JPH11351835A - Method for extracting contour line of cutting edge by processing taken image of tool - Google Patents

Method for extracting contour line of cutting edge by processing taken image of tool

Info

Publication number
JPH11351835A
JPH11351835A JP10162166A JP16216698A JPH11351835A JP H11351835 A JPH11351835 A JP H11351835A JP 10162166 A JP10162166 A JP 10162166A JP 16216698 A JP16216698 A JP 16216698A JP H11351835 A JPH11351835 A JP H11351835A
Authority
JP
Japan
Prior art keywords
cutting edge
line
tool
image
extracting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10162166A
Other languages
Japanese (ja)
Inventor
Fujio Abe
富士夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP10162166A priority Critical patent/JPH11351835A/en
Publication of JPH11351835A publication Critical patent/JPH11351835A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for extracting the contour line of a cutting edge of a tool to obtain the contour line of the cutting edge, using multilevel picture data of a cutting edge photographed image for measuring the cutting edge wear degree of a tool. SOLUTION: Three or more line pixel pickup lines K11 -K14 intersecting in the cutting edge direction are extracted according to the cutting edge's orientation on a cutting edge multilevel picture of a tool, line pixel data on each line pixel pickup line are differentiated to obtain boundary candidate points between the tool cutting edge and background, a combination of points which forms a straight line most closely is selected among combinations of boundary candidate points as a guide straight line LG for the cutting edge, a differentiated picture according to the cutting edge on the cutting edge multilevel picture is obtained, and pixels having higher differentiated values are taken out along the guide straight line to obtain the cutting edge contour line of the object.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工具の撮像画像処
理による刃先部輪郭線抽出方法に関する。詳しくは、工
具の刃先部を撮像して、その撮像画像から刃先部摩耗度
を検出する計測装置において、撮像のための照明むらや
背景部の影響を排除して適用範囲の拡大を図った撮像画
像処理による刃先部輪郭線抽出方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting a cutting edge contour line by processing a captured image of a tool. More specifically, in a measuring device that images a blade edge portion of a tool and detects a degree of wear of the blade edge portion from the captured image, an imaging that aims to expand the applicable range by eliminating the influence of illumination unevenness and a background portion for imaging. The present invention relates to an improvement in a method for extracting a cutting edge contour line by image processing.

【0002】[0002]

【背景技術】一般に、工具の刃先部分を撮像した画像を
用いて、その刃先摩耗度を計測する場合には、刃先部撮
像画像データを一旦2値化処理した上で刃先部輪郭線を
抽出する手法を講じている。
2. Description of the Related Art Generally, when measuring the degree of wear of a cutting edge using an image of the cutting edge portion of a tool, an image of the cutting edge is extracted once after binarizing the image data of the cutting edge. We are taking a method.

【0003】この刃先部撮像画像データに対する2値化
処理は、刃先撮像画像を白色部分(工具刃先部側に該
当、輝度値255)と黒色部分(背景部側に該当、輝度
値0)とに明確に区分することにより、画像信号中から
不必要な雑音成分を除去して、工具刃先部の画像認識お
よび刃先部輪郭線の抽出を効果的かつ良好にするために
行われる。
[0003] The binarization processing of the image data of the cutting edge portion is performed by converting the captured image of the cutting edge into a white portion (corresponding to the tool edge portion, luminance value 255) and a black portion (corresponding to the background portion, luminance value 0). By clearly dividing the image signal, unnecessary noise components are removed from the image signal, and the image recognition of the tool edge and the extraction of the edge contour are performed effectively and well.

