JPH1127998A - Inverter device - Google Patents

Inverter device

Info

Publication number
JPH1127998A
JPH1127998A JP9173725A JP17372597A JPH1127998A JP H1127998 A JPH1127998 A JP H1127998A JP 9173725 A JP9173725 A JP 9173725A JP 17372597 A JP17372597 A JP 17372597A JP H1127998 A JPH1127998 A JP H1127998A
Authority
JP
Japan
Prior art keywords
control
voltage
speed
constant
primary voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9173725A
Other languages
Japanese (ja)
Inventor
Kuniaki Yasukawa
国明 安川
Hiroshi Imai
博志 今井
Kazuya Ogura
和也 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP9173725A priority Critical patent/JPH1127998A/en
Publication of JPH1127998A publication Critical patent/JPH1127998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the stoppage of an inverter device, when the control of the device is switched to V/F constant control from vector control due to the detection of an abnormal speed by smoothly performing a control switching. SOLUTION: An inverter device is operated under a closed loop condition by normal speed control 12 and vector control 13-35 and when an abnormal speed is detected, under an open loop condition by a V/F constant control 36. The V/F constant control block 36 is provided with a means, which decides an output angular frequency ω by using a set speed Ns as an output frequency command, a means which computes a primary voltage V1 based on a preset V/F ratio by using the set speed Ns as an output frequency command ω', a means which computes two shaft current components of an exciting current shaft and a torque current shaft from the angle ϕbetween the primary voltage V1 and the exciting current shaft and the primary voltage V1 , and a means which corrects voltage quantities Vd and Vq, the angle ϕ, a phase θ, and the output angular frequency ω, so that voltage control will not become discontinuous when the control of the inverter device is switched. When an abnormal speed is detected, the control of the device is switched so that a signal given to a voltage waveform generating circuit 37 does not change abruptly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電動機に速度、
検出器を取り付け、その検出信号により電動機をクロー
ズドループの速度制御,ベクトル制御を行うインバータ
装置、詳しくは、速度検出器に異常が発生したとき、制
御方式を切り換えて運転を継続するインバータ装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
Inverter device that attaches a detector and performs closed-loop speed control and vector control of the motor based on the detection signal. More specifically, it relates to an inverter device that switches the control method and continues operation when an error occurs in the speed detector. It is.

【0002】[0002]

【従来の技術】ベクトル制御は、交流量である電動機の
1次電流を励磁分電流とトルク分電流に分けて独立に制
御することにより、直流機と同等にトルクの線形化制御
を可能にする誘導電動機の制御方法である。
2. Description of the Related Art In vector control, the linearization of torque can be controlled in the same manner as a DC motor by independently controlling the primary current of an electric motor, which is an AC amount, into an excitation current and a torque current. This is a control method of the induction motor.

【0003】従来、滑り周波数制御方式の速度制御及び
ベクトル制御系の構成について説明する。
Conventionally, the configuration of a speed control and vector control system of a slip frequency control method will be described.

【0004】図2に誘導電動機のT−I形等価回路を示
す。これは従来より用いられている誘導電動機のT形等
価回路を等価変換して、2次の漏れインダクタンスを見
かけ上、1次側に集中させたものである。図3に図2を
用いて励磁電流を基準軸とするベクトル図を示す。
FIG. 2 shows a TI equivalent circuit of an induction motor. This is equivalent to a T-type equivalent circuit of an induction motor which has been conventionally used, and the secondary leakage inductance is apparently concentrated on the primary side. FIG. 3 is a vector diagram using the exciting current as a reference axis with reference to FIG.

【0005】図2,図3における各信号を以下に示す。 I1:1次電流 I0:励磁分電流 IT:トルク分電流 L1:1次インダクタンス M′:等価励磁インダクタンス Lσ:1次換算漏れインダクタンス R1:1次抵抗 R2′:等価2次抵抗 V1:1次電圧 Vq:1次電圧の励磁分成分 Vd:1次電圧のトルク分成分 θ:電圧位相。The signals shown in FIGS. 2 and 3 are shown below. I 1 : Primary current I 0 : Excitation current I T : Torque current L 1 : Primary inductance M ': Equivalent excitation inductance L σ : Primary conversion leakage inductance R 1 : Primary resistance R 2 ': Equivalent 2 Secondary resistance V 1 : Primary voltage V q : Excitation component of primary voltage V d : Torque component of primary voltage θ: Voltage phase.

【0006】励磁分電流I0,トルク分電流ITが常に直
交するためにはすべり角周波数ωS条件が以下の式で求
められる。 ωS=(R2/M′)・(IT/I0) …(1) 1次電圧の各軸成分は(2),(3)式で表すことがで
きる。 Vd=RI・I0−ωLσ・IT …(2) Vq=ωL1・I0+R1・IT …(3) 上記ベクトル条件が成立することによりベクトル制御が
実現できる。
In order for the excitation component current I 0 and the torque component current IT to always be orthogonal, the condition of the slip angular frequency ω S is obtained by the following equation. ω S = (R 2 / M ′) · ( IT / I 0 ) (1) Each axis component of the primary voltage can be expressed by the equations (2) and (3). V d = RI · I 0 -ωL σ · I T ... (2) V q = ωL 1 · it 0 + R 1 · I T ... (3) vector control by the vector condition is met can be realized.

