JPH11319501A - Hollow fiber membrane module and use applications thereof - Google Patents

Hollow fiber membrane module and use applications thereof

Info

Publication number
JPH11319501A
JPH11319501A JP10126015A JP12601598A JPH11319501A JP H11319501 A JPH11319501 A JP H11319501A JP 10126015 A JP10126015 A JP 10126015A JP 12601598 A JP12601598 A JP 12601598A JP H11319501 A JPH11319501 A JP H11319501A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
sectional area
flow path
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10126015A
Other languages
Japanese (ja)
Inventor
Masahide Taniguchi
雅英 谷口
Kenji Sakai
憲司 酒井
Shinichi Minegishi
進一 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10126015A priority Critical patent/JPH11319501A/en
Publication of JPH11319501A publication Critical patent/JPH11319501A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow fiber membrane module which can maintain the quality of permeated water at a high level even when the membranes are damaged by making the internal flow path cross section area of at least one part of hollow fiber membrane- fixed parts consisting of plural hollow fiber membranes with end parts fixed adhesively smaller than the internal flow path cross section area of the hollow fiber membranes in the non-adhesively fixed part. SOLUTION: In the hollow fiber membrane module comprising a plurality of hollow fiber membranes 1 with at least one of the end parts fixed adhesively while an open state is maintained by an adhesively fixed part 2. The part 8 is provided where the internal flow path cross section area of a hollow fiber membrane 2 of at least one part of hollow fiber membrane 1-adhesively fixed parts is substantially smaller than the internal flow path cross section area of the hollow fiber membrane 1 in the non- adhesively fixed part. Thus it is possible to inhibit the deterioration of the quality of permeated water, even when an untreated water flows into the interior of the hollow fiber membrane 1 due to damage inflicted to the membrane 1. Besides, even when a comparatively large amount of pollutant is contained in the untreated water, the pollutant is accumulated in the contracted dia. part 8 to generate a cake filtration state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中空糸膜モジュー
ルおよびその使用方法に関するものであり、詳しくは、
中空糸膜の外側に処理原水を流し、中空糸膜の内側から
透過水を得る方式の「外圧式」中空糸膜モジュールおよ
びその使用方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow fiber membrane module and a method for using the same.
The present invention relates to an "external pressure" hollow fiber membrane module of a type in which treated raw water flows outside a hollow fiber membrane to obtain permeated water from the inside of the hollow fiber membrane, and a method of using the same.

【0002】[0002]

【従来の技術】近年、高分子膜を用いた分離操作が盛ん
に行われるようになってきている。なかでも、水処理へ
の展開は、めざましいものがあり、超純水の製造や海
水、灌水淡水化に用いられる逆浸透法の技術は、多くの
実績が得られており、今後も展開が期待される。さら
に、最近では、サブミクロンオーダーの分離を行う精密
濾過法や限外濾過法の展開が進められており、これらで
は、家庭用浄水器をはじめ、生活廃水処理、上水製造、
工業用水製造、食品産業等、多岐にわたって展開されつ
つある。特に、分離膜を用いることによって大腸菌など
を完全に阻止でき、安定した処理水質を維持することが
可能であることから、浄水場における飲料水製造にも積
極的な展開がはかられつつある。
2. Description of the Related Art In recent years, separation operations using a polymer membrane have been actively performed. Above all, the development of water treatment is remarkable, and the technology of reverse osmosis method used for ultrapure water production, seawater, and irrigation desalination has many achievements and is expected to be developed in the future. Is done. Recently, the development of microfiltration and ultrafiltration methods for separation on the order of submicrons has been promoted. These include household water purifiers, domestic wastewater treatment, water purification,
It is being developed in a wide variety of fields, such as industrial water production and the food industry. In particular, Escherichia coli and the like can be completely prevented by using a separation membrane, and stable treated water quality can be maintained. Therefore, active development of drinking water production in water purification plants is being started.

【0003】なお、分離膜の形態としては、平膜積層
型、スパイラル型、チューブラー型、中空糸膜型などが
挙げられるが、とくに、飲料水製造における精密濾過法
/限外濾過法では、処理量が多いため、単位容積当たり
の有効膜面積が大きくとれる中空糸膜が用いられるのが
一般的になっている。
[0003] Examples of the form of the separation membrane include a flat membrane laminated type, a spiral type, a tubular type, and a hollow fiber type. In particular, in the microfiltration method / ultrafiltration method in the production of drinking water, Due to the large amount of processing, a hollow fiber membrane that can provide a large effective membrane area per unit volume is generally used.

【0004】[0004]

【発明が解決しようとする課題】一般に、分離膜は、処
理効率を上げるため膜厚をなるべく薄くして透過抵抗を
小さくする方策を採っている。これにより、従来より行
われている、砂濾過法や凝集沈殿法などと比べて非常に
高効率でコンパクトなシステムを提供することが可能と
なった。しかし、膜が損傷すると、その透過抵抗が小さ
いことが災いし、損傷した箇所を通して従来法では起こ
りにくかった処理原水の漏出が起こってしまい、透過水
質が大きく低下していた。これは、特に飲料水製造にお
いては、前述の大腸菌などが透過水に混入することにも
なり、非常に大きな問題となっていた。
Generally, in order to increase the processing efficiency, the separation membrane is made as thin as possible to reduce the transmission resistance. As a result, it has become possible to provide a very efficient and compact system as compared with the conventional methods such as the sand filtration method and the coagulation sedimentation method. However, when the membrane is damaged, the permeation resistance is low because of the small permeation resistance, and the leakage of treated raw water, which is difficult to occur in the conventional method, occurs through the damaged portion, and the permeated water quality is greatly reduced. In particular, in the production of drinking water, the above-mentioned Escherichia coli and the like are mixed in the permeated water, which has been a very serious problem.