【0004】また、別の計測方法として、刃先撮像画像
相互のパターンマッチングによって刃先部輪郭線を求め
る手法も考えられる。しかし、この方法では、比較対象
としての特定された基本となる工具刃先画像パターンを
予め登録しておく必要があり、しかも、撮像される計測
対象としての工具自体の形状や位置などが登録画像とは
異なっていたりすると、両者相互の比較が不能になる惧
れがあるため、その適用範囲が限定されて必ずしも効果
的でない。
[0004] As another measurement method, a method of obtaining a cutting edge contour line by pattern matching between the picked-up images of the cutting edge can be considered. However, in this method, it is necessary to previously register the specified basic tool edge image pattern as the comparison target, and furthermore, the shape and position of the tool itself as the measurement target to be imaged are registered with the registered image. If they are different, the two may not be able to be compared with each other, so that the applicable range is limited and is not always effective.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記の刃先
部撮像画像データを2値化処理して刃先部輪郭線を認識
する際には、撮像画像中の白色部分と黒色部分、ひいて
は、工具刃先部側の該当部分と背景部側の該当部分とを
明確に区分するための輝度のしきい値の決定が問題とな
る。
By the way, when the above-mentioned image data of the cutting edge is binarized to recognize the contour of the cutting edge, a white portion and a black portion in the picked-up image and, consequently, a tool cutting edge. The determination of the threshold value of the luminance for clearly distinguishing the relevant part on the part side from the relevant part on the background part becomes a problem.

【0006】つまり、これらの各該当部分での輝度値の
相互間に区分可能な程度の大きな差異があるときには、
その認識にあらためて問題を生ずることがないが、通常
の場合、刃先部と背景部の各該当部分に対する撮像のた
めの照明むらや、各該当部分における色彩の如何等を含
んで、その撮像位置によっても両者の輝度差が変化する
ために、常に適正とされるしきい値の効果的な設定がで
きず、その結果、抽出される工具の刃先部輪郭線を刃先
摩耗度の測定に利用できない。
That is, when there is such a large difference as to be able to be distinguished between the luminance values in the respective portions,
There is no problem in recognizing it, but in the normal case, including the uneven illumination for imaging for each corresponding part of the cutting edge and the background, and the color of each corresponding part, etc., depending on the imaging position Also, since the difference in luminance between the two changes, the threshold value that is always appropriate cannot be set effectively. As a result, the contour of the cutting edge of the tool to be extracted cannot be used for measuring the degree of cutting edge wear.

【0007】上記不利を回避するために、従来において
は、照明方向および輝度の考慮や、背景色に対応した種
々の工夫を施すことがなされるが、このような改善手法
が装置自体のコスト高を招くにも拘らず、工具の刃先部
に特有の直線部分の明確な認識すらできず、従来のこの
ような2値化処理による画像処理手段では、例えば、図
1に示すように、刃先摩耗度の計測に対して不適切な2
値画像になる場合が多い。
Conventionally, in order to avoid the above disadvantages, the lighting direction and the luminance have to be considered, and various measures corresponding to the background color have been made. However, such an improvement method increases the cost of the apparatus itself. In spite of this, it is not possible to clearly recognize even a straight line portion specific to the cutting edge of the tool, and in the conventional image processing means using such binarization processing, for example, as shown in FIG. 2 inappropriate for degree measurement
Often a value image.

【0008】従来の上記問題は、工具の刃先部撮像画像
データを単純に2値化処理して刃先部輪郭線を抽出する
点に原因がある。そして、この問題点の改善のために
は、一つの手段として刃先部撮像画像の多値画像を用い
ればよいと考えられるが、この場合にも、該当する工具
刃先部の形状認識(提示される画像のどの部分が刃先部
に該当するのか等)が必ずしも容易ではなく、併せて、
処理時間も比較的長くなるという問題が残る。
The conventional problem described above is caused by the fact that the image data of the cutting edge of the tool is simply binarized to extract the contour of the cutting edge. In order to improve this problem, it is considered that a multi-valued image of the cutting edge portion captured image may be used as one means. In this case, the shape recognition (presentation) of the corresponding tool cutting edge portion is also considered. It is not always easy to determine which part of the image corresponds to the blade edge, etc.
There remains a problem that the processing time is relatively long.

