JPH11237411A - Dc current sensor and dc current measurement system - Google Patents

Dc current sensor and dc current measurement system

Info

Publication number
JPH11237411A
JPH11237411A JP10052912A JP5291298A JPH11237411A JP H11237411 A JPH11237411 A JP H11237411A JP 10052912 A JP10052912 A JP 10052912A JP 5291298 A JP5291298 A JP 5291298A JP H11237411 A JPH11237411 A JP H11237411A
Authority
JP
Japan
Prior art keywords
current
magnetoelectric
magnetic field
sensor
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10052912A
Other languages
Japanese (ja)
Inventor
Toshiaki Miyazawa
稔明 宮沢
Tetsuo Sato
哲雄 佐藤
Satoru Kamigaki
哲 上垣
Tsuyoshi Nagata
強 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA DENSHI KOGYO KK
Original Assignee
SHOWA DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA DENSHI KOGYO KK filed Critical SHOWA DENSHI KOGYO KK
Priority to JP10052912A priority Critical patent/JPH11237411A/en
Publication of JPH11237411A publication Critical patent/JPH11237411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the need for a large annular core magnet-field guiding path by arranging an odd number of magnetoelectric conveyers at an equal interval while the direction of a detection axis is directed toward the same orbital direction and adding each output. SOLUTION: In a DC current sensor 100 for measuring a large DC current, at least four, preferably 6-24, magnetic resistance effect type magnetoelectric converters 2 are arranged at an equal interval, while each detection axis is directed toward the same orbital direction on a circumference that is at an equal distance from the axial center of a bussbar 6 in the groove of a yoke 1 consisting of an annular nonmagnetic body. Each magnetoelectric converter 2 is connected to a circuit part 4 by a lead wire 3, and for example is converted into current and then is outputted. Accordingly, even if the position of a current conductor to be measured such as the bussbar becomes eccentric, the influence is canceled out and is reduced, thus eliminating the need for using a large core and similarly reducing the influence of earth magnetism and external magnetism. A magnetoelectric converter utilizing a Hall effect element or the like can also be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は直流大電流計測用の
直流電流センサ及び直流電流計測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC current sensor for measuring a large DC current and a DC current measurement system.

【0002】[0002]

【従来の技術】例えば電気鉄道用直流変電所では、送電
網から受電した高圧交流電力を変圧器で600〜300
0V程度に降圧し、シリコン整流器、水銀整流器等で直
流に変換して線路に供給する。直流供給回線には、負荷
量を計測するための直流電流センサ及び指示記録計器類
が設置される。
2. Description of the Related Art For example, in a DC substation for electric railways, high-voltage AC power received from a power transmission network is converted into 600 to 300 by a transformer.
The voltage is reduced to about 0 V, converted to DC by a silicon rectifier, a mercury rectifier, and supplied to the line. The DC supply line is provided with a DC current sensor for measuring the amount of load and indication recording instruments.

【0003】上記のような用途に使用される直流電流セ
ンサには多くのタイプがあるが、中でもクレーマ型直流
変流器、及びホール効果素子等の磁電変換器を用いる電
流センサが従来から広く使用されている。両者とも直流
電流の回りに同心円状に生じる静止磁界の磁束密度を検
出することによりその電流の大きさを検出するものであ
るが、夫々の磁界検出の原理は異なる。
[0003] There are many types of DC current sensors used for the above applications. Among them, a current sensor using a Kramer type DC current transformer and a magnetoelectric converter such as a Hall effect element has been widely used. Have been. In both cases, the magnitude of the static current is detected by detecting the magnetic flux density of a static magnetic field generated concentrically around a direct current, but the principles of the respective magnetic field detection are different.

【0004】クレーマ型直流変流器では直流導体の回り
に角形磁気特性を有する一対の環状磁心を設け、各磁心
に同一巻数の巻線を巻き、互に逆直列に接続した上で交
流電源で励磁する。被測定電流により偏磁されて飽和し
ている各磁心を交流で励磁することにより、各磁心の飽
和状態が半波ごとに打ち消されてリセットされ、その間
に等アンペアターンの法則に従って巻線に被測定電流に
比例した検出電流が流れる。この検出電流を全波整流
し、変流出力としての直流電流又は電圧を得る。
In a Kramer type DC current transformer, a pair of annular magnetic cores having a rectangular magnetic characteristic are provided around a DC conductor, windings of the same number of turns are wound around each magnetic core, and they are connected to each other in an inverse series. Excite. By exciting each of the magnetic cores, which are polarized and saturated by the current to be measured, with AC, the saturation state of each magnetic core is canceled and reset every half-wave, and during that time, the windings are wound on the windings according to the law of equal ampere-turn. A detection current proportional to the measurement current flows. This detected current is full-wave rectified to obtain a DC current or voltage as a current transformation output.

【0005】ホール効果素子等を用いる従来の直流電流
センサでは、直流導体の回りに大型の環状磁心からなる
導磁路を設け、磁路の一部に空隙を設けてその中にホー
ル効果素子又は磁気抵抗効果素子を置く。被測定電流に
よる導磁路の磁化は非飽和の範囲に留められるから、空
隙中の磁界の強さは被測定電流に比例する。その磁界を
ホール素子等により電圧又は抵抗値に変換する。
[0005] In a conventional DC current sensor using a Hall effect element or the like, a magnetic path composed of a large annular magnetic core is provided around a DC conductor, a gap is provided in a part of the magnetic path, and a Hall effect element or Put the magnetoresistive effect element. Since the magnetization of the magnetic path due to the current to be measured is kept within the unsaturated range, the strength of the magnetic field in the air gap is proportional to the current to be measured. The magnetic field is converted into a voltage or a resistance value by a Hall element or the like.

【0006】上記クレーマ型直流変流器は、被測定電流
の向きが1方向に限定されると共に、電流が0から急峻
に立ち上がる場合、励磁巻線に高電圧が発生し絶縁破壊
を生じるおそれがあるという構造的弱点を有する。また
応答時間が0.5〜1秒と遅く、さらに測定精度が定格
値の±2.5%程度と低く、近時の高精度の要求に対し
ては充分でない場合がある。
In the above-mentioned claimer type DC current transformer, the direction of the current to be measured is limited to one direction, and when the current rises sharply from 0, a high voltage is generated in the exciting winding and dielectric breakdown may occur. There is a structural weakness that there is. Further, the response time is as slow as 0.5 to 1 second, and the measurement accuracy is as low as about ± 2.5% of the rated value, which may not be sufficient for recent demands for high accuracy.