【0005】本発明は、上記従来技術の問題点を解決せ
んとするものであり、中空糸膜が損傷した場合において
も、高い透過水質を維持可能な中空糸膜モジュールおよ
びその使用方法を提供することを目的とするものであ
る。
The present invention has been made to solve the above-mentioned problems of the prior art, and provides a hollow fiber membrane module capable of maintaining high permeated water quality even when the hollow fiber membrane is damaged, and a method of using the same. The purpose is to do so.

【0006】[0006]

【課題を解決するための手段】本発明の上記の目的は、
「複数の中空糸膜が少なくとも片方の端部で接着固定部
分により開放状態を保ちつつ接着固定された中空糸膜モ
ジュールにおいて、中空糸膜の接着固定部分のうち少な
くとも一部における中空糸膜の内部の流路断面積が、接
着固定されていない部分における中空糸膜の内部の流路
断面積に比べて実質的に小さくなっていることを特徴と
する中空糸膜モジュール。」により基本的に達成され
る。
SUMMARY OF THE INVENTION The above objects of the present invention are as follows.
"In a hollow fiber membrane module in which a plurality of hollow fiber membranes are adhesively fixed while maintaining an open state by an adhesive fixing part at least at one end, the inside of the hollow fiber membrane in at least a part of the adhesive fixing part of the hollow fiber membrane The hollow fiber membrane module is characterized in that the cross-sectional area of the flow path is substantially smaller than the cross-sectional area of the flow path inside the hollow fiber membrane in the portion where the adhesive is not fixed. " Is done.

【0007】[0007]

【発明の実施の形態】図6は、通常の中空糸膜モジュー
ルの一例を示す側面断面図であり、図7は、図6におけ
る中空糸膜が損傷した場合の中空糸膜モジュールの一例
を示す側面断面図である。
FIG. 6 is a side sectional view showing an example of a normal hollow fiber membrane module, and FIG. 7 is an example of a hollow fiber membrane module when the hollow fiber membrane in FIG. 6 is damaged. It is a side sectional view.

【0008】図6に示すように、このモジュールにおい
て処理原水を処理原水入口5から中空糸膜1の外側に流
す「外圧式」で使用した場合、正常な状態では、処理原
水中の汚れは、中空糸膜の外表面で阻止され、中空糸膜
内部には、膜を透過してきた清浄水が流れ、透過水出口
4から取り出されることになる。ここで、万一、中空糸
膜が損傷した場合、図7に示すように、処理原水が損傷
した中空糸膜7から流れ込み、透過水の水質が低下して
しまうことになる。
As shown in FIG. 6, when this module is used in an “external pressure type” in which treated raw water flows from the treated raw water inlet 5 to the outside of the hollow fiber membrane 1 under normal conditions, dirt in the treated raw water is The water is blocked by the outer surface of the hollow fiber membrane, and the clean water that has permeated the membrane flows inside the hollow fiber membrane and is taken out from the permeated water outlet 4. Here, if the hollow fiber membrane is damaged, as shown in FIG. 7, the raw water to be treated flows from the damaged hollow fiber membrane 7, and the quality of the permeated water is reduced.

【0009】ここで、本発明者らが鋭意検討を行った結
果、まず、中空糸膜の損傷は、中空糸膜を接着固定した
部分2と固定されていない部分の界面、すなわち、中空
糸膜の根元部で生じる確率が極めて高いことが判明し
た。さらに、この場合、処理原水が透過水出口4へ流れ
込むための流動抵抗は、接着固定部2の長さのみしかな
く、損傷していない中空糸膜の場合と比べて、数〜数十
倍の処理原水の漏れが生じることが判明し、中空糸膜が
根元部で損傷すると、その本数が少なくても透過水質の
低下が非常に大きいことが明らかになった。
Here, as a result of diligent studies by the present inventors, first, damage to the hollow fiber membrane is caused by the interface between the portion 2 where the hollow fiber membrane is bonded and fixed and the portion where the hollow fiber membrane is not fixed, that is, the hollow fiber membrane. It has been found that the probability of occurrence at the base of is extremely high. Further, in this case, the flow resistance for the treated raw water to flow into the permeated water outlet 4 is only the length of the adhesive fixing portion 2 and is several to several tens times that of the undamaged hollow fiber membrane. It was found that leakage of the treated raw water occurred, and that if the hollow fiber membrane was damaged at the root, the permeation water quality was significantly reduced even if the number was small.

【0010】本発明者らは、その結果に鑑み、検討を重
ねた結果、透過水量をできるだけ低下させずに透過水質
を上げる方法として、中空糸膜の損傷する可能性のない
接着固定部における中空糸膜の流路を小さくして流動抵
抗を大きくし、万一、中空糸膜が損傷した場合の原水の
漏れ込みを最小限に防止することができたものである。
In view of the results, the present inventors have conducted repeated studies and found that as a method of increasing the quality of permeated water without reducing the amount of permeated water as much as possible, a hollow fiber in an adhesive fixing portion where the hollow fiber membrane is not likely to be damaged is used. The flow path of the fiber membrane is reduced to increase the flow resistance, and it is possible to minimize the leakage of raw water in the event that the hollow fiber membrane is damaged.

【0011】図1は、本発明に係る中空糸膜モジュール
の一例を示す側面断面図であり、図2は、本発明に係る
中空糸膜モジュールの他の一例を示す側面断面図であ
る。
FIG. 1 is a side sectional view showing an example of the hollow fiber membrane module according to the present invention, and FIG. 2 is a side sectional view showing another example of the hollow fiber membrane module according to the present invention.