【0009】本発明の目的は、上記従来の欠点に鑑み、
刃先部撮像画像の多値画像データを用い、これを効果的
かつ可及的短時間内に処理可能にして所期の刃先部輪郭
線を得られるようにした工具の撮像画像処理による刃先
部輪郭線抽出方法を提供することにある。
In view of the above-mentioned conventional disadvantages, an object of the present invention is to provide
Using the multi-valued image data of the image of the cutting edge, processing it effectively and within the shortest possible time so that the desired cutting edge contour can be obtained. It is to provide a line extraction method.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の撮像画像処理による刃先部輪郭線抽出方法
では、刃先部の多値画像に刃先の向きに応じた複数の線
画素取り出し線を抽出し、かつ、各線画素取り出し線上
の線画素データを微分処理して刃先部と背景部との境界
候補点を求め、各境界候補点の組み合せを選択して刃先
部のガイド直線とし、さらに、刃先部多値画像の刃先の
向きに応じた微分画像を求め、ガイド直線に沿って微分
値の大きい画素を取り出すことで刃先部輪郭線を得るよ
うにしたものである。
In order to achieve the above-mentioned object, a method for extracting a contour line of a cutting edge by picked-up image processing according to the present invention comprises extracting a plurality of line pixels corresponding to the direction of the cutting edge from a multivalued image of the cutting edge. Extract a line, and obtain a boundary candidate point between the cutting edge portion and the background portion by differentiating the line pixel data on each line pixel extraction line, select a combination of each boundary candidate point and set a guide straight line of the cutting edge portion, Further, a differential image corresponding to the direction of the blade edge of the blade edge multi-valued image is obtained, and a pixel having a large differential value is extracted along a guide straight line to obtain a blade edge contour line.

【0011】具体的には、工具の刃先部を撮像した多値
画像に対し、前記刃先の向きに応じて刃先方向に交差し
かつ画像座標軸に平行な3本以上の線画素取り出し線を
抽出する過程と、前記各線画素取り出し線上の線画素デ
ータを微分して工具刃先部と背景部との境界候補点をそ
れぞれに求めた上で、各境界候補点の組み合せの中から
最も直線上にある点の組み合せを選択して刃先部のガイ
ド直線とする過程と、前記刃先部多値画像の刃先の向き
に応じた微分画像を求めるとともに、前記ガイド直線に
沿って微分値の大きい画素を取り出して刃先部輪郭線と
する過程と、を少なくとも含むことを特徴としている。
More specifically, three or more line extraction lines that intersect in the direction of the cutting edge and are parallel to the image coordinate axis in accordance with the direction of the cutting edge are extracted from the multivalued image obtained by imaging the cutting edge of the tool. The process and the line pixel data on the line pixel extraction line are differentiated to determine the boundary candidate points between the tool edge portion and the background portion, respectively, and then the point on the straightest line from the combination of the boundary candidate points And selecting a combination of the two to form a guide straight line of the cutting edge portion, and obtaining a differential image corresponding to the direction of the cutting edge of the multi-valued image of the cutting edge portion, and extracting a pixel having a large differential value along the guide straight line to obtain a cutting edge. And forming at least a part contour line.

【0012】また、以上の工具の撮像画像処理による刃
先部輪郭線抽出方法において、撮像画像信号から雑音信
号を除去することを特徴としている。
Further, in the above-described method for extracting a cutting edge contour line by processing a captured image of a tool, a noise signal is removed from the captured image signal.

【0013】従って、本発明による工具の撮像画像処理
による刃先部輪郭線抽出方法では、工具の刃先部多値画
像に刃先の向きに応じて刃先方向に交差しかつ画像座標
軸に平行な3本以上の複数本の線画素取り出し線を抽出
し、かつ、各線画素取り出し線上の線画素データを微分
して工具刃先部と背景部との境界候補点を求め、各境界
候補点の組み合せの中から最も直線上にある点の組み合
せを選択して刃先部のガイド直線とし、さらに、刃先部
多値画像の刃先の向きに応じた微分画像を求め、ガイド
直線に沿って微分値の大きい画素を取り出して刃先部輪
郭線を得るようにしたので、撮像のための照明むらや背
景部の影響が効果的に排除される。これにより、目的と
する明確に区分された刃先部輪郭線を迅速かつ容易に得
ることができる。
Therefore, in the method for extracting a contour of a cutting edge portion by processing a captured image of a tool according to the present invention, three or more cutting edge portions of a multivalued image of a cutting edge portion of a tool that intersect with the cutting edge direction in accordance with the direction of the cutting edge and are parallel to the image coordinate axis. Of the plurality of line pixel extraction lines, and the line pixel data on each line pixel extraction line is differentiated to obtain a boundary candidate point between the tool edge portion and the background portion. Select a combination of points on the straight line to be the guide straight line of the blade edge part, further obtain a differential image according to the direction of the blade edge of the blade edge multi-valued image, take out a pixel with a large differential value along the guide straight line Since the contour of the cutting edge is obtained, the effects of uneven illumination and background for imaging are effectively eliminated. This makes it possible to quickly and easily obtain the intended clearly defined cutting edge contour.

