a plurality of light emitting elements capable of transmitting pulse train optical signals having different wavelengths, and a plurality of signal components included in a reception signal obtained by receiving the pulse train optical signal By having a plurality of optical signal receiving units having a separating means for separating the desired signal component,
Since transmission and reception between the optical signal transmitting and receiving units can be performed simultaneously among a plurality of sets, a small and low-cost optical signal transmitting device and signal processing device having a high signal transmission speed can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光信号伝送装置の第1の実施形態の概
要構成図である。
FIG. 1 is a schematic configuration diagram of an optical signal transmission device according to a first embodiment of the present invention.

【図2】図1に示した光信号伝送装置の光信号送信部に
備えられた2つの発光素子から出力される光信号の強度
を示すグラフである。
FIG. 2 is a graph showing the intensity of an optical signal output from two light emitting elements provided in an optical signal transmission unit of the optical signal transmission device shown in FIG.

【図3】図1に示した光信号伝送装置の各光信号受信部
に備えられたフィルタの分光透過率特性を示すグラフで
ある。
FIG. 3 is a graph showing a spectral transmittance characteristic of a filter provided in each optical signal receiving unit of the optical signal transmission device shown in FIG.

【図4】第1の実施形態の光信号伝送装置の各受光素子
により得られる受信信号の波形を示すグラフである。
FIG. 4 is a graph showing a waveform of a reception signal obtained by each light receiving element of the optical signal transmission device according to the first embodiment.

【図5】本発明の光信号伝送装置の第2の実施形態を示
す模式図である。
FIG. 5 is a schematic diagram showing a second embodiment of the optical signal transmission device of the present invention.

【図6】本発明の光信号伝送装置の第3の実施形態を示
す模式図である。
FIG. 6 is a schematic diagram showing a third embodiment of the optical signal transmission device of the present invention.

【図7】本発明の信号処理装置の一実施形態を示す模式
図である。
FIG. 7 is a schematic diagram showing an embodiment of the signal processing device of the present invention.

【符号の説明】[Explanation of symbols]

10 光伝送媒体 20a,20b,…,20f 光信号送信部 21,22 発光素子 23a,23b,24 パルス列光信号 30a,30b,…,30f 光拡散部 40a,40b,…,40f 光信号受信部 41 受光素子 50a,50b,…,50h 回路基板 60 調停部 70 信号線 100,200,300 光信号伝送装置 310 光伝送層 320 クラッド層 330 光吸収層 340 光伝送媒体 350 光拡散部 400 信号処理装置 410 光伝送媒体 420,430 回路基板 420a,430a VLSI 440 支持体 Reference Signs List 10 optical transmission medium 20a, 20b, ..., 20f optical signal transmitting unit 21, 22 light emitting element 23a, 23b, 24 pulse train optical signal 30a, 30b, ..., 30f optical diffusing unit 40a, 40b, ..., 40f optical signal receiving unit 41 Light receiving elements 50a, 50b, ..., 50h Circuit board 60 Arbitration unit 70 Signal line 100, 200, 300 Optical signal transmission device 310 Optical transmission layer 320 Clad layer 330 Optical absorption layer 340 Optical transmission medium 350 Optical diffusion unit 400 Signal processing device 410 Optical transmission medium 420, 430 Circuit board 420a, 430a VLSI 440 Support

