JPH11337652A - Seismic center device for geology prospecting - Google Patents

Seismic center device for geology prospecting

Info

Publication number
JPH11337652A
JPH11337652A JP11065723A JP6572399A JPH11337652A JP H11337652 A JPH11337652 A JP H11337652A JP 11065723 A JP11065723 A JP 11065723A JP 6572399 A JP6572399 A JP 6572399A JP H11337652 A JPH11337652 A JP H11337652A
Authority
JP
Japan
Prior art keywords
amplitude
elastic wave
exploration
coefficient
prospecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11065723A
Other languages
Japanese (ja)
Other versions
JP3998366B2 (en
Inventor
Jun Kawakami
純 川上
Hiroshi Imai
博 今井
Hiroshige Arai
浩成 荒井
Katsuya Sasaki
加津也 佐々木
Hidehiko Maehata
英彦 前畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Hitachi Zosen Corp
Original Assignee
Taisei Corp
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Hitachi Zosen Corp filed Critical Taisei Corp
Priority to JP06572399A priority Critical patent/JP3998366B2/en
Publication of JPH11337652A publication Critical patent/JPH11337652A/en
Application granted granted Critical
Publication of JP3998366B2 publication Critical patent/JP3998366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To extend a prospecting range, and to propagate an elastic wave with proper amplitude to prospecting a natural ground. SOLUTION: A seismic center device for geology prospect measures the reflection wave or the refraction wave due to the prospecting ground of an elastic wave which is generated from a seismic center device 4 for prospecting the geology of a natural ground. The device is provided with a metal small-gauge wire 8 that is arranged in an earthquake-generating container 6 and is quickly dissolved and vaporized by electric energy being quickly supplied, an explosive substance 9 that is filled into the earthquake-generating container 6 and is exploded by dissolving and vaporizing the metal small-gauge wire 8, and a supply device for supplying the electric energy to the metal small-gauge wire 8. When the amplitude of the elastic wave in the prospecting natural ground is set to A, distance from a seismic center position to the prospecting natural ground is set to L, a coefficient regarding the amplitude A of the elastic wave and the distance L is set to α, a coefficient regarding the distance of the elastic wave is set to n, and a coefficient regarding the capacity and amplitude of the explosive substance is set to m, the capacity QA of the explosive substance is represented by as QA=[(A×L<n> )/α]<1/n> . In this case, the coefficient α should be set to 770<=α<=4,000, and an attenuation coefficient n should be set to 1<=n<=3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トンネル施工時な
どにおいて、地質探査法による震源として、電気エネル
ギーを用いて弾性波を発生させる地質探査用震源装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic source apparatus for generating an elastic wave using electric energy as an epicenter by a geological exploration method at the time of constructing a tunnel or the like.

【0002】[0002]

【従来の技術】一般に、トンネル施工など、地山の掘削
を必要とする作業の場合、その施工に影響を与えるよう
な地質変化を予め探査する必要がある。従来、この探査
方法には弾性波探査法と呼ばれるものがあり、この方法
は、例えばトンネル側壁で発破を行い、その際に発生し
た弾性波が破砕帯や地質変化面、すなわち弾性波速度の
変化面で反射あるいは屈折して戻ってきた弾性波を受震
し、前方の地質を探査するものである。しかしこの方法
では、火薬による発破作業を行なうため危険が伴うとい
う問題がある。
2. Description of the Related Art Generally, in the case of work that requires excavation of ground, such as tunnel construction, it is necessary to search for geological changes that affect the construction in advance. Conventionally, there is an exploration method called elastic wave exploration method, in which blasting is performed, for example, on the side wall of a tunnel, and the elastic waves generated at that time are crushed zones or geological change surfaces, that is, changes in elastic wave velocity. It receives the elastic wave reflected or refracted from the surface and returns, and explores the geology ahead. However, this method has a problem that blasting operation with explosives involves danger.