【0014】[0014]

【発明の実施の形態】以下、本発明にかかる工具の撮像
画像処理による刃先部輪郭線抽出方法の好ましい実施の
一形態につき、添付図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a method for extracting a cutting edge contour line by image processing of a tool according to the present invention will be described below in detail with reference to the accompanying drawings.

【0015】本実施形態の刃先部輪郭線抽出方法は、先
にも述べた如く、刃先部撮像画像の2値化処理による問
題点を是正するために、刃先部の多値画像を用い、その
画像処理手法を改善したものであり、次のような手段を
講ずる。
As described above, the cutting edge contour line extraction method of this embodiment uses a multi-valued image of the cutting edge to correct the problem caused by the binarization processing of the image of the cutting edge. It is an improvement of the image processing method and takes the following measures.

【0016】まず、照明手段によって直接照明されてい
る計測対象である工具の刃先部を撮像し、該当刃先部の
方向(上下左右の何れか)データとともに、撮像された
画像データをコンピュータなどの演算装置に取り込む。
この場合、背景側よりも照明に近付けられている該当刃
先部が白色に表現されているものとする。
First, an image of the cutting edge portion of a tool to be measured which is directly illuminated by the illuminating means is taken, and the image data taken together with the direction (either up, down, left or right) data of the corresponding cutting edge portion is calculated by a computer or the like. Take in the device.
In this case, it is assumed that the corresponding blade edge portion closer to the illumination than the background side is expressed in white.

【0017】次に、工具刃先部の方向に対応して刃先方
向に交差しかつ画像座標軸に平行な3本以上、ここで
は、4本の線画素取り出し線を抽出し、その各線画素取
り出し線上の線画素データを抽出する。図2は、横軸方
向をX軸、縦軸方向をY軸にした512×480画素の
場合の画像座標を説明するための図であり、ここでは、
工具の刃先部が上または下向きであればY軸方向と平行
な線画素取り出し線を抽出し、その線画素取り出し線上
の線画素データを抽出し、左または右向きであればX軸
方向と平行な線画素取り出し線を抽出し、その線画素取
り出し線上の線画素データを抽出する。
Next, three or more, here, four line pixel extraction lines, which intersect with the direction of the cutting edge corresponding to the direction of the tool edge and are parallel to the image coordinate axis, are extracted. Extract line pixel data. FIG. 2 is a diagram for explaining image coordinates in the case of 512 × 480 pixels where the horizontal axis direction is the X axis and the vertical axis direction is the Y axis.
If the cutting edge of the tool is upward or downward, a line pixel extraction line parallel to the Y-axis direction is extracted, and line pixel data on the line pixel extraction line is extracted. If left or right, a line parallel to the X-axis direction is extracted. A line pixel extraction line is extracted, and line pixel data on the line pixel extraction line is extracted.

【0018】図3は、4本の線画素取り出し線K11,K
12,K13,K14と、次に述べる微分された境界候補点
(図において「−」で示されている)および求められた
工具刃先部の直線ガイドLGの実際例とを示すものであ
る。図3に示す実際例の場合には、工具刃先部が上向き
であるから刃先方向に交差する4本のY軸方向の線画素
取り出し線K11,K12,K13,K14上の線画素データを
取り込むようにする。このとき、各線画素データのX座
標は任意であってよい。なお、以下の説明においては、
工具の刃先部が上向きの場合についてのみ特定して述べ
るが、刃先部のその他の向きの場合にもこれに準拠す
る。
FIG. 3 shows four line pixel extraction lines K 11 and K 11 .
12, and K 13, K 14, described below differentiated boundary candidate points (in Fig. "-" the indicated by) of the linear guide L G of the tool cutting edge that is and asked shows an actual example is there. In the case of the actual example shown in FIG. 3, since the tool edge is upward, the four line pixels on the Y-axis direction intersecting in the direction of the edge are line pixels K 11 , K 12 , K 13 , and K 14. Try to capture data. At this time, the X coordinate of each line pixel data may be arbitrary. In the following description,
Although only the case where the cutting edge of the tool is upward is specified and described, the case where the cutting edge is in other directions is also compliant.