【0007】ホール効果素子等を用いる従来の直流電流
センサでは、導磁路の磁化を非飽和の範囲に限るため磁
心が大型となり、磁心にホール効果素子等を埋め込むた
め構造が複雑である。またホール効果素子等半導体素子
は耐久温度が高くないため、使用温度の上限が50℃程
度に制限される。
In a conventional DC current sensor using a Hall effect element or the like, the magnetic core becomes large because the magnetization of the magnetic path is limited to an unsaturated range, and the structure is complicated because the Hall effect element or the like is embedded in the magnetic core. Further, since semiconductor devices such as Hall effect devices do not have a high endurance temperature, the upper limit of the operating temperature is limited to about 50 ° C.

【0008】すなわちこれら従来の直流電流センサは、
いずれも大型の磁心を備えるので重くかつ外形が大き
く、直流導体とセンサの窓との位置関係が測定精度に影
響し、また地磁気等外部磁界の影響も無視しえないた
め、取付工事の際に各種の配慮が要求され、取り扱いが
不便である。総じてこれら従来の直流電流センサが近年
のマイクロエレクトロニクス化の趨勢から取り残されて
いることは否めず、小型化、高機能化が遅れており、し
かも生産性を高めることが困難な構造であるため、低価
格化要求にも応え得ていない。
That is, these conventional DC current sensors are:
All have large magnetic cores, so they are heavy and large in size.The positional relationship between the DC conductor and the sensor window affects the measurement accuracy, and the effects of external magnetic fields such as terrestrial magnetism cannot be ignored. Various considerations are required and handling is inconvenient. In general, it is undeniable that these conventional DC current sensors have been left out of the trend of microelectronics in recent years, and because they have a structure in which miniaturization and high functionality are delayed, and it is difficult to increase productivity, It has not been able to meet the demand for lower prices.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、大型
の環状磁心導磁路を必要としない、軽量で取扱い容易な
直流電流センサを提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a light-weight and easy-to-handle DC current sensor that does not require a large annular magnetic core magnetic path.

【0010】[0010]

【課題を解決するための手段】上記の課題は、被測定電
流が流れる導体の中心軸から等距離にある円周上の空間
に、局所的静止磁界の強さと向きを検出する偶数個の磁
電変換器を、各磁電変換器の検出軸方向を同一周回方向
に向けて等間隔に配置し、各磁電変換器の出力信号を加
算器により加算して取り出すことを特徴とする本発明の
直流電流センサ(以下、「本センサ」という)により達
成することができる。
An object of the present invention is to provide an even number of magneto-electric sensors for detecting the strength and direction of a local static magnetic field in a space on a circumference equidistant from the center axis of a conductor through which a current to be measured flows. The DC current according to the present invention, wherein the converters are arranged at equal intervals with the detection axis direction of each magneto-electric converter facing the same circumferential direction, and the output signals of each magneto-electric converter are added by an adder and taken out. This can be achieved by a sensor (hereinafter, referred to as “the present sensor”).

【0011】直流導体を一周する任意の閉じた経路を考
える。経路上の各点で測定した磁界の強さをH、磁界ベ
クトルと経路接線方向との角をθとすると、経路を一巡
して計算したHcosθdl(dlは微分経路)の周回
積分値は当該経路と鎖交する電流の代数和Iに等しい。
これが本センサの動作原理となるアンペアの周回積分法
則である。ただし、この法則は経路上の各点でHcos
θの値を逐次連続測定することが前提であるのに対し
て、本センサでは有限個の測定点で観測されるHcos
θの値に基づいて鎖交電流Iを求める点が異なる。な
お、Hcosθの値を測定する磁電変換器については後
述する。
Consider any closed path that goes around the DC conductor. Assuming that the strength of the magnetic field measured at each point on the path is H and the angle between the magnetic field vector and the tangent direction of the path is θ, the circuit integral value of Hcos θdl (dl is a differential path) calculated over the path is the path It is equal to the algebraic sum I of the current interlinking.
This is Ampere's orbital integration law that is the operating principle of this sensor. However, this rule is based on Hcos at each point on the route.
While it is assumed that the value of θ is measured sequentially and continuously, this sensor uses Hcos observed at a finite number of measurement points.
The difference is that the linkage current I is obtained based on the value of θ. The magnetoelectric converter for measuring the value of Hcos θ will be described later.

【0012】上記アンペアの法則と本センサの構成上の
相違から、本センサにおける周回積分経路は任意の経路
ではなく、その上で磁界Hの大きさが極力一定となる特
定の経路を選択することにしている。その特定経路とは
導体の中心軸から等距離にある円である。導体の断面形
状が円である場合はその周囲を巡る磁力線の形も円にな
り、その円周上では磁界の強さHは一定で、かつθ=0
である。したがってこの場合は、有限個の磁界測定値を
用いる本センサによっても鎖交電流Iを正確に求めるこ
とができる。
Due to the difference between the Ampere's law and the configuration of the present sensor, the orbital integration path in the present sensor is not an arbitrary path, and a specific path on which the magnitude of the magnetic field H is as constant as possible is selected. I have to. The specific path is a circle equidistant from the central axis of the conductor. When the cross-sectional shape of the conductor is a circle, the shape of the lines of magnetic force around the circumference is also a circle, and the magnetic field strength H is constant on the circumference and θ = 0.
It is. Therefore, in this case, the linkage current I can be accurately obtained even by the present sensor using a finite number of magnetic field measurement values.

【0013】円以外の異形断面を有する導体の場合は、
その周囲を巡る磁力線の形が円になるとは限らない。例
えば矩形断面の帯状ブスバーの場合は、その磁力線の形
状は導体の近傍では楕円になる。この場合は本センサに
おける周回積分経路としての円と磁力線の楕円とが交差
することとなり、円周上でのHcosθの値が一定にな
らないから、測定点の中間では補間が必要である。本セ
ンサでは円周上に配置する磁電変換器の個数を可能な限
り多くすると共に、各測定点における測定値の代数和を
もって補間演算に代え、また、上記帯状ブスバーの場合
であってもその表面から離れるに従って磁力線の形が円
に近づくことを利用すべく、上記円の直径を極力大きく
とるようにしている。
In the case of a conductor having an irregular cross section other than a circle,
The shape of the lines of magnetic force around the periphery is not always a circle. For example, in the case of a strip-shaped bus bar having a rectangular cross section, the shape of the line of magnetic force becomes elliptical near the conductor. In this case, the circle as the orbital integration path in the present sensor intersects the ellipse of the line of magnetic force, and the value of Hcos θ on the circumference does not become constant. Therefore, interpolation is required in the middle of the measurement points. In this sensor, the number of magnetoelectric transducers arranged on the circumference is increased as much as possible, and the algebraic sum of the measured values at each measurement point is replaced with the interpolation calculation. The diameter of the circle is made as large as possible in order to take advantage of the fact that the shape of the magnetic field lines approaches the circle as the distance from the circle increases.