【0003】そのため、震源に火薬の爆発に代えて、電
気エネルギーにより金属などを溶融気化させる放電破壊
装置を利用し、その膨張衝撃力で弾性波を発生させるこ
とが提案されている。
[0003] Therefore, it has been proposed to use an electric discharge breakdown device that melts and vaporizes a metal or the like by electric energy instead of explosive explosive at the epicenter, and generate an elastic wave by the expansion impact force.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記放電破壊
装置では、衝撃力により発生する弾性波の伝播範囲が狭
く探査範囲が限定されるとともに、探査可能な範囲(距
離)が正確に把握できず、必要な探査範囲をカバーでき
ないという問題があった。本発明は、上記課題を解決し
て、探査範囲を拡大できるとともに探査範囲に適正な弾
性波を伝播させることができる地質探査用震源装置を提
供することを目的とする。
However, in the above-described discharge breakdown device, the propagation range of the elastic wave generated by the impact force is narrow, the search range is limited, and the searchable range (distance) cannot be accurately grasped. However, there was a problem that the required exploration range could not be covered. An object of the present invention is to solve the above problems and to provide a geological exploration hypocenter apparatus capable of expanding an exploration range and propagating an appropriate elastic wave to the exploration range.

【0005】[0005]

【課題を解決するための手段】本発明における課題を解
決するために請求項1記載の発明は、探査地山を伝播す
る弾性波を発生させ、その反射波または屈折波を測定し
て地山の地質を探査する地質探査用震源装置であって、
起震容器と、この起震容器内に配置されて短時間に供給
される電気エネルギーにより急激に溶融気化される溶融
気化物質と、起震容器内に充填されて溶融気化物質の溶
融気化により爆発あるいは急速燃焼される爆発性物質
と、前記溶融気化物質に電気エネルギーを供給する電気
エネルギー供給装置とを具備し、探査地山での弾性波の
振幅をA、震源位置から探査地山までの距離をL、弾性
波の振幅Aと距離Lに関する係数をα、弾性波の減衰係
数をn、爆発性物質の容量と振幅に関する係数をmとし
た場合、爆発性物質の容量Q Aを、QA=[(A×Ln
/α]1/mとし、この係数αを770≦α≦4000と
し、減衰係数nを1≦n≦3としたものである。
[MEANS FOR SOLVING THE PROBLEMS]
The invention of claim 1 propagates the exploration ground to determine
And the reflected or refracted wave is measured.
A geological exploration source device for exploring the geology of
Vibration container and placed in this container to supply in a short time
Is rapidly melted and vaporized by the electric energy
Dissolves the vaporized material and the molten
Explosive substances that explode or burn rapidly due to vaporization
And electricity for supplying electrical energy to the molten vaporized material.
Equipped with an energy supply device,
Amplitude is A, distance from epicenter to exploration ground is L, elasticity
The coefficient relating to the wave amplitude A and the distance L is α, and the attenuation coefficient of the elastic wave is
Where n is the number and m is the coefficient for the volume and amplitude of the explosive substance.
The explosive substance volume Q ATo QA= [(A × Ln)
/ Α]1 / mAnd this coefficient α is defined as 770 ≦ α ≦ 4000
The damping coefficient n is set to 1 ≦ n ≦ 3.

【0006】上記構成によれば、電気エネルギーによる
溶融気化物質の溶融気化で爆発または高速燃焼される爆
発性物質を使用するので、より大きい衝撃力が得られて
探査範囲を拡大することができる。また必要最小限の爆
発性物質の容量で適正な弾性波を発生させることができ
るので、不必要に大きい衝撃力を発生させることなく安
全に作業することができ、またランニングコストの低減
をはかることができる。
[0006] According to the above configuration, an explosive substance that is exploded or burned at a high speed by melting and vaporizing the molten vaporized substance by electric energy is used, so that a larger impact force can be obtained and the exploration range can be expanded. In addition, it is possible to generate appropriate elastic waves with the minimum necessary volume of explosive substances, so that it is possible to work safely without generating unnecessarily large impact force and to reduce running costs. Can be.