【0019】次に、各線画素データの微分値ΔPを次式
(1)で計算して求める。
Next, the differential value ΔP of each line pixel data is calculated and calculated by the following equation (1).

【0020】[0020]

【数1】 (Equation 1)

【0021】ここで、PK,Y:線画素データKのY座標
値の画素の輝度値(0〜255,8bitの場合) n:線画素の数 Y:Y座標値である。
Here, P K, Y : luminance value of the pixel of the Y coordinate value of the line pixel data K (0 to 255,8 bits) n: number of line pixels Y: Y coordinate value.

【0022】この計算結果から、図3の左端に示す線画
素データの微分値ΔPは、例えば、図4の波形のように
なる。
From this calculation result, the differential value ΔP of the line pixel data shown at the left end of FIG. 3 becomes, for example, a waveform shown in FIG.

【0023】引続き、図3の工具刃先部の輝度が背景よ
り大きいことから、それぞれの各線画素データについ
て、その微分値が正の部分に属する各ピークを大きい順
に数点抽出した上で、各点の座標(X、Y)を記録して
おく。
Subsequently, since the brightness of the tool edge portion in FIG. 3 is higher than the background, for each line pixel data, several peaks belonging to a positive portion with a differential value are extracted in ascending order. (X, Y) are recorded.

【0024】ここで、Xは線画素データKにおける既知
のX座標である。この場合、直接照明されている工具刃
先部側については、比較的明るいために白く表現され、
一方、背景部側については、これよりも暗いために黒く
表現される。従って、刃先部と背景部との境界部分の微
分値は、刃先部が上向きまたは左向きのときに正、下向
きまたは右向きのときに負になる。
Here, X is a known X coordinate in the line pixel data K. In this case, the tool edge that is directly illuminated is expressed in white because it is relatively bright.
On the other hand, the background portion is expressed as black because it is darker. Therefore, the differential value at the boundary between the cutting edge and the background is positive when the cutting edge is upward or left, and negative when the cutting edge is downward or right.

【0025】次に、図3における工具刃先部のガイド直
線LGを求めるために、図5に示すように、上記各線画
素データから3本以上複数本の組み合せを作る。すなわ
ち、図5を参照して、組み合せ線画素データの内で、X
座標最小X0の線画素データをK0とし、かつ、X座標最
大X1の線画素データをK1とし、その間のX座標Xi
i’の線画素データをKi,Ki’とする。
Next, in order to obtain the guide straight line L G of the tool cutting edge in FIG. 3, as shown in FIG. 5, making the combination of the plurality of three or more from the each line pixel data. That is, referring to FIG. 5, in the combination line pixel data, X
The line pixel data having the minimum coordinate X 0 is K 0 , the line pixel data having the maximum X coordinate X 1 is K 1, and the X coordinate X i ,
Let the line pixel data of X i ′ be K i , K i ′.

【0026】また、X座標最小X0の中で微分して選ん
だ境界候補値DK0,e0の座標を(X0、Ye0)とする。
ここで、e0=1〜nk0、nk0はk0上の境界候補値の数
である。同様にして、X座標最大X1上の境界候補値D
K1,e1の座標を(X1、Ye1)、e1=1〜nk1として順
次に選ぶ。そして、 これらの2点間を通る直線上の中間
部線画素KiのX座標Xi上のY座標Yiを次式(2)で
計算して求める。
The coordinates of the boundary candidate value D K0, e0 selected by differentiating the minimum X coordinate X 0 are defined as (X 0 , Ye 0 ).
Here, e 0 = 1 to n k0 and n k0 are the number of boundary candidate values on k 0 . Similarly, the boundary candidate value D on the X coordinate maximum X 1
K1, e1 coordinates of (X 1, Ye 1), sequentially selected as e 1 = 1~n k1. Then, determined by calculating the Y-coordinate Y i on the X-coordinate X i of the intermediate portion line pixel K i on the straight line passing between these two points in the following equation (2).