【0007】上記ベクトル制御の構成例を図4に示す。
1はベクトル制御されるPWMインバータ(主回路)、
2はインバータで駆動される誘導電動機、3は電動機の
回転軸に設けられたパルスジェネレータ、4はこのパル
スジェネレータから速度検出Ndおよび速度検出角周波
数ωrを出力する速度検出回路、12は速度設定Nsと
速度検出Ndとの偏差をPI演算する速度制御器。
FIG. 4 shows a configuration example of the vector control.
1 is a vector controlled PWM inverter (main circuit),
2 is an induction motor driven by an inverter, 3 is a pulse generator provided on the rotating shaft of the motor, 4 is a speed detection circuit that outputs a speed detection Nd and a speed detection angular frequency ωr from this pulse generator, and 12 is a speed setting Ns. Speed controller that calculates the difference between the speed and the speed detection Nd.

【0008】13〜35はベクトル演算回路、13(1
5〜24)はその非干渉演算部、15及び18はそれぞ
れ励磁電流設定I0*に1次抵抗R1及び1次インダクタ
ンスL1を掛ける乗算回路、16及び17はそれぞれ速
度制御器12からのトルク分電流指令IT*に洩れイン
ダクタンスLσ及び1次抵抗R1を掛ける乗算回路、1
9は励磁電流設定I0*とトルク分電流指令IT*からす
べり周波数ωsを求めるすべり周波数演算回路、20は
速度検出角周波数ωrとすべり周波数ωsを加算し速度
出力角周波数ωを出力する加算器、21及び22はそれ
ぞれ、上記乗算回路16及び18の乗算結果に速度出力
角度周波数ωを掛けてωLσT*及びωL10*を得
る乗算器、23は乗算器15と21の乗算結果の差をと
り1次電圧のトルク分成分指令Vd*を出力する加算
器、24は乗算器17と22の乗算結果の和をとり1次
電圧の励磁成分指令Vq*を出力する加算器。
Reference numerals 13 to 35 denote vector operation circuits, and 13 (1
5 to 24) are non-interference calculation units, 15 and 18 are multiplication circuits for multiplying the exciting current setting I 0 * by the primary resistance R 1 and the primary inductance L 1 , respectively, and 16 and 17 are from the speed controller 12 respectively. A multiplication circuit for multiplying the torque component current command I T * by the leakage inductance L σ and the primary resistance R 1 ,
Reference numeral 9 denotes a slip frequency calculation circuit for obtaining a slip frequency ωs from the excitation current setting I 0 * and the torque component current command I T *, and reference numeral 20 denotes an addition for adding the speed detection angular frequency ωr and the slip frequency ωs to output a speed output angular frequency ω. vessel, respectively 21 and 22, ωL σ I T * and ωL 1 I 0 * to obtain multiplier multiplying the velocity output angle frequency ω to the multiplication result of the multiplier circuit 16 and 18, 23 to the multiplier 15 and 21 of An adder that takes the difference between the multiplication results and outputs a torque component component command V d * of the primary voltage, and outputs an excitation component command V q * of the primary voltage by taking the sum of the multiplication results of the multipliers 17 and 22. Adder.

【0009】25はインバータ1の出力電流iv〜iw
をd,q軸座標の2相電流に変換する3相−2相座標変
換回路、31は励磁分電流設定I0*と座標変換回路2
5からのd軸励磁電流検出I0との偏差をPI演算し、
偏差を0に近づける1次電圧のトルク分成分の変化分Δ
dを出力するd軸電流制御器、32はトルク分電流指
令IT*と座標変換回路25からのq軸トルク分電流検
出ITとの偏差をPI演算し偏差を0に近づける1次電
圧の励磁分成分の変化分ΔVdを出力するq軸電流制御
器。
Reference numeral 25 denotes output currents iv to iw of the inverter 1.
Is converted to a two-phase current of d- and q-axis coordinates, and 31 is an excitation current setting I 0 * and a coordinate conversion circuit 2
PI calculation of the deviation from the d-axis excitation current detection I 0 from 5
Variation Δ of the torque component of the primary voltage that brings the deviation closer to 0
D-axis current controller for outputting the V d, 32 is a torque current command I T * and the q-axis torque current detection I T and deviation PI calculation to the primary voltage to approximate the deviation to zero from the coordinate transformation circuit 25 A q-axis current controller that outputs a change ΔV d of the excitation component of the current.

【0010】33は上記1次電圧のトルク分成分指令V
d*に変化分ΔVdを加えて1次電圧のトルク分成分Vd
を出力する加算器、34は上記1次電圧の励磁分成分指
令Vq*に変化分ΔVdを加えて1次電圧の励磁分成分V
qを出力する加算器、35は上記速度出力角速度ωを積
分して電圧位相θを出力する積分器、37はベクトル制
御の演算により求められた1次電圧のトルク分成分Vd
及び励磁成分Vq及び上記速度出力角周波数ω及び電圧
位相θに基づき、インバータ1を制御するPWMパター
ンを生成するPWM回路である。
Reference numeral 33 denotes a torque component component command V of the primary voltage.
d * is added with a change ΔV d to obtain a torque component V d of the primary voltage.
And outputs an adder, 34 is energized minute component V of the primary voltage by adding the change amount [Delta] V d to the excitation minute component command V q * of the primary voltage
An adder that outputs q , 35 is an integrator that outputs the voltage phase θ by integrating the speed output angular velocity ω, and 37 is a torque component V d of the primary voltage obtained by a vector control operation.
And based on the exciting component V q and the velocity output angular frequency ω and voltage phase theta, a PWM circuit for generating a PWM pattern for controlling the inverter 1.

