JPH11265217A - Pressure type flow controller - Google Patents

Pressure type flow controller

Info

Publication number
JPH11265217A
JPH11265217A JP10089464A JP8946498A JPH11265217A JP H11265217 A JPH11265217 A JP H11265217A JP 10089464 A JP10089464 A JP 10089464A JP 8946498 A JP8946498 A JP 8946498A JP H11265217 A JPH11265217 A JP H11265217A
Authority
JP
Japan
Prior art keywords
valve
control valve
fluid control
flow rate
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10089464A
Other languages
Japanese (ja)
Inventor
Satoru Yasukochi
悟 安河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stec KK
Fujikin Inc
Original Assignee
Stec KK
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stec KK, Fujikin Inc filed Critical Stec KK
Priority to JP10089464A priority Critical patent/JPH11265217A/en
Publication of JPH11265217A publication Critical patent/JPH11265217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily perform setting to a desired aperture system and to perform stable flow control by constituting a restriction mechanism of the valve of the same structure as a fluid control valve provided on the upstream side. SOLUTION: The diaphragm mechanism 7 is constituted of a piezo type valve similarly to the fluid control valve 5. In the fluid control valve 5 on the upstream side, by adding a prescribed voltage to a piezoelectric element type actuator 16, a valve body 13 is pressurized and driven through a ruby ball 18 as a transmission member. Thus, the opening degree of a valve port 8 is adjusted and the flow rate of gas flowing through a fluid route 4 is controlled. Also in the restriction mechanism 7 provided on the downstream side from the fluid control valve 5, by adding the prescribed voltage to the piezoelectric element type actuator 27, a diaphragm 25 is pressurized and driven and the opening degree of an orifice 20 is adjusted by a needle 2 attached to it. Then, the flow rate of the gas flowing through the fluid route 4 is controlled and the variable range of a control flow rate is widened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ガスなどの流体
の流量を制御する圧力式流量制御装置、特に、流体制御
弁の下流側に絞り機構を設け、この絞り機構の上流側の
圧力を下流側の圧力の約2倍以上に保持した状態でガス
の流量制御を行う圧力式流量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure type flow control device for controlling the flow rate of a fluid such as a gas, and more particularly, to a throttle mechanism provided downstream of a fluid control valve, and a pressure upstream of the throttle mechanism is reduced. The present invention relates to a pressure-type flow control device that controls the flow rate of gas while maintaining the pressure at about twice or more the pressure on the side.

【0002】[0002]

【従来の技術】ノズルを通るガス流の特徴の一つに、ノ
ズルの上流側圧力P1 と下流側圧力P2 の圧力比P2
1 がガスの臨界圧力比(空気や窒素などの場合約0.
5)が0.5以下になると、ノズルを通るガスの流速が
音速となって、ノズル下流側の圧力変動が上流側に伝播
しなくなり、ノズル上流側の状態に相応した安定した質
量流量を得ることができるといった事象がある。
2. Description of the Related Art One of the characteristics of gas flow through a nozzle is a pressure ratio P 2 / upstream pressure P 1 and downstream pressure P 2 of the nozzle.
P 1 is the critical pressure ratio of the gas (approximately 0.
When the value of 5) is 0.5 or less, the flow velocity of the gas passing through the nozzle becomes a sonic velocity, the pressure fluctuation on the downstream side of the nozzle does not propagate to the upstream side, and a stable mass flow rate corresponding to the state on the upstream side of the nozzle is obtained. There are things that can be done.

