JPH11223610A - Surface defect inspection device and fluorescent magnetic particle flaw inspecting method - Google Patents

Surface defect inspection device and fluorescent magnetic particle flaw inspecting method

Info

Publication number
JPH11223610A
JPH11223610A JP10023328A JP2332898A JPH11223610A JP H11223610 A JPH11223610 A JP H11223610A JP 10023328 A JP10023328 A JP 10023328A JP 2332898 A JP2332898 A JP 2332898A JP H11223610 A JPH11223610 A JP H11223610A
Authority
JP
Japan
Prior art keywords
surface defect
length
steel material
predetermined direction
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10023328A
Other languages
Japanese (ja)
Other versions
JP3492509B2 (en
Inventor
Masaru Akamatsu
勝 赤松
Yasuhiro Wasa
泰宏 和佐
Gakuo Ogawa
岳夫 小川
Hideo Katsumi
栄雄 勝見
Akio Suzuki
紀生 鈴木
Hironobu Tanaka
浩信 田中
Noriyoshi Nanaseya
則吉 七瀬谷
Hiroaki Kaida
浩明 海田
Katsutoshi Kumagai
克俊 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP02332898A priority Critical patent/JP3492509B2/en
Publication of JPH11223610A publication Critical patent/JPH11223610A/en
Application granted granted Critical
Publication of JP3492509B2 publication Critical patent/JP3492509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To discriminate between a surface defect and the nonsurface defect part of a magnetic particle banks, and to accurately detect a flaw of the surface defect with simple constitution by processing an image of the article surface with a rectangular picture element long in prescribed direction as a unit by an inspection means. SOLUTION: A steel material 2 carried in the DD direction by a carrying device 1 is magnetized by an exciting magnet 3, but when a surface defect SD exists in the steel material 2, there is a magnetic field stronger than the part having no defect SD due to the partial leakage flux. Then, fluorescent magnetic particles FM are sprayed on the surface of the steel material 2 by a magnetic particle sprayer 4 by using water as a medium. The magnetic particles FM are less easily peeled off the defectless part by sticking to the vicinity of the strong magnetic field-generating defect SD in high density. Next, the magnetic particles except those in the defective part SD are washed away, but there still remain magnetic particle FM (a magnetic particle bank). Next, an image of the surface of the steel material 2 is picked up by a line sensor 7 still in the fluorescent magnetic particle FM by irradiating ultraviolet rays in a linear shape by an ultraviolet ray irradiator 6. The defect and the nonsurface detect of a magnetic particle bank can be easily discriminated by using a rectangular picture element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,表面欠陥探傷装置
及び蛍光磁粉探傷方法に係り,例えば,磁化された鋼材
に蛍光磁粉を付着させた状態で該鋼材表面を撮像した撮
像画像に基づいて該鋼材表面に形成された表面欠陥の有
無を検査する表面欠陥探傷装置及び蛍光磁粉探傷方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface defect inspection apparatus and a fluorescent magnetic particle inspection method, for example, based on a picked-up image obtained by imaging the surface of a magnetized steel material with the magnetic magnetic powder attached thereto. The present invention relates to a surface defect inspection device and a fluorescent magnetic particle inspection method for inspecting the presence or absence of a surface defect formed on a steel material surface.

