JPH11311136A - Hybrid automobile and driving device therefor - Google Patents

Hybrid automobile and driving device therefor

Info

Publication number
JPH11311136A
JPH11311136A JP10118174A JP11817498A JPH11311136A JP H11311136 A JPH11311136 A JP H11311136A JP 10118174 A JP10118174 A JP 10118174A JP 11817498 A JP11817498 A JP 11817498A JP H11311136 A JPH11311136 A JP H11311136A
Authority
JP
Japan
Prior art keywords
spark ignition
ignition engine
fuel
hydrogen gas
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10118174A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sukegawa
義寛 助川
Minoru Osuga
大須賀  稔
Toshiji Nogi
利治 野木
Takuya Shiraishi
拓也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10118174A priority Critical patent/JPH11311136A/en
Publication of JPH11311136A publication Critical patent/JPH11311136A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce exhaust emission, and improve heat efficiency by providing with a fuel reformer for reforming hydrocarbon fuel to hydrogen gas, and operating a spark ignition engine with at least either one of hydrocarbon fuel and hydrogen gas. SOLUTION: A part of hydrogen gas generated by a fuel reformer 10 is supplied to a spark ignition engine 1 by a control signal 83, and a hydrogen distributor 14 is controlled so as to supply residual hydrogen gas to a fuel battery 11. An electric power regulator 9 is controlled by a control signal 84 so as to supply electric power of the fuel battery 11 to an electric motor 2. Gasoline is reformed to hydrogen gas by the fuel reformer 10, electric power is generated by the fuel battery 11, and the electric motor 2 is rotated. Rotating force of the electric motor 2 is transmitted to wheels 8 through a differential gear 7 by a power transmitter 6 so as to obtain driving force. Driving force of the wheels 8 is regulated in such a way that an output of a fuel pump 16 is regulated by the control signal 81, and a gasoline flow rate supplied to the fuel reformer 10 is increased/decreased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は火花点火機関と電動
機によって車輪を駆動するハイブリッド自動車、および
その駆動装置に関する。
The present invention relates to a hybrid vehicle in which wheels are driven by a spark ignition engine and an electric motor, and a drive device therefor.

【0002】[0002]

【従来の技術】図8に公知のハイブリッド自動車用駆動
装置を示す。本駆動装置は一般にパラレルハイブリッド
と呼ばれる方式である。図8において1はガソリンを燃
料とする火花点火機関、2は電動機、3は蓄電池、4は
発電機、5はクラッチ、6は動力伝達装置、7は差動ギ
ア、8は車輪、9は電力調整器である。同図において、
火花点火機関の要求負荷が比較的小さい場合には、クラ
ッチ5を切り離し、電力調整器9によって蓄電池3より
電動機2に電力を供給し、電動機2によって車輪8が駆
動される。一方、中負荷の場合には、電力調整器9によ
って蓄電池3から電動機2への電力供給が停止され、ク
ラッチ5をつないで火花点火機関1によって車輪8を駆
動する。同時に、発電機4によって発生した電力が蓄電
池3に蓄えられる。さらに負荷が高い場合は、前記の火
花点火機関1の駆動力に、蓄電池3によって駆動された
電動機4の駆動力が加わる。
2. Description of the Related Art FIG. 8 shows a known hybrid vehicle drive unit. This drive device is of a type generally called a parallel hybrid. 8, 1 is a spark ignition engine using gasoline as fuel, 2 is an electric motor, 3 is a storage battery, 4 is a generator, 5 is a clutch, 6 is a power transmission device, 7 is a differential gear, 8 is wheels, and 9 is electric power. It is a regulator. In the figure,
When the required load of the spark ignition engine is relatively small, the clutch 5 is disengaged, power is supplied from the storage battery 3 to the electric motor 2 by the electric power regulator 9, and the wheels 8 are driven by the electric motor 2. On the other hand, in the case of a medium load, power supply from the storage battery 3 to the electric motor 2 is stopped by the power regulator 9, and the clutch 8 is connected to drive the wheels 8 by the spark ignition engine 1. At the same time, the electric power generated by the generator 4 is stored in the storage battery 3. When the load is further high, the driving force of the electric motor 4 driven by the storage battery 3 is added to the driving force of the spark ignition engine 1.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
ハイブリッド自動車においては、たとえ電動機によって
車輪を駆動する場合においても、その電力は、元々、ガ
ソリンを燃料とする火花点火機関によって発電機を回し
蓄電池に蓄わえられたものを使用しており、負荷の大小
に関わらず常に排気エミッションが排出されることとな
る。
By the way, in such a hybrid vehicle, even when the wheels are driven by an electric motor, the electric power is originally turned by a generator by a spark ignition engine using gasoline as fuel, and a storage battery is used. , And the exhaust emission is always emitted regardless of the magnitude of the load.

【0004】また火花点火機関全体の熱効率は、火花点
火機関の効率に大きく依存するため、火花点火機関を効
率良く運転する必要がある。しかし、一般的に火花点火
機関は吸気ポート上流部に設けたスロットル弁により出
力調整をするため、ポンピング損失による効率低下が大
きく、火花点火機関全体の熱効率を上げるのが困難とな
っている。
Further, since the thermal efficiency of the entire spark ignition engine largely depends on the efficiency of the spark ignition engine, it is necessary to operate the spark ignition engine efficiently. However, since the output of a spark ignition engine is generally adjusted by a throttle valve provided upstream of an intake port, the efficiency is greatly reduced due to pumping loss, and it is difficult to increase the thermal efficiency of the entire spark ignition engine.

【0005】本発明は、排気エミッションが少なく、か
つ、熱効率の高いハイブリッド自動車、およびその駆動
装置を提供することを課題とする。
[0005] It is an object of the present invention to provide a hybrid vehicle having low exhaust emission and high thermal efficiency, and a drive device for the hybrid vehicle.

【0006】[0006]

【課題を解決するための手段】上記課題は、火花点火機
関と、駆動輪と、前記火花点火機関または駆動輪の回転
エネルギーによって発電される発電機と、前記発電機で
発電された電力を貯える蓄電池と、前記蓄電池および前
記発電機の少なくとも一方より電力が供給される電動機
とを備え、前記火花点火機関および前記電動機の出力に
より駆動されるハイブリッド自動車において、炭化水素
燃料を水素ガスに改質する燃料改質器を備え、前記火花
点火機関は、炭化水素燃料と水素ガスの少なくとも一方
で運転されることによって解決される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a spark ignition engine, a driving wheel, a generator generated by the rotational energy of the spark ignition engine or the driving wheel, and storing the power generated by the generator. A hybrid vehicle that includes a storage battery and a motor that is supplied with power from at least one of the storage battery and the generator, and that reforms hydrocarbon fuel into hydrogen gas in a hybrid vehicle driven by the output of the spark ignition engine and the motor. A fuel reformer is provided, wherein the spark ignition engine is solved by operating at least one of hydrocarbon fuel and hydrogen gas.