【0027】[0027]

【数2】 (Equation 2)

【0028】また、中間部の線画素データKi上にあっ
て(2)式の計算値Yi *に最も近い境界候補値DKiYi
を求めた上で、この境界候補値DKiYiとY座標Yi
の差の値EKiを次式(3)または(3’)で計算して求
める。
Also, the boundary candidate values D Ki , Yi that are on the line pixel data K i in the middle and are closest to the calculated value Y i * of equation (2).
, And the difference E Ki between the boundary candidate values D Ki , Yi and the Y coordinate Y i is calculated by the following equation (3) or (3 ′).

【0029】[0029]

【数3】 (Equation 3)

【0030】さらに、各線画素データK0 とK1間にあ
るその他の中間部線画素データKi’の全てについて
も、同様に差の値EKi’を求め、かつ、その総和値Ek
を次式(4)で計算して求める。
Further, for all other intermediate line pixel data K i ′ between each line pixel data K 0 and K 1 , the difference value E Ki ′ is similarly obtained, and the total value E k is obtained.
Is calculated by the following equation (4).

【0031】[0031]

【数4】 (Equation 4)

【0032】このようにして、全ての組み合せ線画素デ
ータについての値EKを求めた後、それらの中で値EK
最小の組み合せを求める。この組み合せによる直線が図
3に例示する工具刃先部のガイド直線LGに相当する。
なお、線画素データの組み合せ数rが異なる場合には、
その数に対応して値EKの重みを変えればよく、例え
ば、組み合せ数rが小さければ値EKの重みをr/nと
する。
After the values E K for all the combination line pixel data have been obtained in this way, the combination having the minimum value E K among them is obtained. Straight by the combination corresponds to the guide straight line L G of the tool cutting edge illustrated in FIG.
If the number r of combinations of line pixel data is different,
What is necessary is just to change the weight of the value E K according to the number. For example, if the number r of combinations is small, the weight of the value E K is set to r / n.

【0033】次に、工具刃先部の撮像画像データの微分
画像を求めてエッジ強調(即ち、微分画像では、画素エ
ッジ部の輝度が強調されて高くなる)を行う。なお、こ
のときの微分方向は、該当刃先部の向きに対応して、先
にも述べたように、刃先部が上向きまたは左向きの場合
はY方向、下向きまたは右向きの場合はX方向に変え
る。図6は工具刃先部の撮像画像データの微分画像の例
である。
Next, a differential image of the picked-up image data of the tool edge is obtained to perform edge enhancement (that is, in the differential image, the luminance of the pixel edge portion is enhanced and increased). The differential direction at this time is changed to the Y direction when the blade edge is upward or left, and to the X direction when it is downward or right, as described above, corresponding to the direction of the corresponding blade edge. FIG. 6 is an example of a differential image of the captured image data of the tool edge.

【0034】その後、上記ガイド直線LGを根拠にし
て、その付近の上記微分画像での微分値の大きい各画素
座標、つまり、輝度の高い各画素エッジ部をそれぞれに
抽出し、その抽出された各画素エッジ部間を結ぶと、図
7に示すような、最終的に求めようとする工具の刃先部
輪郭線LRが得られる。すなわち、このように計測した
刃先部輪郭線を基準にして、工具における刃先部の摩耗
状況など、いわゆるチッピング状態とその量などを容易
に判定し得る。
[0034] Then, in the grounds of the guide straight line L G, the pixel coordinates large differential value of the above differential image of near, that is, extracts high luminance pixel edge portions to each, is the extracted When connecting the respective pixel edge portions, as shown in FIG. 7, the cutting edge contour line L R of the tool to be finally Seek is obtained. That is, the so-called chipping state and the amount thereof, such as the wear state of the cutting edge of the tool, can be easily determined based on the cutting edge contour measured in this manner.

【0035】なお、その他にも、上記撮像画像データの
微分処理に際しては、雑音信号の除去のためにスムージ
ングを行い、かつ、対象画素を中心にして3個以上の画
素を抽出して、その輝度値の平均値を対象画素の輝度値
にすることができる。
In addition, at the time of differentiation of the captured image data, smoothing is performed to remove a noise signal, and three or more pixels are extracted centering on the target pixel, and the luminance is extracted. The average value can be used as the luminance value of the target pixel.