【0012】図1に示すように、本発明に係る中空糸膜
モジュールは、複数の中空糸膜1が少なくとも片方の端
部で接着固定部分2により開放状態を保ちつつ接着固定
された中空糸膜モジュールにおいて、中空糸膜の接着固
定部分のうち少なくとも一部にける中空糸膜の内部の流
路断面積が、接着固定されていない部分における中空糸
膜の内部の流路断面積に比べて実質的に小さくなってい
る部分8を有するものである。
As shown in FIG. 1, a hollow fiber membrane module according to the present invention comprises a plurality of hollow fiber membranes 1 bonded and fixed while maintaining an open state by an adhesive fixing portion 2 at least at one end. In the module, the flow path cross-sectional area inside the hollow fiber membrane in at least a part of the adhesive fixing part of the hollow fiber membrane is substantially smaller than the flow path cross-sectional area inside the hollow fiber membrane in the part not bonded and fixed. It has a portion 8 which is gradually reduced.

【0013】これにより、中空糸膜が損傷して処理原水
が中空糸膜内部に流れ込むことがあっても、透過水質の
低下を抑えることが可能となる。さらに、処理原水に比
較的大きな汚れが含まれていた場合、その汚れが、中空
糸膜内部の流路断面積が小さくなったところに蓄積して
いくため、中空糸膜の損傷からいくらかの時間が経過す
ると、汚れが蓄積した部分においても、その蓄積物によ
るケーク濾過状態となるので、原水中の汚れが透過水に
漏れ出すことはなくなる。
Accordingly, even if the hollow fiber membrane is damaged and the raw water for treatment flows into the hollow fiber membrane, it is possible to suppress a decrease in the quality of the permeated water. Furthermore, if the treated raw water contains relatively large dirt, the dirt accumulates in the hollow fiber membrane where the cross-sectional area of the flow channel is reduced, so that it takes some time after the damage to the hollow fiber membrane. When the time elapses, even in the portion where the dirt is accumulated, the cake is filtered by the accumulation, so that the dirt in the raw water does not leak into the permeated water.

【0014】なお、流路断面積を小さくする程度に関し
ては、程度によらず効果は発現するので、特に限定され
るものではないが、あまり小さくすると、清浄な透過水
の流れも阻害することになる。この点に関し、中空糸膜
の接着固定部分のうち少なくとも一部における中空糸膜
の内部の流路断面積が小さくなっている部分の該断面積
をA、接着固定されていない部分における中空糸膜の内
部の流路断面積をBとするとき、0.5≦A/B≦0.
8とすることによって透過水量の減少を抑えながら透過
水質を改善することができる点で好ましい。
The effect of reducing the cross-sectional area of the flow path is not limited, and the effect is manifested regardless of the degree. Become. In this regard, the cross-sectional area of the part where the flow path cross-sectional area inside the hollow fiber membrane is small in at least a part of the adhesively fixed part of the hollow fiber membrane is A, and the hollow fiber membrane in the part where the adhesive fiber is not fixed. Is defined as B, the sectional area of the flow path inside is 0.5 ≦ A / B ≦ 0.
By setting it to 8, it is preferable in that the quality of permeated water can be improved while suppressing a decrease in the amount of permeated water.

【0015】ここで、接着固定部における中空糸膜内部
の流路断面積が小さくなっている部分の長さに関して
は、基本的には限定されるものではない。ただし、前述
したように本発明による2つの効果のうち、第1の効果
であるところの中空糸膜内部の流動抵抗増加の観点から
すると、流路断面積が小さくなっている部分の長さが短
いと流動抵抗としては、効果が小さくなるため、固定部
分の長さに対して、流路断面積が小さくなっている中空
糸膜部分の長さが、2分の1以上であることが好まし
い。ただし、前述したように、流路断面積の小さい部分
が長いと、ある程度は清浄な透過水の流動抵抗にもなる
ことになるので、中空糸膜の内径と併せて最適化するこ
とが重要である。
Here, the length of the portion of the adhesive fixing portion where the flow path cross-sectional area inside the hollow fiber membrane is small is basically not limited. However, as described above, from the viewpoint of increasing the flow resistance inside the hollow fiber membrane, which is the first effect of the two effects according to the present invention, the length of the portion where the cross-sectional area of the flow channel is small is small. If the length is short, the effect of the flow resistance is reduced, and therefore, the length of the hollow fiber membrane portion having a smaller flow path cross-sectional area is preferably equal to or more than half of the length of the fixed portion. . However, as described above, if the portion with a small cross-sectional area of the flow path is long, the flow resistance of clean permeated water will also be to some extent, so it is important to optimize it together with the inner diameter of the hollow fiber membrane. is there.

【0016】また、第2の効果であるところの汚れを蓄
積させるためには、流路断面積が小さくなっている部分
が存在すればよく、特に、長さは限定されない。したが
って、この効果だけを発現させる目的だけから考える
と、実質的には、流路断面積が小さくなっている中空糸
膜部分の長さが、1mm以上10mm以下であることが
好ましい。ただし、この範囲では、第1の効果は小さく
なるので、第2の効果を発現するまでの時間、すなわ
ち、汚れの蓄積によるケーク濾過になるまでは、透過水
質が低下することになる。さらに、第2の効果を発揮さ
せるためには、汚れの蓄積によるケークが生成しやすい
ようにすることが好ましく、この点からすると、図2に
示すように、接着固定部における中空糸膜の断面積が接
着固定されていない部分の流路断面積と実質的に同じに
なっている部分の開口していない側からの長さdが、少
なくとも5mm以上であることが好ましい。このような
形状をとることによって蓄積したケーク層を保持しやす
くなる。
In order to accumulate dirt, which is the second effect, it is sufficient that there is a portion where the flow path cross-sectional area is small, and the length is not particularly limited. Therefore, considering only the purpose of exhibiting this effect alone, it is substantially preferable that the length of the hollow fiber membrane portion having a reduced channel cross-sectional area is 1 mm or more and 10 mm or less. However, in this range, the first effect is small, so that the quality of the permeated water decreases until the second effect is exhibited, that is, until cake filtration due to accumulation of dirt is performed. Further, in order to exhibit the second effect, it is preferable that cake is easily generated due to accumulation of dirt. In this regard, as shown in FIG. It is preferable that the length d from the non-opening side of the part where the area is substantially the same as the cross-sectional area of the flow path of the part not bonded and fixed is at least 5 mm or more. By taking such a shape, it is easy to hold the cake layer that has accumulated.