【0002】[0002]

【従来の技術】例えば鋼材の表面欠陥を探傷する代表的
な技術に蛍光磁粉探傷方法と呼ばれる技術がある。この
蛍光磁粉探傷方法は,磁化された鋼材に蛍光磁粉を付着
させ,欠陥の存在する部分に付着した蛍光磁粉の蛍光輝
度と存在しない部分に付着した蛍光磁粉の蛍光輝度との
差により探傷を行うものである。図8は蛍光磁粉探傷方
法を実施するための自動探傷装置の概略構成を示す図で
ある。図8(a)に示すように,上記自動探傷装置は鋼
材100を撮像するための例えばCCDカメラ等の撮像
部101,鋼材を磁化するための鋼材磁化部102,蛍
光磁粉を鋼材100表面に散布するための蛍光磁粉散布
部103,蛍光磁粉を蛍光させるための紫外線照射部1
04,撮像画像の画像処理を行い,表面欠陥の有無を判
定する欠陥判定部105等により構成されている。先
ず,鋼材100は鋼材磁化部により所定の方向に磁化さ
れる。磁化された鋼材の表面に,水等を媒体にして蛍光
磁粉散布部103により蛍光磁粉が散布される。鋼材1
00表面で欠陥の存在する部分には,図8(b)に示す
ような漏洩磁束が存在するために,欠陥の無い部分より
も強い磁界が生じており,散布された蛍光磁粉は表面欠
陥付近で高密度に付着する。次に鋼材表面に付着した蛍
光磁粉を紫外線照射部104により蛍光させ,撮像部1
01により撮像する。撮像部101から出力された撮像
画像は欠陥判定部105に入力される。欠陥判定部10
5では,例えば所定のしきい値と上記撮像画像の輝度値
とを比較し,所定のしきい値よりも輝度値の大きい領域
を表面欠陥であると判定する。図9に示すのは上記自動
探傷装置により鋼材100の表面欠陥を探傷した結果で
ある。図9において,黒四角は表面欠陥を示し,白抜き
丸は磁粉溜まりを示す。ここで磁粉溜まりとは,例えば
鋼材100に残った油滴等の周りに蛍光磁粉が固まって
付着したものを言い,表面欠陥と同じように撮像画像に
おいて高い輝度値を示すが,欠陥では無い部分である。
この磁粉溜まりは点状に形成されることが多いのに対
し,表面欠陥は線状に形成される傾向がある。図9の実
線で示すように,輝度しきい値が例えば80に設定され
ている場合,表面欠陥であると判定手段により判定され
た8個の検出結果のうち4個は磁粉溜まりのものであ
り,誤検出(過検出)となる。また,しきい値以下にあ
る表面欠陥は当然ながら検出されず4個の未検出が生じ
る。このように,輝度値の大きさのみを基準として表面
欠陥の判定を行っても精度のよい判定は行えない。そこ
で,例えば特開昭59−225338号公報(以下,文
献1と称す)に記載された技術では鋼材につく表面欠陥
が線状であり,上記磁粉溜まりは点状である場合が多い
ことを利用して,ある走査線上における最高輝度値付近
の輝度値の変化傾向が急峻であれば,線状に蛍光磁粉が
付着しているから表面欠陥であり,変化傾向が緩やかで
あれば,点状の蛍光磁粉の固まり,即ち磁粉溜まりであ
ると判定して判定精度の向上が図られた。また,特開昭
62−52454号公報(以下,文献2と称す)に記載
された技術では,撮像画像から求められた輝度値と予め
登録された表面欠陥及び磁粉溜まりの形状データに基づ
いて表面欠陥の有無の判定を行うことにより,判定精度
の向上が図られた。この他,特開平7−333197号
公報(以下,文献3と称す)に記載された技術では,表
面欠陥であることが輝度値に基づいて明瞭にわかるもの
については,輝度しきい値による判定を行い,不明瞭な
ものについては,予め教示された表面欠陥の統計的特徴
量に基づいてニューラルネットワークモデルにより表面
欠陥の有無を判定を行って,判定精度の向上が図られ
た。
2. Description of the Related Art For example, a typical technique for detecting a surface defect of a steel material is a technique called a fluorescent magnetic particle flaw detection method. In this fluorescent magnetic particle flaw detection method, fluorescent magnetic powder is attached to a magnetized steel material, and flaw detection is performed based on a difference between the fluorescent luminance of the fluorescent magnetic powder attached to a portion where a defect exists and the fluorescent luminance of the fluorescent magnetic powder attached to a non-existent portion. Things. FIG. 8 is a diagram showing a schematic configuration of an automatic flaw detector for performing the fluorescent magnetic particle flaw detection method. As shown in FIG. 8A, the automatic flaw detector detects an image of a steel material 100, for example, an imaging unit 101 such as a CCD camera, a magnetized steel material 102 for magnetizing the steel material, and scatters fluorescent magnetic powder on the surface of the steel material 100. Magnetic powder scattering section 103 for irradiating, and ultraviolet irradiation section 1 for causing fluorescent magnetic powder to fluoresce
04, a defect determination unit 105 that performs image processing of the captured image and determines the presence or absence of a surface defect. First, the steel material 100 is magnetized in a predetermined direction by the steel material magnetized part. Fluorescent magnetic powder is sprayed on the surface of the magnetized steel material by the fluorescent magnetic powder spraying unit 103 using water or the like as a medium. Steel material 1
Since the leakage magnetic flux as shown in FIG. 8B exists in the portion where the defect is present on the surface of the surface 00, a stronger magnetic field is generated than in the portion where there is no defect. With high density. Next, the fluorescent magnetic powder attached to the surface of the steel material is caused to fluoresce by the ultraviolet irradiation unit 104, and the imaging unit 1