【0003】上述の事象を応用した装置として、例えば
特開平8−335117号公報や特開平8−33854
6号公報に開示された圧力式流量制御装置がある。この
圧力式流量制御装置は、流体制御弁の下流側に音速ノズ
ルのような絞り機構を設け、この絞り機構の上流側の圧
力を下流側の圧力の約2倍以上に保持した状態で流体の
流量制御を行うもので、従来のマスフローコントローラ
などの流体制御装置に比べて、流量制御を高精度で行う
ことができるといった利点がある。
As an apparatus utilizing the above-mentioned phenomenon, for example, JP-A-8-335117 and JP-A-8-33854
There is a pressure type flow control device disclosed in Japanese Patent Application Publication No. 6 (1994). This pressure type flow control device is provided with a throttle mechanism such as a sonic nozzle downstream of the fluid control valve, and the pressure of the fluid is maintained while maintaining the pressure on the upstream side of the throttle mechanism at about twice or more the pressure on the downstream side. It performs flow rate control, and has an advantage that the flow rate control can be performed with higher precision than a fluid control device such as a conventional mass flow controller.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記公
報に記載されている圧力式流量制御装置においては、絞
り機構における孔を機械加工によって形成しており、し
かも、その径は固定的に定められるものであった。この
ため、機械加工のばらつきが即、流量や差圧の個体差に
結びつき、安定した制御が行えないことがある。そし
て、絞り機構における孔径が固定的であるため、特定の
流量にしか設定できないといった不都合があった。
However, in the pressure type flow control device described in the above publication, the hole in the throttle mechanism is formed by machining, and the diameter is fixedly determined. Met. For this reason, variations in machining are immediately linked to individual differences in flow rate and differential pressure, and stable control may not be performed. In addition, since the diameter of the hole in the throttle mechanism is fixed, there is an inconvenience that only a specific flow rate can be set.

【0005】また、前記絞り機構における孔の径は、例
えば0.1〜0.7mm程度と微細であり、このような
微細な孔は、放電、プレス、エッチングなどの特殊な加
工方法によらねばならず、製作の面でも煩わしいもので
あった。
The diameter of the hole in the drawing mechanism is as small as, for example, about 0.1 to 0.7 mm. Such a small hole must be formed by a special processing method such as electric discharge, press, etching or the like. In addition, it was troublesome in terms of production.

【0006】この発明は、上述の事柄に留意してなされ
たもので、その目的は、所望の孔径に簡単に設定するこ
とができ、安定した流量制御を行うことができるように
した圧力式流量制御装置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned matters, and has as its object the purpose of a pressure type flow rate which can easily set a desired hole diameter and can perform a stable flow rate control. It is to provide a control device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、この発明では、流体制御弁の下流側に絞り機構を設
け、この絞り機構の上流側の圧力を下流側の圧力の約2
倍以上に保持した状態でガスの流量制御を行う圧力式流
量制御装置において、前記絞り機構を、前記流体制御弁
と同一構造の弁で構成している。
In order to achieve the above object, according to the present invention, a throttle mechanism is provided on the downstream side of the fluid control valve, and the pressure on the upstream side of the throttle mechanism is reduced by about 2 times the pressure on the downstream side.
In the pressure type flow control device for controlling the flow rate of the gas while maintaining the pressure at twice or more, the throttle mechanism is constituted by a valve having the same structure as the fluid control valve.

【0008】上記圧力式流量制御装置においては、絞り
機構を、これの上流側に設けられる流体制御弁と同一構
造のバルブで構成しているので、オリフィスの径をアナ
ログ的に変化させることができ、絞り機構におけるオリ
フィス径を機械加工を厳密に行うことなく、所望の孔径
に設定することができ、制御流量の可変範囲が広くなる
とともに、安定した流量制御を行うことができる。
In the above pressure type flow control device, the throttle mechanism is constituted by a valve having the same structure as the fluid control valve provided upstream of the throttle mechanism, so that the diameter of the orifice can be changed in an analog manner. In addition, the orifice diameter in the throttle mechanism can be set to a desired hole diameter without strictly performing machining, and the variable range of the control flow rate can be widened and stable flow rate control can be performed.

【0009】流体制御弁および絞り機構をピエゾ式バル
ブで構成した場合、その弁またはオリフィスにおける制
御をより簡単に行うことができる。
When the fluid control valve and the throttle mechanism are constituted by piezo valves, the control of the valves or the orifices can be performed more easily.

【0010】[0010]

【発明の実施の形態】発明の実施の形態を図面を参照し
ながら説明する。図1および図2は、この発明の第1の
実施の形態を示す。まず、図1は、この発明の圧力式流
量制御装置の一例を示し、この図において、1は例えば
直方体状の本体ブロックで、耐化学薬品性を有する素
材、例えばステンレス鋼よりなる。この本体ブロック1
の左右両端には、それぞれ、ガスなど流体の導入用およ
び導出用の継手ブロック2,3が溶接によって一体的に
連設されている。これらの継手ブロック2,3も例えば
ステンレス鋼よりなる。
Embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment of the present invention. First, FIG. 1 shows an example of a pressure type flow control device of the present invention. In this figure, 1 is a rectangular parallelepiped main body block, for example, made of a material having chemical resistance, for example, stainless steel. This body block 1
At the left and right ends, joint blocks 2 and 3 for introducing and discharging a fluid such as a gas are integrally connected to each other by welding. These joint blocks 2 and 3 are also made of, for example, stainless steel.