【0017】ところで、本発明を適用する中空糸膜モジ
ュールは、一般的には、中空糸膜と中空糸膜の間、およ
び中空糸膜とモジュール容器の間を気密にシール(ポッ
ティング)して開口させた形状をとる。これによって、
中空糸膜の外部と内部を中空糸膜自体によって隔離し、
膜を通して分離処理を行うことができる。中空糸膜モジ
ュールの構造としては、中空糸膜の両端部をポッティン
グした後、両端から開口する例えば、特開平3−238
027号公報、実開平2−100636号公報、実開平
3−15628号公報、実開平3−59028号公報な
どに示されるような「両端開口型」、実開平3−156
29号公報などに示されるように両端をポッティングし
た後に片方だけを開口させる「片端開口型」、実開平3
−54733号公報などに示されるような中空糸膜をU
字型にして中空糸膜端部を片方だけにして開口させる
「U字型」、特開平3−12288号公報に示されるよ
うにU字部を切断した上で、中空糸膜一本ずつを単独で
封止した状態の「くし型」モジュールがあるが、濾過方
向としても中空糸膜の内側に処理原水を流す場合(内圧
式)と外側に流す場合(外圧式)がある。
The hollow fiber membrane module to which the present invention is applied is generally airtightly sealed (potted) between the hollow fiber membrane and the hollow fiber membrane and between the hollow fiber membrane and the module container. Take the shape that was made. by this,
The outside and inside of the hollow fiber membrane are isolated by the hollow fiber membrane itself,
Separation treatment can be performed through the membrane. The structure of the hollow fiber membrane module is such that, after potting both ends of a hollow fiber membrane, the hollow fiber membrane is opened from both ends.
No. 027, Japanese Utility Model Application Laid-Open No. 2-100636, Japanese Utility Model Application Laid-Open No. 3-15628, Japanese Utility Model Application Laid-Open No. 3-59028, etc.
No. 29, etc., a "single-end open type" in which only one end is opened after potting both ends,
The hollow fiber membrane as shown in US Pat.
A "U-shape" in which the hollow fiber membrane is opened with only one end of the hollow fiber membrane open, and as shown in JP-A-3-12288, the U-shape section is cut, and the hollow fiber membranes are cut one by one. There is a “comb-type” module that is sealed alone, and the filtration direction includes the case where treated raw water flows inside the hollow fiber membrane (internal pressure type) and the case where it flows outside (external pressure type).

【0018】なお、「片端開口型」「U字型」「くし
型」は、中空糸内側は出口しか存在せず、これらは、一
般的には、中空糸膜の外側に処理対象水を供給し、中空
糸膜内側から透過水を得る方式(外圧式)で用いられ
る。外圧式は、処理対象水が汚れていても適用できるこ
とから、今後の展開が非常に期待される方法である。こ
れらのモジュールを本発明に適用する場合、特に「外圧
式」の場合は、前述の2つの効果を発現できるため、非
常に有効である。「内圧式」の場合は、中空糸膜の内部
に処理原水を流すため、中空糸膜内径は比較的大きく、
前述第2の効果であるケークの蓄積は生じないようにす
る必要がある。従って、ケークの蓄積が生じない範囲
で、中空糸内流路断面積を小さくして、第1の効果を発
現させることができる。
The "single-end open type", "U-shaped" and "comb type" have only an outlet inside the hollow fiber, and these generally supply water to be treated outside the hollow fiber membrane. Then, it is used in a method of obtaining permeated water from the inside of the hollow fiber membrane (external pressure type). The external pressure method is a method that can be applied even if the water to be treated is dirty, so that it is very expected to be developed in the future. When these modules are applied to the present invention, in particular, in the case of the "external pressure type", the above two effects can be exhibited, which is very effective. In the case of "internal pressure type", the inner diameter of the hollow fiber membrane is relatively large because the raw water is allowed to flow inside the hollow fiber membrane,
It is necessary to prevent cake accumulation, which is the second effect described above. Therefore, the first effect can be exhibited by reducing the cross-sectional area of the flow path in the hollow fiber within a range in which cake does not accumulate.

【0019】本発明において対象となる中空糸膜として
は特に限定されるものではないが、本発明に係る原水の
漏れ込みによる透過水質低下の問題は、十分な強度を付
与することが困難で、揺動による材料の疲労による損傷
も生じやすいことから、高分子膜を用いた中空糸膜への
適用が効果的である。高分子膜としては、均質中空糸
膜、多孔質中空糸膜、複合中空糸膜などが挙げられる
が、特に限定はない。これらの中空糸膜の具体例とし
て、ポリアクリロニトリル多孔質中空糸膜、ポリイミド
多孔質中空糸膜、ポリエーテルスルホン多孔質中空糸
膜、ポリフェニレンスルフィドスルホン多孔質中空糸
膜、ポリテトラフルオロエチレン多孔質中空糸膜、ポリ
プロピレン多孔質中空糸膜、ポリエチレン多孔質中空糸
膜等の多孔質中空糸膜や、これら多孔質中空糸膜に機能
層としては架橋型シリコーン、ポリブタジエン、ポリア
クリロニトリルブタジエン、エチレンプロピレンラバ
ー、ネオプレンゴム等のゴム状高分子を複合化した複合
中空糸膜や架橋型シリコーンチューブなどの均質中空糸
膜を挙げることができる。中空糸膜の内径、外径として
も特に制限されるものではなく、1mm以下の内径を有
するものから数mm以上の内径を有するものでも適用可
能である。
The hollow fiber membrane to be used in the present invention is not particularly limited. However, the problem of permeated water quality deterioration due to leakage of raw water according to the present invention is that it is difficult to provide sufficient strength. Since the material is liable to be damaged by the fatigue due to the rocking, application to a hollow fiber membrane using a polymer membrane is effective. Examples of the polymer membrane include a homogeneous hollow fiber membrane, a porous hollow fiber membrane, and a composite hollow fiber membrane, but are not particularly limited. Specific examples of these hollow fiber membranes include a polyacrylonitrile porous hollow fiber membrane, a polyimide porous hollow fiber membrane, a polyethersulfone porous hollow fiber membrane, a polyphenylene sulfide sulfone porous hollow fiber membrane, and a polytetrafluoroethylene porous hollow fiber membrane. Fiber hollow membranes such as fiber membranes, polypropylene porous hollow fiber membranes, polyethylene porous hollow fiber membranes, and the like, and crosslinked silicone, polybutadiene, polyacrylonitrile butadiene, ethylene propylene rubber, Examples thereof include a composite hollow fiber membrane obtained by compounding a rubber-like polymer such as neoprene rubber and a homogeneous hollow fiber membrane such as a crosslinked silicone tube. The inner and outer diameters of the hollow fiber membrane are not particularly limited, and those having an inner diameter of 1 mm or less to those having several mm or more can be applied.