01 is imaged. The captured image output from the imaging unit 101 is input to the defect determination unit 105. Defect determination unit 10
In 5, for example, a predetermined threshold value is compared with the luminance value of the captured image, and an area having a luminance value larger than the predetermined threshold value is determined to be a surface defect. FIG. 9 shows the result of flaw detection of a surface defect of the steel material 100 by the automatic flaw detector. In FIG. 9, black squares indicate surface defects, and white circles indicate magnetic powder pools. Here, the magnetic powder pool means, for example, a substance in which fluorescent magnetic powder solidifies and adheres around oil droplets or the like remaining on the steel material 100, and shows a high luminance value in a captured image as in the case of a surface defect, but a portion which is not a defect. It is.
While this magnetic powder pool is often formed in a point shape, surface defects tend to be formed in a linear shape. As shown by the solid line in FIG. 9, when the luminance threshold value is set to, for example, 80, four of the eight detection results determined by the determination means to be a surface defect are from magnetic powder accumulation. , Erroneous detection (overdetection). Also, surface defects below the threshold value are naturally not detected and four undetected ones occur. As described above, even if the surface defect is determined based only on the magnitude of the luminance value, accurate determination cannot be performed. Therefore, for example, in the technique described in Japanese Patent Application Laid-Open No. Sho 59-225338 (hereinafter referred to as Document 1), it is utilized that the surface defects on the steel material are linear and the magnetic powder pool is often point-like. If the change in the luminance value near the highest luminance value on a certain scanning line is steep, it is a surface defect because the fluorescent magnetic powder is attached in a linear manner. The determination accuracy was improved by determining that the fluorescent magnetic powder was agglomerated, that is, a magnetic powder pool. In the technique described in Japanese Patent Application Laid-Open No. 62-52454 (hereinafter referred to as Document 2), a surface value is determined based on a luminance value obtained from a captured image and shape data of a previously registered surface defect and a magnetic powder pool. By determining whether or not there is a defect, the determination accuracy has been improved. In addition, in the technique described in Japanese Patent Application Laid-Open No. Hei 7-333197 (hereinafter referred to as Document 3), for those which can be clearly identified as surface defects based on the luminance value, judgment using the luminance threshold is made. For the unclear ones, the presence / absence of a surface defect was determined by a neural network model based on the statistical features of the surface defects taught in advance to improve the determination accuracy.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,上記文
献1に記載の技術では,輝度値の変化傾向が表面欠陥と
類似するような磁粉溜まり等の非欠陥部分が存在する場
合,表面欠陥との判別が困難となり,表面欠陥探傷の信
頼性が低下するという問題があった。また,上記文献2
又は文献3に記載の技術では,表面欠陥を探傷するため
に,予め表面欠陥の形状等の特徴量を装置に教示する必
要があり,作業者の負担を増大させるという問題があっ
た。本発明は,このような従来技術における課題を解決
するために,表面欠陥探傷装置を改良し,物品が搬送さ
れる所定方向と交差する方向に一列に複数配置されると
共に上記所定方向に長い矩形状の画素を単位として撮像
画像に処理を施すことにより,表面欠陥と磁粉溜まり等
の非表面欠陥部分とを判別し,簡単な構成で精度のよい
表面欠陥の探傷を迅速に行うことができる表面欠陥探傷
装置を提供することを第1の目的とする。さらに,第2
の目的は,物品が搬送される所定方向と交差する方向に
一列に複数配置されると共に上記所定方向に長い矩形状
の画素を単位として撮像画像に処理を施すことにより,
表面欠陥と磁粉溜まり等の非表面欠陥部分とを判別し,
簡単な構成で精度のよい磁粉探傷を迅速に行うことので
きる蛍光磁粉探傷方法を提供することである。
However, according to the technique described in the above-mentioned reference 1, when there is a non-defective portion such as a magnetic powder pool in which the change in the luminance value is similar to the surface defect, it is discriminated from the surface defect. And the reliability of surface defect inspection is reduced. In addition, the above document 2
Alternatively, in the technique described in Reference 3, in order to detect a surface defect, it is necessary to teach a feature amount such as a shape of the surface defect to the apparatus in advance, and there is a problem that a burden on an operator is increased. In order to solve such problems in the prior art, the present invention has improved a surface flaw detection apparatus, and is arranged in a row in a direction intersecting with a predetermined direction in which articles are conveyed. By processing a captured image in units of shape pixels, it is possible to distinguish between surface defects and non-surface defect parts such as magnetic powder pools, and to quickly detect surface defects with high accuracy using a simple configuration. A first object is to provide a defect inspection apparatus. In addition, the second
The object of the present invention is to process a captured image by using a plurality of rectangular pixels which are arranged in a row in a direction intersecting a predetermined direction in which articles are conveyed and which are long in the predetermined direction.
By discriminating between surface defects and non-surface defects such as magnetic powder pools,
An object of the present invention is to provide a fluorescent magnetic particle flaw detection method capable of quickly performing high-precision magnetic particle flaw detection with a simple configuration.

【0004】[0004]

【課題を解決するための手段】上記第1の目的を達成す
るために,請求項1に係る発明は,物品を所定方向に搬
送する搬送手段と,上記所定方向と交差する方向に複数
配列された画素を有し,上記搬送手段により搬送される
物品の表面を撮像する撮像手段と,上記撮像手段により
撮像された物品表面の画像を処理し,上記物品の表面の
上記所定方向に線状に形成された表面欠陥の有無を検査
する検査手段とを具備してなる表面欠陥探傷装置におい
て,上記検査手段が,上記所定方向に長い矩形状の画素
を単位として上記物品表面の画像を処理するものであ
り,上記矩形状の画素の短辺側の長さは,検査対象とな
る最小の上記表面欠陥がある部分の上記所定方向と交差
する方向の長さに基づいて設定されてなることを特徴と
する表面欠陥探傷装置として構成されている。また,請
求項2に係る発明は,上記請求項1に記載の表面欠陥探
傷装置において,上記矩形状の画素の短辺側の長さが,
上記表面欠陥がある部分の上記所定方向と交差する方向
の長さの半分以下に設定されてなることをその要旨とす
る。また,請求項3に係る発明は,上記請求項1又は2
に記載の表面欠陥探傷装置において,上記矩形状の画素
の長辺側の長さが,上記物品の表面に形成された点状の
非表面欠陥部分及び上記表面欠陥のある部分の上記所定
方向の長さに基づいて設定されてなることをその要旨と
する。また,請求項4に係る発明は,上記請求項3に記
載の表面欠陥探傷装置において,上記矩形状の画素の長
辺側の長さが,上記非表面欠陥部分の上記所定方向の長
さの2倍以上であって上記表面欠陥部分の上記所定方向
の長さ以下に設定されてなることをその要旨とする。
In order to achieve the first object, the invention according to claim 1 comprises a conveying means for conveying an article in a predetermined direction and a plurality of conveying means arranged in a direction intersecting the predetermined direction. Imaging means for imaging the surface of the article conveyed by the conveyance means, and processing the image of the article surface imaged by the imaging means, and forming a line in the predetermined direction on the surface of the article. A surface defect inspection apparatus comprising inspection means for inspecting the presence or absence of a formed surface defect, wherein the inspection means processes an image of the article surface in units of rectangular pixels long in the predetermined direction. Wherein the length of the short side of the rectangular pixel is set based on the length of a portion having the minimum surface defect to be inspected in a direction intersecting the predetermined direction. Surface flaw detector It is configured as. According to a second aspect of the present invention, in the surface defect inspection apparatus according to the first aspect, the length of the short side of the rectangular pixel is set to be shorter.
The gist is that the length of the portion having the surface defect is set to be equal to or less than half the length in a direction intersecting the predetermined direction. Further, the invention according to claim 3 is based on claim 1 or 2 described above.
Wherein the length of the long side of the rectangular pixel is a point-like non-surface defect portion formed on the surface of the article and a portion having the surface defect in the predetermined direction. The gist is that it is set based on the length. According to a fourth aspect of the present invention, in the surface defect inspection apparatus according to the third aspect, the length of the longer side of the rectangular pixel is equal to the length of the non-surface defect portion in the predetermined direction. The gist of the present invention is that the length is set to be not less than twice and not more than the length of the surface defect portion in the predetermined direction.

【0005】また,請求項5に係る発明は,上記請求項
1〜4のいずれか1項に記載の表面欠陥探傷装置におい
て,上記撮像手段が全画素に対して所定時間の露光を定
期的に行うものであって,上記矩形状の画素の長辺側の
長さが,上記矩形状の画素の上記所定方向の長さと上記
所定時間内の物品の移動量とを加算したものに換算され
てなることをその要旨とする。また,請求項6に係る発
明は,上記請求項1〜5のいずれか1項に記載の表面欠
陥探傷装置において,上記矩形状の画素が,上記受光素
子から入力された信号列に対して空間フィルタリングを
行うことにより作成されてなることをその要旨とする。
また,請求項7に係る発明は,上記請求項1〜6のいず
れか1項に記載の表面欠陥探傷装置において,上記物品
表面の像を上記撮像手段上に結像する結像光学系を更に
具備すると共に,上記画素の大きさが上記撮像手段にお
ける結像面上の上記表面欠陥のある部分の大きさに基づ
いて設定されてなることをその要旨とする。また,請求
項8に係る発明は,上記請求項1〜7のいずれか1項に
記載の表面欠陥探傷装置において,上記検査手段が,上
記画素の輝度値が所定の判定値より大きいか小さいかに
より表面欠陥の有無を検査してなることをその要旨とす
る。また,請求項9に係る発明は,上記請求項1〜8の
いずれか1項に記載の表面欠陥探傷装置において,上記
物品が鋼材であって,上記撮像手段が,磁化された上記
鋼材表面に付着した蛍光磁粉の蛍光を撮像するものであ
ることをその要旨とする。上記請求項1〜9のいずれか
1項に記載の表面欠陥探傷装置によれば,鋼材等の物品
が搬送される所定方向に長い矩形状の画素を単位として
撮像画像に処理を施すことにより,上記所定方向に線状
に形成された表面欠陥と磁粉溜まり等の非表面欠陥とを
簡易且つ精度良く判別することができ,しかも処理速度
の迅速化,構成の簡素化を図ることが可能となる。特に
鋼材の表面欠陥を蛍光磁粉探傷方法を用いて探傷する場
合に有効である。さらに,上記矩形状の画素の露光時間
を変更することによって,実際の上記画素の大きさを変
更することなく,実質的に上記矩形状の画素の上記所定
方向の長さを変化させることにより,表面欠陥の大きさ
に合わせた調整を容易に行うことができる。さらに,上
記矩形状の画素の大きさの調整は,撮像画像に空間フィ
ルタリングを施すことによっても可能であり,より自由
な調整が可能となる。
According to a fifth aspect of the present invention, in the surface defect inspection apparatus according to any one of the first to fourth aspects, the imaging means periodically exposes all pixels for a predetermined time. The length of the long side of the rectangular pixel is converted into a value obtained by adding the length of the rectangular pixel in the predetermined direction and the movement amount of the article within the predetermined time. Is the gist. According to a sixth aspect of the present invention, in the surface defect inspection apparatus according to any one of the first to fifth aspects, the rectangular pixels are spatially separated from a signal train input from the light receiving element. The gist is that it is created by performing filtering.
