JPH11243295A - Magnetic shield method and structure - Google Patents

Magnetic shield method and structure

Info

Publication number
JPH11243295A
JPH11243295A JP4479298A JP4479298A JPH11243295A JP H11243295 A JPH11243295 A JP H11243295A JP 4479298 A JP4479298 A JP 4479298A JP 4479298 A JP4479298 A JP 4479298A JP H11243295 A JPH11243295 A JP H11243295A
Authority
JP
Japan
Prior art keywords
coil
magnetic shield
frame structure
magnetic
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4479298A
Other languages
Japanese (ja)
Inventor
Akira Kajiwara
暁 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP4479298A priority Critical patent/JPH11243295A/en
Publication of JPH11243295A publication Critical patent/JPH11243295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic shield room which is high in air permeability at a low cost. SOLUTION: A magnetic shield method is carried out in a manner where a coil 13X is wound around a frame structure 9 having open sides 10, and the ends of the coil 13X are connected together, wherein the coil 13 is composed of three coils, and the axes of the coils are made to intersect each other at right angles. This magnetic shield structure is equipped with connectors 12 provided to the frame structure which is capable of pivoting, and the coil 13 can be made connected or disconnected through the intermediary of the connectors 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工業材料の製造、
医療用の磁場の計測等に用いられる磁気シールドの技術
分野に属する。
The present invention relates to the production of industrial materials,
It belongs to the technical field of magnetic shields used for measuring magnetic fields for medical use.

【0002】[0002]

【従来の技術】従来、工業材料の製造、医療用の磁場の
計測等において、低磁場交流の計測を行う際に低磁場の
空間が必要なときには、外部の磁場を遮断する必要があ
り、そのため、シールドルームを設置して低い磁場の空
間を作ることが行われている。このシールドルームとし
ては、鉄、パーマロイ等の高透磁率性材料を使用しでき
るだけ開口の少ない閉鎖した構造にするものが一般的な
方法として実用化されている。他の方式としては、コイ
ルを対向させて周囲の環境磁場の変動に合わせて電流を
流し、反対向きの磁場を作ることにより磁場をキャンセ
ルし内部の磁場を一様に低くする方式、更には鉄、銅等
の導電性の金属で囲って周波数の高い電磁波に有効な電
磁シールド方式、或は超電導を利用する方式が知られて
いる。
2. Description of the Related Art Conventionally, when a low-magnetic-field space is required when measuring a low-magnetic-field alternating current in the manufacture of industrial materials, measurement of a magnetic field for medical use, etc., it is necessary to shut off an external magnetic field. Establishing a shield room creates a low magnetic field space. As the shield room, a material having a closed structure with as few openings as possible using a material having high magnetic permeability such as iron or permalloy has been put into practical use as a general method. As another method, a current is made to flow according to the fluctuation of the surrounding environmental magnetic field by facing the coil, and the magnetic field is canceled by creating a magnetic field in the opposite direction, and the internal magnetic field is uniformly reduced, and furthermore, iron An electromagnetic shielding method that is effective for high-frequency electromagnetic waves surrounded by a conductive metal such as copper or a method that uses superconductivity is known.

【0003】[0003]

【発明が解決しようとする課題】ところで、図4(A)
に示すように、シールドルーム1においては、人間ある
いは道具等の搬出入のための扉開口2が必要であり、ま
た、内部で作業する場合には最低限の空気が必要であ
り、さらに何らかの換気により発生熱、汚染空気の除去
などのための換気開口3が必要になり、また、場合によ
れば窓を設けて光を取り入れることも必要である。
FIG. 4 (A)
As shown in the figure, in the shield room 1, a door opening 2 for carrying in and out of a person or a tool is required, and when working inside, a minimum amount of air is required. Therefore, a ventilation opening 3 for removing generated heat and contaminated air is required, and in some cases, it is necessary to provide a window to take in light.

【0004】しかしながら、上記従来の方式のうち、シ
ールドルームを密閉構造とする方式は、常に密閉構造で
あるほど性能が高く、開口や開口に伴う隙間が開けば性
能が落ちる傾向がある。そのために、従来、高透磁率性
材料で作った細い管による開口を数カ所壁面に貫通させ
たり、図4(B)に示すように、開口内にハニカム状の
開口を充填して個々も開口を小さくする方法がとられて
いるが、これらの方法では大きな開口を作ることができ
ないと共に、手間とコストが増大するという問題を有し
ている。
[0004] However, among the above-mentioned conventional systems, a system in which the shield room has a closed structure has a higher performance as the structure is always a closed structure, and the performance tends to decrease if an opening or a gap accompanying the opening is opened. For this purpose, conventionally, several openings made of a thin tube made of a material having high magnetic permeability are made to penetrate the wall surface, or as shown in FIG. Although methods of reducing the size have been adopted, these methods have problems that a large opening cannot be formed, and that labor and cost increase.

【0005】一方、キャンセル磁場による方式は、周囲
の空間は開口が自由であるが、一様な磁場にするには大
きなコイルを作らねばならないため空間効率が悪く、ま
た、検知器や電流を流すための設備が必要である等の欠
点を有している。また、電磁シールド方式は低い周波数
に対しては効果がないという問題を有し、さらに、超電
導を利用する方式はまだ試験的な用途に限られており実
用的ではない。
On the other hand, in the system using the canceling magnetic field, although the surrounding space can be freely opened, a large coil must be formed in order to obtain a uniform magnetic field, so that the space efficiency is poor, and a detector and a current flow. There are drawbacks such as the necessity of facilities for the use. In addition, the electromagnetic shielding method has a problem that it is ineffective at low frequencies, and the method using superconductivity is still limited to trial applications and is not practical.

【0006】本発明は、上記従来の問題を解決するもの
であって、空気の流通が自由な磁気シールドルームを低
コストで作ることができる磁気シールド方法及び磁気シ
ールド構造を提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a magnetic shield method and a magnetic shield structure capable of forming a magnetic shield room in which air can freely flow at low cost. I do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の磁気シールド方法は、外面に開口を
有する枠構造体の周囲にコイルを巻回しコイルの両端を
接続することを特徴とし、請求項2記載の磁気シールド
方法は、請求項1において、コイルは3つのコイルから
なり、コイルのそれぞれの軸を直交させることを特徴と
し、また、請求項3記載の磁気シールド構造は、外面に
開口を有する枠構造体と、該枠構造体の周囲に巻回され
両端が接続されたコイルと、前記枠構造体に回動可能に
設けられたコネクタとを備え、前記コイルをコネクタを
介して接離可能にしたことを特徴とする。
According to a first aspect of the present invention, there is provided a magnetic shield method comprising: winding a coil around a frame structure having an opening on an outer surface; and connecting both ends of the coil. According to a second aspect of the present invention, there is provided a magnetic shield method according to the first aspect, wherein the coil comprises three coils, and respective axes of the coils are orthogonal to each other. A frame structure having an opening on the outer surface, a coil wound around the frame structure and connected at both ends, and a connector rotatably provided on the frame structure, wherein the coil is a connector It is characterized in that it can be brought into contact with and separated from through.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1及び図2は、本発明の磁気
シールド構造の1実施形態を示し、図1(A)は全体構
成を示す模式図、図1(B)、図1(C)はコイルの例
を示す図、図2はコイルの装着状態を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show one embodiment of the magnetic shield structure of the present invention. FIG. 1 (A) is a schematic diagram showing the entire configuration, and FIGS. 1 (B) and 1 (C) show examples of a coil. FIGS. 2A and 2B are views showing a mounted state of the coil.

【0009】図1(A)において、シールドルーム5
は、非導電性材料の柱6及び柱6間を連結する連結材7
からなる枠構造体9を備え、従って、枠構造体9の側面
及び上面には開口10が形成されている。また、柱6の
一つには蝶番11により上下一組のコネクタ12が回動
可能に装着されている。
In FIG. 1A, a shield room 5
Are connecting members 7 connecting the columns 6 of the non-conductive material and the columns 6
Accordingly, an opening 10 is formed in the side surface and the upper surface of the frame structure 9. A pair of upper and lower connectors 12 are rotatably mounted on one of the columns 6 by hinges 11.

【0010】枠構造体9の周囲にはコイル13Xが巻回
され、コイル13Xの両端は接続点15で接続されてい
る。コネクタ12間には導線13aが接続されており、
コイル13Xは、コネクタ12を介して導線13aに接
離可能にされている。これにより、コネクタ12を回動
させたとき、コネクタ12間の導線13aが枠構造体9
から離れて、この開口から人間あるいは道具等の搬出入
を行うことができる。
A coil 13X is wound around the frame structure 9, and both ends of the coil 13X are connected at a connection point 15. A conductor 13a is connected between the connectors 12, and
The coil 13X can be connected to and separated from the conductor 13a via the connector 12. Thereby, when the connector 12 is rotated, the conducting wire 13a between the connectors 12 is
Away from the opening, a person or a tool can be carried in and out of the opening.

【0011】コイルの形状は、図1(A)に示す直方体
状の枠構造体9の場合には、図1(B)に示す角型と
し、枠構造体が円筒状であれば、図1(C)に示すよう
に丸型とし、要するに枠構造体の形状に対応させるよう
にする。
In the case of the rectangular frame structure 9 shown in FIG. 1A, the shape of the coil is rectangular as shown in FIG. 1B. As shown in (C), the shape is round, that is, it corresponds to the shape of the frame structure.

【0012】上記磁気シールド構造において、コイル1
3XにX方向から磁気が進入すると、コイル13Xには
その磁気を妨げるような方向に電流が流れ、コイル13
Xの内部には外部の磁場よりも変動が弱い空間を作るこ
とができる。コイルの軸の方向は進入する磁気の方向に
合わせればよく、種々の方向から磁気が進入する場合に
は、図2に示すように、シールドルーム5の外周に3つ
のコイル13X、13Y、13Zを巻回し、コイル13
Xの方向であるX軸と直角な方向であるY軸方向、Z軸
方向にコイル13Y、13Zの軸を合わせればよい。コ
イルは巻き方により密にも粗に巻ける。粗に巻くことに
より壁面が閉鎖していないシールドルームを作ることが
でき、このため、特に内部に空気を一様に層流で流した
い場合に、容易に安価に磁気シールドを形成することが
できる。また、コイルの線材は柔軟であるため、形を固
定しない磁気シールドを形成することもできる。
In the above magnetic shield structure, the coil 1
When magnetism enters the 3X from the X direction, a current flows in the coil 13X in a direction that obstructs the magnetism, and the coil 13X
A space can be created inside X that has less fluctuation than an external magnetic field. The direction of the axis of the coil may be adjusted to the direction of the entering magnetic field. In the case where the magnetic field enters from various directions, as shown in FIG. Wound, coil 13
The axes of the coils 13Y and 13Z may be aligned with the Y-axis direction and the Z-axis direction which are perpendicular to the X-axis which is the X direction. The coil can be wound densely and coarsely depending on the winding method. By roughly winding, a shield room whose wall surface is not closed can be made, and therefore, a magnetic shield can be easily and inexpensively formed, especially when it is desired to uniformly flow laminar air inside. . Further, since the coil material is flexible, a magnetic shield whose shape is not fixed can be formed.