【0020】さらに、本発明を実施するために、これら
の中空糸膜の一部の内部流路断面積を小さくする方法と
しては、中空糸膜の製膜条件を経時的に変化させる方法
や、製膜後に処理を施す方法が挙げられる。製膜条件に
ついては、製膜速度、製膜温度などを一時的に変更する
ことによって径の異なる中空糸膜を得ることが可能とな
る。一方、製膜後に処理を施す方法としては、中空糸膜
を熱や溶媒によって収縮させたり、圧力によって変形さ
せる方法が挙げられる。熱により収縮させる場合、雰囲
気温度を上げたり、高温のガスや液体を封止部分に接触
させる方法が挙げられるが、温度をコントロールしやす
いことからして、一定温度にコントロールされたガスや
液体を封止部分に接触させる方法が最も適している。た
だし、温度によって収縮率が変化するとともに、温度が
高すぎると、膜が変性してしまうので注意を要する。
Further, in order to carry out the present invention, as a method of reducing the internal flow passage cross-sectional area of a part of these hollow fiber membranes, there are a method of changing the film forming conditions of the hollow fiber membrane with time, A method of performing treatment after film formation can be given. Regarding the film forming conditions, hollow fiber membranes having different diameters can be obtained by temporarily changing the film forming speed, the film forming temperature, and the like. On the other hand, as a method of performing a treatment after film formation, a method of shrinking the hollow fiber membrane by heat or a solvent or deforming the hollow fiber membrane by pressure can be mentioned. When shrinking by heat, methods such as raising the ambient temperature or bringing a high-temperature gas or liquid into contact with the sealing part can be cited.However, since the temperature is easy to control, the gas or liquid controlled at a certain temperature is used. The method of making contact with the sealing portion is most suitable. However, care must be taken because the shrinkage ratio changes depending on the temperature, and if the temperature is too high, the film is denatured.

【0021】溶媒を用いる場合は、中空糸膜が溶解もし
くは膨潤する成分を添加した溶媒を用いることによって
目的を達成することができるが、中空糸膜が溶解する成
分を用いる場合、あまり濃度が高いと膜が完全に溶解し
てしまうので、溶解してしまわないような濃度に最適化
することが重要である。なお、中空糸膜を溶解もしくは
膨潤させる溶媒としては、特に限定されるものではない
が、Nメチル−2ピロリドン、ジメチルスルホオキシ
ド、テトラヒドロフラン、ヘキサンなどがあげられる。
また、中空糸膜に対して浸透性が高い場合や粘度が低い
溶媒を用いる場合は、中空糸膜の封止しない部分への溶
媒の浸入が生じてしまい、膜性能を損なう危険性がある
ので、そのような場合は溶媒に適量の増粘剤を添加する
ことが好ましい。
When a solvent is used, the object can be achieved by using a solvent to which a component that dissolves or swells the hollow fiber membrane is added. However, when a component that dissolves the hollow fiber membrane is used, the concentration is too high. Since the film completely dissolves, it is important to optimize the concentration so as not to dissolve. The solvent for dissolving or swelling the hollow fiber membrane is not particularly limited, but includes N-methyl-2-pyrrolidone, dimethylsulfoxide, tetrahydrofuran, hexane and the like.
Also, when a solvent having a high permeability or a low viscosity is used for the hollow fiber membrane, the solvent may enter into the unsealed portion of the hollow fiber membrane, and there is a risk of impairing the membrane performance. In such a case, it is preferable to add an appropriate amount of a thickener to the solvent.

【0022】圧力をかける具体的な方法としては、例え
ば、ロールプレス機を用いて偏平させたり、ハンマーで
つぶすなどがあげられるが、特に方法が限定されるもの
ではない。中空糸膜を変形させやすくするために、予め
加熱したり、溶媒を含浸させる方法を併用すると効果的
である。
Specific methods for applying pressure include, for example, flattening using a roll press machine and crushing with a hammer, but the method is not particularly limited. In order to easily deform the hollow fiber membrane, it is effective to use a method in which the hollow fiber membrane is heated or impregnated with a solvent in advance.