【0014】本センサでは、導体周囲の円形の磁力線に
一致させて各磁電変換器を配置することが原則である。
しかし、本センサの設置の際に設置誤差を生じ、本セン
サの中心軸と導体の中心軸とが一致しない場合が起こり
うる。このような場合への対応として、本センサではセ
ンサの中心軸を挟んで一対の磁電変換器を軸対称に配置
し(よって本センサに用いる磁電変換器は偶数個にな
る)、かつこれら各対の磁電変換器(実際には全ての磁
電変換器)の出力信号を加算演算して取り出すようにし
ている。これにより誤差を伴う個々の磁電変換器の検出
値が平均化されて誤差が打ち消され、その結果、設置誤
差の影響が軽減される。かくして本センサでは設置誤差
に対する許容度を大きくすることができる。
In the present sensor, in principle, each magnetoelectric converter is arranged so as to coincide with a circular line of magnetic force around the conductor.
However, an installation error may occur when the present sensor is installed, and the center axis of the present sensor may not coincide with the center axis of the conductor. In order to cope with such a case, in the present sensor, a pair of magneto-electric converters are arranged axially symmetric with respect to the center axis of the sensor (therefore, the number of magneto-electric converters used in the present sensor is an even number). (Actually, all the magneto-electric converters) are added and calculated. As a result, the detected values of the individual magnetoelectric converters with errors are averaged to cancel the errors, and as a result, the influence of the installation errors is reduced. Thus, in the present sensor, the tolerance for the installation error can be increased.

【0015】またこの種の直流電流センサは、地磁気
や、外部の大電流を取扱う機器や配線等を発生源とする
外部磁気の影響を受けにくい構造であることを要する。
これらの外部磁気は本センサにおける周回積分経路とし
ての円の外側に存在する電流に起因するものであるか
ら、上記アンペアの法則から周回積分値には影響しない
と一応はいえる。しかし本センサでは、上述のように本
来は周回積分経路に沿って連続測定すべき磁界の値を有
限個の測定値で代用しているから、これに由来する外部
磁気の影響を考慮する必要がある。
Further, this type of DC current sensor needs to have a structure that is hardly affected by geomagnetism or external magnetism generated by a device or a wiring that handles a large external current.
Since these external magnetisms are caused by currents existing outside the circle as the circuit integration path in the present sensor, it can be said that they do not affect the circuit integration value from the Ampere's law. However, in this sensor, as described above, the value of the magnetic field that should be continuously measured along the orbital integration path is substituted by a finite number of measured values, so it is necessary to consider the influence of external magnetism resulting from this. is there.

【0016】この場合にも、対処方法は磁電変換器を本
センサの中心軸に関して軸対称の位置に配置することで
ある。外部磁気の磁力線が本センサ中を貫通する場合
は、ある磁電変換器が検出する外部磁界は、当該磁力線
が直角に交わる上記の円の直径に関してこれとほぼ対称
の位置にあるもう一個の磁電変換器に対しては、大きさ
がほぼ等しく逆向きに近い磁界として作用するから、こ
れら一対の磁電変換器の出力信号を加算的に取り出すこ
とにより両者は打消し合い、外部磁気の影響を除去ない
し軽減することができる。そして、上記の打消し効果は
円周上に配置される磁電変換器の個数が多いほど高いこ
とが期待される。
In this case as well, a countermeasure is to arrange the magnetoelectric converter at an axially symmetric position with respect to the central axis of the present sensor. When the magnetic field lines of the external magnet penetrate through the sensor, the external magnetic field detected by a certain magneto-electric converter is the other magneto-electric converter located at a position substantially symmetrical with respect to the diameter of the circle where the magnetic field lines intersect at right angles. Since the magnetic field acts as a magnetic field having almost the same magnitude and being almost opposite to each other, the output signals of the pair of magnetoelectric converters are additively taken out so that the two cancel each other out, and the influence of external magnetism is not removed. Can be reduced. The above-described cancellation effect is expected to increase as the number of magnetoelectric converters arranged on the circumference increases.

【0017】なお、上記の設置誤差および外部磁気が本
センサに対して360゜のどの方向のものであっても対
処可能でなければならない。この要請に応えるため本セ
ンサでは各磁電変換器を上記円周上で等間隔に配置して
いる。
It is necessary to be able to cope with the installation error and the external magnetism in any direction of 360 ° with respect to the present sensor. In order to meet this demand, in the present sensor, the magnetoelectric converters are arranged at equal intervals on the circumference.

【0018】以上説明したように、本センサでは導体の
中心軸から等距離にある円周上に偶数個の磁電変換器を
軸対称かつ等間隔に配置することにより、外部磁気の影
響を実質的に軽減すると共に、設置誤差の影響をも軽減
することができるので、そのような目的で従来の直流電
流センサに用いられていた大型の環状磁心を省略するこ
とが可能になり、軽量かつ取扱い容易な直流電流センサ
を実現することができる。
As described above, in the present sensor, the influence of external magnetism is substantially reduced by arranging an even number of magnetoelectric converters on the circumference at an equal distance from the center axis of the conductor and at equal intervals. And the effect of installation errors can be reduced, so a large annular core used in conventional DC current sensors for such a purpose can be omitted, making it lightweight and easy to handle. A simple direct current sensor can be realized.

【0019】[0019]

【発明の実施の形態】(イ)本発明の好適な実施形態と
して、本センサに使用する磁電変換器について説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (a) As a preferred embodiment of the present invention, a magnetoelectric converter used in the present sensor will be described.

【0020】本センサに使用する磁電変換器は、配置さ
れた場所の静止磁界の大きさHと、磁界ベクトルと軸方
向(感度最大の方向)との角θとから、Hcosθを検
出できるものであれば原理、形式を問わない。そのよう
な特性を有する磁電変換器は数多くあり、例えば磁気抵
抗効果素子、ホール効果素子、可飽和コア型磁界検出器
その他を挙げることができる。
The magnetoelectric converter used in the present sensor is capable of detecting Hcos θ from the magnitude H of the static magnetic field at the place where the sensor is arranged and the angle θ between the magnetic field vector and the axial direction (direction of maximum sensitivity). Any principle and format are possible. There are many magnetoelectric converters having such characteristics, and examples thereof include a magnetoresistance effect element, a Hall effect element, and a saturable core type magnetic field detector.

【0021】これらのうち可飽和コア型磁界検出器を用
いた直流電流センサについては、本発明者らが発明者と
なって先に特許出願(平成9年特許願第118832
号)をしたので、本明細書では説明を省略する。
Among these, a direct current sensor using a saturable core type magnetic field detector was filed by the present inventors as an inventor and filed as a patent application (1997 Patent Application No. 118832).
, The description is omitted in this specification.