【0007】また上記課題は、炭化水素燃料を水素ガス
に改質する燃料改質器と、該水素ガスから電力を生成す
る燃料電池と、該燃料電池の電力により駆動される車軸
駆動用電動機と、炭化水素と水素ガスを燃料とする火花
点火機関と、該火花点火機関によって駆動される発電機
と、該発電機の電力を蓄える蓄電池と、蓄電池及び燃料
電池から電動機に供給する電力量を制御する手段と、炭
化水素燃料の燃料改質器と火花点火機関への供給比率を
制御する手段と、燃料改質器で生成した水素ガスの燃料
電池と火花点火機関への供給比率を制御する手段と、車
軸駆動用電動機と火花点火機関の駆動力を合成して、車
軸に伝える動力伝達手段を備えたハイブリッド自動車用
駆動装置により解決される。
Another object of the present invention is to provide a fuel reformer for reforming hydrocarbon fuel into hydrogen gas, a fuel cell for generating electric power from the hydrogen gas, and an axle driving motor driven by the electric power of the fuel cell. Controlling a spark ignition engine that uses hydrocarbons and hydrogen gas as fuel, a generator driven by the spark ignition engine, a storage battery that stores the power of the generator, and an amount of power supplied to the motor from the storage battery and the fuel cell. Means for controlling the supply ratio of hydrocarbon fuel to the fuel reformer and the spark ignition engine, and means for controlling the supply ratio of hydrogen gas generated by the fuel reformer to the fuel cell and the spark ignition engine This is solved by a hybrid vehicle drive device having a power transmission means for combining the drive power of the axle drive motor and the drive force of the spark ignition engine and transmitting the drive force to the axle.

【0008】[0008]

【発明の実施の形態】以下図面により、本発明の実施形
態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は、本発明による自動車用ハイブリッ
ド火花点火機関の構成図である。本図において1はガソ
リン,水素ガスを燃料とする火花点火機関である。
FIG. 1 is a block diagram of a hybrid spark ignition engine for an automobile according to the present invention. In FIG. 1, reference numeral 1 denotes a spark ignition engine using gasoline and hydrogen gas as fuel.

【0010】本火花点火機関は、図2に示すように、燃
焼室40の上部に点火プラグ43と吸気ポート45,排
気ポート46が設けられている。水素ガスは水素供給弁
42によって吸気ポート45内に供給され、またインジ
ェクタ41によって、微粒化されたガソリンがシリンダ
40内に供給される。ピストン44にはキャビティ44
aが設けられている。
As shown in FIG. 2, the spark ignition engine is provided with a spark plug 43, an intake port 45, and an exhaust port 46 above a combustion chamber 40. Hydrogen gas is supplied into the intake port 45 by the hydrogen supply valve 42, and atomized gasoline is supplied into the cylinder 40 by the injector 41. The piston 44 has a cavity 44
a is provided.

【0011】また、本火花点火機関においてはスロット
ル弁はなく、供給する水素,ガソリンの量によって機関
の出力を調整する。スロットル弁をなくすことで、ポン
ピング損失がなくなり、高い熱効率を得ることができ
る。
The spark ignition engine does not have a throttle valve, but adjusts the output of the engine according to the amounts of hydrogen and gasoline supplied. By eliminating the throttle valve, pumping loss is eliminated, and high thermal efficiency can be obtained.

【0012】着火性の良い水素ガスを燃料とする場合に
は、吸気ポート45内で空気と水素ガスを混合すること
で、シリンダ40内に均質な水素−空気混合気を作り燃
焼させる。
When hydrogen gas having good ignitability is used as fuel, air and hydrogen gas are mixed in the intake port 45 to form a homogeneous hydrogen-air mixture in the cylinder 40 and burn.

【0013】一方、着火性の低いガソリン燃料の場合に
は、シリンダ40に直接に燃料を噴射し、キャビティ4
4aによって燃料の拡散を抑制することで、点火プラグ
43の周りにリッチ混合気を作り、理論混合比より希薄
な混合気を安定に燃焼させるようになっている。
On the other hand, in the case of gasoline fuel having low ignitability, the fuel is directly injected into the cylinder 40 and the
By suppressing the diffusion of fuel by 4a, a rich mixture is created around the ignition plug 43, and the mixture leaner than the stoichiometric mixture is stably burned.

【0014】図1において、10はガソリンを水素ガス
に改質する燃料改質器であり、11は水素ガスから電力
を生成する燃料電池である。2は電動機、12は火花点
火機関1の排気ガスによってタービンを回し電力を生成
するターボ発電機であり、発電した電力は蓄電池3に蓄
えられる。6は電動機2の軸出力と火花点火機関1の軸
出力を合成する動力伝達装置で、その出力は差動ギア7
を介して車輪8に伝えられる。
In FIG. 1, reference numeral 10 denotes a fuel reformer for reforming gasoline to hydrogen gas, and reference numeral 11 denotes a fuel cell for generating electric power from hydrogen gas. Reference numeral 2 denotes an electric motor, and reference numeral 12 denotes a turbo generator that generates electric power by rotating a turbine by the exhaust gas of the spark ignition engine 1, and the generated electric power is stored in the storage battery 3. Reference numeral 6 denotes a power transmission device for synthesizing the shaft output of the electric motor 2 and the shaft output of the spark ignition engine 1.
To the wheels 8 via

【0015】13はガソリンの燃料改質器10と火花点
火機関1への供給比率を変えるガソリン分配器で、14
は燃料改質器10で生成した水素ガスの燃料電池11と
火花点火機関1への供給比率を変える水素分配器であ
る。これら分配器13,14の分配比率は制御装置15
からの制御信号82,83により、任意に変えることが
できる。
Reference numeral 13 denotes a gasoline distributor for changing the supply ratio of gasoline to the fuel reformer 10 and the spark ignition engine 1.
Is a hydrogen distributor that changes the supply ratio of the hydrogen gas generated by the fuel reformer 10 to the fuel cell 11 and the spark ignition engine 1. The distribution ratio of these distributors 13 and 14 is controlled by the control device 15.
Can be arbitrarily changed by the control signals 82 and 83 from.

【0016】9は燃料電池11で生成した電力と蓄電池
3から供給される電力を調整する電力調整器である。
Reference numeral 9 denotes a power regulator for adjusting the power generated by the fuel cell 11 and the power supplied from the storage battery 3.

【0017】図3は、動力伝達装置6の動作モードを示
した図である。
FIG. 3 is a diagram showing an operation mode of the power transmission device 6.