【0023】ところで、中空糸膜を接着固定する方法と
しては、一般に、ポッティングと呼ばれる方法で行われ
る。ポッティングは、接着剤を中空糸膜の間および内部
へ浸透させるにあたり静置状態で行う方法「静置法」と
遠心力を用いて浸透させる方法「遠心法」があるが、特
に限定されるものではない。また、ポッティングに用い
る接着剤は、特に限定されないが、ウレタン系の接着剤
やエポキシ系の接着剤などが一般的に用いられる。さら
に、中空糸膜同士を融着させる方法を採ることも可能で
ある。なお、ポッティングの時の温度コントロールは、
接着剤の硬化に影響を及ぼすため、考慮する必要がある
が、接着剤の発熱も考え併せてポッティングと同時に中
空糸膜の収縮を起こさせる方法も採ることが可能であ
る。
Incidentally, the method of bonding and fixing the hollow fiber membrane is generally performed by a method called potting. Potting includes a method in which the adhesive is allowed to permeate into and between the hollow fiber membranes in a stationary state, a "stationary method", and a method in which the adhesive is permeated using centrifugal force, "centrifugal method", but is particularly limited. is not. The adhesive used for potting is not particularly limited, but a urethane-based adhesive or an epoxy-based adhesive is generally used. Furthermore, it is also possible to adopt a method of fusing hollow fiber membranes to each other. In addition, the temperature control at the time of potting,
Since it affects the curing of the adhesive, it is necessary to consider it. However, it is also possible to adopt a method of causing the hollow fiber membrane to contract simultaneously with the potting in consideration of the heat generation of the adhesive.

【0024】[0024]

【実施例】以下実施例をもってもって本発明をさらに具
体的に説明する。ただし、本発明はこれにより限定され
るものではない。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by this.

【0025】実施例1 ポリアクリロニトリルを素材とする平均細孔径0.01
μm、外径680μm、内径400μm、長さ800m
mの多孔質中空糸膜200本をU字状にした中空糸膜の
開口端部側を約40mmにわたって沸騰水の中に60分
間浸漬した。この中空糸膜束を内径40mm、肉厚4m
mのアクリル製の容器に挿入して、中空糸端部のポッテ
ィング部分にポッティング材が入り目詰まりを起こさな
いように、ウレタン接着剤(日本ポリウレタン社製)に
より目止め接着した。次に、同じ接着剤を用いてポッテ
ィングを行った後、ポッティング固定部を切断し、中空
糸膜内部を開口させた。さらに、開口させたポッティン
グ部分に集水具を取り付け、中空糸膜有効長さ350m
mモジュールを作製した。外観を図3に示す。
Example 1 An average pore diameter of 0.01 made of polyacrylonitrile
μm, outer diameter 680 μm, inner diameter 400 μm, length 800 m
A 200-m porous hollow fiber membrane having a U-shape was immersed in boiling water for about 40 mm over the open end of the hollow fiber membrane for about 40 mm. This hollow fiber membrane bundle has an inner diameter of 40 mm and a thickness of 4 m.
m, and was plugged with a urethane adhesive (manufactured by Nippon Polyurethane Co., Ltd.) to prevent the potting material from entering the potting portion at the end of the hollow fiber and causing clogging. Next, after potting was performed using the same adhesive, the potting fixing portion was cut, and the inside of the hollow fiber membrane was opened. Further, a water collecting device is attached to the opened potting portion, and the effective length of the hollow fiber membrane is 350 m.
m modules were produced. The appearance is shown in FIG.

【0026】このモジュールは、ポッティング厚が25
mmで、ポッティング部分におけるd=10mmであっ
た。また、流路断面積が小さくなっている部分の小さく
なっていない部分に対する流路断面積の比の値(A/
B)は、平均0.58であった。
This module has a potting thickness of 25
mm, d = 10 mm at the potting portion. In addition, the value of the ratio (A /
B) averaged 0.58.

【0027】このようにして得られたモジュールを濁度
が約20ppmの原水を用いて外圧式全濾過法で濾過試
験を行った。このときの原水側と透過側の圧力差は0.
5kgf/cm2 で、水温は20℃であった。結果、透
過水量は60リットル/hで、透過水濁度は0.07p
pmであった。また、同じモジュールの中空糸を中空糸
膜の根元部で5本切断し、同様の濾過試験を行ったとこ
ろ、濾過開始時は、透過水量が67リットル/hで、透
過水濁度は3.25ppmであり、濾過開始60分後の
透過水量は、60リットル/hで、透過水濁度は0.8
5ppmであった。
The module thus obtained was subjected to a filtration test by external pressure type total filtration using raw water having a turbidity of about 20 ppm. At this time, the pressure difference between the raw water side and the permeation side is 0.
The water temperature was 20 ° C. at 5 kgf / cm 2 . As a result, the amount of permeated water was 60 l / h, and the turbidity of permeated water was 0.07 p.
pm. Further, five hollow fibers of the same module were cut at the root of the hollow fiber membrane, and a similar filtration test was performed. At the start of filtration, the permeated water amount was 67 L / h, and the permeated water turbidity was 3. The amount of permeated water 60 minutes after the start of filtration was 60 l / h, and the turbidity of permeated water was 0.8 ppm.
It was 5 ppm.

【0028】実施例2 実施例1と同じ仕様、同じ長さの中空糸膜を100本一
列に配置し、両端部から約40mmの位置を加圧して偏
平させた。この中空糸膜束2束をU字状にして、実施例
1と同じ方法で図4に示すような中空糸膜モジュールを
作製した。このモジュールは、ポッティング厚が25m
mで、ポッティング部分におけるd=10mmであっ
た。また、流路断面積が小さくなっている部分の小さく
なっていない部分に対する流路断面積の比の値(A/
B)は、平均0.58であった。
Example 2 100 hollow fiber membranes having the same specifications and the same length as in Example 1 were arranged in a line, and a position approximately 40 mm from both ends was pressurized and flattened. The two hollow fiber membrane bundles were formed in a U-shape, and a hollow fiber membrane module as shown in FIG. This module has a potting thickness of 25m
m, d = 10 mm in the potting area. In addition, the value of the ratio (A /
B) averaged 0.58.