【0022】磁気抵抗効果素子は、強磁性体中に電流を
流し同時に磁界を印加すると強磁性体の電気抵抗が磁界
とともに増加する現象(磁気抵抗効果)を利用する。磁
気抵抗効果は電流と磁界が平行のとき最大で、直交する
とき最小になる。強磁性体薄膜を用いた磁気抵抗効果素
子の応答性はコンピュータ用記憶装置の読取りヘッドに
利用される程度に高速であるが、それ自体は磁界の極性
を判別する機能を有しない。しかし図2(A)に示すよ
うに磁気抵抗効果素子を4辺a〜dに配置してブリッジ
を構成し、図2(B)に示すように永久磁石によりブリ
ッジの対角線方向にバイアス磁界を与えることにより、
ブリッジのもう一方の対角線方向に印加される被測定磁
界の極性を判別できるようになる。
The magnetoresistive effect element utilizes a phenomenon (magnetoresistive effect) that when a current is applied to a ferromagnetic material and a magnetic field is applied simultaneously, the electric resistance of the ferromagnetic material increases with the magnetic field. The magnetoresistance effect is maximum when the current and the magnetic field are parallel and minimum when the current and the magnetic field are orthogonal. The responsivity of a magnetoresistive element using a ferromagnetic thin film is high enough to be used in a read head of a storage device for a computer, but does not itself have a function of determining the polarity of a magnetic field. However, as shown in FIG. 2A, a bridge is formed by arranging magnetoresistive elements on four sides a to d, and a bias magnetic field is applied by a permanent magnet in a diagonal direction of the bridge as shown in FIG. 2B. By doing
The polarity of the measured magnetic field applied in the other diagonal direction of the bridge can be determined.

【0023】すなわち、被測定磁界1が図2(B)で上
から下に向く場合は、バイアス磁界との合成磁界1は斜
め右下方を指し、ブリッジのa、c辺と交わってこれら
各辺の抵抗値を小さくする。逆に被測定磁界2が図で下
から上に向く場合はバイアス磁界との合成磁界2は斜め
右上方を指し、ブリッジのb、d辺と交わってこれら各
辺の抵抗値を小さくする。したがって、ブリッジのa、
b辺の中点とc、d辺の中点の間の電位差は、被測定磁
界の向きによって逆転することがわかる。その結果、バ
イアス磁界の方向を基準とする被測定磁界の向きと磁電
変換器の出力端子電圧は、図2(C)に示すような関係
になる。なお本センサでは、バイアス磁界に対してブリ
ッジの面に沿って90゜の方向を、磁電変換器の検出軸
方向としている。
That is, when the magnetic field to be measured 1 is directed downward from above in FIG. 2B, the combined magnetic field 1 with the bias magnetic field points diagonally downward and to the right, and intersects sides a and c of the bridge to each of these sides. The resistance value of. Conversely, when the magnetic field to be measured 2 is directed upward from the bottom in the figure, the combined magnetic field 2 with the bias magnetic field points diagonally to the upper right and crosses the b and d sides of the bridge to reduce the resistance values of these sides. Therefore, the bridge a,
It can be seen that the potential difference between the middle point of the b side and the middle point of the c and d sides is reversed depending on the direction of the magnetic field to be measured. As a result, the relationship between the direction of the magnetic field to be measured based on the direction of the bias magnetic field and the output terminal voltage of the magnetoelectric converter has a relationship as shown in FIG. In this sensor, the direction of 90 ° along the plane of the bridge with respect to the bias magnetic field is defined as the detection axis direction of the magnetoelectric converter.

【0024】このようにブリッジを構成することにより
被測定磁界の極性を判別できるようになるだけでなく、
磁気抵抗効果素子の温度変化及びブリッジ用電源電圧変
動の影響を軽減することができ、併せて磁界検出感度を
増大させることができる。市場では現にそのような構成
で商品化された磁電変換器を容易に入手できるので、こ
れを用いて本センサを組立てることができる。
By configuring the bridge in this way, not only can the polarity of the magnetic field to be measured be determined,
The effect of the temperature change of the magnetoresistive element and the fluctuation of the bridge power supply voltage can be reduced, and the magnetic field detection sensitivity can be increased. Since a magnetic-electric converter commercialized with such a configuration is easily available on the market, the present sensor can be assembled using this.

【0025】ホール効果素子は、半導体中に電流を流し
同時に磁界を印加すると、電流及び磁界の双方に直角の
方向に電流及び磁界の大きさに比例する電界が発生する
現象(ホール効果)を利用する。ホール効果素子は高速
応答性を有し、その特性を活かしてブラシレス直流モー
タの制御用素子等に用いられる。またホール効果素子は
それ自体が磁界ベクトルの向きを検出する機能を有する
ので、そのまま磁電変換器として本センサに用いること
ができる。なお半導体のホール効果は一般に比較的大き
い温度係数を有するほか、半導体に流す電流の変動が出
力信号に直接現れること等に留意する必要がある。
The Hall effect element utilizes a phenomenon (Hall effect) that, when a current flows in a semiconductor and a magnetic field is applied simultaneously, an electric field proportional to the magnitude of the current and the magnetic field is generated in a direction perpendicular to both the current and the magnetic field. I do. The Hall effect element has a high-speed response, and is used as a control element of a brushless DC motor by utilizing its characteristics. Since the Hall effect element itself has a function of detecting the direction of the magnetic field vector, it can be used as it is as a magnetoelectric converter in the present sensor. It should be noted that the Hall effect of a semiconductor generally has a relatively large temperature coefficient, and that a change in current flowing through the semiconductor directly appears in an output signal.

【0026】磁気センサ類は日進月歩しているので上記
以外にも本センサに使用できる磁電変換器が今後出現す
る可能性があるが、本センサが無人の直流変電所等で主
に用いられることから、構成が簡単で高信頼性であるこ
とは特に重要な条件である。なお、本センサでは各磁電
変換器の出力信号を加算的に取出すが、その際信号の取
出しが各磁電変換器の干渉を招いたり性能に悪影響を与
えることがないように加算器の入力インピーダンスが十
分に高いことが必要である。
Since magnetic sensors are evolving, there is a possibility that magneto-electric converters that can be used for the present sensor may appear in the future, but since this sensor is mainly used in unmanned DC substations, etc. It is a particularly important condition that the structure is simple and the reliability is high. In addition, in this sensor, the output signal of each magneto-electric converter is taken out additively.At this time, the input impedance of the adder is adjusted so that the taking out of the signal does not cause interference of each magneto-electric converter or adversely affect the performance. It needs to be high enough.

【0027】さらに、本発明の他の好適な実施形態とし
て以下の(ロ)〜(ヘ)を挙げる。
Further, other preferred embodiments of the present invention include the following (b) to (f).