【0018】(a)は火花点火機関1の始動時に使うモ
ードであり、電動機2の回転力は火花点火機関1に伝わ
り火花点火機関1をクランキングする。この時、差動ギ
ア7に動力は伝達されない。
FIG. 1A shows a mode used when the spark ignition engine 1 is started. The torque of the electric motor 2 is transmitted to the spark ignition engine 1 to crank the spark ignition engine 1. At this time, no power is transmitted to the differential gear 7.

【0019】(b)は電動機2の駆動力のみが差動ギア
7に伝わるモードであり、火花点火機関1が回転してい
てもその駆動力は差動ギア7には伝わらない。
FIG. 2B shows a mode in which only the driving force of the electric motor 2 is transmitted to the differential gear 7, and the driving force is not transmitted to the differential gear 7 even if the spark ignition engine 1 is rotating.

【0020】(c)は火花点火機関1と電動機2を合わ
せた両方の駆動力が差動ギア7に伝わるモード、(d)
は火花点火機関1の駆動力のみが差動ギア7に伝わるモ
ードである。これらのモードは図1の制御装置15から
の制御信号85によって切り替えられる。
(C) is a mode in which both driving forces of the spark ignition engine 1 and the electric motor 2 are transmitted to the differential gear 7, and (d).
Is a mode in which only the driving force of the spark ignition engine 1 is transmitted to the differential gear 7. These modes are switched by a control signal 85 from the control device 15 in FIG.

【0021】以下、図4に示すように火花点火機関の停
止状態からトルクを時間とともに増加させ、自動車を加
速する場合を例に図1の実施形態の動作について説明す
る。図1の実施形態において、火花点火機関1の始動時
は、制御信号82によってガソリンが全量,火花点火機
関1に供給されるようガソリン分配器13が制御され、
制御信号84によって蓄電池3の電力を電動機2に供給
するよう電力調整器9が制御される。
Hereinafter, the operation of the embodiment of FIG. 1 will be described by taking as an example a case where the vehicle is accelerated by increasing the torque with time from the stop state of the spark ignition engine as shown in FIG. In the embodiment of FIG. 1, when the spark ignition engine 1 is started, the gasoline distributor 13 is controlled by the control signal 82 so that the entire amount of gasoline is supplied to the spark ignition engine 1.
The power regulator 9 is controlled by the control signal 84 to supply the electric power of the storage battery 3 to the electric motor 2.

【0022】また、動力伝達装置6は図3の(a)のモ
ード、すなわち電動機2の駆動力が火花点火機関1に伝
達されるように制御信号85によって制御される。
The power transmission device 6 is controlled by a control signal 85 so as to transmit the driving force of the electric motor 2 to the spark ignition engine 1 in the mode shown in FIG.

【0023】蓄電池3の電力が電動機2に供給されるこ
とによって電動機2が回転し、動力伝達装置6によって
その回転力が火花点火機関1に伝えられる。この回転力
によって火花点火機関1がクランキングされ始動する。
When the electric power of the storage battery 3 is supplied to the electric motor 2, the electric motor 2 rotates, and the torque is transmitted to the spark ignition engine 1 by the power transmission device 6. The spark ignition engine 1 is cranked and started by this rotational force.

【0024】火花点火機関への要求トルクが図4に示す
電動機最大トルクT1、すなわち電動機最大トルクT2
と火花点火機関1を水素ガスで駆動したときの希薄限界
空燃比での発生トルクΔTとの差より低い場合には、制
御信号82によってガソリン分配器13を燃料改質器1
0に全てのガソリンが供給されるよう制御する。
The required torque for the spark ignition engine is the maximum motor torque T1 shown in FIG. 4, that is, the maximum motor torque T2.
Is smaller than the difference between the generated torque ΔT at the lean limit air-fuel ratio when the spark ignition engine 1 is driven by hydrogen gas and the gasoline distributor 13 is controlled by the control signal 82.
0 is controlled so that all gasoline is supplied.

【0025】また、制御信号83によって燃料改質器1
0によって生成した水素ガスの一部を火花点火機関1に
供給し、残りの水素ガスを燃料電池11に供給するよう
水素分配器14を制御する。このときの火花点火機関1
への水素ガス供給量は、火花点火機関1の水素−空気混
合気の希薄燃焼限界よりわずかに水素リッチとなるよう
に設定される。
The control signal 83 causes the fuel reformer 1
The hydrogen distributor 14 is controlled so that a part of the hydrogen gas generated by the zero is supplied to the spark ignition engine 1 and the remaining hydrogen gas is supplied to the fuel cell 11. The spark ignition engine 1 at this time
The amount of hydrogen gas supplied to the spark ignition engine 1 is set to be slightly richer than the lean burn limit of the hydrogen-air mixture of the spark ignition engine 1.

【0026】次に制御信号84によって、電力調整器9
は燃料電池11の電力を電動機2に供給するように制御
される。また制御信号85によって、動力伝達装置6は
図3の(b)のモード、すなわち電動機2の駆動力のみ
を車輪8に伝達するモードに設定される。
Next, the power regulator 9 is controlled by the control signal 84.
Is controlled to supply the electric power of the fuel cell 11 to the electric motor 2. The control signal 85 sets the power transmission device 6 to the mode shown in FIG. 3B, that is, the mode for transmitting only the driving force of the electric motor 2 to the wheels 8.

【0027】これにより、ガソリンは燃料改質器10に
よって水素ガスに改質され、この水素ガスによって燃料
電池11で電力が発生し、この電力により電動機2が回
転する。電動機2の回転力が動力伝達装置6によって差
動ギア7を介して車輪8に伝わり駆動力を得る。車輪8
の駆動力の調整は、制御信号81により燃料ポンプ16
の出力を調整し、燃料改質器10に供給するガソリン流
量を増減することによって行われる。
As a result, the gasoline is reformed into hydrogen gas by the fuel reformer 10, and electric power is generated in the fuel cell 11 by the hydrogen gas, and the electric motor 2 is rotated by the electric power. The rotational force of the electric motor 2 is transmitted to the wheels 8 via the differential gear 7 by the power transmission device 6 to obtain a driving force. Wheel 8
The driving force of the fuel pump 16 is adjusted by the control signal 81.
The output is adjusted by increasing or decreasing the flow rate of gasoline supplied to the fuel reformer 10.