【0029】このようにして得られたモジュールを実施
例1と同様の方法で濾過試験を行ったところ、透過水量
は64リットル/hで、透過水濁度は0.07ppmで
あった。また、同じモジュールの中空糸を中空糸膜の根
元部で5本切断し、同様の濾過試験を行ったところ、濾
過開始時は、透過水量が82リットル/hで、透過水濁
度は、5.14ppmであり、濾過開始60分後の透過
水量は、74リットル/hで、透過水濁度は、0.98
ppmであった。
The module thus obtained was subjected to a filtration test in the same manner as in Example 1. As a result, the amount of permeated water was 64 l / h, and the turbidity of permeated water was 0.07 ppm. Further, five hollow fibers of the same module were cut at the root of the hollow fiber membrane, and a similar filtration test was performed. At the start of filtration, the permeated water volume was 82 l / h, and the permeated water turbidity was 5 .14 ppm, the amount of permeated water 60 minutes after the start of filtration was 74 l / h, and the permeated water turbidity was 0.98.
ppm.

【0030】比較例1 中空糸膜の端部を沸騰水に浸漬しない他は、実施例1と
同様にして図5に示すような中空糸膜モジュールを作製
した。
Comparative Example 1 A hollow fiber membrane module as shown in FIG. 5 was produced in the same manner as in Example 1 except that the end of the hollow fiber membrane was not immersed in boiling water.

【0031】このようにして得られたモジュールを実施
例1と同様の方法で濾過試験を行ったところ、透過水量
は64リットル/hで、透過水濁度は0.07ppmで
あった。また、同じモジュールの中空糸を中空糸膜の根
元部で5本切断し、同様の濾過試験を行ったところ、濾
過開始時は、透過水量が86リットル/hで、透過水濁
度は、5.38ppmであり、濾過開始60分後の透過水
量は、78リットル/hで、透過水濁度は、5.10p
pmであった。
The module thus obtained was subjected to a filtration test in the same manner as in Example 1. As a result, the amount of permeated water was 64 l / h, and the turbidity of permeated water was 0.07 ppm. Further, five hollow fibers of the same module were cut at the root of the hollow fiber membrane, and a similar filtration test was performed. At the start of filtration, the permeated water amount was 86 L / h and the permeated water turbidity was 5 .38 ppm, the amount of permeated water 60 minutes after the start of filtration was 78 l / h, and the permeated water turbidity was 5.10 p.
pm.

【0032】[0032]

【発明の効果】本発明において、複数の中空糸膜を少な
くとも片方の端部で接着固定した上で開口させた中空糸
膜モジュールにおいて、中空糸膜の接着固定部分のうち
少なくとも一部における中空糸膜の内部の流路断面積
が、接着固定されていない部分における中空糸膜の内部
の流路断面積に比べて実質的に小さくなっていることを
特徴とする中空糸膜モジュールにより、中空糸膜が損傷
した場合でも処理原水の漏れ込みを抑え、高い水質を維
持することが可能となった。
According to the present invention, in a hollow fiber membrane module in which a plurality of hollow fiber membranes are bonded and fixed at at least one end and then opened, the hollow fibers in at least a part of the bonded and fixed portions of the hollow fiber membranes are provided. The hollow fiber membrane module according to claim 1, wherein a cross-sectional area of the flow path inside the membrane is substantially smaller than a cross-sectional area of the flow path inside the hollow fiber membrane in a portion where the adhesive is not fixed. Even if the membrane is damaged, it is possible to suppress the leakage of the treated raw water and maintain a high water quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る中空糸膜モジュールの一例を示す
側面断面図である。
FIG. 1 is a side sectional view showing an example of a hollow fiber membrane module according to the present invention.

【図2】本発明に係る中空糸膜モジュールの他の一例を
示す側面断面図である。
FIG. 2 is a side sectional view showing another example of the hollow fiber membrane module according to the present invention.

【図3】実施例1における本発明に係る中空糸膜モジュ
ールの一例を示す側面断面図である。
FIG. 3 is a side sectional view showing an example of the hollow fiber membrane module according to the present invention in Example 1.

【図4】実施例2における本発明に係る中空糸膜モジュ
ールの一例を示す側面断面図である。
FIG. 4 is a side sectional view showing an example of a hollow fiber membrane module according to the present invention in Example 2.

【図5】比較例1における中空糸膜モジュールの一例を
示す側面断面図である。
FIG. 5 is a side sectional view showing an example of a hollow fiber membrane module in Comparative Example 1.

【図6】通常の中空糸膜モジュールの一例を示す側面断
面図である。
FIG. 6 is a side sectional view showing an example of a normal hollow fiber membrane module.

【図7】図6における中空糸膜が損傷した場合の中空糸
膜モジュールの一例を示す側面断面図である。
FIG. 7 is a side sectional view showing an example of a hollow fiber membrane module when the hollow fiber membrane in FIG. 6 is damaged.

【符号の説明】[Explanation of symbols]

1:中空糸膜 2:ポッティング部分 3:シール材 4:透過水出口 5:処理原水入口 6:処理排水出口 7:損傷中空糸膜 8:流路断面積が小さくなっている中空糸膜部分 1: hollow fiber membrane 2: potting part 3: sealing material 4: permeated water outlet 5: treated raw water inlet 6: treated drainage outlet 7: damaged hollow fiber membrane 8: hollow fiber membrane part with reduced flow channel cross-sectional area