【0028】(ロ)本センサを構成する磁界検出器の個
数が少なくとも4個、より好ましくは6個以上24個以
下であること。
(B) The number of magnetic field detectors constituting the present sensor is at least 4, more preferably 6 or more and 24 or less.

【0029】上述のように本センサの動作原理はアンペ
アの周回積分法則であるが、本センサでは有限個の測定
値に基づいて鎖交電流Iを求める点がアンペアの法則と
は異なる。この相違から、本来は影響を受けない筈の設
置誤差(偏心)及び外部磁気の影響を無視することがで
きない。この弱点をできるだけ小さくするには、本セン
サの周回積分経路である円周上に配置する磁電変換器を
偶数個とし、しかもできるだけ多くする必要がある。そ
の観点から最低でも4個、4個よりも6個の方が望まし
い。他方磁電変換器は一定の大きさを有するので、上記
の円周上に収容できる個数には限度がある。実際に本セ
ンサの上記円の直径が20〜40cm程度であることを
考慮すれば、上限はおよそ20〜24個程度と考えられ
る。
As described above, the principle of operation of the present sensor is the circuit-integral law of amperes. However, the sensor differs from amper's law in that the interlinkage current I is obtained based on a finite number of measured values. Due to this difference, the installation error (eccentricity) and the effect of external magnetism, which should not be affected, cannot be ignored. In order to reduce this weak point as much as possible, it is necessary to provide an even number of magnetoelectric converters arranged on the circumference, which is a circular integration path of the present sensor, and to increase the number as much as possible. From that point of view, at least four, four, and six are more desirable. On the other hand, since the magnetoelectric converter has a fixed size, there is a limit to the number that can be accommodated on the circumference. Considering that the diameter of the circle of the present sensor is actually about 20 to 40 cm, the upper limit is considered to be about 20 to 24.

【0030】(ハ)本センサを構成する各磁電変換器の
先端に接して検出軸と同軸に設けたテスト磁界発生用コ
イルを備えること。
(C) A test magnetic field generating coil provided coaxially with the detection axis in contact with the tip of each magnetoelectric converter constituting the sensor.

【0031】本センサを構成する各磁電変換器が常時満
足に機能していることを保証するためには、時折テスト
できることが望ましい。そのために本実施形態では、各
磁電変換器と同軸にテスト磁界発生用コイルを設置して
おき、一定時間毎に各テストコイルに一斉に所定の電流
を流し、本センサの出力電圧をチェックする。
It is desirable to be able to test occasionally in order to ensure that the magnetoelectric converters making up the sensor are always functioning satisfactorily. For this purpose, in the present embodiment, a test magnetic field generating coil is installed coaxially with each magneto-electric converter, and a predetermined current is simultaneously applied to each test coil at regular time intervals to check the output voltage of the present sensor.

【0032】(ニ)本センサを構成する磁電変換界器の
個数に等しい辺数を有する正多角形の環状、又は円環状
の、非磁性体からなるヨークに各磁電変換器を固定し、
全体を絶縁物質で被覆すること。
(D) Each magneto-electric converter is fixed to a regular polygonal or annular non-magnetic yoke having a number of sides equal to the number of magneto-electric conversion fields constituting the sensor.
Cover the whole with an insulating material.

【0033】上述のように本センサは大型の磁心を持た
ず、各磁電変換器は上記円周上の空間に配置されるが、
各磁電変換器をこの空間に支持するために非磁性体から
なる環状ヨークに固定し、直流の高電圧から各磁電変換
器を保護するために全体を絶縁物質で被覆する。非磁性
体としては例えばアルミニウム、絶縁物質としてはAB
S等の樹脂又は各種のゴムが例示される。
As described above, the present sensor does not have a large magnetic core, and each magnetoelectric converter is arranged in the space on the circumference.
Each magneto-electric converter is fixed to an annular yoke made of a non-magnetic material so as to be supported in this space, and the whole is covered with an insulating material to protect each magneto-electric converter from a high DC voltage. For example, aluminum is used as the non-magnetic material, and AB is used as the insulating material.
Resins such as S or various rubbers are exemplified.

【0034】(ホ)本センサの全体が直径を境に2個の
対称な部分に分割可能であること。
(E) The entirety of the present sensor can be divided into two symmetrical parts with respect to the diameter.

【0035】本センサ設置の際は被測定電流用導体を本
センサの中心孔に貫通させる必要があるが、本実施形態
のように本センサが2つ割構造になっていれば、その作
業を容易に行うことができる。
When installing the present sensor, it is necessary to penetrate the conductor for the current to be measured through the center hole of the present sensor. However, if the present sensor has a split structure as in the present embodiment, the work is omitted. It can be done easily.

【0036】(ヘ)前記導体の回りに2組の上記直流電
流センサを近接して配置し、これら2組の直流電流セン
サの出力値を常時又は間歇的に比較してその差が所定値
を超える場合に警報信号を出力すること。
(F) Two sets of the DC current sensors are arranged close to each other around the conductor, and the output values of the two sets of DC current sensors are constantly or intermittently compared, and a difference between the output values is a predetermined value. Output an alarm signal when exceeding.

【0037】本実施形態によれば、2組の本センサとそ
れらの出力値を常時又は間欠的に比較し問題が生じた際
に警報を発する比較警報装置を組合わせた直流電流計測
システムを構成することになる。これにより本センサに
よる計測値の信頼性を向上することができる。図4にこ
のような直流電流計測システムの一構成例を示す。
According to the present embodiment, a DC current measurement system is provided in which two sets of the present sensor are compared with their output values constantly or intermittently and a comparison alarm device which issues an alarm when a problem occurs. Will do. As a result, the reliability of the value measured by the present sensor can be improved. FIG. 4 shows an example of the configuration of such a DC current measurement system.

【0038】[0038]

【実施例】以下、磁気抵抗効果素子からなる磁電変換器
を用いた本センサの一実施例について添付図面を参照し
つつ説明する。図1は本実施例たる定格電流20KAの
直流電流センサ(参照符号100)の外形及び設置状況
を示す斜視図、図2(A)はセンサ100に用いた磁気
抵抗効果型磁電変換器の内部結線図、図2(B)はバイ
アス磁界と被測定磁界の関係を示す図、図2(C)は被
測定磁界の方向と磁電変換器の出力電圧の関係を示す図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present sensor using a magnetoelectric converter comprising a magnetoresistive element will be described below with reference to the accompanying drawings. FIG. 1 is a perspective view showing the external shape and installation state of a DC current sensor (reference numeral 100) having a rated current of 20 KA according to the present embodiment. FIG. 2A is an internal connection of a magnetoresistive effect type magnetoelectric converter used in the sensor 100. FIG. 2B is a diagram showing the relationship between the bias magnetic field and the magnetic field to be measured, and FIG. 2C is a diagram showing the relationship between the direction of the magnetic field to be measured and the output voltage of the magnetoelectric converter.

【0039】図1において、参照符号1はヨーク、2は
磁気抵抗効果型磁電変換器、3はリードワイヤ、4は回
路部、5はセンサ100を対称な2つの部分に分割する
分割線、6は被測定電流が流れる導体としてのブスバー
(本発明外のため点線で表示)を示す。なお、センサ1
00全体を覆う絶縁物質からなるケーシングは図示を省
略する。図2の内容は既に上で説明したので、再度の説
明を省く。
In FIG. 1, reference numeral 1 denotes a yoke, 2 denotes a magnetoresistive magnetoelectric converter, 3 denotes a lead wire, 4 denotes a circuit unit, 5 denotes a dividing line for dividing the sensor 100 into two symmetrical parts, 6 Denotes a bus bar as a conductor through which a current to be measured flows (indicated by a dotted line because it is outside the present invention). The sensor 1
The casing made of an insulating material covering the entire 00 is not shown. Since the contents of FIG. 2 have already been described above, the description will not be repeated.

【0040】図1に示すように、偶数個(本実施例では
6個)の磁気抵抗効果型磁電変換器2が、環状をなすヨ
ーク1の溝内でブスバー6の軸芯から等距離にある円周
上の空間内に支持され、検出軸を同一周回方向に向けて
等間隔に配置される。ブスバー6を流れる直流電流はそ
の近傍では楕円の、やや離れた場所では略同心円状の静
止磁界を作り、各磁電変換器2はこの静止磁界の強さに
比例する出力信号を出力する。ヨーク1は直径を通る分
割線5において対称な2つの部分に分割可能であるの
で、ブスバー6をヨーク1の中心孔に貫通させる作業を
容易に行うことができる。なお、各磁電変換器2には図
3に示すテスト磁界発生用コイルを設けてもよい。
As shown in FIG. 1, an even number (six in this embodiment) of magnetoresistive effect type magnetoelectric converters 2 are equidistant from the axis of the bus bar 6 in the groove of the yoke 1 forming an annular shape. They are supported in a space on the circumference and are arranged at equal intervals with the detection axes directed in the same circumferential direction. The DC current flowing through the bus bar 6 forms an elliptical static magnetic field in the vicinity thereof and a substantially concentric static magnetic field in a slightly distant place, and each magnetoelectric converter 2 outputs an output signal proportional to the strength of the static magnetic field. Since the yoke 1 can be divided into two parts symmetrical with respect to the dividing line 5 passing through the diameter, the operation of passing the bus bar 6 through the center hole of the yoke 1 can be easily performed. Each magnetic-electric converter 2 may be provided with a test magnetic field generating coil shown in FIG.

【0041】各磁電変換器2はリードワイヤ3によって
回路部4に結ばれ、回路部4には図示しない加算演算回
路、電圧電流変換回路及び電源回路が設けられている。
加算演算回路は6個の磁電変換器2の出力信号を代数的
に加算し、電圧電流変換回路は加算出力電圧に比例する
電流を発生させる。電源回路は前記加算演算回路、電圧
電流変換回路及び各磁電変換器2へ夫々必要な電源電圧
を供給する。
Each magnetoelectric converter 2 is connected to a circuit section 4 by a lead wire 3, and the circuit section 4 is provided with an addition operation circuit (not shown), a voltage-current conversion circuit, and a power supply circuit.
The addition operation circuit algebraically adds the output signals of the six magnetoelectric converters 2, and the voltage-current conversion circuit generates a current proportional to the added output voltage. The power supply circuit supplies a necessary power supply voltage to the addition operation circuit, the voltage-current conversion circuit, and each of the magneto-electric converters 2.

【0042】図3は、各磁電変換器2の先端部分に設け
たテスト磁界発生用コイル7を示す。コイル7には外部
電源8からスイッチ9を経由して所要の電源電圧が供給
され、スイッチ9を閉じることによりコイル7がテスト
用磁界を発生する。このテスト用磁界を検出した各磁電
変換器2の出力は上記回路部4で処理された上、正常か
否かを検査される。なお、スイッチ9は手動又は自動と
することができ、自動スイッチとする場合は上記正常か
否かの検査も自動化して、これと自動スイッチとを連動
させてもよい。
FIG. 3 shows a test magnetic field generating coil 7 provided at the tip of each magnetoelectric converter 2. A required power supply voltage is supplied to the coil 7 from an external power supply 8 via a switch 9. When the switch 9 is closed, the coil 7 generates a test magnetic field. The output of each of the magnetoelectric converters 2 that has detected the test magnetic field is processed by the circuit unit 4 and inspected for normality. Note that the switch 9 can be manual or automatic. When the switch 9 is an automatic switch, the above-described inspection of whether or not the switch 9 is normal may be automated, and this and the automatic switch may be linked.

【0043】なお、上記の実施例では磁気抵抗効果素子
からなる磁電変換器を用いた例を挙げたが、これに限ら
れるものではなく、ホール効果素子その他の素子を利用
した磁電変換器を用いても、本発明の直流電流センサを
同様に構成できることはいうまでもない。
In the above-described embodiment, an example using a magnetoelectric converter made of a magnetoresistive effect element has been described. However, the present invention is not limited to this, and a magnetoelectric converter using a Hall effect element or other elements may be used. However, it goes without saying that the DC current sensor of the present invention can be similarly configured.

【0044】[0044]

【発明の効果】請求項1乃至3の発明によれば、本セン
サでは被測定電流用導体の位置が磁電変換器が配置され
た円の中心から偏心してもその影響が相殺されて軽減さ
れ、また前記の円を横切る地磁気や外部磁気の影響も同
様に軽減されるので、従来の半導体素子型電流センサに
見られた大型磁心が不要になり、高精度で軽量かつ取り
扱い容易な直流電流センサが提供される。また、応答時
間が従来のクレーマ型電流センサに比較して格段に速
く、導体中の電流の向きが予定と異なっても出力端子の
接続極性を逆にするだけで対応できるという特徴を有す
る。
According to the first to third aspects of the present invention, in the present sensor, even if the position of the current conductor to be measured is eccentric from the center of the circle where the magnetoelectric converter is disposed, the effect is canceled out and reduced. In addition, the influence of geomagnetism and external magnetism crossing the circle is also reduced, eliminating the need for a large magnetic core found in conventional semiconductor element type current sensors, and providing a highly accurate, lightweight, and easy-to-handle DC current sensor. Provided. In addition, the response time is much faster than that of the conventional Kramer type current sensor, and even if the direction of the current in the conductor is different from the expected one, it can be dealt with only by reversing the connection polarity of the output terminal.

【0045】請求項4の発明によれば、本センサにおけ
る磁電変換器の個数が4個以上の場合は個数がそれ未満
の場合に比較して、被測定電流用導体の偏心に対する相
殺効果、外部磁気の影響の相殺効果がより確実になり、
しかも個数が多い程有利である。しかし、上記の円周上
に収容可能な磁電変換器の個数に限度があることを考慮
すれば、6個〜24個という値は本センサにおける磁電
変換器の実用的な個数の範囲を与える。
According to the fourth aspect of the present invention, when the number of magneto-electric converters in the present sensor is four or more, the effect of canceling the eccentricity of the conductor for current to be measured is smaller than when the number is less than four. The effect of canceling out the effects of magnetism becomes more certain,
Moreover, the larger the number, the more advantageous. However, considering that there is a limit to the number of magnetoelectric converters that can be accommodated on the circumference, a value of 6 to 24 gives a practical range of the number of magnetoelectric converters in the present sensor.

【0046】請求項5の発明によれば、本センサ中の各
磁電変換器にテスト磁界発生用コイルを設置して一定時
間毎に短時間のテストを行うことにより、各磁電変換器
が常時満足に機能していることを保証することができ
る。
According to the fifth aspect of the present invention, a test magnetic field generating coil is installed in each of the magneto-electric converters in the present sensor, and a short-time test is performed at regular time intervals. Functioning can be guaranteed.

【0047】請求項6の発明によれば、本センサ中の磁
電変換器を非磁性体からなる環状ヨークに支持させるこ
とにより、各磁電変換器を被測定電流用導体の軸芯から
等距離にある円周上の空間に固定することができる。ま
た、全体を絶縁物質で被覆することにより、各磁電変換
器を直流の高電圧から保護することができる。
According to the sixth aspect of the present invention, the magnetoelectric converter in the present sensor is supported by the annular yoke made of a nonmagnetic material, so that each magnetoelectric converter is equidistant from the axis of the current conductor to be measured. It can be fixed in a space on a certain circumference. In addition, by covering the whole with an insulating material, each magnetoelectric converter can be protected from high DC voltage.

【0048】請求項7の発明によれば、本センサが2つ
割構造になっているので、本センサの設置に際して、被
測定電流用導体を本センサの中心孔に貫通させる作業を
容易に行うことができる。
According to the seventh aspect of the present invention, since the present sensor has a split structure, it is easy to penetrate the conductor for current to be measured through the center hole of the present sensor when installing the present sensor. be able to.

【0049】請求項8の発明によれば、2組の本センサ
の出力値を常時又は間欠的に比較して問題がある場合は
警報を発するので、本センサによる直流電流の測定結果
の信頼性を向上することができる。
According to the eighth aspect of the present invention, if there is a problem by comparing the output values of the two sets of present sensors constantly or intermittently and an alarm is issued, the reliability of the measurement result of the DC current by the present sensors is improved. Can be improved.

【0050】以上を総合して、本発明によれば、軽量安
価で高精度、高応答性を有し、外部磁界及び設置誤差の
影響を受け難い、新たな構造の直流電流センサが提供さ
れ、従来の電流センサが抱える多くの問題点を解消する
ことができる。
In summary, according to the present invention, there is provided a DC current sensor having a new structure, which is lightweight, inexpensive, has high accuracy and high responsiveness, and is hardly affected by an external magnetic field and an installation error. Many problems of the conventional current sensor can be solved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例としての直流電流センサの外形及び設置
状況を示す斜視図である。
FIG. 1 is a perspective view showing an external shape and an installation state of a DC current sensor as an embodiment.

【図2】磁気抵抗効果型磁電変換器の内部結線図及びバ
イアス磁界と被測定磁界との関係を示す図である。
FIG. 2 is a diagram showing an internal connection diagram of a magnetoresistive effect type magnetoelectric converter and a diagram showing a relationship between a bias magnetic field and a magnetic field to be measured.

【図3】テスト磁界発生用コイルの設置状態を示す図で
ある。
FIG. 3 is a diagram showing an installation state of a test magnetic field generating coil.

【図4】本発明に基づく直流電流計測システムの一構成
例を示すブロック図である。
FIG. 4 is a block diagram showing a configuration example of a DC current measurement system based on the present invention.

【符号の説明】[Explanation of symbols]

1…ヨーク 2…磁電変換器 3…リードワイヤ 4…回路部 5…分割線 6…ブスバー(本発明外) 7…テスト磁界発生用コイル 8…テスト磁界発生用コイルの電源 9…スイッチ DESCRIPTION OF SYMBOLS 1 ... Yoke 2 ... Magnetoelectric converter 3 ... Lead wire 4 ... Circuit part 5 ... Division line 6 ... Bus bar (outside the present invention) 7 ... Test magnetic field generating coil 8 ... Power supply of test magnetic field generating coil 9 ... Switch