【0028】なお、本運転モードにおいて、電力量検出
器30で検出した蓄電池3の蓄電量が、予め定めたしき
い値より多い場合には、燃料電池11への水素供給をし
ないように水素分配器14を制御し、かつ、蓄電池3の
電力を電動機2に供給するように電力調整器9を制御す
ることによって、蓄電池3の電力を用いて電動機2を回
し、車輪8を駆動することもできる。
In this operation mode, when the amount of charge of the storage battery 3 detected by the power amount detector 30 is larger than a predetermined threshold, the hydrogen distribution is performed so as not to supply hydrogen to the fuel cell 11. By controlling the heater 14 and controlling the power regulator 9 so as to supply the electric power of the storage battery 3 to the electric motor 2, the electric motor 2 can be turned using the electric power of the storage battery 3 to drive the wheels 8. .

【0029】火花点火機関のトルクが図4に示すT1、
すなわち電動機最大トルクT2と火花点火機関1を水素
ガスで駆動したときの希薄限界空燃比での発生トルクΔ
Tとの差を超えると、電力調整器9によって、電動機2
には、燃料電池11からの電力に加え、蓄電池3からの
電力も供給される。以後、燃料改質器10へのガソリン
供給量は一定とし、トルク増加分は蓄電池3からの供給
電力量を増やすことによって賄われるよう、電力調整器
9と燃料ポンプ16が制御される。
When the torque of the spark ignition engine is T1 shown in FIG.
That is, the motor maximum torque T2 and the generated torque Δ at the lean limit air-fuel ratio when the spark ignition engine 1 is driven by hydrogen gas.
T, the electric power regulator 9 causes the electric motor 2
Is supplied with electric power from the storage battery 3 in addition to the electric power from the fuel cell 11. Thereafter, the power regulator 9 and the fuel pump 16 are controlled so that the gasoline supply amount to the fuel reformer 10 is fixed, and the increased torque is covered by increasing the amount of power supplied from the storage battery 3.

【0030】さらに負荷が増え、トルクが図4に示す電
動機最大トルクT2を超えると、動力伝達装置6は制御
信号85によって図3の(c)のモード、すなわち電動
機2と火花点火機関1の双方の駆動力を車輪8に伝達す
るモードに切り替えられると同時に、電力調整器9によ
って蓄電池3から電動機2への電力供給を停止する。こ
れにより、電動機2の発生トルクはT1に減少し、電動
機2と火花点火機関1を合わせたトルクが、電動機最大
トルクT2と等しくなり、火花点火機関1を駆動力に付
加したことによるトルク段差がなくなる。
When the load further increases and the torque exceeds the motor maximum torque T2 shown in FIG. 4, the power transmission device 6 is controlled by the control signal 85 in the mode shown in FIG. 3C, that is, in both the motor 2 and the spark ignition engine 1. At the same time as the mode for transmitting the driving force to the wheels 8, the power supply 9 stops the power supply from the storage battery 3 to the electric motor 2. As a result, the generated torque of the electric motor 2 is reduced to T1, the combined torque of the electric motor 2 and the spark ignition engine 1 becomes equal to the electric motor maximum torque T2, and the torque step caused by adding the spark ignition engine 1 to the driving force is reduced. Disappears.

【0031】この後は、制御信号81によって燃料ポン
プ16を制御して燃料改質器10へのガソリン供給量を
増やすとともに、水素分配器14を燃料電池11への水
素ガス供給量が一定になるよう制御することによってト
ルクを増加させる。
Thereafter, the fuel pump 16 is controlled by the control signal 81 to increase the gasoline supply amount to the fuel reformer 10, and the hydrogen distributor 14 controls the hydrogen gas supply amount to the fuel cell 11 to be constant. Control to increase the torque.

【0032】水素ガス駆動の火花点火機関1と電動機2
による総合熱効率とトルクの関係を図5に示す。
A spark ignition engine 1 and a motor 2 driven by hydrogen gas
FIG. 5 shows the relationship between the total thermal efficiency and the torque according to FIG.

【0033】一般に火花点火機関の熱効率は、燃料電池
と電動機を組み合わせた場合に比べ低い。
In general, the thermal efficiency of a spark ignition engine is lower than when a fuel cell and an electric motor are combined.

【0034】本発明においては、トルク増大に伴い、電
動機の負荷分担率が下がり、火花点火機関の負荷分担率
が増えるため、熱効率は低下する。そこで本発明では、
火花点火機関の総合効率が火花点火機関単体の熱効率η
4と等しくなるトルクT3より火花点火機関の負荷が高
くなると、ガソリンを全量、火花点火機関1に供給する
よう、ガソリン分配器13を制御すると共に、動力伝達
装置を図3の(d)のモード、すなわち火花点火機関1
の駆動力のみを車輪8に伝達するモードに切り替える。
In the present invention, as the torque increases, the load sharing ratio of the electric motor decreases, and the load sharing ratio of the spark ignition engine increases, so that the thermal efficiency decreases. Therefore, in the present invention,
The overall efficiency of the spark ignition engine is the thermal efficiency η of the spark ignition engine alone
When the load on the spark ignition engine becomes higher than the torque T3 equal to 4, the gasoline distributor 13 is controlled so that the entire amount of gasoline is supplied to the spark ignition engine 1, and the power transmission device is operated in the mode shown in FIG. That is, the spark ignition engine 1
Is switched to the mode for transmitting only the driving force of

【0035】このときのガソリン供給量は、火花点火機
関1の発生トルクが図5で示したT3となるように燃料
ポンプ16により制御する。
The gasoline supply amount at this time is controlled by the fuel pump 16 so that the generated torque of the spark ignition engine 1 becomes T3 shown in FIG.

【0036】この結果、車輪8は火花点火機関1のみに
よって駆動されることになる。これ以降のトルク増加分
は、燃料ポンプ16で火花点火機関1に供給するガソリ
ン量を制御することにより賄う。
As a result, the wheels 8 are driven only by the spark ignition engine 1. The subsequent increase in torque is covered by controlling the amount of gasoline supplied to the spark ignition engine 1 by the fuel pump 16.

【0037】なお、上記の実施形態においては、火花点
火機関の要求トルクがT1からT3の範囲にある場合に
は、火花点火機関1は水素ガスのみを燃料として使用し
ているが、水素ガスとガソリンとの混合燃料を使うこと
もできる。
In the above-described embodiment, when the required torque of the spark ignition engine is in the range from T1 to T3, the spark ignition engine 1 uses only hydrogen gas as fuel. It is also possible to use a fuel mixture with gasoline.

【0038】すなわち、燃料改質器10と火花点火機関
1の双方にガソリンを供給するようガソリン分配器13
を制御するとともに、燃料電池11と火花点火機関1の
双方に水素ガスを供給するように水素分配器14を制御
する。要求トルクが高くなるに従い、ガソリン分配器1
3によって火花点火機関1に供給されるガソリンの割合
を高くしていき、トルクT3でガソリンの割合を100
%にする。
That is, the gasoline distributor 13 supplies gasoline to both the fuel reformer 10 and the spark ignition engine 1.
And controls the hydrogen distributor 14 so that hydrogen gas is supplied to both the fuel cell 11 and the spark ignition engine 1. As the required torque increases, the gasoline distributor 1
3, the ratio of gasoline supplied to the spark ignition engine 1 is increased.
%.