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複数の中空糸膜が少なくとも片方の端部で
接着固定部分により開放状態を保ちつつ接着固定された
中空糸膜モジュールにおいて、中空糸膜の接着固定部分
のうち少なくとも一部における中空糸膜の内部の流路断
面積が、接着固定されていない部分における中空糸膜の
内部の流路断面積に比べて実質的に小さくなっているこ
とを特徴とする中空糸膜モジュール。
1. A hollow fiber membrane module in which a plurality of hollow fiber membranes are adhesively fixed at least at one end while maintaining an open state by an adhesive fixing part, wherein at least a part of the adhesive fixing part of the hollow fiber membrane is hollow. A hollow fiber membrane module, wherein the cross-sectional area of the flow path inside the fiber membrane is substantially smaller than the cross-sectional area of the flow path inside the hollow fiber membrane at a portion where the adhesive is not fixed.
【請求項2】前記中空糸膜の接着固定部分のうち少なく
とも一部における中空糸膜の内部の流路断面積が小さく
なっている部分の該断面積をA、接着固定されていない
部分における中空糸膜の内部の流路断面積をBとすると
き、0.5≦A/B≦0.8の関係を満足するものであ
ることを特徴とする請求項1記載の中空糸膜モジュー
ル。
2. The cross-sectional area of a portion of the hollow fiber membrane where the flow channel cross-sectional area is small in at least a part of the adhesively fixed portion of the hollow fiber membrane is denoted by A, and the hollow portion in the portion where the adhesive is not fixedly fixed. 2. The hollow fiber membrane module according to claim 1, wherein, when the cross-sectional area of the flow channel inside the fiber membrane is B, the relationship of 0.5 ≦ A / B ≦ 0.8 is satisfied.
【請求項3】前記中空糸膜の接着固定部分の長さに対し
て、流路断面積が小さくなっている中空糸膜部分の長さ
が、2分の1以上であることを特徴とする請求項1また
は2に記載の中空糸膜モジュール。
3. The method according to claim 1, wherein the length of the hollow fiber membrane portion whose flow path cross-sectional area is smaller than the length of the adhesively fixed portion of the hollow fiber membrane is half or more. The hollow fiber membrane module according to claim 1.
【請求項4】前記流路断面積が小さくなっている中空糸
膜部分の長さが、1mm以上10mm以下であることを
特徴とする請求項1〜3のいずれかに記載の中空糸膜モ
ジュール。
4. The hollow fiber membrane module according to claim 1, wherein the length of the hollow fiber membrane portion in which the cross-sectional area of the flow passage is small is 1 mm or more and 10 mm or less. .
【請求項5】前記中空糸膜の接着固定部における中空糸
膜の断面積が、開口していない側から少なくとも5mm
以上にわたって接着固定されていない部分の流路断面積
と実質的に同じであることを特徴とする請求項1〜4の
いずれかに記載の中空糸膜モジュール。
5. The cross-sectional area of the hollow fiber membrane at the adhesive fixing portion of the hollow fiber membrane is at least 5 mm from the side where no opening is provided.
The hollow fiber membrane module according to any one of claims 1 to 4, wherein the flow path cross-sectional area of the portion not adhered and fixed over the above is substantially the same.
【請求項6】請求項1〜5のいずれかに記載の中空糸膜
モジュールを使用して、中空糸膜の外側に処理原水を流
し、中空糸膜の内側から透過水を得ることを特徴とする
中空糸膜モジュールの使用方法。
6. Using the hollow fiber membrane module according to any one of claims 1 to 5, flowing treated raw water outside the hollow fiber membrane, and obtaining permeated water from inside the hollow fiber membrane. To use hollow fiber membrane module.
JP10126015A 1998-05-08 1998-05-08 Hollow fiber membrane module and use applications thereof Pending JPH11319501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10126015A JPH11319501A (en) 1998-05-08 1998-05-08 Hollow fiber membrane module and use applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10126015A JPH11319501A (en) 1998-05-08 1998-05-08 Hollow fiber membrane module and use applications thereof

Publications (1)

Publication Number Publication Date
JPH11319501A true JPH11319501A (en) 1999-11-24

Family

ID=14924624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10126015A Pending JPH11319501A (en) 1998-05-08 1998-05-08 Hollow fiber membrane module and use applications thereof

Country Status (1)

Country Link
JP (1) JPH11319501A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
KR20190116632A (en) * 2018-04-05 2019-10-15 한양대학교 산학협력단 Repairing Method for Hollow Fiber

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
KR20190116632A (en) * 2018-04-05 2019-10-15 한양대학교 산학협력단 Repairing Method for Hollow Fiber

Similar Documents

Publication Publication Date Title
JPH11319501A (en) Hollow fiber membrane module and use applications thereof
CN100594054C (en) Porous multilayered hollow fiber, filtration module, and method of manufacturing porous multilayered hollow fiber
US6432310B1 (en) Methods of running and washing spiral wound membrane module
TWI450758B (en) Flat film element for filtration and flat film filtrating modules
JP5446416B2 (en) Separation membrane module for oil-containing wastewater treatment, oil-containing wastewater treatment method, and oil-containing wastewater treatment equipment
JP2002524227A (en) Fluid treatment element, method for cleaning fluid treatment element, and method for treating fluid
US20130140236A1 (en) Hollow fiber type reverse osmosis membrane and method for manufacturing the same
CA2765841A1 (en) Separation membrane module for oil-containing wastewater treatment. oil-containing wastewater treatment method, and oil-containing wastewater treatment apparatus
KR20140040173A (en) Membrane filtration method and membrane filtration device
CN103167902A (en) Membrane separation module
JP2014231059A (en) Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using it, immersion filtration device, and immersion filtration method
JPH11128692A (en) Hollow fiber membrane module
JP2006007224A (en) Porous multilayered hollow fiber, and filtration module provided with the porous multilayered hollow fiber
JPH03165818A (en) Hollow fiber membrane separating module and hollow fiber membrane separating apparatus
JP6374291B2 (en) Hollow fiber membrane module
JPH06134210A (en) Deaeration film module
JP2000084375A (en) Hollow fiber membrane module and treatment of water
JP4556150B2 (en) Polymer porous membrane
KR100711834B1 (en) Submerged separation membrane module
JP4437527B2 (en) Membrane filtration module
JPH05208120A (en) Spiral separation membrane element
JP2000070682A (en) Hollow fiber membrane module and its use
JPH11319520A (en) Hollow fiber membrane module and manufacture of permeating water
JP6341353B1 (en) Hollow fiber membrane module
KR101557544B1 (en) Hollow fiber membrane module