【0011】[0011]

【発明が解決しようとする課題】上記従来のすべり周波
数方式の制御では、電動機速度の正確な検出が制御の前
提となっているため、速度検出器3が破損したり、検出
線が断線して電動機の正しい速度が検出できなくなった
場合、制御を継続することができない。そのため通常の
装置では、速度検出系に異常を検出した場合は、インバ
ータ装置は故障停止する。また、速度検出異常が検出で
きない装置では速度が不安定になったりする。
In the above-described conventional control of the slip frequency system, accurate detection of the motor speed is a prerequisite for the control, so that the speed detector 3 is damaged or the detection line is disconnected. If the correct speed of the motor cannot be detected, control cannot be continued. Therefore, in a normal device, when an abnormality is detected in the speed detection system, the inverter device stops by failure. Further, in a device that cannot detect a speed detection abnormality, the speed becomes unstable.

【0012】しかしながら、インバータを組み込んだ最
終システムや機器においては、非常時には、ベクトル制
御で実現するような高応答がなくても、システムを継続
運転したい場合がある。例えば、インバータでモータを
駆動して材料を撹拌しているミキサー等では、可変速は
必要であるが、材料撹拌中にモータが停止すると、材料
がすべて使用できなくなってしまう危険性があるため、
非常時(速度検出異常時)でも回転は継続したい場合が
ある。
However, in a final system or device incorporating an inverter, in an emergency, there may be a case where it is desired to continuously operate the system even without a high response realized by vector control. For example, in a mixer or the like that drives a motor with an inverter to stir the material, a variable speed is required, but if the motor stops during the stirring of the material, there is a risk that all the material will be unusable,
There are times when it is desirable to continue rotation even in an emergency (when speed detection is abnormal).

【0013】上記の問題に対し、速度検出異常を検出し
た場合にはベクトル制御を速度センサを必要としない制
御(例えば、V/F制御,センサレスベクトル制御)に
切り換える方法が有効である。しかし、ただ制御方式を
切り換えただけでは、出力電圧位相の不連続等により過
電流検出異常となり停止してしまう。
To solve the above problem, it is effective to switch the vector control to a control that does not require a speed sensor (for example, V / F control or sensorless vector control) when a speed detection abnormality is detected. However, simply switching the control method causes an overcurrent detection abnormality due to discontinuity of the output voltage phase or the like, and stops.

【0014】本発明は、切り換えに伴う制御方式の違い
による不連続性を解消し、制御切り換えによる装置停止
を防止しうるようにしたインバータ装置を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an inverter device which can eliminate discontinuity due to a difference in control method associated with switching and can prevent the device from being stopped due to control switching.

【0015】[0015]

【課題を解決するための手段】この発明は、常時は速度
検出器を用いてクローズドループの速度制御、ベクトル
制御で運転し、速度検出異常検出時はV/F一定制御ブ
ロックによるオープンループのV/F一定制御に切り換
えて運転するインバータ装置において、前記制御ブロッ
クは、速度制御の速度設定を出力周波数指令として出力
角周波数ωをきめる手段と、速度設定を出力周波数指令
として予め決められているV/F比をもとに1次電圧V
1を演算する手段と、1次電圧と励磁電流軸との角度φ
と1次電圧V1から励磁電流軸とトルク電流軸の2軸電
圧成分を演算する手段と、ベクトル制御からV/F一定
制御切り換え時に、電圧制御が不連続にならないよう
に、電圧量Vd,Vq,一次電圧と励磁電流軸との角度
φ,位相θ,出力角周波数ωの補正を行う手段とを有
し、ベクトル制御からV/F一定制御へスムーズに移行
しうるようにしたことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention always operates in closed loop speed control and vector control using a speed detector, and when an abnormal speed detection is detected, the open loop V / F is controlled by a constant V / F control block. In the inverter device which is operated by switching to the / F constant control, the control block includes a means for determining an output angular frequency ω using a speed setting of the speed control as an output frequency command, and a V which is determined in advance as the speed setting as an output frequency command. Primary voltage V based on / F ratio
Means for calculating 1 and the angle φ between the primary voltage and the exciting current axis.
When means for calculating a biaxial voltage component of the exciting current axis and the torque current axis from the primary voltage V 1, at the time of V / F constant control switching from the vector control, so that the voltage controlled not discontinuous, the amount of voltage V d , V q , means for correcting the angle φ between the primary voltage and the exciting current axis, the phase θ, and the output angular frequency ω so that the vector control can be smoothly shifted to the V / F constant control. It is characterized by the following.

【0016】[0016]

【発明の実施の形態】図1に実施の形態にかかるインバ
ータ装置のベクトル制御系の構成を示す。なお、前記従
来図4に示したものと同一構成部分は、同一符号を付し
てその重複する説明を省略する。
FIG. 1 shows a configuration of a vector control system of an inverter device according to an embodiment. The same components as those shown in FIG. 4 are denoted by the same reference numerals, and redundant description will be omitted.