【0007】また請求項2記載の発明は、上記構成にお
いて、探査地山に必要な弾性波の振幅をBとした場合
に、爆発性物質の容量QBを、[(B×L3)/α]1/m
≧QB≧[(B×L)/α]1/mの範囲とし、mを0.6
6≦m≦0.75としたものである。上記構成によれ
ば、爆発性物質の容量を上記範囲にすることにより、探
査地山に必要な弾性波の振幅を確保することができ、正
確な探査が可能となる。
[0007] According to a second aspect of the invention, in the above configuration, when the amplitude of the acoustic wave necessary for exploration areas mountains and B, and the capacity Q B of explosive materials, [(B × L 3) / α] 1 / m
≧ Q B ≧ [(B × L) / α] In the range of 1 / m , m is 0.6
6 ≦ m ≦ 0.75. According to the above configuration, by setting the volume of the explosive substance in the above range, the amplitude of the elastic wave necessary for the exploration ground can be secured, and accurate exploration can be performed.

【0008】[0008]

【発明の実施の形態】以下、本発明に係る地質探査用震
源装置を備えた地質探査装置の実施の形態を図1〜図4
に基づいて説明する。図1,図2に示すように、この地
質探査装置1は、トンネル側壁2に形成した装着孔3に
装着する震源装置4と、震源装置4に電気エネルギーを
供給する電気エネルギー供給装置(以下単に「供給装
置」と称す)5と、震源装置4による衝撃力により発生
した弾性波の、探査範囲の地山からの反射弾性波を検出
する加速度センサ(受震器)21とで構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a geological exploration apparatus provided with a geological exploration hypocenter apparatus according to the present invention will be described below with reference to FIGS.
It will be described based on. As shown in FIGS. 1 and 2, this geological exploration device 1 includes a hypocenter device 4 mounted in a mounting hole 3 formed in a tunnel side wall 2, and an electric energy supply device (hereinafter simply referred to as an electric energy supply device) that supplies electric energy to the hypocenter device 4. 5), and an acceleration sensor (seismic receiver) 21 for detecting an elastic wave generated by the impact force of the hypocenter device 4 and reflected from the ground in the exploration range. .

【0009】前記震源装置4は、起震容器6と、この起
震容器6内に挿入されるとともに一対の電極7同士を接
続する溶融気化物質である金属細線(例えば銅:Cuが
用いられる)8と、起震容器6内に封入されて金属細線
8の溶融気化により起爆(短時間の燃焼も含む)されこ
の衝撃力により地山に弾性波を伝達する爆発性物質9
(たとえばニトロ系化合物)9とから構成されている。
The hypocenter device 4 includes a vibrating vessel 6 and a thin metal wire (for example, copper: Cu) which is a molten vaporized substance inserted into the vibrating vessel 6 and connecting a pair of electrodes 7 to each other. And an explosive substance 9 which is enclosed in the seismic vessel 6 and is exploded (including short-time combustion) by melting and vaporization of the fine metal wires 8 to transmit elastic waves to the ground by the impact force.
(For example, a nitro compound) 9.