According to a seventh aspect of the present invention, in the surface defect inspection apparatus according to any one of the first to sixth aspects, an imaging optical system for imaging the image of the surface of the article on the imaging means is further provided. In addition, the gist of the invention is that the size of the pixel is set based on the size of the portion having the surface defect on the image forming surface in the imaging means. According to an eighth aspect of the present invention, in the surface defect inspection apparatus according to any one of the first to seventh aspects, the inspection means determines whether a luminance value of the pixel is larger or smaller than a predetermined judgment value. The gist of the present invention is to inspect for the presence or absence of surface defects. According to a ninth aspect of the present invention, in the surface defect inspection device according to any one of the first to eighth aspects, the article is a steel material, and the imaging means is provided on the magnetized steel material surface. The gist is to image fluorescence of the attached fluorescent magnetic powder. According to the surface defect inspection apparatus according to any one of claims 1 to 9, by processing a captured image in units of rectangular pixels long in a predetermined direction in which an article such as a steel material is conveyed, A surface defect linearly formed in the predetermined direction and a non-surface defect such as a magnetic powder pool can be easily and accurately discriminated, and the processing speed can be increased and the configuration can be simplified. . In particular, it is effective when detecting a surface defect of a steel material using a fluorescent magnetic particle flaw detection method. Further, by changing the exposure time of the rectangular pixel, by changing the length of the rectangular pixel in the predetermined direction substantially without changing the actual size of the pixel, Adjustment according to the size of the surface defect can be easily performed. Further, the adjustment of the size of the rectangular pixel can be performed by performing spatial filtering on the captured image, which allows more flexible adjustment.

【0006】また,第2の目的を達成するために,請求
項10に係る発明は,所定方向に搬送される鋼材を磁化
する磁化工程と,磁化された上記鋼材表面の上記所定方
向に形成された表面欠陥に蛍光磁粉を付着させる蛍光磁
粉付着工程と,上記所定の方向と交差する方向に複数配
列された画素を用いて,上記鋼材の表面に付着した蛍光
磁粉の蛍光を撮像する撮像工程と,撮像された上記鋼材
表面の画像を処理し,上記鋼材の表面の上記所定方向に
線状に形成された表面欠陥の有無を検査する検査工程と
を具備してなる蛍光磁粉探傷方法において,上記検査工
程が,上記所定方向に長い矩形状の画素を単位として上
記鋼材表面の画像を処理するものであり,上記矩形状の
画素の長辺側の長さは,上記鋼材表面に点状に蛍光磁粉
が付着して形成された非表面欠陥部分,及び上記表面欠
陥に蛍光磁粉が付着した表面欠陥部分の上記所定方向の
長さに基づいて設定され,上記矩形状の画素の短辺側の
長さは,検査対象となる最小の上記表面欠陥部分の上記
所定方向と交差する方向の長さに基づいて設定されてな
ることを特徴とする蛍光磁粉探傷方法として構成されて
いる。さらに,請求項11に係る発明は,上記請求項1
0に記載の蛍光磁粉探傷方法において,上記矩形状の画
素の長辺側の長さが,上記非表面欠陥部分の上記所定方
向の長さの2倍以上であって上記表面欠陥部分の上記所
定方向の長さ以下に設定され,上記矩形状の画素の短辺
側の長さが,上記表面欠陥部分の上記所定方向と交差す
る方向の長さの半分以下に設定されてなることをその要
旨とする。上記請求項10又は11に記載の蛍光磁粉探
傷方法によれば,鋼材が搬送される所定方向に長い矩形
状の画素を単位として撮像画像に処理を施すことによ
り,上記所定方向に線状に形成された表面欠陥と磁粉溜
まり等の非表面欠陥とを簡易且つ精度良く判別すること
ができ,しかも処理速度の迅速化,構成の簡素化を図る
ことが可能となる。
According to a tenth aspect of the present invention, there is provided a magnetizing step of magnetizing a steel material conveyed in a predetermined direction, and a step of magnetizing the steel material in the predetermined direction on the surface of the magnetized steel material. A fluorescent magnetic powder adhering step of adhering the fluorescent magnetic powder to the surface defects, and an imaging step of imaging the fluorescence of the fluorescent magnetic powder adhering to the surface of the steel material by using a plurality of pixels arranged in a direction intersecting the predetermined direction. Processing a captured image of the surface of the steel material and inspecting the surface of the steel material for surface defects linearly formed in the predetermined direction on the surface of the steel material. In the inspection step, the image of the steel material surface is processed in units of rectangular pixels that are long in the predetermined direction, and the length of the long side of the rectangular pixels is determined by a dot-like fluorescence on the steel material surface. Formed by the adhesion of magnetic powder Is set based on the length in the predetermined direction of the non-surface defect portion and the surface defect portion where the fluorescent magnetic powder adheres to the surface defect, and the length of the short side of the rectangular pixel is to be inspected. It is configured as a fluorescent magnetic particle flaw detection method, which is set based on the length of the minimum surface defect portion in a direction intersecting the predetermined direction. Further, the invention according to claim 11 is the invention according to claim 1.
0, the length of the long side of the rectangular pixel is at least twice as long as the length of the non-surface defect portion in the predetermined direction, and the predetermined length of the surface defect portion is The length of the short side of the rectangular pixel is set to be equal to or less than half the length of the surface defect portion in the direction intersecting the predetermined direction. And According to the fluorescent magnetic particle flaw detection method according to claim 10 or 11, a process is performed on a captured image in units of rectangular pixels that are long in a predetermined direction in which a steel material is conveyed, thereby forming a linear shape in the predetermined direction. The determined surface defects and non-surface defects such as the accumulation of magnetic particles can be easily and accurately distinguished, and the processing speed can be increased and the configuration can be simplified.