【0011】前記本体ブロック1の内部には、上流側が
継手ブロック2に連なり、下流側が継手ブロック3に連
なるガス流路4が形成され、このガス流路4の途中にガ
ス流量を制御する流体制御弁5、圧力センサ6および絞
り機構7がこの順に設けられている。なお、前記流路4
は、継手ブロック2の入口から流体制御弁5までの流路
4aと、流体制御弁5から絞り機構7までの流路4b
と、絞り機構7から継手ブロック3の出口までの流路4
cとからなる。
A gas flow path 4 is formed inside the main body block 1 so that the upstream side is connected to the joint block 2 and the downstream side is connected to the joint block 3. The valve 5, the pressure sensor 6, and the throttle mechanism 7 are provided in this order. The flow path 4
Is a flow path 4a from the inlet of the joint block 2 to the fluid control valve 5, and a flow path 4b from the fluid control valve 5 to the throttle mechanism 7.
And the flow path 4 from the throttle mechanism 7 to the outlet of the joint block 3
c.

【0012】前記流体制御弁5は、例えばピエゾ式バル
ブよりなり、次のように構成されている。すなわち、本
体ブロック1の上面側に延設された上流側のガス流路4
aには、弁口8と、下流側のガス流路4bに連なる流路
9とを備えたオリフィスブロック10が設けられるとと
もに、弁頭部11とプランジャ部12とからなり、弁口
8の開度を調節する弁体13が弁頭部11を弁口8に近
接した状態で設けられている。そして、この弁体13
は、本体ブロック1の上部に設けられた弁ブロック14
の下部空間内に設けられた金属製のダイヤフラム15に
よって、通常時、オリフィスブロック10の上面との間
に若干の隙間が形成されるように、上下動自在に保持さ
れている。
The fluid control valve 5 is composed of, for example, a piezo valve, and is configured as follows. That is, the gas flow path 4 on the upstream side, which is extended on the upper surface side of
a is provided with an orifice block 10 provided with a valve port 8 and a flow path 9 connected to the downstream gas flow path 4b, and comprises a valve head 11 and a plunger portion 12; A valve body 13 for adjusting the degree is provided with the valve head 11 close to the valve port 8. And this valve body 13
Is a valve block 14 provided above the main body block 1.
The orifice block 10 is normally held by a metal diaphragm 15 provided in a lower space of the orifice block 10 such that a slight gap is formed between the orifice block 10 and the upper surface thereof.

【0013】16は弁体13を上下方向に押圧駆動する
圧電素子型アクチュエータで、弁ブロック14に螺着さ
れた筒状のケース17内に収容されている。この圧電素
子型アクチュエータ16に所定の電圧を加えることによ
り、伝達部材としてのルビーボール18を介して弁体1
3が押圧駆動され、これによって、弁口8の開度が調整
され、流体流路4を流れるガスの流量が制御される。
Reference numeral 16 denotes a piezoelectric element type actuator for pressing and driving the valve body 13 in the vertical direction, and is housed in a cylindrical case 17 screwed to the valve block 14. By applying a predetermined voltage to the piezoelectric element type actuator 16, the valve element 1 is moved through a ruby ball 18 as a transmission member.
3 is driven to be pressed, whereby the opening of the valve port 8 is adjusted, and the flow rate of the gas flowing through the fluid flow path 4 is controlled.

【0014】前記圧力センサ6は、例えば歪みセンサよ
りなり、流体制御弁5の下流側の流路4bに形成された
凹部19に臨むようにして設けられている。
The pressure sensor 6 comprises, for example, a strain sensor, and is provided so as to face a concave portion 19 formed in the flow path 4b on the downstream side of the fluid control valve 5.