【0017】図1において、1はPWMインバータ、2
は誘導電動機、4は速度検出回路、5は速度検出回路4
からの速度検出値を監視する速度検出異常検出回路、1
2は速度制御器、13〜35はベクトル演算回路、36
は速度設定Nsを取り入れてV/F(電圧/周波数)一
定制御の1次電圧のトルク分成分Vd′,励磁分成分
q′及び電圧位相θ′を出力するV/F一定制御部。
In FIG. 1, 1 is a PWM inverter, 2
Is an induction motor, 4 is a speed detection circuit, 5 is a speed detection circuit 4
Speed detection abnormality detection circuit that monitors the speed detection value from
2 is a speed controller, 13 to 35 are vector operation circuits, 36
Is a V / F constant control unit that takes in the speed setting Ns and outputs a torque component V d ′, an excitation component V q ′, and a voltage phase θ ′ of the primary voltage of V / F (voltage / frequency) constant control.

【0018】SW1はベクトル制御側とV/F一定制御
側からの1次電圧のトルク分成分VdとVd′を切り換え
てPWM回路37に出力する制御切換スイッチ、SW2
は同じく1次電圧の励磁分成分VqとVq′を切り換えて
PWM回路に出力する制御切換スイッチ、SW3は同じ
く電圧位相θとθ′とを切り換えてPWM回路に出力す
る制御切換スイッチ、SW4はベクトル制御側からの速
度出力角周波数ωとV/F一定制御側の速度設定ω′を
切り換えてPWM回路に出力する制御切換スイッチで、
それぞれ速度検出異常検出回路5の異常検出信号でベク
トル制御側からV/F一定制御に切り換えるように制御
される。
SW1 is a control changeover switch for switching between the torque component components Vd and Vd 'of the primary voltage from the vector control side and the V / F constant control side and outputting to the PWM circuit 37;
Is a control changeover switch for switching the excitation component Vq and Vq 'of the primary voltage to output to the PWM circuit, SW3 is a control changeover switch for switching the voltage phase θ and θ' and outputting to the PWM circuit, and SW4. Is a control changeover switch that switches between the speed output angular frequency ω from the vector control side and the speed setting ω ′ on the V / F constant control side and outputs the result to the PWM circuit.
Each is controlled by the abnormality detection signal of the speed detection abnormality detection circuit 5 to switch from the vector control side to V / F constant control.

【0019】通常制御切換スイッチSW1〜SW4はベ
クトル制御側に入っており、インバータ装置はベクトル
制御によりクローズドループの速度制御で運転する。運
転中速度検出系に異常が検出されると、制御切換スイッ
チSW1〜SW4をV/F一定制御にて装置を継続運転
する。制御切換手順は下記のように行う。
Normally, the control changeover switches SW1 to SW4 are in the vector control side, and the inverter device is operated by closed loop speed control by vector control. If an abnormality is detected in the speed detection system during operation, the control changeover switches SW1 to SW4 are continuously operated by V / F constant control. The control switching procedure is performed as follows.

【0020】実施例1 実施例1にかかる制御切換手順について説明する。 (1)速度検出異常検出回路5では、一定時間間隔で速
度検出値Ndを監視し、検出値の変化量や絶縁値が、あ
る時間継続して異常な値を示した場合は、速度検出異常
と判断する。
First Embodiment A control switching procedure according to a first embodiment will be described. (1) The speed detection abnormality detection circuit 5 monitors the speed detection value Nd at regular time intervals, and if the amount of change in the detection value or the insulation value shows an abnormal value continuously for a certain period of time, the speed detection abnormality is detected. Judge.

【0021】(2)速度検出異常の判断に基づき制御切
換スイッチSW1〜SW4をベクトル制御側からV/F
一定制御側へ切り換える。
(2) The control changeover switches SW1 to SW4 are switched from the vector control side to the V / F
Switch to constant control.

【0022】(3)PWM回路37で使用されるVd
q,θ,ωの初期値は、以下のように演算して切り換
える。Vd,Vq,θ,ωはベクトル制御からV/F一定
制御の切り換え直前まではベクトル演算で算出されてい
る。V/F一定制御に切り換えた際、これらの変数が不
連続に変化すると電圧変動や電流変動を引き起こし、装
置の過電圧、過電流保護を動作させ、結果として装置は
停止してしまう。これを防止するため、各変数は切り換
え時に、直前のベクトル演算データを用いて次のように
変化させる。 ベクトル制御側変数:Vd,Vq,φ,θ,ωとする。 V/F一定制御変数:Vd′,Vq′,φ′,θ′,ω′
とする。 Vd′=0 Vq′=√(Vd 2+Vq 2) φ′=90° θ′=θ+(90°−φ) ω′=ω (4)切り換え後は速度設定NSを出力周波数設定(F
指令)ω′としてV/F比から決まる電圧指令値V1
演算し、Vq′としてPWM回路37に渡す。 Vd′=0 Vq′=V1(出力周波数設定とV/F比から逆算され
る1次電圧指令値) (5)電動機2を可変する場合は、速度設定Nsを出力
周波数設定ω′としてPWM回路27に渡す。
(3) V d used in the PWM circuit 37,
The initial values of V q , θ, and ω are switched by calculating as follows. V d , V q , θ, and ω are calculated by vector calculation from the time of the vector control to the time immediately before the switching of the constant V / F control. When switching to the constant V / F control, if these variables change discontinuously, voltage fluctuations and current fluctuations are caused, overvoltage and overcurrent protection of the device is activated, and as a result, the device stops. To prevent this, each variable is changed as follows using the immediately preceding vector operation data at the time of switching. Vector control side variables: Vd , Vq , φ, θ, ω. V / F constant control variables: V d ′, V q ′, φ ′, θ ′, ω ′
And V d '= 0 V q' = √ (V d 2 + V q 2) φ '= 90 ° θ' = θ + (90 ° -φ) ω '= ω (4) switched after the output frequency speed setting N S Setting (F
Command) ω 'is calculated and a voltage command value V 1 determined from the V / F ratio is calculated and passed to the PWM circuit 37 as V q '. Vd '= 0 Vq ' = V1 (primary voltage command value inversely calculated from output frequency setting and V / F ratio) (5) When changing the electric motor 2, the speed setting Ns is set as the output frequency setting ω '. It is passed to the PWM circuit 27.