【0039】このように、ガソリン比率を連続的に変え
ることによって、火花点火機関1の燃料が水素ガスから
ガソリンに切り替わったときのトルク段差による運転性
の悪化を防止できる。
As described above, by continuously changing the gasoline ratio, it is possible to prevent the deterioration of drivability due to the torque step when the fuel of the spark ignition engine 1 is switched from hydrogen gas to gasoline.

【0040】また、着火性の高い水素ガスをガソリンに
混ぜることによって、希薄燃焼時の着火性を改善でき、
希薄運転限界の空燃比を上げることができるという利点
もある。
By mixing highly ignitable hydrogen gas with gasoline, the ignitability during lean burn can be improved.
There is also an advantage that the air-fuel ratio at the lean operation limit can be increased.

【0041】この場合には、図6に示すように、点火時
期において点火プラグの近傍に水素−空気混合気、その
外側にガソリン−空気混合気が存在するように混合気の
分布を制御すると、より着火性を向上できる。
In this case, as shown in FIG. 6, when the distribution of the air-fuel mixture is controlled so that the hydrogen-air mixture exists near the ignition plug and the gasoline-air mixture exists outside the ignition plug at the ignition timing, The ignitability can be further improved.

【0042】このような混合気を作る方法としては、以
下の方法が考えられる。
As a method for producing such an air-fuel mixture, the following method can be considered.

【0043】吸気ポート45内の水素ガス供給器42か
ら吸気バルブ450近傍にかけて、図7に示すような仕
切り板50を設ける。このような構造においては、吸気
行程で吸気ポート45内に供給された水素ガスは空気と
混合しながら、吸気ポート45の仕切り板50の上部の
流路45aを通って、シリンダ40内に供給される。一
方、仕切り板50の下側の流路45bを通ってシリンダ
40内に空気が供給され、この空気に向けてインジェク
タ41から微粒化したガソリンが噴射される。これによ
り、点火プラグ43が設置されているシリンダ40の上
部には水素−空気混合気を、シリンダ40の下部にはガ
ソリン−空気混合気を生成することができる。
A partition plate 50 as shown in FIG. 7 is provided from the hydrogen gas supply unit 42 in the intake port 45 to the vicinity of the intake valve 450. In such a structure, the hydrogen gas supplied into the intake port 45 during the intake stroke is supplied to the cylinder 40 through the flow path 45a above the partition plate 50 of the intake port 45 while mixing with the air. You. On the other hand, air is supplied into the cylinder 40 through the lower channel 45b of the partition plate 50, and atomized gasoline is injected from the injector 41 toward the air. Thus, a hydrogen-air mixture can be generated above the cylinder 40 where the ignition plug 43 is installed, and a gasoline-air mixture can be generated below the cylinder 40.

【0044】表1に各構成機器の代表的な熱効率を示
す。
Table 1 shows typical thermal efficiencies of the components.

【0045】[0045]

【表1】 [Table 1]

【0046】表1の熱効率で、火花点火機関全体の熱効
率を評価すると、以下のようになる。
When the thermal efficiency of the entire spark ignition engine is evaluated based on the thermal efficiency shown in Table 1, the following is obtained.

【0047】(1)低負荷域で、電動機のみで駆動する
場合 総合熱効率 η=η1・η2・η3=0.7×0.9×
0.9=0.567 (2)高負荷域で、火花点火機関のみで駆動する場合 総合熱効率 η=η4=0.3 (3)中負荷域で、電動機と火花点火機関で駆動する場
合 総合効率 0.3<η<0.567 (効率は負荷
により変動) 従来の火花点火機関のみで駆動した場合、熱効率は25
〜30%程度であることから、大幅に熱効率を向上でき
ることがわかる。
(1) In the case where the motor is driven only in the low load region, the total thermal efficiency η = η1, η2, η3 = 0.7 × 0.9 ×
0.9 = 0.567 (2) When driven by a spark ignition engine only in a high load range Total thermal efficiency η = η4 = 0.3 (3) When driven by an electric motor and a spark ignition engine in a medium load range Efficiency 0.3 <η <0.567 (Efficiency fluctuates depending on load) When driven only by a conventional spark ignition engine, the thermal efficiency is 25.
From about 30%, it can be seen that the thermal efficiency can be greatly improved.

【0048】[0048]

【発明の効果】本発明によれば、ハイブリッド自動車に
おいて、炭化水素燃料を水素ガスに改質する燃料改質器
を備え、火花点火機関が炭化水素燃料と水素ガスの少な
くとも一方で運転されることにより、低負荷領域の効率
を向上することができ、さらには、低中負荷域におい
て、窒素酸化物,未燃炭化水素,一酸化炭素,硫黄酸化
物が排出されず、極めて排気エミッションの少ないハイ
ブリッド自動車を提供できる。
According to the present invention, in a hybrid vehicle, a fuel reformer for reforming hydrocarbon fuel into hydrogen gas is provided, and the spark ignition engine is operated by at least one of hydrocarbon fuel and hydrogen gas. Can improve the efficiency in the low-load region, and further, in the low-medium-load region, a hybrid that does not emit nitrogen oxides, unburned hydrocarbons, carbon monoxide, and sulfur oxides and has extremely low exhaust emissions Can provide cars.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態をなすハイブリッド自動車
の全体構成図を示す。
FIG. 1 is an overall configuration diagram of a hybrid vehicle according to an embodiment of the present invention.

【図2】図1の火花点火機関の構成図を示す。FIG. 2 shows a configuration diagram of the spark ignition engine of FIG.

【図3】図1の動力伝達装置の動作モードを示す。FIG. 3 shows an operation mode of the power transmission device of FIG.

【図4】図1の動作例を説明するためのトルク変化を示
す図。
FIG. 4 is a view showing a torque change for explaining the operation example of FIG. 1;

【図5】図1の実施形態のトルクと熱効率の関係を表す
図である。
FIG. 5 is a diagram illustrating a relationship between torque and thermal efficiency in the embodiment of FIG. 1;

【図6】着火性を高めるための火花点火機関のシリンダ
内の混合気分布を示す。
FIG. 6 shows an air-fuel mixture distribution in a cylinder of a spark ignition engine for improving ignitability.

【図7】本発明の一実施形態における火花点火機関の構
成図を示す。
FIG. 7 is a configuration diagram of a spark ignition engine according to an embodiment of the present invention.