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光信号の伝送を担う光伝送媒体であっ
て、該光伝送媒体への信号光の入射を担う複数の送信ノ
ードおよび該光伝送媒体からの光信号の出射を担う少な
くとも1つの受信ノードを備えた光伝送媒体と、 前記複数の送信ノードそれぞれに対応して備えられた、
光信号を生成して生成した光信号を対応する送信ノード
から前記光伝送媒体内へ入射する複数の光信号送信部で
あって、前記複数の光信号送信部間で互いに波長の異な
るパルス列光信号を生成する光信号送信部と、 前記受信ノードに対応して備えられた、該受信ノードに
出射した光信号を受信して光信号の波長に応じてレベル
の異なる受信信号を得るとともに、得られた受信信号に
含まれる、前記複数の光信号送信部で生成された複数の
光信号に対応する複数の信号成分の中から所望の信号成
分を分離する分離手段を有する光信号受信部とを備えた
ことを特徴とする光信号伝送装置。
1. An optical transmission medium for transmitting an optical signal, comprising: a plurality of transmission nodes for transmitting signal light to the optical transmission medium; and at least one transmission node for outputting an optical signal from the optical transmission medium. An optical transmission medium including a receiving node, and provided corresponding to each of the plurality of transmitting nodes;
A plurality of optical signal transmitting units for generating an optical signal and injecting the generated optical signal from the corresponding transmitting node into the optical transmission medium, wherein the plurality of optical signal transmitting units have pulse train optical signals having different wavelengths from each other. An optical signal transmitting unit that generates a received signal, provided corresponding to the receiving node, receives an optical signal emitted to the receiving node, obtains a received signal having a different level according to the wavelength of the optical signal, and obtains the obtained signal. An optical signal receiving unit having a separating unit that separates a desired signal component from a plurality of signal components corresponding to the plurality of optical signals generated by the plurality of optical signal transmitting units included in the received signal. An optical signal transmission device, characterized in that:
【請求項2】 前記光信号受信部が、波長の異なる光信
号に対して分光透過率の異なるフィルタと、該フィルタ
を透過した光信号を受光する受光素子とを備えたもので
あり、前記分離手段が、前記受光素子により得られた受
信信号の時系列的な信号レベルを複数のしきい値と比較
することにより該受信信号の中から所望の信号成分を分
離するものであることを特徴とする請求項1記載の光信
号伝送装置。
2. An optical signal receiving unit comprising: a filter having a different spectral transmittance for an optical signal having a different wavelength; and a light receiving element for receiving an optical signal transmitted through the filter. Means for separating a desired signal component from the received signal by comparing a time-series signal level of the received signal obtained by the light receiving element with a plurality of thresholds. The optical signal transmission device according to claim 1.
【請求項3】 前記光信号受信部が、波長の異なる光信
号に対して分光感度の異なる受光素子を備えたものであ
り、前記分離手段が、前記受光素子により得られた受信
信号の時系列的な信号レベルを複数のしきい値と比較す
ることにより該受信信号の中から所望の信号成分を分離
するものであることを特徴とする請求項1記載の光信号
伝送装置。
3. The optical signal receiving section includes light receiving elements having different spectral sensitivities with respect to optical signals having different wavelengths, and the separating unit performs a time series of the receiving signal obtained by the light receiving elements. 2. The optical signal transmission device according to claim 1, wherein a desired signal component is separated from the received signal by comparing a target signal level with a plurality of threshold values.
【請求項4】 前記光信号送信部が、該光信号送信部で
生成される光信号の波長の変更が自在なものであって、 前記光信号送信部で生成される光信号の波長が相互に異
なる波長となるように複数の光信号送信部の間の調停を
行う調停部を備えたことを特徴とする請求項1記載の光
信号伝送装置。
4. The optical signal transmitting section is capable of changing the wavelength of an optical signal generated by the optical signal transmitting section, and the wavelengths of the optical signals generated by the optical signal transmitting section are mutually different. 2. The optical signal transmission device according to claim 1, further comprising an arbitration unit that arbitrates between the plurality of optical signal transmission units so as to have different wavelengths.
【請求項5】 前記光信号送信部による光信号の生成に
先立って、該光信号送信部で生成される光信号の波長を
前記光信号受信部に通知する波長通知手段を備えたこと
を特徴とする請求項1記載の光信号伝送装置。
5. A wavelength notifying means for notifying a wavelength of an optical signal generated by the optical signal transmitting section to the optical signal receiving section prior to generation of an optical signal by the optical signal transmitting section. The optical signal transmission device according to claim 1, wherein
【請求項6】 前記光伝送媒体が、シート形状を有する
ものであり、前記光信号送信部から入射した光信号を該
光伝送媒体のシート面に沿って拡散させる光拡散手段を
備えたことを特徴とする請求項1記載の光信号伝送装
置。
6. The optical transmission medium according to claim 1, wherein said optical transmission medium has a sheet shape, and said optical transmission medium includes an optical diffusion means for diffusing an optical signal incident from said optical signal transmission section along a sheet surface of said optical transmission medium. The optical signal transmission device according to claim 1, wherein:
【請求項7】 前記光伝送媒体が、それぞれが光信号の
伝送を担う複数のシートが積層されてなるものであるこ
とを特徴とする請求項6記載の光信号伝送装置。
7. The optical signal transmission device according to claim 6, wherein said optical transmission medium is formed by laminating a plurality of sheets each of which carries an optical signal.
【請求項8】 信号光の伝送を担う光伝送媒体であっ
て、該光伝送媒体への信号光の入射を担う複数の送信ノ
ードおよび該光伝送媒体からの光信号の出射を担う少な
くとも1つの受信ノードを備えた光伝送媒体と、 前記複数の送信ノードそれぞれに対応して備えられた、
光信号を生成して生成した光信号を対応する送信ノード
から前記光伝送媒体内へ入射する複数の光信号送信部で
あって、前記複数の光信号送信部間で互いに波長の異な
るパルス列光信号を生成する光信号送信部を分担して搭
載してなる複数枚の第1の回路基板と、 前記受信ノードに対応して備えられた、該受信ノードに
出射した光信号を受信して光信号の波長に応じてレベル
の異なる受信信号を得るとともに、得られた受信信号に
含まれる、前記複数の光信号送信部で生成された複数の
光信号に対応する複数の信号成分の中から所望の信号成
分を分離する分離手段を有する光信号受信部を搭載して
なる少なくとも1枚の第2の回路基板と、 前記第1の回路基板に搭載された光信号発信部から出射
した光信号が前記送信ノードから前記光伝送媒体内に入
射し前記受信ノードに出射した信号光が前記第2の回路
基板に搭載された光信号受信部に入射するように、前記
第1の回路基板および前記第2の回路基板を前記光伝送
媒体に対し位置決めされた状態に支持する支持体とを備
えたことを特徴とする信号処理装置。
8. An optical transmission medium for transmitting signal light, comprising: a plurality of transmission nodes for transmitting the signal light to the optical transmission medium; and at least one transmission node for outputting an optical signal from the optical transmission medium. An optical transmission medium including a receiving node, and provided corresponding to each of the plurality of transmitting nodes;
A plurality of optical signal transmitting units for generating an optical signal and injecting the generated optical signal from the corresponding transmitting node into the optical transmission medium, wherein the plurality of optical signal transmitting units have pulse train optical signals having different wavelengths from each other. A plurality of first circuit boards each of which is provided with an optical signal transmitting unit for generating an optical signal, and an optical signal that is provided corresponding to the receiving node and receives an optical signal emitted to the receiving node. While obtaining a received signal of a different level according to the wavelength of, included in the obtained received signal, a desired signal from among a plurality of signal components corresponding to a plurality of optical signals generated by the plurality of optical signal transmission units, At least one second circuit board on which an optical signal receiving unit having a separating unit for separating a signal component is mounted, and an optical signal emitted from an optical signal transmitting unit mounted on the first circuit board is Optical transmission from the transmitting node The optical transmission through the first circuit board and the second circuit board is performed so that the signal light incident on the body and emitted to the receiving node is incident on an optical signal receiving unit mounted on the second circuit board. And a support for supporting the medium in a state of being positioned with respect to the medium.
JP17214198A 1998-06-05 1998-06-05 Optical signal transmission apparatus and signal processing apparatus Expired - Fee Related JP3622509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17214198A JP3622509B2 (en) 1998-06-05 1998-06-05 Optical signal transmission apparatus and signal processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17214198A JP3622509B2 (en) 1998-06-05 1998-06-05 Optical signal transmission apparatus and signal processing apparatus