【0023】実施例2 実施例2にかかる制御切換手順について説明する。Second Embodiment A control switching procedure according to a second embodiment will be described.

【0024】(1)速度検出異常検出回路5では、一定
時間間隔で速度検出値Ndを監視し、検出値の変化量や
絶対値がある時間継続して異常な値を示した場合は、速
度検出異常と判断する。
(1) The speed detection abnormality detection circuit 5 monitors the speed detection value Nd at regular time intervals, and when the amount of change in the detected value or the absolute value continuously shows an abnormal value for a certain period of time, the speed is detected. Judge as abnormal detection.

【0025】(2)速度検出異常の判断に基づき、制御
切り換えスイッチSW1〜SW4をベクトル制御側か
ら、V/F一定制御側へ切り換える。
(2) The control switches SW1 to SW4 are switched from the vector control side to the V / F constant control side based on the determination of the speed detection abnormality.

【0026】(3)PWM回路37で使用されるVd
q,θ,φ,ωの初期値は以下のように演算して切り
換える。
(3) V d used in the PWM circuit 37,
The initial values of V q , θ, φ, ω are calculated and switched as follows.

【0027】Vd,Vq,θはベクトル制御からV/F一
定制御の切換直前まではベクトル演算で算出されてい
る。V/F一定制御に切り換えた際、これらの変数が不
連続に変化すると電気変動や電流変動を引き起こし、装
置の過電圧、過電流保護を動作させ、結果として装置は
停止してしまう。これを防止するため、各変数は切り換
え時に、直前のベクトル演算データを用いて次のように
変化させる。 ベクトル制御変数:Vd,Vq,φ,θ,ωとする。 V/F一定制御側変数:Vd′,Vq′,φ′,θ′,
ω′とする。 Vd′=Vdq′=Vq φ′=φ θ′=θ ω′=ω (4)切り換え後は速度設定Nsを出力周波数設定(F
設定)ω′としてV/F比から決まる電圧指令値を演算
しV1とし、V1を励磁電流軸の電圧成分Vd′とトルク
電流軸の電圧成分Vq′に分離し、Vd′,Vq′として
PWM回路27に渡す。これらの2軸は直交している。 Vd′=V1・cosφ Vq′=V1・sinφ (5)モータを可変速する場合は、速度設定NSを出力
周波数設定ω′として与える。
V d , V q , and θ are calculated by vector calculation from the time of the vector control to the time immediately before the switching of the constant V / F control. When the control is switched to the constant V / F control, if these variables change discontinuously, electric fluctuations or current fluctuations are caused, and overvoltage and overcurrent protection of the device is activated, and as a result, the device is stopped. To prevent this, each variable is changed as follows using the immediately preceding vector operation data at the time of switching. Vector control variables: Vd , Vq , φ, θ, ω. V / F constant control side variables: V d ′, V q ′, φ ′, θ ′,
ω '. V d '= V d V q ' = V q φ '= φ θ' = θ ω '= ω (4) switched after the output frequency sets a speed setting Ns (F
Set) omega 'calculates a voltage command value determined from the V / F ratio is V 1 as the voltage component V d of the V 1 excitation current axis' voltage component V q of the torque current axis 'is separated into, V d' , V q 'to the PWM circuit 27. These two axes are orthogonal. V d '= V 1 · cosφ V q' = V 1 · sinφ (5) When the variable speed motor gives a speed setting N S as an output frequency setting omega '.

【0028】実施例3 実施例3にかかる制御切換手順について説明する。Third Embodiment A control switching procedure according to a third embodiment will be described.

【0029】(1)速度検出異常検出回路5では、一定
時間間隔で速度検出値Ndを監視し、検出値の変化量や
絶対値が、ある時間継続して異状な値を示した場合は、
速度検出異状と判断する。
(1) The speed detection abnormality detection circuit 5 monitors the speed detection value Nd at regular time intervals, and when the amount of change in the detection value or the absolute value continuously shows an abnormal value for a certain period of time,
Judge as abnormal speed detection.

【0030】(2)速度検出異常の判断に基づき、制御
切り換えスイッチSW1〜SW4をベクトル制御側から
V/F一定制御側へ切り換える。
(2) The control switches SW1 to SW4 are switched from the vector control side to the V / F constant control side based on the determination of the speed detection abnormality.

【0031】(3)PWM回路27で使用されるVd
q,θ,φ,ωの初期値は以下のように演算し切り換
える。
(3) V d used in the PWM circuit 27,
The initial values of V q , θ, φ, and ω are calculated and switched as follows.