【図8】従来のハイブリッド火花点火機関の構成図を示
す。
FIG. 8 shows a configuration diagram of a conventional hybrid spark ignition engine.

【符号の説明】[Explanation of symbols]

1…火花点火機関、2…電動機、3…蓄電池、6…動力
伝達装置、8…車輪、9…電力調整器、10…燃料改質
器、12…ターボ発電機、13…ガソリン分配器、14
…水素分配器、15…制御装置、30…電力量検出器。
DESCRIPTION OF SYMBOLS 1 ... Spark ignition engine, 2 ... Electric motor, 3 ... Storage battery, 6 ... Power transmission device, 8 ... Wheel, 9 ... Power regulator, 10 ... Fuel reformer, 12 ... Turbo generator, 13 ... Gasoline distributor, 14
... hydrogen distributor, 15 ... control device, 30 ... electric energy detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白石 拓也 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takuya Shiraishi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】火花点火機関と、駆動輪と、前記火花点火
機関または駆動輪の回転エネルギーによって発電される
発電機と、前記発電機で発電された電力を貯える蓄電池
と、前記蓄電池および前記発電機の少なくとも一方より
電力が供給される電動機とを備え、前記火花点火機関お
よび前記電動機の出力により駆動されるハイブリッド自
動車において、 炭化水素燃料を水素ガスに改質する燃料改質器を備え、
前記火花点火機関は、炭化水素燃料と水素ガスの少なく
とも一方で運転されることを特徴とするハイブリッド自
動車。
1. A spark ignition engine, a driving wheel, a generator generated by rotational energy of the spark ignition engine or the driving wheel, a storage battery for storing the power generated by the generator, the storage battery and the power generation An electric motor to which electric power is supplied from at least one of the electric motor and a hybrid vehicle driven by an output of the spark ignition engine and the electric motor, comprising: a fuel reformer for reforming hydrocarbon fuel into hydrogen gas;
A hybrid vehicle, wherein the spark ignition engine is driven by at least one of hydrocarbon fuel and hydrogen gas.
【請求項2】請求項1記載において、 前記燃料改質機で生成された水素ガスを電力に変換する
燃料電池を備え、前記電動機は、前記蓄電池,前記発電
機、および前記燃料電池の少なくとも一方から電力が供
給されることを特徴とするハイブリッド自動車。
2. The fuel cell system according to claim 1, further comprising: a fuel cell configured to convert hydrogen gas generated by the fuel reformer into electric power, wherein the electric motor includes at least one of the storage battery, the generator, and the fuel cell. A hybrid vehicle, which is supplied with electric power from a hybrid vehicle.
【請求項3】請求項2において、 前記火花点火機関は、前記駆動輪に要求される駆動トル
クに応じて、供給される炭化水素燃料と水素ガスの割合
が変化されることを特徴とするハイブリッド自動車。
3. The hybrid according to claim 2, wherein in the spark ignition engine, a ratio of supplied hydrocarbon fuel and hydrogen gas is changed according to a driving torque required for the driving wheels. Car.
【請求項4】請求項2において、 前記電動機は、前記駆動輪に要求される駆動トルクに応
じて、前記蓄電池,前記発電機、および前記燃料電池の
電力供給割合が変化されることを特徴とするハイブリッ
ド自動車。
4. The electric motor according to claim 2, wherein a power supply ratio of the storage battery, the generator, and the fuel cell is changed according to a driving torque required for the driving wheels. Hybrid car.
【請求項5】炭化水素燃料を水素ガスに改質する燃料改
質器と、該水素ガスから電力を生成する燃料電池と、該
燃料電池の電力により駆動される車軸駆動用電動機と、
炭化水素と水素ガスを燃料とする火花点火機関と、該火
花点火機関によって駆動される発電機と、該発電機の電
力を蓄える蓄電池と、該蓄電池と、蓄電池及び燃料電池
から車軸駆動用電動機に供給する電力量を制御する手段
と、炭化水素燃料の燃料改質器と火花点火機関への供給
比率を制御する手段と、燃料改質器で生成した水素ガス
の燃料電池と火花点火機関への供給比率を制御する手段
と、車軸駆動用電動機と火花点火機関の駆動力を合成し
て、車軸に伝える動力伝達手段を備えたハイブリッド自
動車用駆動装置。
5. A fuel reformer for reforming hydrocarbon fuel into hydrogen gas, a fuel cell for generating electric power from the hydrogen gas, an axle driving motor driven by electric power of the fuel cell,
A spark ignition engine that uses hydrocarbons and hydrogen gas as fuel, a generator driven by the spark ignition engine, a storage battery that stores the power of the generator, the storage battery, and the storage battery and the fuel cell to an axle drive motor. Means for controlling the amount of electric power to be supplied; means for controlling the supply ratio of hydrocarbon fuel to the fuel reformer and the spark ignition engine; and means for controlling the supply of hydrogen gas generated by the fuel reformer to the fuel cell and the spark ignition engine. A drive device for a hybrid vehicle, comprising: means for controlling a supply ratio; and power transmission means for combining the driving force of an electric motor for driving an axle and a driving force of a spark ignition engine and transmitting it to an axle.
【請求項6】請求項5記載において、火花点火機関の負
荷の大きさに応じて、燃料改質器と火花点火機関へ供給
する炭化水素燃料の比率を制御することを特徴とするハ
イブリッド自動車用駆動装置。
6. A hybrid vehicle according to claim 5, wherein the ratio of the hydrocarbon fuel supplied to the fuel reformer and the spark ignition engine is controlled in accordance with the magnitude of the load on the spark ignition engine. Drive.
【請求項7】請求項6記載において、低負荷では火花点
火機関への炭化水素供給率を低く、高負荷では火花点火
機関への炭化水素供給率を高くすることを特徴とするハ
イブリッド自動車用駆動装置。
7. The drive for a hybrid vehicle according to claim 6, wherein a hydrocarbon supply rate to the spark ignition engine is reduced at a low load, and a hydrocarbon supply rate to the spark ignition engine is increased at a high load. apparatus.
【請求項8】請求項5記載において、火花点火機関の負
荷の大きさに応じて、燃料改質器と火花点火機関へ供給
する炭化水素燃料の比率と、燃料電池と火花点火機関へ
供給する水素ガスの比率を制御することを特徴とするハ
イブリッド自動車用駆動装置。
8. The fuel reformer according to claim 5, wherein the ratio of hydrocarbon fuel to be supplied to the fuel reformer and the spark ignition engine according to the magnitude of the load on the spark ignition engine, and to the fuel cell and the spark ignition engine. A drive device for a hybrid vehicle, wherein a ratio of hydrogen gas is controlled.
【請求項9】請求項8記載において、低負荷では燃料改
質器への炭化水素供給率と、燃料電池への水素ガス供給
率を高くし、中負荷では燃料改質器への炭化水素供給率
と火花点火機関への水素ガス供給率を高くし、高負荷で
は火花点火機関への炭化水素供給率を高くすることを特
徴とするハイブリッド自動車用駆動装置。
9. The fuel supply system according to claim 8, wherein at a low load, the hydrocarbon supply rate to the fuel reformer and the hydrogen gas supply rate to the fuel cell are increased, and at a medium load, the hydrocarbon supply rate to the fuel reformer is increased. A drive system for a hybrid vehicle, characterized by increasing the rate of supply of hydrogen gas to a spark ignition engine and increasing the rate of supply of hydrocarbons to the spark ignition engine under high load.
【請求項10】請求項5記載において、蓄電池に貯えた
電力残量を検出する手段を設け、低負荷時に蓄電池の電
力残量が予め定めたしきい値より多い場合には、蓄電池
の電力を車軸駆動用電動機に供給することで車軸を駆動
し、蓄電池の電力量がしきい値より少ない場合には、炭
化水素燃料、または、水素ガスを火花点火機関に供給す
ることで車軸を駆動することを特徴とするハイブリッド
自動車用駆動装置。
10. A storage device according to claim 5, further comprising means for detecting a remaining amount of electric power stored in the storage battery, and when the remaining power of the storage battery is larger than a predetermined threshold value at a low load, the power of the storage battery is reduced. To drive the axle by supplying it to the axle drive motor, and to drive the axle by supplying hydrocarbon fuel or hydrogen gas to the spark ignition engine when the power of the storage battery is less than the threshold value. A drive device for a hybrid vehicle, comprising:
【請求項11】請求項5記載の発電機が、火花点火機関
の排気熱を回収して電力を生成するターボ発電機である
ことを特徴とするハイブリッド自動車用駆動装置。
11. A drive device for a hybrid vehicle, wherein the generator according to claim 5 is a turbo generator that recovers exhaust heat of a spark ignition engine to generate electric power.
【請求項12】請求項5記載の火花点火機関が、吸気流
路内に水素ガスを供給し、燃焼室内に炭化水素燃料を微
粒化して噴射する火花点火機関であることを特徴とする
ハイブリッド自動車用駆動装置。
12. A hybrid vehicle according to claim 5, wherein the spark ignition engine supplies hydrogen gas into an intake passage and atomizes and injects hydrocarbon fuel into a combustion chamber. Drive device.
【請求項13】請求項12記載の火花点火機関が、点火
時期において点火プラグの電極周を取り囲むように水素
と空気の混合気が分布し、水素空気混合気の外側に炭化
水素と空気混合気が分布するように、混合気分布を制御
する手段を設けたことを特徴とするハイブリッド自動車
用駆動装置。
13. A spark ignition engine according to claim 12, wherein a mixture of hydrogen and air is distributed so as to surround an electrode circumference of the ignition plug at an ignition timing, and a mixture of hydrocarbon and air is provided outside the hydrogen-air mixture. A drive device for a hybrid vehicle, comprising means for controlling the air-fuel mixture distribution so that the air-fuel ratio is distributed.
【請求項14】請求項13記載の混合気分布制御手段
が、吸気ポート内の水素ガス供給手段近傍から燃焼室入
口近傍にかけて、ポート断面を2つの空気流路に分ける
仕切り板を設けた構造であることを特徴とするハイブリ
ッド自動車用駆動装置。
14. An air-fuel mixture distribution control means according to claim 13, wherein a partition plate for dividing a port cross section into two air flow paths is provided from near the hydrogen gas supply means in the intake port to near the combustion chamber inlet. A drive device for a hybrid vehicle, comprising:
JP10118174A 1998-04-28 1998-04-28 Hybrid automobile and driving device therefor Pending JPH11311136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10118174A JPH11311136A (en) 1998-04-28 1998-04-28 Hybrid automobile and driving device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10118174A JPH11311136A (en) 1998-04-28 1998-04-28 Hybrid automobile and driving device therefor