【0036】[0036]

【発明の効果】以上、詳述した通り、本発明の刃先部輪
郭線抽出方法によれば、工具の刃先部多値画像に刃先の
向きに応じて刃先方向に交差する3本以上の複数本の線
画素取り出し線を抽出してから、各線画素データを微分
して工具刃先部と背景部との境界候補点を求めた上で、
各境界候補点の組み合せの中から最も直線上にある点の
組み合せを選択して刃先部のガイド直線とし、さらに、
刃先部多値画像の刃先の向きに応じた微分画像を求める
とともに、ガイド直線に沿って微分値の大きい画素を取
り出すようにしたので、工具刃先部の撮像のための照明
むらや背景部の影響を良好に排除でき、結果的には、目
的とする明確に区分された刃先部輪郭線を迅速かつ容易
に得られる。
As described above in detail, according to the cutting edge part contour extraction method of the present invention, a multi-valued image of a cutting edge part of a tool includes a plurality of three or more lines intersecting in the cutting direction in accordance with the direction of the cutting edge. After extracting the line pixel extraction line of, after differentiating each line pixel data to obtain a boundary candidate point between the tool edge and the background,
From the combinations of candidate boundary points, select the combination of the points on the straightest line and use it as the guide straight line for the cutting edge.
In addition to obtaining a differential image corresponding to the direction of the cutting edge of the multi-valued image of the cutting edge and extracting pixels with a large differential value along the guide straight line, the influence of uneven illumination and background for imaging of the tool cutting edge is obtained. Can be satisfactorily eliminated, and consequently, the intended clearly divided cutting edge contour can be obtained quickly and easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】工具刃先の撮像画像を従来通りに2値化処理し
て認識する場合の画像状態の例を示す図である。
FIG. 1 is a diagram illustrating an example of an image state in a case where a captured image of a tool edge is binarized and recognized in a conventional manner.

【図2】本発明に用いる画像座標の説明図である。FIG. 2 is an explanatory diagram of image coordinates used in the present invention.

【図3】本発明における4本の線画素と微分された境界
候補点および求められた工具刃先部のガイド直線の実際
例とを示す合成された図である。
FIG. 3 is a composite diagram showing four line pixels according to the present invention, a differentiated boundary candidate point, and an actual example of a guide straight line of a tool cutting edge obtained.

【図4】図3に示す線画素データの微分例を示す波形図
である。
FIG. 4 is a waveform chart showing a differential example of the line pixel data shown in FIG.

【図5】図3に示す直線ガイドを求めるための説明図で
ある。
FIG. 5 is an explanatory diagram for obtaining a straight guide shown in FIG. 3;

【図6】本発明における画像処理後の微分画像例を示す
図である。
FIG. 6 is a diagram illustrating an example of a differential image after image processing according to the present invention.

【図7】本発明によって求められた工具の刃先部輪郭線
を示す図である。
FIG. 7 is a view showing a cutting edge contour of a tool obtained by the present invention.

【符号の説明】[Explanation of symbols]

11〜K14…線画素取り出し線 K0,K1,Ki…線画素データ LG…ガイド直線 LR…刃先部輪郭線K 11 ~K 14 ... linear pixel retrieving lines K 0, K 1, K i ... line pixel data L G ... guide straight line L R ... cutting edge contour

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 工具の刃先部を撮像した多値画像に対
し、前記刃先の向きに応じて刃先方向に交差しかつ画像
座標軸に平行な3本以上の線画素取り出し線を抽出する
過程と、 前記各線画素取り出し線上の線画素データを微分して工
具刃先部と背景部との境界候補点をそれぞれに求めた上
で、各境界候補点の組み合せの中から最も直線上にある
点の組み合せを選択して刃先部のガイド直線とする過程
と、 前記刃先部多値画像の刃先の向きに応じた微分画像を求
めるとともに、前記ガイド直線に沿って微分値の大きい
画素を取り出して刃先部輪郭線とする過程と、を少なく
とも含むことを特徴とする工具の撮像画像処理による刃
先部輪郭線抽出方法。
A step of extracting three or more line pixel extraction lines that intersect in the direction of the cutting edge according to the direction of the cutting edge and are parallel to the image coordinate axis for a multivalued image obtained by imaging the cutting edge of the tool; After differentiating the line pixel data on each line pixel extraction line to determine the boundary candidate points between the tool edge and the background, respectively, the combination of the points on the straightest line from the combinations of the boundary candidate points is determined. A step of selecting a guide straight line of the blade edge portion, and obtaining a differential image corresponding to the direction of the blade edge of the blade edge portion multi-valued image, extracting a pixel having a large differential value along the guide straight line, and obtaining a blade edge portion contour line. And a method of extracting a cutting edge contour line by processing a captured image of a tool.
【請求項2】 請求項1に記載の工具の撮像画像処理に
よる刃先部輪郭線抽出方法において、 撮像画像信号から雑音信号を除去することを特徴とする
工具の撮像画像処理による刃先部輪郭線抽出方法。
2. A method according to claim 1, wherein a noise signal is removed from a captured image signal. 2. A method according to claim 1, wherein the noise signal is removed from the captured image signal. Method.
JP10162166A 1998-06-10 1998-06-10 Method for extracting contour line of cutting edge by processing taken image of tool Withdrawn JPH11351835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10162166A JPH11351835A (en) 1998-06-10 1998-06-10 Method for extracting contour line of cutting edge by processing taken image of tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10162166A JPH11351835A (en) 1998-06-10 1998-06-10 Method for extracting contour line of cutting edge by processing taken image of tool

Publications (1)

Publication Number Publication Date
JPH11351835A true JPH11351835A (en) 1999-12-24

Family

ID=15749288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10162166A Withdrawn JPH11351835A (en) 1998-06-10 1998-06-10 Method for extracting contour line of cutting edge by processing taken image of tool

Country Status (1)

Country Link
JP (1) JPH11351835A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019558A (en) * 2008-07-08 2010-01-28 J-Net:Kk Measurement position setting device
JP2014169961A (en) * 2013-03-05 2014-09-18 Takako:Kk Tool inspection method and tool inspection apparatus
US11162899B2 (en) 2019-03-19 2021-11-02 Jtekt Corporation Wear amount measuring device and wear amount measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019558A (en) * 2008-07-08 2010-01-28 J-Net:Kk Measurement position setting device
JP2014169961A (en) * 2013-03-05 2014-09-18 Takako:Kk Tool inspection method and tool inspection apparatus
US11162899B2 (en) 2019-03-19 2021-11-02 Jtekt Corporation Wear amount measuring device and wear amount measuring method

Similar Documents

Publication Publication Date Title
CN111179243A (en) Small-size chip crack detection method and system based on computer vision
CN100357959C (en) Facial parts position detection device, method for detecting facial parts position, and program for detecting facial parts position
JP2745764B2 (en) Position recognition device
JP3545506B2 (en) Specific color area extraction method and specific color area removal method
CN111354047B (en) Computer vision-based camera module positioning method and system
JP2002228423A (en) Tire detecting method and device
CN110807763A (en) Method and system for detecting ceramic tile surface bulge
CN114863492A (en) Method and device for repairing low-quality fingerprint image
CN110009615A (en) The detection method and detection device of image angle point
CN112419207A (en) Image correction method, device and system
JP2011165170A (en) Object detection device and program
JP3814353B2 (en) Image segmentation method and image segmentation apparatus
JPH11351835A (en) Method for extracting contour line of cutting edge by processing taken image of tool
JP2981382B2 (en) Pattern matching method
JP3627249B2 (en) Image processing device
JPH11185039A (en) Image recognition based measuring method and recording medium
JPH08161508A (en) Pattern detecting method
JP2005250786A (en) Image recognition method
JP3358997B2 (en) Engraved mark identification device
CN110954002A (en) Optical fiber diameter measuring method
JP2000357287A (en) Method and device for number plate recognition
JP2710685B2 (en) Defect detection method by visual inspection
JPH08159712A (en) Pattern recognition method
CN113160181B (en) Stacking profile counting method based on image recognition
TWI450572B (en) Computing system and method for scanning a boundary of an image of an object

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906