【0032】Vd,Vq,θはベクトル制御からV/F一
定制御の切換直前まではベクトル演算で算出されてい
る。V/F一定制御に切り換えた際これらの変数が不連
続に変化すると電圧変動や電流変動を引き起こし、装置
の過電圧、過電流保護を動作させ、結果としては装置は
停止してしまう。これを防止するため、各変数は切り換
え時に、直前のベクトル演算データを用いて次のように
変化させる。 ベクトル制御側変数:Vd,Vq, θ,φ,ωとする。 V/F一定制御側変数:Vd′,Vq′,φ′,θ′,
ω′とする。 Vd′=√(V0 2+VT 2) Vq′=0 φ′=0° θ′=θ−φ ω′=ω (4)切り換え後は速度設定Nsを出力周波数設定(F
指令)ω′としてV/F比から決まる電圧指令値V1
演算し、Vd′としてPWM回路27に渡す。 Vd′=V1(出力周波数設定とV/F比から逆算される
電圧指令値) Vq′=0 (5)モータを可変速する場合は、速度設定Nsを出力
周波数設定ω′として与える。
V d , V q , and θ are calculated by vector calculation from the time of the vector control to the time immediately before the switching of the constant V / F control. If these variables change discontinuously when the control is switched to the constant V / F control, voltage fluctuation or current fluctuation is caused, and overvoltage and overcurrent protection of the device is operated, and as a result, the device is stopped. To prevent this, each variable is changed as follows using the immediately preceding vector operation data at the time of switching. Vector control variables: Vd , Vq , θ, φ, ω. V / F constant control side variables: V d ′, V q ′, φ ′, θ ′,
ω '. V d ′ = √ (V 0 2 + V T 2 ) V q ′ = 0 φ ′ = 0 ° θ ′ = θ−φ ω ′ = ω (4) After switching, the speed setting Ns is changed to the output frequency setting (F
'Calculates a voltage command value V 1 determined from the V / F ratio as, V d' command) omega pass to the PWM circuit 27 as. V d ′ = V 1 (voltage command value inversely calculated from output frequency setting and V / F ratio) V q ′ = 0 (5) When changing the speed of the motor, the speed setting Ns is given as the output frequency setting ω ′. .

【0033】以上のように、制御の切換時に各変数を変
化させ、切り換え後は速度設定Nsを出力周波数設定
ω′としてV/F比から決まる電圧指令値V1を演算
し、Vq′又はVd′,Vq′,あるいはVd′としてPW
M回路に渡し、V/F一定制御をするので、ベクトル制
御からV/F一定制御への切り換えが連続的となる。
As described above, each variable is changed at the time of control switching, and after the switching, the voltage command value V 1 determined from the V / F ratio is calculated by using the speed setting Ns as the output frequency setting ω ′ and calculating Vq ′ or Pd as V d ′, V q ′ or V d
Since the control is passed to the M circuit and the V / F constant control is performed, the switching from the vector control to the V / F constant control becomes continuous.

【0034】[0034]

【発明の効果】この発明は、速度検出器を用いクローズ
ドループの速度制御,ベクトル制御を行い、速度検出系
に異常が発生した場合のベクトル制御からV/F一定制
御に切り換える制御方式のインバータ装置において、制
御切換時の電圧位相等の不連続性を解消し、スムーズに
切り換えることができる。そのため電圧位相等の不連続
性に基づく装置停止がなくなり、運転を継続できる。
The present invention provides a control type inverter device which performs closed loop speed control and vector control using a speed detector and switches from vector control to V / F constant control when an abnormality occurs in the speed detection system. In the above, discontinuity such as a voltage phase at the time of control switching can be eliminated, and switching can be performed smoothly. Therefore, there is no need to stop the apparatus due to discontinuity such as a voltage phase, and the operation can be continued.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態にかかるV/F一定制御切換を含む
ベクトル制御系の構成図。
FIG. 1 is a configuration diagram of a vector control system including V / F constant control switching according to an embodiment;

【図2】誘導電動機の非対象T−I形等価回路図。FIG. 2 is an asymmetrical TI equivalent circuit diagram of an induction motor.

【図3】同等価回路を用いた励磁電流を基準軸とするベ
クトル図。
FIG. 3 is a vector diagram using an exciting current using the equivalent circuit as a reference axis.

【図4】従来例にかかるベクトル制御系の構成図。FIG. 4 is a configuration diagram of a vector control system according to a conventional example.

【符号の説明】[Explanation of symbols]