【0010】前記供給装置5は、電源10にエネルギー
制御回路11を介して接続されたコンデンサ12と、こ
のコンデンサ12に充電蓄積された電気エネルギーを放
電するための放電スイッチ13とを備えている。ところ
で、爆発性物質9の容量QAと、弾性波の振幅A0は、A
0=α×QA m…式で表わされる。ここでαは弾性波と
距離に関する係数、mは容量と振幅に関する係数であ
り、0.66≦m≦0.75の範囲にある。また、地山
を伝播する弾性波の振幅は減衰し、その減衰量は距離L
の1〜3乗に反比例する(L-n:1≦n≦3)。したが
って、震源装置4から探査地山までの距離Lにおける弾
性波の振幅Aは、A=A0×L-n…式となる。さらに
式と式から、 A=α×QA m×L-n α=A/(QA m×L-n) α=(A×Ln)/QA m…式となる。
The supply device 5 includes a capacitor 12 connected to a power supply 10 via an energy control circuit 11, and a discharge switch 13 for discharging electric energy charged and stored in the capacitor 12. By the way, the capacity Q A of the explosive substance 9 and the amplitude A 0 of the elastic wave are A
0 = α × Q A m ... Here, α is a coefficient related to the elastic wave and the distance, and m is a coefficient related to the capacity and the amplitude, and is in the range of 0.66 ≦ m ≦ 0.75. Further, the amplitude of the elastic wave propagating in the ground is attenuated, and the attenuation is the distance L
(L -n : 1 ≦ n ≦ 3). Therefore, the amplitude A of the elastic wave at the distance L from the hypocenter device 4 to the search site is expressed as A = A 0 × L −n . Furthermore from equation and equation, and A = α × Q A m × L -n α = A / (Q A m × L -n) α = (A × L n) / Q A m ... Equation.

【0011】また、距離Lにおける弾性波の所定の振幅
Aを得るための爆発性物質9の容量QAは、 QA m=(A×Ln)/α QA=[(A×Ln)/α]1/m…式となる。つぎに、
実験により得られた距離Lと振幅Aの関係を図3に示
す。ここで使用された爆発性物質9はニトロ系化合物で
あり、m=0.75、n=1.5、QA=140(g)
であることから、係数αは式から、α=(A0×L
-1.5)/1400.75=2500となる。
Further, the capacity Q A explosive material 9 for obtaining a predetermined amplitude A of the acoustic wave in the distance L, Q A m = (A × L n) / α Q A = [(A × L n ) / Α] 1 / m ... Next,
FIG. 3 shows the relationship between the distance L and the amplitude A obtained by the experiment. The explosive substance 9 used here is a nitro compound, m = 0.75, n = 1.5, Q A = 140 (g)
From the equation, the coefficient α is given by α = (A 0 × L
-1.5 ) / 140 0.75 = 2500.

【0012】したがって、探査地山までの距離Lと、探
査に必要な弾性波の振幅Aが決定されれば、爆発性物質
9の容量を式から求めることができる。なお、ここで
α=2500としたが、爆発性物質の容量と振幅に関す
る係数mを0.66≦m≦0.75の範囲で選択すると
ともに、減衰係数nを1≦n≦3の範囲で選択すること
により、式から求められる数値の範囲、すなわち77
0≦α≦4000の範囲で係数αを変更することがで
き、好ましくはα=2500となる。
Accordingly, if the distance L to the search site and the amplitude A of the elastic wave required for the search are determined, the capacity of the explosive substance 9 can be obtained from the equation. Here, α = 2,500, but the coefficient m relating to the volume and amplitude of the explosive substance is selected in the range of 0.66 ≦ m ≦ 0.75, and the damping coefficient n is set in the range of 1 ≦ n ≦ 3. By selection, the range of numerical values determined from the equation, ie, 77
The coefficient α can be changed in the range of 0 ≦ α ≦ 4000, and preferably α = 2,500.