Publications (1)

Publication Number Publication Date
JPH11311136A true JPH11311136A (en) 1999-11-09

Family

ID=14729966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10118174A Pending JPH11311136A (en) 1998-04-28 1998-04-28 Hybrid automobile and driving device therefor

Country Status (1)

Country Link
JP (1) JPH11311136A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044412A1 (en) * 1999-12-17 2001-06-21 Idemitsu Kosan Co., Ltd. Fuel oil for fuel cell, fuel oil composition and automobile driving system
JP2001262163A (en) * 2000-03-23 2001-09-26 Idemitsu Kosan Co Ltd Fuel oil combinedly useful for internal combustion engine and fuel cell
WO2001072932A1 (en) * 2000-03-29 2001-10-04 Idemitsu Kosan Co., Ltd. Fuel oil for fuel cell and method for producing hydrogen for use in fuel cell
WO2001077265A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for fuel cell system
WO2001077264A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for use in fuel cell
WO2001077268A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for fuel cell system
JP2001303070A (en) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd Fuel oil composition and driving system of automobile
JP2001303071A (en) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd Fuel oil composition
WO2002031090A1 (en) * 2000-10-11 2002-04-18 Nippon Oil Corporation Dual purpose fuel for gasoline-driven automobile and fuel cell system, and system for storage and/or supply thereof
WO2002054517A1 (en) * 2000-12-28 2002-07-11 Mitsubishi Materials Corporation Hybrid power system
JP2003073677A (en) * 2001-09-06 2003-03-12 Idemitsu Kosan Co Ltd Fuel oil composition
US6837909B2 (en) 2000-04-10 2005-01-04 Nippon Oil Corporation Fuel for use in a fuel cell system
JP2005527082A (en) * 2002-05-23 2005-09-08 シェブロン・オロナイト・カンパニー・エルエルシー Method for suppressing deposit in fuel reformer of fuel cell system
JP2007024009A (en) * 2005-07-21 2007-02-01 Jomo Technical Research Center Co Ltd Internal combustion engine
JP2007512464A (en) * 2003-12-01 2007-05-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method of operating a compression ignition internal combustion engine combined with a catalytic reformer
US7228841B2 (en) 2004-11-12 2007-06-12 Mazada Motor Corporation Fuel switching for dual fuel engine
JP2007227390A (en) * 2000-12-28 2007-09-06 Mitsubishi Materials Corp Hybrid power system
JP2007258061A (en) * 2006-03-24 2007-10-04 Denso Corp Vehicular power generation system
JP2008183975A (en) * 2007-01-29 2008-08-14 Mazda Motor Corp Control apparatus of vehicle equipped with dual-fuel engine
JP2008190407A (en) * 2007-02-05 2008-08-21 Mazda Motor Corp Control device of vehicle equipped with dual fuel engine
WO2015146368A1 (en) * 2014-03-24 2015-10-01 寛治 泉 Internal combustion engine and/or device as measure to reduce emission of greenhouse gas
JP2015194153A (en) * 2014-03-24 2015-11-05 寛治 泉 Internal combustion engine for greenhouse gas emission reduction measures
JP2016151179A (en) * 2015-02-16 2016-08-22 寛治 泉 Greenhouse effect gas emission reduction method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044412A1 (en) * 1999-12-17 2001-06-21 Idemitsu Kosan Co., Ltd. Fuel oil for fuel cell, fuel oil composition and automobile driving system
JP2001262163A (en) * 2000-03-23 2001-09-26 Idemitsu Kosan Co Ltd Fuel oil combinedly useful for internal combustion engine and fuel cell
WO2001070914A1 (en) * 2000-03-23 2001-09-27 Idemitsu Kosan Co., Ltd. Fuel oil for use both in internal combustion in engine and fuel cell
WO2001072932A1 (en) * 2000-03-29 2001-10-04 Idemitsu Kosan Co., Ltd. Fuel oil for fuel cell and method for producing hydrogen for use in fuel cell
JP2001279276A (en) * 2000-03-29 2001-10-10 Idemitsu Kosan Co Ltd Method for producing fuel oil for fuel cell and hydrogen for fuel cell
US6824573B2 (en) 2000-04-10 2004-11-30 Nippon Oil Corporation Fuel for use in fuel cell
WO2001077265A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for fuel cell system
WO2001077264A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for use in fuel cell
WO2001077268A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for fuel cell system
US7141084B2 (en) 2000-04-10 2006-11-28 Nippon Oil Corporation Fuel for fuel cell system
US6884272B2 (en) 2000-04-10 2005-04-26 Nippon Oil Corporation Fuel for fuel cell system
US6837909B2 (en) 2000-04-10 2005-01-04 Nippon Oil Corporation Fuel for use in a fuel cell system
JP2001303070A (en) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd Fuel oil composition and driving system of automobile
JP2001303071A (en) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd Fuel oil composition
WO2002031090A1 (en) * 2000-10-11 2002-04-18 Nippon Oil Corporation Dual purpose fuel for gasoline-driven automobile and fuel cell system, and system for storage and/or supply thereof
WO2002054517A1 (en) * 2000-12-28 2002-07-11 Mitsubishi Materials Corporation Hybrid power system
US7235322B2 (en) 2000-12-28 2007-06-26 Mitsubishi Materials Corporation Hybrid power system including an engine and a fuel cell module
JP2007227390A (en) * 2000-12-28 2007-09-06 Mitsubishi Materials Corp Hybrid power system
JP2003073677A (en) * 2001-09-06 2003-03-12 Idemitsu Kosan Co Ltd Fuel oil composition
JP2005527082A (en) * 2002-05-23 2005-09-08 シェブロン・オロナイト・カンパニー・エルエルシー Method for suppressing deposit in fuel reformer of fuel cell system
JP2007512464A (en) * 2003-12-01 2007-05-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method of operating a compression ignition internal combustion engine combined with a catalytic reformer
US7823570B2 (en) 2003-12-01 2010-11-02 Shell Oil Company Process for operating a compression ignition internal combustion engine in combination with a catalytic reformer
US7228841B2 (en) 2004-11-12 2007-06-12 Mazada Motor Corporation Fuel switching for dual fuel engine
JP2007024009A (en) * 2005-07-21 2007-02-01 Jomo Technical Research Center Co Ltd Internal combustion engine
JP2007258061A (en) * 2006-03-24 2007-10-04 Denso Corp Vehicular power generation system
JP2008183975A (en) * 2007-01-29 2008-08-14 Mazda Motor Corp Control apparatus of vehicle equipped with dual-fuel engine
JP2008190407A (en) * 2007-02-05 2008-08-21 Mazda Motor Corp Control device of vehicle equipped with dual fuel engine
WO2015146368A1 (en) * 2014-03-24 2015-10-01 寛治 泉 Internal combustion engine and/or device as measure to reduce emission of greenhouse gas
JP2015194153A (en) * 2014-03-24 2015-11-05 寛治 泉 Internal combustion engine for greenhouse gas emission reduction measures
JP2016205133A (en) * 2014-03-24 2016-12-08 寛治 泉 Method for decreasing discharging of greenhouse effect gas
JPWO2015146368A1 (en) * 2014-03-24 2017-04-13 寛治 泉 Internal combustion engine and / or equipment for greenhouse gas emission reduction measures
JP2016151179A (en) * 2015-02-16 2016-08-22 寛治 泉 Greenhouse effect gas emission reduction method

Similar Documents

Publication Publication Date Title
JPH11311136A (en) Hybrid automobile and driving device therefor
US6655130B1 (en) System and controls for near zero cold start tailpipe emissions in internal combustion engines
US20070062189A1 (en) Method and apparatus for operating an internal combustion engine having exhaust gas turbocharging
US8209968B2 (en) Hybrid vehicle and method of controlling same
US7441617B2 (en) Hybrid car
US8677949B2 (en) Fuel management system for very high efficiency flex fuel engines powered by methanol and gasoline
US6213234B1 (en) Vehicle powered by a fuel cell/gas turbine combination
KR101704064B1 (en) Variable ignition type engine for complex combustion using diesel and gasoline, method for controlling of the same and complex combustion system using diesel and gasoline
CN107344550B (en) Method and system for hybrid vehicle control
CN101384447B (en) Power output apparatus, control method of power output apparatus, and vehicle equipped with power output apparatus
JP2009001265A (en) Method of controlling exhaust gas treatment device of hybrid vehicle, hybrid vehicle propulsion system, and hybrid vehicle
KR100833830B1 (en) Fuel cell system
KR102575182B1 (en) Fuel injection control method of fuel reformer and fuel reforming system
JP3812292B2 (en) Internal combustion engine
JP2007024009A (en) Internal combustion engine
JP4049187B2 (en) Hybrid car
JP3716819B2 (en) Control device for hybrid vehicle
US9353700B2 (en) Hybrid drive train, hybrid vehicle, and operating method
US11794566B2 (en) System and method for employing gasoline compression ignition in a hybrid electric vehicle
JP4186999B2 (en) Hybrid car
KR102335332B1 (en) Fuel reforming system using a supercharger
JP2016133110A (en) Fuel control device for multi-fuel engine
JP2007032453A (en) Internal combustion engine
KR102417374B1 (en) Reforming system and reformer operating method using hydrogen sensor
US20230296052A1 (en) Method for operating a gas engine with fuel supply device with selection option for direct injection and/or air path injection of fuel