Publications (2)

Publication Number Publication Date
JPH11355249A true JPH11355249A (en) 1999-12-24
JP3622509B2 JP3622509B2 (en) 2005-02-23

Family

ID=15936335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17214198A Expired - Fee Related JP3622509B2 (en) 1998-06-05 1998-06-05 Optical signal transmission apparatus and signal processing apparatus

Country Status (1)

Country Link
JP (1) JP3622509B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970610B2 (en) 2002-03-25 2005-11-29 Canon Kabushiki Kaisha Optical transmission sheet, optoelectric apparatus, and optical transmission method
US7689129B2 (en) 2004-08-10 2010-03-30 Panasonic Corporation System-in-package optical transceiver in optical communication with a plurality of other system-in-package optical transceivers via an optical transmission line
US10181925B2 (en) * 2015-09-22 2019-01-15 Pascal Chretien Fault tolerant optical apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970610B2 (en) 2002-03-25 2005-11-29 Canon Kabushiki Kaisha Optical transmission sheet, optoelectric apparatus, and optical transmission method
US7689129B2 (en) 2004-08-10 2010-03-30 Panasonic Corporation System-in-package optical transceiver in optical communication with a plurality of other system-in-package optical transceivers via an optical transmission line
US10181925B2 (en) * 2015-09-22 2019-01-15 Pascal Chretien Fault tolerant optical apparatus

Also Published As

Publication number Publication date
JP3622509B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
JP3724215B2 (en) Optical signal transmission apparatus and signal processing apparatus
JP3651221B2 (en) Optical bus system and signal processing apparatus
JP3862794B2 (en) Optical bus and signal processing device
JP3666190B2 (en) Optical bus and signal processing device
US5987198A (en) Optical bus and optical bus production method including a plurality of light transmission paths
JP3622509B2 (en) Optical signal transmission apparatus and signal processing apparatus
JP3837980B2 (en) Optical branching device and optical bus circuit using the same
JP3988357B2 (en) Optical bus circuit board
JP2000111738A (en) Optical data bus and its manufacture and signal processor
JP3879222B2 (en) Optical transmission system and signal processing apparatus
JP3635878B2 (en) Optical data bus, optical data bus complex, and signal processing apparatus
JP3695055B2 (en) Optical data bus, optical data bus device, and signal processing device
JP3752977B2 (en) Optical data bus and opto-electric hybrid board
JP3815175B2 (en) Signal processing device
JP3933150B2 (en) Signal processing device
JP2002040302A (en) Optical bus circuit system
JP3744278B2 (en) Signal processing device
JP2001305395A (en) Optical transmission device
JP3896720B2 (en) Optical data bus and signal processing apparatus
JPH11202141A (en) Optical bus and signal processor
JPH11183757A (en) Optical bus system and signal processor
JP2001074960A (en) Optical data bus and signal processing device
JP3651131B2 (en) Optical bus device and signal processing device
JP3582328B2 (en) Optical data bus and signal processing device
JPH10282374A (en) Optical bus and signal processor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees