JPH11248624A - Method for specifying mixed oil leakage path - Google Patents

Method for specifying mixed oil leakage path

Info

Publication number
JPH11248624A
JPH11248624A JP6921798A JP6921798A JPH11248624A JP H11248624 A JPH11248624 A JP H11248624A JP 6921798 A JP6921798 A JP 6921798A JP 6921798 A JP6921798 A JP 6921798A JP H11248624 A JPH11248624 A JP H11248624A
Authority
JP
Japan
Prior art keywords
mixed oil
oil
mixed
leakage path
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6921798A
Other languages
Japanese (ja)
Inventor
Kazuo Hasegawa
一雄 長谷川
Kiminobu Miyazaki
公宣 宮崎
Masayuki Imamura
正行 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP6921798A priority Critical patent/JPH11248624A/en
Publication of JPH11248624A publication Critical patent/JPH11248624A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To speedily determine a leakage path for oil in a factory where many kinds of oils are used. SOLUTION: In this specifying method, table in which a main infrared absorption peak and sulfur content concentration are compared in advance with a process to use, as to various oil to use, is made by combining sulfur content concentration for mixed oil in a drainage and a measurement of infrared absorption spectrum for the mixed oil, and a leakage path is identified by referring to the table by using the measured values as to oil content leaked to the drainage system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工場等で使用する
燃料、機械油等の油類の漏洩経路の特定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for specifying a leakage path of oils such as fuel and machine oil used in factories and the like.

【0002】[0002]

【従来の技術】各種製造業の工場および事業場(以下工
場等という)においては、燃料や機械油等の各種の油類
が使用されているが、これらの油類は単一成分ではな
く、複数の油種が混合されたもの(以下混合油という)
が多い。工場等でこれらの混合油を使用している際に、
設備等の何らかの不具合により希に、微量の混合油が漏
洩して排水系に混入することがある。
2. Description of the Related Art Various types of oils such as fuel and machine oil are used in factories and business sites of various manufacturing industries (hereinafter referred to as factories, etc.), but these oils are not single components. A mixture of multiple oil types (hereinafter referred to as a mixed oil)
There are many. When using these mixed oils in factories,
In rare cases, a small amount of mixed oil may leak and enter the drainage system due to some failures in the facilities or the like.

【0003】排水系への混合油の漏洩を放置すると、最
終的には排水口から工場等の域外に排出され、域外で水
質汚濁を引き起こすおそれがあるので、排水中の混合油
成分を特定し、その漏洩経路を速やかに特定し、域外へ
の排出を阻止する必要がある。
If the mixed oil leaks into the drainage system, it is eventually discharged from the drain outlet to the outside of a factory or the like, possibly causing water pollution outside the region. Therefore, the mixed oil component in the wastewater is specified. However, it is necessary to quickly identify the leakage route and to prevent discharge to the outside.

【0004】排水中の混合油の成分を特定する方法とし
て、従来より、溶媒抽出した油分を各種クロマトグラフ
ィーにより単一成分に分離、収集した後、各分集物毎に
赤外分光分析法や質量分析法による組成の同定を行い、
最終的に混合油を特定するものがあった。しかし、この
方法では分析に長時間を要し、混合油の漏洩経路の特定
が遅くなるため、混合油の成分を迅速に特定する方法の
開発が望まれていた。
[0004] As a method of specifying the components of the mixed oil in the wastewater, conventionally, the oil extracted by the solvent is separated and collected into a single component by various types of chromatography, and then each fraction is subjected to infrared spectroscopy or mass spectrometry. Identify the composition by analytical method,
Finally, there was something that specified a mixed oil. However, in this method, a long time is required for the analysis, and the identification of the leakage path of the mixed oil is delayed. Therefore, it has been desired to develop a method for quickly identifying the components of the mixed oil.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、混合油
中の硫黄分の濃度が、各種の工程で使用される混合油毎
に異なっており、排水中の混合油についての硫黄分濃度
の測定と、該混合油についての赤外吸収スペクトルの測
定とを組み合わせることにより、混合油の成分を特定す
ることが可能になることを見出して本発明を完成させ
た。
SUMMARY OF THE INVENTION The present inventors have found that the concentration of sulfur in a mixed oil differs for each of the mixed oils used in various processes, and the concentration of the sulfur in the mixed oil in the wastewater is different. The present invention has been completed by finding that it is possible to specify the component of the mixed oil by combining the measurement of the above-mentioned with the measurement of the infrared absorption spectrum of the mixed oil.