フロントページの続き (72)発明者 永田 強 東京都大田区西蒲田7−32−6 株式会社 マコメ研究所内Continued on the front page (72) Inventor Tsuyoshi Nagata 7-32-6 Nishikamata, Ota-ku, Tokyo Inside the Makome Laboratory Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】被測定電流が流れる導体の中心軸から等距
離にある円周上の空間に、局所的静止磁界の強さ及び向
きを検出する偶数個の磁電変換器を、各磁電変換器の検
出軸方向を同一周回方向に向けて等間隔に配置し、前記
各磁電変換器からの出力信号を加算器により加算して取
り出すことを特徴とする直流電流センサ。
An even number of magnetoelectric converters for detecting the intensity and direction of a local static magnetic field are provided in a space on a circumference equidistant from a central axis of a conductor through which a current to be measured flows. A DC current sensor wherein the detection axis directions are arranged at equal intervals in the same circumferential direction, and the output signals from the respective magneto-electric converters are added by an adder and taken out.
【請求項2】前記磁電変換器が磁気抵抗効果素子からな
る請求項1記載の直流電流センサ。
2. The direct current sensor according to claim 1, wherein said magnetoelectric converter comprises a magnetoresistance effect element.
【請求項3】前記磁電変換器がホール効果素子からなる
請求項1記載の直流電流センサ。
3. The DC current sensor according to claim 1, wherein said magnetoelectric converter comprises a Hall effect element.
【請求項4】前記磁電変換器の個数が少なくとも4個、
より好ましくは6個以上24個以下である、請求項1か
ら3のいずれかに記載の直流電流センサ。
4. The method according to claim 1, wherein the number of the magnetoelectric converters is at least four,
The direct current sensor according to any one of claims 1 to 3, wherein the number is more preferably 6 or more and 24 or less.
【請求項5】前記各磁電変換器の先端に接して磁電変換
器の軸と同軸に設けたテスト磁界発生用コイルを備え
る、請求項1から4のいずれかに記載の直流電流セン
サ。
5. The DC current sensor according to claim 1, further comprising a test magnetic field generating coil provided in contact with a tip of each of the magnetoelectric converters and coaxial with an axis of the magnetoelectric converter.
【請求項6】前記磁電変換器の個数に等しい辺数を有す
る正多角形の環状、又は円環状の、非磁性体からなるヨ
ークに前記各磁界検出素子を固定し、全体を絶縁物質で
被覆してなる、請求項1から5のいずれかに記載の直流
電流センサ。
6. Each of the magnetic field detecting elements is fixed to a regular polygonal annular or annular yoke made of a nonmagnetic material having the number of sides equal to the number of the magnetoelectric converters, and the whole is covered with an insulating material. The direct current sensor according to any one of claims 1 to 5, comprising:
【請求項7】前記センサの全体が、直径を境に2個の対
称な部分に分割可能である、請求項6記載の直流電流セ
ンサ。
7. The direct current sensor according to claim 6, wherein the entirety of the sensor can be divided into two symmetrical portions with respect to a diameter.
【請求項8】前記導体の回りに2組の請求項1から7の
いずれかに記載の直流電流センサを近接して配置し、こ
れら2組の直流電流センサの出力値を常時又は間歇的に
比較してその差が所定値を超える場合に警報信号を出力
することを特徴とする直流電流計測システム。
8. Two sets of DC current sensors according to claim 1 are arranged close to each other around said conductor, and the output values of these two sets of DC current sensors are constantly or intermittently output. A DC current measurement system that outputs an alarm signal when the difference exceeds a predetermined value.
JP10052912A 1998-02-18 1998-02-18 Dc current sensor and dc current measurement system Pending JPH11237411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10052912A JPH11237411A (en) 1998-02-18 1998-02-18 Dc current sensor and dc current measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10052912A JPH11237411A (en) 1998-02-18 1998-02-18 Dc current sensor and dc current measurement system

Publications (1)

Publication Number Publication Date
JPH11237411A true JPH11237411A (en) 1999-08-31

Family

ID=12928056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10052912A Pending JPH11237411A (en) 1998-02-18 1998-02-18 Dc current sensor and dc current measurement system

Country Status (1)

Country Link
JP (1) JPH11237411A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247250A (en) * 2011-05-26 2012-12-13 Yokogawa Electric Corp Current measuring device
CN102841232A (en) * 2011-05-09 2012-12-26 阿尔卑斯绿色器件株式会社 Current sensor for electric wire
JP2014229413A (en) * 2013-05-21 2014-12-08 河村電器産業株式会社 Circuit breaker, or distribution board
CN104297548A (en) * 2013-07-16 2015-01-21 横河电机株式会社 Current sensor
US9170281B2 (en) 2010-03-12 2015-10-27 Alps Green Devices Co., Ltd. Current measurement apparatus having a series of magnetoresistive effect elements disposed in a ring shape
US9435831B2 (en) 2010-12-02 2016-09-06 Alps Green Devices Co., Ltd. Current sensor
KR20170010200A (en) * 2015-07-16 2017-01-26 제이앤디전자(주) Direct current sensor for division type
JP2017062266A (en) * 2013-07-16 2017-03-30 横河電機株式会社 Current sensor
CN114113747A (en) * 2021-11-19 2022-03-01 云南电网有限责任公司电力科学研究院 Direct current transient state step standard device of TMR sensor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170281B2 (en) 2010-03-12 2015-10-27 Alps Green Devices Co., Ltd. Current measurement apparatus having a series of magnetoresistive effect elements disposed in a ring shape
US9435831B2 (en) 2010-12-02 2016-09-06 Alps Green Devices Co., Ltd. Current sensor
CN102841232A (en) * 2011-05-09 2012-12-26 阿尔卑斯绿色器件株式会社 Current sensor for electric wire
JP2012247250A (en) * 2011-05-26 2012-12-13 Yokogawa Electric Corp Current measuring device
JP2014229413A (en) * 2013-05-21 2014-12-08 河村電器産業株式会社 Circuit breaker, or distribution board
CN104297548A (en) * 2013-07-16 2015-01-21 横河电机株式会社 Current sensor
JP2015038464A (en) * 2013-07-16 2015-02-26 横河電機株式会社 Current sensor
KR20150009455A (en) * 2013-07-16 2015-01-26 요코가와 덴키 가부시키가이샤 Current sensor
US9459293B2 (en) 2013-07-16 2016-10-04 Yokogawa Electric Corporation Current sensor
JP2017062266A (en) * 2013-07-16 2017-03-30 横河電機株式会社 Current sensor
CN104297548B (en) * 2013-07-16 2017-07-04 横河电机株式会社 Current sensor
KR20170010200A (en) * 2015-07-16 2017-01-26 제이앤디전자(주) Direct current sensor for division type
CN114113747A (en) * 2021-11-19 2022-03-01 云南电网有限责任公司电力科学研究院 Direct current transient state step standard device of TMR sensor
CN114113747B (en) * 2021-11-19 2024-04-09 云南电网有限责任公司电力科学研究院 Direct current transient step standard of TMR sensor

Similar Documents

Publication Publication Date Title
JP3286431B2 (en) DC current sensor
US7365535B2 (en) Closed-loop magnetic sensor system
JP6107942B2 (en) Magnetic current sensor and current measuring method
JP2002318250A (en) Current detector and overload current protective device using the same
JP2001074783A (en) Current detector
JPS61245511A (en) Dc and ac current transformer
JPH07146315A (en) Ac current sensor
US5923514A (en) Electronic trip circuit breaker with CMR current sensor
JPH11237411A (en) Dc current sensor and dc current measurement system
CN113917215A (en) Current sensor
US6414579B1 (en) Current transformer and method for correcting asymmetries therein
US3873914A (en) Flux valve apparatus for sensing both horizontal and vertical components of an ambient magnetic field
JP2745452B2 (en) Split-type zero-phase current transformer for DC
JP3326737B2 (en) DC current sensor
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JP2547169Y2 (en) Current detection sensor
JP2978637B2 (en) Quench detection device for superconducting winding
JP2001264364A (en) Optical current transformer
JP2000199770A (en) Low-noise multicore parallel-cord current detector
CN219811394U (en) Magnetic core and coil assembly based on TMR weak current sensor
JP7492474B2 (en) Sensing Device
JPH0763833A (en) Superconductor-loop type magnetic-field measuring apparatus
JPH0261710B2 (en)
JP2013224888A (en) Magnetoresistance effect type power sensor
JPH11281699A (en) Leak detection method and leak breaker using the same