1…PWMインバータ(主回路) 2…誘導電動機 3…パルスジェネレータ(速度検出器) 4…速度検出回路 5…速度検出異常回路 12…速度制御器 13…非干渉演算回路 15…R1乗算回路 16…Lσ乗算回路 17…R1乗算回路 18…L1乗算回路 19…すべり周波数演算回路 25…3相−2相座標変換回路 31…d軸電流制御器 32…q軸電流制御器 35…積分器 36…V/F一定制御部 37…PWM回路 SW1〜SW4…切換スイッチ Ns…速度設定 Nd…速度検出 ωr…速度検出角周波数 ωs…すべり周波数 ω…速度出力角周波数(ωr+ωs) ω′…出力周波数設定 R1…1次抵抗 Lσ…1次換算洩れインダクタンス L1…1次インダクタンス M′…等価励磁インダクタンス I0…励磁分電流 Vd…1次電圧のトルク分成分 I1…1次電流 V1…1次電圧 IT…トルク分電流 Vq…1次電圧の励磁分成分。1 ... PWM inverter (main circuit) 2 ... induction motor 3 ... pulse generator (speed detector) 4 ... speed detection circuit 5 ... Speed detection error circuit 12 ... speed controller 13 ... noninterference computation circuit 15 ... R 1 multiplier circuit 16 ... L sigma multiplier circuit 17 ... R 1 multiplication circuit 18 ... L 1 multiplication circuit 19 ... slip frequency calculation circuit 25 ... 3-phase to two-phase coordinate conversion circuit 31 ... d-axis current controller 32 ... q-axis current controller 35 ... integrating Unit 36 V / F constant control unit 37 PWM circuit SW1 to SW4 Changeover switch Ns Speed setting Nd Speed detection ωr Speed detection angular frequency ωs Slip frequency ω Speed output angular frequency (ωr + ωs) ω 'output Frequency setting R 1 … Primary resistance L σ … Primary conversion leakage inductance L 1 … Primary inductance M '… Equivalent excitation inductance I 0 … Excitation current V d … Torque of primary voltage A component I 1 … Primary current V 1 … Primary voltage IT … Torque component current V q … Excitation component of primary voltage.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 常時は速度検出器を用いてクローズドル
ープの速度制御、ベクトル制御で運転し、速度検出異常
検出時はV/F一定制御ブロックによるオープンループ
のV/F一定制御に切り換えて運転するインバータ装置
において、 前記制御ブロックは、 速度制御の速度設定を出力周波数指令として出力角周波
数ωをきめる手段と、 速度設定を出力周波数指令として予め決められているV
/F比をもとに1次電圧V1を演算する手段と、 1次電圧と励磁電流軸との角度φと1次電圧V1から励
磁電流軸とトルク電流軸の2軸電圧成分を演算する手段
と、 ベクトル制御からV/F一定制御切り換え時に、電圧制
御が不連続にならないように、電圧量Vd,Vq,一次電
圧と励磁電流軸との角度φ,位相θ,出力角周波数ωの
補正を行う手段と、を有し、ベクトル制御からV/F一
定制御へスムーズに移行しうるようにしたことを特徴と
するインバータ装置。
An operation is normally performed by a closed loop speed control and a vector control using a speed detector. When an abnormal speed detection is detected, the operation is switched to an open loop V / F constant control by a V / F constant control block. In the inverter device, the control block comprises: means for determining an output angular frequency ω using a speed setting of speed control as an output frequency command;
Means for calculating the primary voltage V 1 based on the / F ratio, and calculating the two-axis voltage components of the exciting current axis and the torque current axis from the angle φ between the primary voltage and the exciting current axis and the primary voltage V 1 Means to perform voltage control so that voltage control does not become discontinuous when switching from vector control to constant V / F control, so that the voltage amounts V d and V q , the angle φ between the primary voltage and the exciting current axis, the phase θ, and the output angular frequency and a means for correcting ω, so that a smooth transition can be made from vector control to constant V / F control.
【請求項2】 請求項1において、 速度検出異常検出時、電圧波形生成回路に与える励磁電
流軸の電圧成分,トルク電流軸の電圧成分,1次電圧と
励磁電圧軸の角度,位相,周波数の各変数にベクトル制
御における演算結果から、オープンループのV/F制御
の演算結果が反映するように切り換えるスイッチを有す
ることを特徴とするインバータ装置。
2. The method according to claim 1, wherein when an abnormal speed detection is detected, the voltage component of the exciting current axis, the voltage component of the torque current axis, and the angle, phase, and frequency of the primary voltage and the exciting voltage axis are given to the voltage waveform generating circuit. An inverter device, comprising: a switch for changing an operation result of an open loop V / F control from an operation result of vector control to each variable.
【請求項3】 請求項1又は2において、 1次電圧と励磁電流軸との角度φがベクトル制御からV
/F一定制御に切り換える際の値を保持したものである
ことを特徴とするインバータ装置。
3. The method according to claim 1, wherein the angle φ between the primary voltage and the exciting current axis is V
An inverter device which retains a value at the time of switching to / F constant control.
【請求項4】 請求項1又は2において、 1次電圧と励磁電流軸との角度φを0°又は90°とし
たことを特徴とするインバータ装置。
4. The inverter device according to claim 1, wherein the angle φ between the primary voltage and the exciting current axis is 0 ° or 90 °.
JP9173725A 1997-06-30 1997-06-30 Inverter device Pending JPH1127998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9173725A JPH1127998A (en) 1997-06-30 1997-06-30 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9173725A JPH1127998A (en) 1997-06-30 1997-06-30 Inverter device

Publications (1)

Publication Number Publication Date
JPH1127998A true JPH1127998A (en) 1999-01-29

Family

ID=15965994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9173725A Pending JPH1127998A (en) 1997-06-30 1997-06-30 Inverter device

Country Status (1)