【0006】本発明は、工場等における排水系に漏洩し
た混合油の成分を迅速に特定することにより、混合油の
漏洩経路の速やかな特定を可能にする方法を提供するも
のである。
SUMMARY OF THE INVENTION The present invention provides a method for quickly specifying a component of a mixed oil leaked to a drainage system in a factory or the like, thereby enabling a rapid identification of a leak path of the mixed oil.

【0007】[0007]

【課題を解決するための手段】本発明においては、漏洩
した混合油を含む排水の四塩化炭素抽出物質濃度および
該抽出物質中の硫黄分の質量の測定により算出した混合
油の硫黄分の濃度と、該抽出物について得られた赤外吸
収スペクトル中の主な吸収ピークの波数とを、各工程で
使用する混合油について予め準備したそれらの値につい
てのテーブルと対比することにより漏洩した混合油を特
定し、その結果により混合油の漏洩経路を特定する。
According to the present invention, the concentration of carbon tetrachloride extract in wastewater containing leaked mixed oil and the concentration of sulfur in mixed oil calculated by measuring the mass of sulfur in the extract are described. And the wave number of the main absorption peak in the infrared absorption spectrum obtained for the extract, the mixed oil leaked by comparing with the table for those values prepared in advance for the mixed oil used in each step Is specified, and the leakage path of the mixed oil is specified based on the result.

【0008】[0008]

【発明の実施の形態】図1に、各種硫黄分濃度を有する
混合油そのもの(以下元油という)の硫黄分濃度、およ
び、元油を海水中に1ppm程度添加した模擬排水から
四塩化炭素で抽出した混合油の硫黄分濃度の関係を示
す。硫黄分濃度の測定は、JIS K2541に規定す
る燃焼法を用いて行なった。また、模擬排水中の混合油
の硫黄分濃度については、抽出後の四塩化炭素中に含ま
れる硫黄分の全質量を、JISK 0102に規定する
四塩化炭素抽出物質濃度の測定方法によるOCB対応量
として算出した混合油の全質量で除して求めた。図1は
極めて良い相関を示しており、排水中の混合油の硫黄分
濃度の測定により、元油の硫黄分濃度が推定できる。本
測定により、模擬排水を使用して、工場との各工程もし
くは設備で使用する混合油について、その硫黄分濃度の
テーブルを作成する。なお、模擬排水については、工場
排水を用いて作成したものも使用したが、同様に良好な
相関が得られた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the sulfur concentration of a mixed oil itself having various sulfur concentrations (hereinafter referred to as "source oil"), and carbon tetrachloride from a simulated wastewater obtained by adding approximately 1 ppm of base oil to seawater. The relationship of the sulfur concentration of the extracted mixed oil is shown. The measurement of the sulfur concentration was performed using the combustion method specified in JIS K2541. Regarding the sulfur content of the mixed oil in the simulated wastewater, the total mass of the sulfur contained in the extracted carbon tetrachloride was calculated by measuring the carbon tetrachloride extraction material concentration specified in JIS K 0102 by the OCB equivalent amount. Divided by the total mass of the mixed oil calculated as FIG. 1 shows an extremely good correlation. By measuring the sulfur content of the mixed oil in the wastewater, the sulfur content of the base oil can be estimated. Based on this measurement, a table of the sulfur concentration of the mixed oil used in each process or facility with the factory is created using the simulated wastewater. In addition, as for the simulated drainage, a drainage prepared using factory drainage was also used, and a good correlation was similarly obtained.

【0009】図2にごま油の赤外吸収スペクトルを、図
3にごま油を添加した模擬排水から四塩化炭素により抽
出した混合油の赤外吸収スペクトルを、それぞれ示す。
模擬排水からの抽出物の場合、元油のスペクトルと比較
すると、微少な吸収ピークは消失しているが、主要な吸
収ピークは同じ波数に明瞭に観察される。なお、赤外分
光分析はKBr錠剤法で行なった。また、使用する分光
計については特に限定するものではないが、分散型のも
のではなく、測定が短時間で行なえるフーリエ変換形の
もの(FT−IR)が好ましい。
FIG. 2 shows an infrared absorption spectrum of sesame oil, and FIG. 3 shows an infrared absorption spectrum of a mixed oil extracted from simulated wastewater to which sesame oil has been added using carbon tetrachloride.
In the case of the extract from the simulated wastewater, the minute absorption peak has disappeared, but the main absorption peak is clearly observed at the same wave number as compared with the spectrum of the original oil. The infrared spectroscopy was performed by the KBr tablet method. The spectrometer to be used is not particularly limited, but a Fourier transform type (FT-IR), which is not a dispersive type but can be measured in a short time, is preferable.

【0010】同様に、各種の混合油について模擬排水を
作成し、四塩化炭素で抽出した後赤外スペクトルを測定
し、主な吸収ピークの現れる波数を測定し、その波数に
基づき工場等で使用する混合油を予め大分類する。例と
して、表1に製鉄所で使用する鉱物油系、脂肪酸エステ
ル系、りん酸エステル系およびグリコール系について、
主要な吸収ピークの波数を示す。なお、混合油の大分類
としては本例に限定されるものではなく、工場等毎にそ
こで使用する混合油の種類に基づき作成する。
Similarly, simulated wastewater is prepared for various types of mixed oils, extracted with carbon tetrachloride, measured for infrared spectrum, and the wave number at which the main absorption peak appears is used. The oil mixture to be used is roughly classified in advance. For example, Table 1 shows mineral oils, fatty acid esters, phosphate esters and glycols used in steelworks.
The wave number of the main absorption peak is shown. Note that the major classification of the mixed oil is not limited to this example, but is created for each factory or the like based on the type of the mixed oil used there.

【0011】[0011]

【表1】 [Table 1]

【0012】実際の混合油の漏洩経路の特定は以下の手
順で行なう。予め、主要な赤外吸収ピークの波数と混合
油の大分類の対応を記載した第1のテーブル、および、
各分類毎に混合油の名称、全ての主要な赤外吸収ピーク
の波数、硫黄分濃度の範囲、使用工程(設備)を記載し
た第2のテーブル、の2種のテーブルを準備する。
[0012] The actual leakage path of the mixed oil is specified by the following procedure. In advance, a first table that describes the correspondence between the wave number of the main infrared absorption peak and the major classification of the mixed oil, and
For each classification, two types of tables are prepared: the name of the mixed oil, the wave numbers of all major infrared absorption peaks, the range of the sulfur concentration, and the second table that describes the use process (equipment).

【0013】混合油の漏洩が観察される排水系より試料
を採取する。試料の採取方法についてはJIS K 0
102に従う。採取した試料中の混合油を四塩化炭素で
抽出し、得られた抽出液の赤外吸収スペクトルを測定
し、主な吸収ピークの波数を確認する。また、抽出液の
一部を用いて、漏洩した混合油の硫黄分濃度を別途測定
する。
A sample is collected from a drainage system in which leakage of the mixed oil is observed. See JIS K0 for sampling method.
Follow 102. Extract the mixed oil in the collected sample with carbon tetrachloride, measure the infrared absorption spectrum of the obtained extract, and confirm the wave number of the main absorption peak. In addition, the sulfur concentration of the leaked mixed oil is separately measured using a part of the extract.

【0014】第1のテーブルにより、最大吸収ピークの
波数に該当する混合油の大分類を確認した後、その大分
類(複数ある時はその全て)についての第2のテーブル
により、全ての主要な吸収ピーク波数および硫黄分濃度
範囲より混合油を特定し、その混合油を使用している工
程(設備)を特定する。本発明の方法のフローチャート
を図4に示す。
After confirming the major classification of the mixed oil corresponding to the wave number of the maximum absorption peak in the first table, all major major oils are identified in the second table for the major classification (when there are a plurality of them, all of them). A mixed oil is specified from the absorption peak wave number and the sulfur concentration range, and a process (equipment) using the mixed oil is specified. FIG. 4 shows a flowchart of the method of the present invention.

【0015】なお、本発明の方法では同一の吸収ピーク
波数および硫黄分濃度範囲を有する複数の混合油が存在
する場合には、漏洩混合油種の完全な特定は困難である
が、対応する混合油種を少数に絞り込めるので、やはり
漏洩経路の特定を速やかに行なうことが可能になる。
In the method of the present invention, when a plurality of mixed oils having the same absorption peak wave number and the same sulfur content range exist, it is difficult to completely identify the type of leaked mixed oil. Since the number of oil types can be reduced to a small number, it is also possible to quickly specify a leakage path.

【0016】表2に、大分類が鉱油の各種混合油につい
て、その主要な吸収ピーク波数と硫黄分濃度範囲を示
す。表2から明らかなように、同一の大分類に属する混
合油であっても、硫黄分濃度に差異があるため、対応混
合油種を特定することが可能である。
Table 2 shows the main absorption peak wavenumbers and sulfur content ranges of various types of mixed oils of which the major category is mineral oil. As is evident from Table 2, even for mixed oils belonging to the same major category, the corresponding mixed oil types can be specified because of differences in sulfur content.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】以上説明した様に、本発明の方法を用い
ることにより、排水系に漏洩した混合油を迅速に特定す
ることが可能となり、それを用いて漏洩経路を速やかに
特定することが可能になったので、設備保全上の効果の
みならず、環境保全の面でも著しい効果が得られる。
As described above, by using the method of the present invention, it is possible to quickly identify a mixed oil leaking into a drainage system, and to quickly identify a leakage route using the same. As a result, significant effects can be obtained not only in equipment preservation but also in environmental preservation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】元油および模擬排水中の硫黄分濃度の関係を示
す図である。
FIG. 1 is a view showing a relationship between a crude oil and a sulfur concentration in a simulated wastewater.

【図2】ごま油の赤外吸収スペクトルである。FIG. 2 is an infrared absorption spectrum of sesame oil.

【図3】ごま油を添加した模擬排水からの四塩化炭素抽
出液の赤外吸収スペクトルである。
FIG. 3 is an infrared absorption spectrum of a carbon tetrachloride extract from a simulated wastewater to which sesame oil has been added.

【図4】本発明の方法のフローチャートである。FIG. 4 is a flowchart of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】漏洩した混合油を含む排水の四塩化炭素抽
出物質濃度および該抽出物質中の硫黄分の質量の測定に
より算出した混合油の硫黄分の濃度と、該抽出物につい
て得られた赤外吸収スペクトル中の主な吸収ピークの波
数とを、各工程で使用する混合油について予め準備した
それらの値についてのテーブルと対比することにより漏
洩した混合油を特定することを特徴とする混合油の漏洩
経路の特定方法。
1. The concentration of a carbon tetrachloride extract in wastewater containing leaked mixed oil, the concentration of sulfur in the mixed oil calculated by measuring the mass of sulfur in the extract, and the extract obtained from the extract. Mixing characterized by identifying the leaked mixed oil by comparing the wave number of the main absorption peak in the infrared absorption spectrum with a table of those values prepared in advance for the mixed oil used in each step. How to identify the oil leak path.
JP6921798A 1998-03-05 1998-03-05 Method for specifying mixed oil leakage path Withdrawn JPH11248624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6921798A JPH11248624A (en) 1998-03-05 1998-03-05 Method for specifying mixed oil leakage path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6921798A JPH11248624A (en) 1998-03-05 1998-03-05 Method for specifying mixed oil leakage path

Publications (1)

Publication Number Publication Date
JPH11248624A true JPH11248624A (en) 1999-09-17

Family

ID=13396343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6921798A Withdrawn JPH11248624A (en) 1998-03-05 1998-03-05 Method for specifying mixed oil leakage path

Country Status (1)

Country Link
JP (1) JPH11248624A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294617A (en) * 2002-03-29 2003-10-15 Showa Shell Sekiyu Kk Method for quantitatively determining oil portion in soil
WO2006083001A1 (en) * 2005-02-03 2006-08-10 Eisai R&D Management Co., Ltd. Method of measuring coating amount and method of estimating elution behavior
WO2013107293A1 (en) * 2012-01-18 2013-07-25 朗盛(常州)有限公司 Method for treating leather by using leather production wastewater and method for producing leather

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294617A (en) * 2002-03-29 2003-10-15 Showa Shell Sekiyu Kk Method for quantitatively determining oil portion in soil
WO2006083001A1 (en) * 2005-02-03 2006-08-10 Eisai R&D Management Co., Ltd. Method of measuring coating amount and method of estimating elution behavior
JPWO2006083001A1 (en) * 2005-02-03 2008-06-26 エーザイ・アール・アンド・ディー・マネジメント株式会社 Coating amount measurement method and elution behavior prediction method
JP4800295B2 (en) * 2005-02-03 2011-10-26 エーザイ・アール・アンド・ディー・マネジメント株式会社 Coating amount measurement method and elution behavior prediction method
US8252362B2 (en) 2005-02-03 2012-08-28 Eisai R&D Management Co., Ltd. Method of measuring coating quantity and method of predicting dissolution behavior
WO2013107293A1 (en) * 2012-01-18 2013-07-25 朗盛(常州)有限公司 Method for treating leather by using leather production wastewater and method for producing leather

Similar Documents

Publication Publication Date Title
Spranger et al. 2D liquid chromatographic fractionation with ultra-high resolution MS analysis resolves a vast molecular diversity of tropospheric particle organics
Vetere et al. Mass spectrometric coverage of complex mixtures: exploring the carbon space of crude oil
Sun et al. An efficient classification method for fuel and crude oil types based on m/z 256 mass chromatography by COW-PCA-LDA
CN104713845A (en) Mixture component identification method based on terahertz absorption spectrum processing
Chapman et al. Global market gasoline range fuel review using fuel particulate emission correlation indices
CN106706558A (en) Method for eliminating abnormal sample in calibration set
Chua et al. Tiered approach to long-term weathered lubricating oil analysis: GC/FID, GC/MS diagnostic ratios, and multivariate statistics
Fox Computer searching of infrared spectra using peak location and intensity data
Duca et al. On the benefits of using multivariate analysis in mass spectrometric studies of combustion-generated aerosols
Aebi et al. Advances in the use of mass spectral libraries for forensic toxicology
JPH11248624A (en) Method for specifying mixed oil leakage path
Breuer et al. Probing for the presence of semenogelin in human urine by immunological and chromatographic‐mass spectrometric methods in the context of sports drug testing
Grange et al. Automated determination of precursor ion, product ion, and neutral loss compositions and deconvolution of composite mass spectra using ion correlation based on exact masses and relative isotopic abundances
Yassine et al. Characterization of benzene polycarboxylic acids and polar nitroaromatic compounds in atmospheric aerosols using UPLC-MS/MS
CN110793959A (en) Metal brand identification method based on laser-induced breakdown spectroscopy
Barnes et al. Comparison of gasolines using gas chromatography-mass spectrometry and target ion response
KR19980024502A (en) Chromatograph Data Processing Equipment
CN115015410B (en) Method for auxiliary identification of oil spot smoke pollution source
Krawczyk et al. Application of chemometric methods in searching for illicit Leuckart amphetamine sources
KR102577076B1 (en) Method of detecting adulterated diesel using gas chromatography, partial least squre regression and multi coreection of retention
Yusop Nurida et al. Monitoring of CO2 Absorption Solvent in Natural Gas Process Using Fourier Transform Near‐Infrared Spectrometry
Yi et al. Profiling of dissolved organic compounds in the oil sands region using complimentary liquid–liquid extraction and ultrahigh resolution Fourier transform mass spectrometry
JPH09184832A (en) Method for analyzing lubricating oil composition
TWI435079B (en) Fingerprint-like discrimination method for lubricating oil sources
CN107389645A (en) The method that the Fisher models of wavelet transform parsing oil product fluorescent characteristic differentiate marine oil overflow

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510