【0013】図3は、本発明の磁気シールド構造の他の
実施形態を示し、図3(A)はコイルの一部を示す模式
図、図3(B)は磁気シールド構造を示す模式図であ
る。本実施形態は、布体16の両端にコネクタ17を設
け、コネクタ17、17間の布体16内に導線19を配
線し、コイルユニット20を形成した例である。そし
て、このコイルユニット20の多数を室内の内壁に順次
貼り付けてコネクタ17で接続することによりシールド
ルームを形成する。また、シールドルームを形成する壁
の大きさでコイルユニット20を形成し、不使用時には
折り畳んでおき、必要なときに、図3(B)に示すよう
に、広げて筒状のもにすることにより、移動可能な磁気
シールドを作ることもできる。なお、開口は布体16に
形成すればよい。
FIG. 3 shows another embodiment of the magnetic shield structure of the present invention. FIG. 3 (A) is a schematic view showing a part of the coil, and FIG. 3 (B) is a schematic view showing the magnetic shield structure. is there. This embodiment is an example in which connectors 17 are provided at both ends of a cloth body 16, and a conductor 19 is wired in the cloth body 16 between the connectors 17, 17 to form a coil unit 20. Then, a large number of the coil units 20 are sequentially attached to the inner wall of the room and connected by the connector 17 to form a shield room. In addition, the coil unit 20 is formed in the size of the wall forming the shield room, folded when not in use, and expanded when necessary, as shown in FIG. Thus, a movable magnetic shield can be produced. The opening may be formed in the cloth 16.

【0014】[0014]

【発明の効果】以上の説明から明らかなように、本発明
によれば、空気の流通が自由な磁気シールドルームを低
コストで作ることができる。
As is apparent from the above description, according to the present invention, a magnetically shielded room in which air can freely flow can be formed at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気シールド構造の1実施形態を示
し、図1(A)は全体構成を示す模式図、図1(B)、
図1(C)はコイルの例を示す図である。
FIG. 1 shows an embodiment of a magnetic shield structure according to the present invention, and FIG. 1 (A) is a schematic view showing the entire configuration, FIG.
FIG. 1C is a diagram illustrating an example of a coil.

【図2】コイルの装着状態を示す図である。FIG. 2 is a diagram showing a mounted state of a coil.

【図3】本発明の磁気シールド構造の他の実施形態を示
し、図3(A)はコイルの一部を示す模式図、図3
(B)は磁気シールド構造を示す模式図である。
FIG. 3 shows another embodiment of the magnetic shield structure of the present invention, and FIG. 3 (A) is a schematic view showing a part of a coil;
(B) is a schematic diagram showing a magnetic shield structure.

【図4】従来のシールドルームを示す図である。FIG. 4 is a diagram showing a conventional shield room.

【符号の説明】[Explanation of symbols]

9…枠構造体 10…開口 12…コネクタ 13X、13Y、13Z…コイル 9: Frame structure 10: Opening 12: Connector 13X, 13Y, 13Z: Coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】外面に開口を有する枠構造体の周囲にコイ
ルを巻回しコイルの両端を接続することを特徴とする磁
気シールド方法。
1. A magnetic shield method comprising: winding a coil around a frame structure having an opening on an outer surface; and connecting both ends of the coil.
【請求項2】コイルは3つのコイルからなり、コイルの
それぞれの軸を直交させることを特徴とする請求項1記
載の磁気シールド方法。
2. The magnetic shielding method according to claim 1, wherein the coil comprises three coils, and respective axes of the coils are orthogonal to each other.
【請求項3】外面に開口を有する枠構造体と、該枠構造
体の周囲に巻回され両端が接続されたコイルと、前記枠
構造体に回動可能に設けられたコネクタとを備え、前記
コイルをコネクタを介して接離可能にしたことを特徴と
する磁気シールド構造。
3. A frame structure having an opening on an outer surface, a coil wound around the frame structure and connected at both ends, and a connector rotatably provided on the frame structure. A magnetic shield structure wherein the coil can be connected and separated via a connector.
JP4479298A 1998-02-26 1998-02-26 Magnetic shield method and structure Pending JPH11243295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4479298A JPH11243295A (en) 1998-02-26 1998-02-26 Magnetic shield method and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4479298A JPH11243295A (en) 1998-02-26 1998-02-26 Magnetic shield method and structure