【0015】次に、絞り機構7の構成について、図2を
も参照しながら説明する。この絞り機構7は、流体制御
弁5と同様に、ピエゾ式バルブよりなり、次のように構
成されている。すなわち、本体ブロック1の上面側に延
設されたガス流路4bに、オリフィス20と、下流側の
ガス流路4cに連なる流路21とを備えたオリフィスブ
ロック22が設けられるとともに、オリフィス20の開
度を調節する弁体としてのニードル23が弁口8に近接
した状態で設けられている。そして、このニードル23
は、本体ブロック1の上部に設けられた弁ブロック24
の下部空間内に設けられた金属製のダイヤフラム25の
下面に取付け部材26を介して取付けられている。
Next, the configuration of the aperture mechanism 7 will be described with reference to FIG. The throttle mechanism 7, like the fluid control valve 5, is composed of a piezo valve and has the following configuration. That is, an orifice block 22 having an orifice 20 and a flow path 21 connected to a downstream gas flow path 4c is provided in a gas flow path 4b extending on the upper surface side of the main body block 1, and an orifice 20 is provided. A needle 23 as a valve body for adjusting the opening is provided in a state close to the valve port 8. And this needle 23
Is a valve block 24 provided above the main body block 1.
Is mounted via a mounting member 26 to the lower surface of a metal diaphragm 25 provided in the lower space of the first embodiment.

【0016】27はダイヤフラム25を上下方向に押圧
駆動する圧電素子型アクチュエータで、弁体13を押圧
駆動する圧電素子型アクチュエータと同様の構成であっ
て、弁ブロック24に螺着された筒状のケース28内に
収容されている。29はダイヤフラム25の上面に当接
するように配置される押圧部材、30はこの押圧部材2
9と圧電素子型アクチュエータ27の下部出力部27a
との間に介装される伝達部材としてのルビーボールであ
る。
Reference numeral 27 denotes a piezoelectric element type actuator for pressing and driving the diaphragm 25 in the vertical direction. The piezoelectric element type actuator 27 for pressing and driving the valve body 13 has a cylindrical structure screwed to the valve block 24. It is housed in a case 28. 29 is a pressing member arranged so as to contact the upper surface of the diaphragm 25, and 30 is this pressing member 2
9 and lower output portion 27a of piezoelectric element type actuator 27
And a ruby ball as a transmission member interposed between them.

【0017】上記構成の圧力式流量制御装置において、
上流側の流体制御弁5において、圧電素子型アクチュエ
ータ16に所定の電圧を加えることにより、伝達部材と
してのルビーボール18を介して弁体13が押圧駆動さ
れ、これによって、弁口8の開度が調整され、流体流路
4を流れるガスの流量が制御される。そして、流体制御
弁5の下流側に設けられた絞り機構7においても、圧電
素子型アクチュエータ27に所定の電圧を加えることに
より、ダイヤフラム25が押圧駆動され、これに取り付
けられたニードル23によってオリフィス20の開度が
調整され、流体流路4を流れるガスの流量が制御され、
制御流量の可変範囲が広くなる。
In the pressure type flow control device having the above-mentioned structure,
In the upstream fluid control valve 5, by applying a predetermined voltage to the piezoelectric element type actuator 16, the valve element 13 is pressed and driven via the ruby ball 18 as a transmission member, and thereby the opening degree of the valve port 8 is opened. Is adjusted, and the flow rate of the gas flowing through the fluid flow path 4 is controlled. Also in the throttle mechanism 7 provided downstream of the fluid control valve 5, the diaphragm 25 is pressed and driven by applying a predetermined voltage to the piezoelectric element type actuator 27, and the orifice 20 is attached by the needle 23 attached thereto. Is adjusted, the flow rate of the gas flowing through the fluid flow path 4 is controlled,
The variable range of the control flow rate is widened.

【0018】つまり、この発明においては、本体ブロッ
ク1に設けられる流体制御弁5の下流側に設けられる絞
り機構7を、流体制御弁5と同様の構成よりなるピエゾ
式バルブで構成しているので、オリフィス20の径をア
ナログ的に変化させることができる。したがって、絞り
機構7におけるオリフィス径を機械加工を厳密に行うこ
となく、所望の孔径に設定することができ、安定した流
量制御を行うことができる。
That is, in the present invention, the throttle mechanism 7 provided downstream of the fluid control valve 5 provided in the main body block 1 is constituted by a piezo-type valve having the same configuration as the fluid control valve 5. The diameter of the orifice 20 can be changed in an analog manner. Therefore, the orifice diameter in the throttle mechanism 7 can be set to a desired hole diameter without strictly performing mechanical processing, and stable flow control can be performed.

【0019】なお、上記実施の形態のように、流体制御
弁5および絞り機構7をピエゾ式バルブで構成した場
合、その弁口8およびオリフィス20における開度調整
のための制御が簡単であるが、この発明はこれに限られ
るものではなく、流体制御弁5や絞り機構7を他の駆動
原理によるバルブで構成してもよいことは言うまでもな
い。
When the fluid control valve 5 and the throttle mechanism 7 are constituted by piezo valves as in the above embodiment, the control for adjusting the opening degree of the valve port 8 and the orifice 20 is simple. However, the present invention is not limited to this, and it goes without saying that the fluid control valve 5 and the throttle mechanism 7 may be constituted by valves based on other driving principles.

【0020】[0020]

【発明の効果】この発明の圧力式流量制御装置は、絞り
機構を、これの上流側に設けられる流体制御弁と同一構
造のバルブで構成しているので、オリフィスの径をアナ
ログ的に変化させることができ、絞り機構におけるオリ
フィス径を機械加工を厳密に行うことなく、所望の孔径
に設定することができ、制御流量の可変範囲が広くなる
とともに、安定した流量制御を行うことができる。
According to the pressure type flow control device of the present invention, since the throttle mechanism is constituted by a valve having the same structure as the fluid control valve provided upstream of the throttle mechanism, the diameter of the orifice is changed in an analog manner. Thus, the orifice diameter in the throttle mechanism can be set to a desired hole diameter without strictly performing machining, and the variable range of the control flow rate can be widened and stable flow control can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の圧力式流量制御装置の一例を示す縦
断面図である。
FIG. 1 is a longitudinal sectional view showing an example of a pressure type flow control device of the present invention.

【図2】前記圧力式流量制御装置に用いられる絞り機構
の近傍を拡大して示す断面図である。
FIG. 2 is an enlarged sectional view showing the vicinity of a throttle mechanism used in the pressure type flow control device.

【符号の説明】[Explanation of symbols]

5…流体制御弁、7…絞り機構。 5: fluid control valve, 7: throttle mechanism.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流体制御弁の下流側に絞り機構を設け、
この絞り機構の上流側の圧力を下流側の圧力の約2倍以
上に保持した状態でガスの流量制御を行う圧力式流量制
御装置において、前記絞り機構を、前記流体制御弁と同
一構造の弁で構成したことを特徴とする圧力式流量制御
装置。
A throttle mechanism provided downstream of the fluid control valve;
In a pressure type flow control device for controlling the flow rate of gas while maintaining the pressure on the upstream side of the throttle mechanism at about twice or more the pressure on the downstream side, the throttle mechanism may be a valve having the same structure as the fluid control valve. A pressure type flow control device characterized by comprising:
【請求項2】 流体制御弁および絞り機構をピエゾ式バ
ルブで構成した請求項1に記載の圧力式流量制御装置。
2. The pressure type flow control device according to claim 1, wherein the fluid control valve and the throttle mechanism are constituted by piezo type valves.
JP10089464A 1998-03-17 1998-03-17 Pressure type flow controller Pending JPH11265217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10089464A JPH11265217A (en) 1998-03-17 1998-03-17 Pressure type flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10089464A JPH11265217A (en) 1998-03-17 1998-03-17 Pressure type flow controller

Publications (1)

Publication Number Publication Date
JPH11265217A true JPH11265217A (en) 1999-09-28

Family

ID=13971440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10089464A Pending JPH11265217A (en) 1998-03-17 1998-03-17 Pressure type flow controller

Country Status (1)

Country Link
JP (1) JPH11265217A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133208A (en) * 2003-10-10 2005-05-26 Jfe Steel Kk Gas wiping nozzle, gas wiping nozzle system and production method of hot-dip plating metal strip
WO2007023970A1 (en) * 2005-08-22 2007-03-01 Asahi Organic Chemicals Industry Co., Ltd. Fluid control apparatus
KR20160070721A (en) 2013-10-21 2016-06-20 가부시키가이샤 호리바 에스텍 Fluid control valve
CN110114601A (en) * 2016-12-26 2019-08-09 株式会社富士金 Piezoelectric element drive-type valve and volume control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245885A (en) * 1984-05-17 1985-12-05 Tokico Ltd Flow control valve
JPH0683456A (en) * 1992-09-03 1994-03-25 M C Electron Kk Mass flow controller
JPH06201417A (en) * 1992-12-28 1994-07-19 Gijutsu Kaihatsu Sogo Kenkyusho:Kk Constant flow generator
JPH06221459A (en) * 1993-01-26 1994-08-09 Hitachi Metals Ltd Flow rate control valve
JPH07301345A (en) * 1994-04-30 1995-11-14 Horiba Ltd Variable type critical flow venturi
JPH07310842A (en) * 1994-05-19 1995-11-28 Fujikin:Kk Fine flow rate adjustment valve
JPH08338546A (en) * 1995-06-12 1996-12-24 Fujikin:Kk Pressure type flow control device
JPH1163265A (en) * 1997-08-15 1999-03-05 Tadahiro Omi Pressure type flow control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245885A (en) * 1984-05-17 1985-12-05 Tokico Ltd Flow control valve
JPH0683456A (en) * 1992-09-03 1994-03-25 M C Electron Kk Mass flow controller
JPH06201417A (en) * 1992-12-28 1994-07-19 Gijutsu Kaihatsu Sogo Kenkyusho:Kk Constant flow generator
JPH06221459A (en) * 1993-01-26 1994-08-09 Hitachi Metals Ltd Flow rate control valve
JPH07301345A (en) * 1994-04-30 1995-11-14 Horiba Ltd Variable type critical flow venturi
JPH07310842A (en) * 1994-05-19 1995-11-28 Fujikin:Kk Fine flow rate adjustment valve
JPH08338546A (en) * 1995-06-12 1996-12-24 Fujikin:Kk Pressure type flow control device
JPH1163265A (en) * 1997-08-15 1999-03-05 Tadahiro Omi Pressure type flow control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133208A (en) * 2003-10-10 2005-05-26 Jfe Steel Kk Gas wiping nozzle, gas wiping nozzle system and production method of hot-dip plating metal strip
JP4552586B2 (en) * 2003-10-10 2010-09-29 Jfeスチール株式会社 Gas wiping nozzle and gas wiping nozzle device
WO2007023970A1 (en) * 2005-08-22 2007-03-01 Asahi Organic Chemicals Industry Co., Ltd. Fluid control apparatus
KR20160070721A (en) 2013-10-21 2016-06-20 가부시키가이샤 호리바 에스텍 Fluid control valve
US10114385B2 (en) 2013-10-21 2018-10-30 Horiba Stec, Co., Ltd. Fluid control valve
CN110114601A (en) * 2016-12-26 2019-08-09 株式会社富士金 Piezoelectric element drive-type valve and volume control device
CN110114601B (en) * 2016-12-26 2020-10-27 株式会社富士金 Piezoelectric element driven valve and flow rate control device

Similar Documents

Publication Publication Date Title
Jerman Electrically activated normally closed diaphragm valves
JP3586075B2 (en) Pressure type flow controller
US6520479B1 (en) Flow rate control valve
JPS61173319A (en) Regulator for fluid
JP2000213667A (en) Orifice built-in valve
JPH11265217A (en) Pressure type flow controller
JPS6228585A (en) Piezoelectrically driven valve
JPH11265216A (en) Pressure type flow controller
JPS61127983A (en) Fluid control valve
JPH11265215A (en) Pressure type flow controller
JPS62141381A (en) Piezoelectric driving type valve
JP4012306B2 (en) Pressure flow control device
JPH07293738A (en) Regulating valve
US11982371B2 (en) Fluid control valve and fluid control apparatus
JP2516824Y2 (en) Control valve
JP2559919B2 (en) Electro-pneumatic regulator
JPS63199978A (en) Mass flow controller
JPS60231001A (en) Unit for converting electric signal to air pressure
JPH0431336B2 (en)
JP3012042B2 (en) Control valve of mass flow controller
JP2003347225A (en) Semiconductor manufacturing apparatus and controller of exhaust fluid
JPS6237502A (en) Controller for electricity pressure conversion
JP2971874B1 (en) Pressure regulator
JPS63140179A (en) Minute flow control valve
JPH01112090A (en) Flow rate control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605