Country Link
JP (1) JPH1127998A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199780A (en) * 2000-12-28 2002-07-12 S G:Kk Motor driver for continuous casting machine
JP2003033094A (en) * 2001-07-17 2003-01-31 Denso Corp On-vehicle power generation controller equipped with transmitter-receiver
WO2010050044A1 (en) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 Electric power source system for electrically driven vehicle and its control method
EP2465195A4 (en) * 2009-08-10 2017-03-29 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
CN107994760A (en) * 2016-10-27 2018-05-04 上海儒竞电子科技有限公司 A kind of pulse modulation method and system
US9991834B2 (en) 2012-04-26 2018-06-05 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
US10008854B2 (en) 2015-02-19 2018-06-26 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
CN108566133A (en) * 2018-03-30 2018-09-21 北京控制工程研究所 A kind of the angle measurement fault diagnosis and control method of control system for permanent-magnet synchronous motor
CN110235068A (en) * 2017-05-18 2019-09-13 深圳市海浦蒙特科技有限公司 The position control method and system of machine tool chief axis
CN110943662A (en) * 2019-10-21 2020-03-31 中冶南方(武汉)自动化有限公司 High-speed switching method in permanent magnet synchronous motor position-sensorless vector control
CN116915107A (en) * 2023-09-11 2023-10-20 希望森兰科技股份有限公司 Variable frequency soft start control method for vector start automatic VF switching control

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199780A (en) * 2000-12-28 2002-07-12 S G:Kk Motor driver for continuous casting machine
JP2003033094A (en) * 2001-07-17 2003-01-31 Denso Corp On-vehicle power generation controller equipped with transmitter-receiver
JP4517545B2 (en) * 2001-07-17 2010-08-04 株式会社デンソー VEHICLE POWER GENERATION CONTROL DEVICE HAVING TRANSMITTING / RECEIVING DEVICE
WO2010050044A1 (en) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 Electric power source system for electrically driven vehicle and its control method
CN102202931A (en) * 2008-10-31 2011-09-28 丰田自动车株式会社 Electric power source system for electrically driven vehicle and its control method
JPWO2010050044A1 (en) * 2008-10-31 2012-03-29 トヨタ自動車株式会社 Electric vehicle power supply system and control method thereof
JP5099230B2 (en) * 2008-10-31 2012-12-19 トヨタ自動車株式会社 Electric vehicle power supply system and control method thereof
US8543271B2 (en) 2008-10-31 2013-09-24 Toyota Jidosha Kabushiki Kaisha Power supply system for electrically powered vehicle, and method for controlling the same
US9912263B2 (en) 2009-08-10 2018-03-06 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
EP2465195A4 (en) * 2009-08-10 2017-03-29 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US9705433B2 (en) 2009-08-10 2017-07-11 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US9991834B2 (en) 2012-04-26 2018-06-05 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
US10075116B2 (en) 2012-04-26 2018-09-11 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
US10951037B2 (en) 2015-02-19 2021-03-16 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
US10008854B2 (en) 2015-02-19 2018-06-26 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
US11355936B2 (en) 2015-02-19 2022-06-07 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
CN107994760A (en) * 2016-10-27 2018-05-04 上海儒竞电子科技有限公司 A kind of pulse modulation method and system
CN107994760B (en) * 2016-10-27 2019-06-25 上海儒竞电子科技有限公司 A kind of pulse modulation method and system
CN110235068A (en) * 2017-05-18 2019-09-13 深圳市海浦蒙特科技有限公司 The position control method and system of machine tool chief axis
CN108566133A (en) * 2018-03-30 2018-09-21 北京控制工程研究所 A kind of the angle measurement fault diagnosis and control method of control system for permanent-magnet synchronous motor
CN110943662A (en) * 2019-10-21 2020-03-31 中冶南方(武汉)自动化有限公司 High-speed switching method in permanent magnet synchronous motor position-sensorless vector control
CN116915107A (en) * 2023-09-11 2023-10-20 希望森兰科技股份有限公司 Variable frequency soft start control method for vector start automatic VF switching control
CN116915107B (en) * 2023-09-11 2023-11-17 希望森兰科技股份有限公司 Variable frequency soft start control method for vector start automatic VF switching control

Similar Documents

Publication Publication Date Title
JP4063166B2 (en) Electric motor control device
US6462492B1 (en) Position-sensorless controlling method of synchronous motor
US8022660B2 (en) Control apparatus for AC rotary machine
JP3152058B2 (en) Variable speed control device for induction motor
WO1998042070A1 (en) Apparatus and method for controlling induction motor
JPH1127998A (en) Inverter device
WO2008065719A1 (en) Controller of ac rotating machine
JP2007006664A (en) Control unit of ac rotary machine
JPH10234135A (en) Power conversion device
JPH0880098A (en) Vector controller of motor
JPH0454890A (en) Apparatus for controlling induction motor and driving method thereof
JP3508982B2 (en) AC motor control device
JPH0870598A (en) Sensorless vector control apparatus for induction motor speed
JP3118940B2 (en) Induction motor vector control device
JP2003164198A (en) Motor control device
JPH10225196A (en) Controller for induction motor
JPH07108109B2 (en) Motor control device
JPS5926197B2 (en) Induction motor control device
JP2010263724A (en) Drive unit
JP2003088165A (en) Initial magnetic pole estimator for ac synchronous motor
JPH0480639B2 (en)
JP3316118B2 (en) Induction motor drive
JP2629196B2 (en) Vector controller for induction motor
JPH03135390A (en) Method and device for controlling power converter
JP3322088B2 (en) Induction motor control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907