【0013】次いで加速度センサー21の受震感度また
はバックグランドのノイズレベルを考慮して、距離Lに
おいて必要な弾性波の振幅Bは、B≦α×QB m×L-n
Aであり、探査地山での減衰係数nが1≦n≦3である
ことから、 α×QB m×L-3≦B≦α×QB m×L-1…式 式から爆発性物質9の容量QBを求めると、 (α×QB m×L-3)/B≦1≦(α×QB m×L-1)/B α/(B×L3)≦1/QB m≦α/(B×L) (B×L3)/α≧QB m≧(B×L)/α [(B×L3)/α]1/m≧QB≧[(B×L)/α]1/m
…式となり、α=2500、係数mを0.66≦m≦
0.75とすることで、震源装置4から距離Lだけ離れ
た探査地山において、加速度センサー21により計測可
能な弾性波の振幅が得るために必要な爆発性物質9の容
量QBが求められことから、爆発性物質9の容量が多
すぎてトンネルに悪影響を及ぼしたり、ランニングコス
トが高くなることなく、また反対に少なすぎて計測が不
能になることがない最適な爆発性物質9の容量QBで探
査が行える。なお、ここで減衰係数nは、1≦n≦3の
範囲であるが、n<1すなわち{QB<[(B×L)/
α]1/m}で弾性波を増幅する土質は存在せず、反対に
3<nすなわち{[(B×L3)/α]1/m<Q B}で弾
性波を大幅に減衰させる土質はないためである。
Next, the acceleration sensor 21SeismicSensitivity
Is the distance L in consideration of the background noise level.
The required amplitude B of the elastic wave is B ≦ α × QB m× L-n=
A, and the attenuation coefficient n at the exploration ground is 1 ≦ n ≦ 3
Therefore, α × QB m× L-3≦ B ≦ α × QB m× L-1… Formula From the formula, the capacity Q of the explosive substance 9BIs obtained, (α × QB m× L-3) / B ≦ 1 ≦ (α × QB m× L-1) / B α / (B × LThree) ≦ 1 / QB m≦ α / (B × L) (B × LThree) / Α ≧ QB m≧ (B × L) / α [(B × LThree) / Α]1 / m≧ QB≧ [(B × L) / α]1 / m
..., where α = 2500 and the coefficient m is 0.66 ≦ m ≦
By setting it to 0.75, it is separated from the epicenter device 4 by the distance L.
Can be measured by the acceleration sensor 21
Of explosive substance 9 necessary to obtain a functioning elastic wave amplitude
Quantity QBIs requiredToTherefore, the volume of the explosive substance 9 is large.
Too bad for tunnels and running costs
Measurement is not too high, and on the contrary
Optimum volume Q of explosive substance 9 that does not become functionalBSearch for
Can be inspected. Here, the damping coefficient n is 1 ≦ n ≦ 3.
Range, but n <1 or ΔQB<[(B × L) /
α]1 / mThere is no soil that amplifies elastic waves at},
3 <n, that is, {[(B × LThree) / Α]1 / m<Q BBullet in}
This is because there is no soil that greatly attenuates sex waves.

【0014】図4は、式に基づいて探査に適正な爆発
性物質9の容量Qの範囲を求めたグラフである。なお、
ここで使用する単位は、距離Lは(m)、弾性波の振幅
A(gal=cm/s2)、爆発性物質9の容量QA、QBの単位
はccである。上記の地質探査装置1を用いて地質探査を
行なう場合、式または式で求められた爆発性物質9
の容量を充填した震源装置4を装着孔3に装着して砂な
どで込め物14をし、金属細線8に電極7を介して供給
装置5を接続し、コンデンサ12に電気エネルギーを必
要量だけ充電蓄積した状態で放電スイッチ13をオン
し、極めて短時間で電気エネルギーを金属細線8に放電
供給する。すると、金属細線8が急激に溶融気化して膨
張し、その際の衝撃力等により爆発性物質9が起爆され
て起震容器6が破壊され、この衝撃力が震源となって地
山に弾性波が発生する。そして弾性波が、破砕帯や地質
変化面で反射(または屈折でもよい)して戻ってきた反
射弾性波を加速度センサ21で受震することにより、前
方の地質変化を探査することができる。
FIG. 4 is a graph showing the range of the capacity Q of the explosive substance 9 suitable for exploration based on the equation. In addition,
The unit used here is the distance L (m), the amplitude A of the elastic wave (gal = cm / s 2 ), and the units Q A and Q B of the explosive substance 9 are cc. When the geological exploration is performed by using the geological exploration apparatus 1 described above, the explosive substance 9 determined by the equation or the equation is used.
The seismic source device 4 filled with the capacity is mounted in the mounting hole 3, and the container 14 is filled with sand or the like, the supply device 5 is connected to the thin metal wire 8 via the electrode 7, and the required amount of electric energy is supplied to the capacitor 12. The discharge switch 13 is turned on in a state where the charge is accumulated, and electric energy is discharged and supplied to the thin metal wire 8 in an extremely short time. Then, the thin metal wire 8 is rapidly melted and vaporized and expanded, and the explosive substance 9 is exploded by the impact force at that time, and the seismic vessel 6 is destroyed. Waves are generated. The acceleration sensor 21 receives the reflected elastic wave which is reflected (or may be refracted) by the elastic wave at the crush zone or the geological change surface and is returned, thereby exploring the geological change ahead.