Publications (1)

Publication Number Publication Date
JPH11243295A true JPH11243295A (en) 1999-09-07

Family

ID=12701279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4479298A Pending JPH11243295A (en) 1998-02-26 1998-02-26 Magnetic shield method and structure

Country Status (1)

Country Link
JP (1) JPH11243295A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084603A1 (en) * 2003-03-17 2004-09-30 Kajima Corporation Open magnetic shield structure and its magnetic frame
JP2014171292A (en) * 2013-03-01 2014-09-18 Toshiba Corp Power transmission system
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084603A1 (en) * 2003-03-17 2004-09-30 Kajima Corporation Open magnetic shield structure and its magnetic frame
US7964803B2 (en) 2003-03-17 2011-06-21 Nippon Steel Corporation Magnetic shield structure having openings and a magnetic material frame therefor
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
US10722735B2 (en) 2005-11-18 2020-07-28 Mevion Medical Systems, Inc. Inner gantry
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
US10279199B2 (en) 2005-11-18 2019-05-07 Mevion Medical Systems, Inc. Inner gantry
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
USRE48317E1 (en) 2007-11-30 2020-11-17 Mevion Medical Systems, Inc. Interrupted particle source
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator
JP2014171292A (en) * 2013-03-01 2014-09-18 Toshiba Corp Power transmission system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10456591B2 (en) 2013-09-27 2019-10-29 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US11717700B2 (en) 2014-02-20 2023-08-08 Mevion Medical Systems, Inc. Scanning system
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US11213697B2 (en) 2015-11-10 2022-01-04 Mevion Medical Systems, Inc. Adaptive aperture
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US11786754B2 (en) 2015-11-10 2023-10-17 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
US11717703B2 (en) 2019-03-08 2023-08-08 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Similar Documents

Publication Publication Date Title
JPH11243295A (en) Magnetic shield method and structure
EP1605742B1 (en) Open magnetic shield structure and its magnetic frame
US20030146802A1 (en) Screens for RF magnetic flux
O'brien et al. Analysis of wireless power supplies for industrial automation systems
Wassef et al. Magnetic field shielding concepts for power transmission lines
JP2008160027A (en) Magnetic shielding body and magnetic shielding room
US5128643A (en) Method and apparatus for producing a region of low magnetic field
JP3110115B2 (en) Magnetic resonance imaging equipment
JPS62207448A (en) Object shielding body of nuclear magnetic resonance imaging apparatus
Igarashi et al. A three dimensional analysis of magnetic fields around a thin magnetic conductive layer using vector potential
Schneider et al. A boundary integral formulation of the eddy current problem
JPH11243294A (en) Magnetic shield and magnetic shield structure
O'brien et al. Design of large air-gap transformers for wireless power supplies
Kasaš-Lažetić et al. DC Magnetic Field Reduction Inside Particular Part of Space
CN206945937U (en) A kind of magnetic feedback compensating system and its MRI nuclear-magnetism inspection chamber
JP2004342808A (en) Magnetic shielding device
JPH0496299A (en) Panel plate for shielding room
Costache et al. Finite element method analysis of the influence of the skin effect, and eddy currents on the internal magnetic field and impedance of a cylindrical conductor of arbitrary cross-section
JPH0492061A (en) Production of shield room and radio wave dark room
JP3103439B2 (en) Proximity installation method of a plurality of nuclear magnetic resonance apparatuses
JP2017147412A (en) Low leakage shaking open type magnetic shield structure
Zhou et al. Magnetic coupling enhancement using a flux transformer
JP2764842B2 (en) Shield box for measuring variable magnetic field shield performance
CN117410064A (en) Compensation demagnetizing coil based on magnetic shielding cabin door seam mechanical characteristics
JPH0493479A (en) Manufacture of shield room and electric wave dark room

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041110

A521 Written amendment

Effective date: 20050105

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20050406

Free format text: JAPANESE INTERMEDIATE CODE: A02