【0015】上記実施の形態によれば、金属細線8の溶
融気化による衝撃力だけでなく、爆発性物質9の爆発力
を利用して弾性波を発生させるので、大きい振幅の弾性
波を容易に発生させることができ、しかも安全に作業を
行うことができる。また、震源装置4から探査地山まで
の距離Lに対応して式または式で得られた範囲の爆
発性物質9の容量を充填することで、探査地山に伝播さ
れる弾性波に必要な振幅を確保することができ、正確な
探査が可能になるとともに、必要以上に爆発性物質9の
容量を充填することもなく、ランニングコストの低減に
寄与することができる。
According to the above-described embodiment, elastic waves are generated not only by the impact force due to the melting and vaporization of the thin metal wires 8 but also by the explosive force of the explosive substance 9, so that the elastic waves having a large amplitude can be easily generated. Can be generated, and the operation can be performed safely. Further, by filling the capacity of the explosive substance 9 in the range obtained by the equation or the equation according to the distance L from the epicenter device 4 to the exploration ground, necessary for the elastic waves propagated to the exploration ground. The amplitude can be ensured, accurate exploration can be performed, and the running cost can be reduced without filling the explosive substance 9 more than necessary.

【0016】なお、上記実施の形態では、加速度センサ
(受震器)21で地山からの反射弾性波を検出するよう
にしたが、もちろん屈折弾性波であってもよい。
In the above-described embodiment, the acceleration sensor (seismic receiver) 21 detects the reflected elastic wave from the ground, but may be a refracted elastic wave.

【0017】[0017]

【発明の効果】以上に述べたごとく請求項1記載の発明
によれば、電気エネルギーによる溶融気化物質の溶融気
化により爆発または高速燃焼される爆発性物質を使用す
るので、大きい衝撃力が得られて探査範囲を容易に拡大
することができ、また必要最小限の爆発性物質の容量で
弾性波を発生させることができるので、不必要に大きい
衝撃力を発生させることなく安全に作業することがで
き、またランニングコストの低減をはかることができ
る。
As described above, according to the first aspect of the present invention, since an explosive substance which explodes or burns at high speed by melting and vaporizing the molten vaporized substance by electric energy is used, a large impact force can be obtained. The exploration area can be easily expanded, and elastic waves can be generated with the minimum necessary volume of explosive material, so that it is possible to work safely without generating unnecessary large impact force. And the running cost can be reduced.

【0018】また請求項2記載の発明によれば、爆発性
物質の容量を上記範囲にすることにより、探査地山に必
要な弾性波の振幅を確保することができ、正確な探査が
可能となる。
According to the second aspect of the present invention, by setting the volume of the explosive substance in the above range, it is possible to secure the amplitude of the elastic wave necessary for the exploration ground, and to perform accurate exploration. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る地質探査用震源装置を備えた地質
探査装置の実施の形態を示す全体構成図である。
FIG. 1 is an overall configuration diagram showing an embodiment of a geological exploration device including a geological exploration source device according to the present invention.

【図2】同地質探査用震源装置の使用状態を示す断面図
である。
FIG. 2 is a cross-sectional view showing a state of use of the hypocenter apparatus for geological exploration.

【図3】同地質探査用震源装置の実験による弾性波の伝
播距離と振幅の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the propagation distance and amplitude of an elastic wave in an experiment of the seismic source device.

【図4】同地質探査用震源装置の探査地山までの距離に
対する必要な爆発性物質の容量を示すグラフである。
FIG. 4 is a graph showing a required explosive substance capacity with respect to a distance to an exploration ground of the geological exploration source device.

【符号の説明】[Explanation of symbols]

1 地質探査装置 2 トンネル側壁 3 装着孔 4 震源装置 5 電気エネルギー供給装置 6 起震容器 7 電極 8 金属細線 9 爆発性物質 10 電源 11 エネルギー制御回路 12 コンデンサ 13 放電スイッチ 21 加速度センサ DESCRIPTION OF SYMBOLS 1 Geological exploration device 2 Tunnel side wall 3 Mounting hole 4 Hypocenter device 5 Electric energy supply device 6 Shock vessel 7 Electrode 8 Fine metal wire 9 Explosive substance 10 Power supply 11 Energy control circuit 12 Capacitor 13 Discharge switch 21 Acceleration sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 博 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 (72)発明者 荒井 浩成 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 (72)発明者 佐々木 加津也 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 (72)発明者 前畑 英彦 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Imai 1-25-1, Nishishinjuku, Shinjuku-ku, Tokyo Taisei Construction Co., Ltd. (72) Inventor Hironari Arai 1-7-7 Minami Kohoku, Suminoe-ku, Osaka-shi, Osaka No. 89 Inside Hitachi Zosen Corporation (72) Kazuya Sasaki, Inventor 1-7-7 Minami Kohoku, Suminoe-ku, Osaka City, Osaka Prefecture 89 Inside Hitachi Zosen Corporation (72) Hidehiko Maebata 1 Minami Kohoku, Suminoe-ku, Osaka Prefecture, Osaka No. 7-89 Hitachi Zosen Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】探査地山を伝播する弾性波を発生させ、そ
の反射波または屈折波を測定して地山の地質を探査する
地質探査用震源装置であって、 起震容器と、この起震容器内に配置されて短時間に供給
される電気エネルギーにより急激に溶融気化される溶融
気化物質と、起震容器内に充填されて溶融気化物質の溶
融気化により爆発あるいは急速燃焼される爆発性物質
と、前記溶融気化物質に電気エネルギーを供給する電気
エネルギー供給装置とを具備し、 探査地山での弾性波の振幅をA、震源位置から探査地山
までの距離をL、弾性波の振幅Aと距離Lに関する係数
をα、弾性波の減衰係数をn、爆発性物質の容量と振幅
に関する係数をmとした場合、爆発性物質の容量Q
Aを、 QA=[(A×Ln)/α]1/mとし、 この係数αを770≦α≦4000とし、減衰係数nを
1≦n≦3としたことを特徴とする地質探査用震源装
置。
1. A geological exploration source device for generating an elastic wave propagating in an exploration ground, measuring a reflected wave or a refracted wave thereof and exploring the geology of the ground, comprising: a seismic vessel; Molten vaporized material that is placed in a vibration container and is rapidly melted and vaporized by electric energy supplied for a short time, and explosiveness that is filled in the seismic container and exploded or rapidly burned by the molten vaporization of the molten vaporized material A material, and an electric energy supply device for supplying electric energy to the molten vaporized material, wherein the amplitude of the elastic wave at the exploration site is A, the distance from the epicenter to the exploration site is L, the amplitude of the elastic wave If the coefficient relating to A and the distance L is α, the damping coefficient of the elastic wave is n, and the coefficient relating to the capacity and amplitude of the explosive substance is m, the capacity Q of the explosive substance
A is defined as Q A = [(A × L n ) / α] 1 / m , the coefficient α is set to 770 ≦ α ≦ 4000, and the attenuation coefficient n is set to 1 ≦ n ≦ 3. Hypocenter equipment.
【請求項2】探査地山に必要な弾性波の振幅をBとした
場合に、爆発性物質の容量QBを、 [(B×L3)/α]1/m≧QB≧[(B×L)/α]1/m
の範囲とし、 mを0.66≦m≦0.75としたことを特徴とする請
求項1記載の地質探査用震源装置。
If the 2. A is B the amplitude of the acoustic wave necessary for exploration areas mountains, the capacity Q B of explosive materials, [(B × L 3) / α] 1 / m ≧ Q B ≧ [( B × L) / α] 1 / m
2. The hypocenter apparatus for geological exploration according to claim 1, wherein m is set to 0.66 ≦ m ≦ 0.75.
JP06572399A 1998-03-23 1999-03-12 Seismic source equipment for geological exploration Expired - Lifetime JP3998366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06572399A JP3998366B2 (en) 1998-03-23 1999-03-12 Seismic source equipment for geological exploration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7294598 1998-03-23
JP10-72945 1998-03-23
JP06572399A JP3998366B2 (en) 1998-03-23 1999-03-12 Seismic source equipment for geological exploration

Publications (2)

Publication Number Publication Date
JPH11337652A true JPH11337652A (en) 1999-12-10
JP3998366B2 JP3998366B2 (en) 2007-10-24

Family

ID=26406874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06572399A Expired - Lifetime JP3998366B2 (en) 1998-03-23 1999-03-12 Seismic source equipment for geological exploration

Country Status (1)

Country Link
JP (1) JP3998366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225499B1 (en) 2011-02-15 2013-01-23 한국지질자원연구원 Blasting powder structure for seismic survey using a boringhole

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569257B (en) * 2016-10-26 2019-01-11 山西江阳兴安民爆器材有限公司 Elastic wave-exciting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225499B1 (en) 2011-02-15 2013-01-23 한국지질자원연구원 Blasting powder structure for seismic survey using a boringhole

Also Published As

Publication number Publication date
JP3998366B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US5388521A (en) Method of reducing ground vibration from delay blasting
US8292022B2 (en) System and method for generating and controlling conducted acoustic waves for geophysical exploration
CA2480333C (en) System and method for monitoring features of a blast
CN105425281B (en) Distributed dynamite source shooting parameter determines method
Yang et al. Measurement and analysis of near-field blast vibration and damage
JP6998014B2 (en) Blasting method
JPH11337652A (en) Seismic center device for geology prospecting
CN113340410A (en) Ground vibration prediction method based on spherical charging condition
JP4067216B2 (en) Seismic source equipment for geological exploration
Simioni et al. Field measurements of snowpack response to explosive loading
Holzer Calculation of seismic source mechanisms
JP3883298B2 (en) Geophysical exploration method and apparatus by electric discharge destruction
JP3410965B2 (en) Geological exploration method, elastic wave generation method, and elastic wave generator
Atchison et al. Comparative studies of explosives in marble
Ghanaat et al. Measurement of dynamic response of arch dams including interaction effects
JP3883299B2 (en) Geophysical exploration method and apparatus by electric discharge destruction
Mandal Mathematical model to locate interference of blast waves from multi-hole blasting rounds
Ghanaat et al. Experimental study of dam-water-foundation interaction
Nedwell et al. The waterborne pressure wave from buried explosive charges: An experimental ivnestigation
Otuonye Effective blasthole stemming
JP2004346567A (en) Method for surveying section ahead of cutting face
Yang et al. A Case Study on Trim Blast Fragmentation Optimization Using MBF and MSW Models at an Open Pit Mine in Canada
Wu et al. Comparison study of coupling effects of explosive charge on ground vibrations
ITŌ et al. On the detonation pressure produced at the inner surface of the charge hole
RU96105528A (en) METHOD FOR DETERMINING THE RELATIVE ENERGY OF EXPLOSIVES TRANSFERRED TO THE GROUND MASS IN EXPLOSION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term