【0007】[0007]

【発明の実施の形態】以下,添付図面を参照して,本発
明の実施の形態につき説明し,本発明の理解に供する。
尚,以下の実施の形態は,本発明の具体的な一例であっ
て,本発明の技術的範囲を限定する性格のものではな
い。図1に示すように,本発明の一実施の形態に係る蛍
光磁粉探傷装置0は,本発明に係る表面欠陥探傷装置を
蛍光磁粉探傷方法に適用した例であって,搬送装置1に
より所定方向DDに搬送される例えば鋼材2を磁化する
励起マグネット3と,上記鋼材2に蛍光磁粉液を散布す
る磁粉散布装置4と,磁粉散布装置4により上記鋼材2
表面に散布された蛍光磁粉の一部を洗浄する磁粉洗浄装
置5と,磁粉洗浄装置5により洗浄された後の鋼材2に
紫外線を照射して,蛍光磁粉を蛍光させるための紫外線
照射装置6と,上記所定方向DDに長い矩形状の画素9
が上記所定方向と直交する方向に一列に配置されたもの
であって,蛍光した蛍光磁粉が付着した鋼材2表面を撮
像するためのラインセンサ7と,上記ラインセンサ7に
より撮像された画像を基に表面欠陥の有無を検査する検
査部8とを具備する。上記蛍光磁粉探傷装置0は,上記
鋼材2の表面の上記所定方向DDに線状に形成された表
面欠陥SDの有無を検査するための装置である。この表
面欠陥SDは,鋼材2表面に点状に形成されていた微小
な表面欠陥SDが圧延工程等により上記所定方向DDに
延ばされたり,搬送途中に突起部に擦る等して線状に形
成されることが多い。図2(a)に検査対象となる表面
欠陥SD部分の形状の一例を示す。図2(a)におい
て,y軸は上記所定方向DD,x軸は上記所定方向DD
と直交する方向を示し,y軸方向の上記表面欠陥SD部
分の長さはMであらわされ,x軸方向の上記表面欠陥S
D部分の長さはLであらわされている。このような表面
欠陥SDが検出された場合には,例えばその表面欠陥S
D部分が削り取られたり,埋められたりして鋼材2表面
が修復される。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.
The following embodiment is a specific example of the present invention and does not limit the technical scope of the present invention. As shown in FIG. 1, a fluorescent particle inspection apparatus 0 according to one embodiment of the present invention is an example in which the surface defect inspection apparatus according to the present invention is applied to a fluorescent particle inspection method, For example, an excitation magnet 3 for magnetizing the steel material 2 conveyed to the DD, a magnetic powder spraying device 4 for spraying a fluorescent magnetic powder solution on the steel material 2, and the steel material 2 by the magnetic powder spraying device 4.
A magnetic powder cleaning device 5 for cleaning a part of the fluorescent magnetic powder sprayed on the surface, and an ultraviolet light irradiating device 6 for irradiating the steel material 2 cleaned by the magnetic powder cleaning device 5 with ultraviolet light to make the fluorescent magnetic powder fluorescent. A rectangular pixel 9 which is long in the predetermined direction DD.
Are arranged in a line in a direction orthogonal to the predetermined direction, and are based on a line sensor 7 for imaging the surface of the steel material 2 to which the fluorescent magnetic powder adheres, and an image captured by the line sensor 7. And an inspection unit 8 for inspecting the presence or absence of a surface defect. The fluorescent magnetic particle flaw detector 0 is a device for inspecting the presence or absence of a surface defect SD linearly formed on the surface of the steel material 2 in the predetermined direction DD. This surface defect SD is formed in a linear manner by the minute surface defect SD formed in the shape of a dot on the surface of the steel material 2 being extended in the above-mentioned predetermined direction DD by a rolling process or the like, or being rubbed against a projection during the transportation. Often formed. FIG. 2A shows an example of the shape of a surface defect SD portion to be inspected. In FIG. 2A, the y axis is the predetermined direction DD, and the x axis is the predetermined direction DD.
The length of the surface defect SD portion in the y-axis direction is represented by M, and the length of the surface defect S in the x-axis direction is M.
The length of the D portion is represented by L. When such a surface defect SD is detected, for example, the surface defect S is detected.
The surface of the steel material 2 is repaired by shaving or burying the D portion.

【0008】以下,本発明に係る蛍光磁粉探傷方法と合
わせて上記蛍光磁粉探傷装置の詳細について説明する。
上記表面欠陥SDを探傷するために,上記蛍光磁粉探傷
装置0では,はじめの工程として,搬送装置1により上
記所定方向DDに搬送される鋼材2が,上記励起マグネ
ット3によって一様に磁化される(磁化工程)。但し,
鋼材2に表面欠陥SDが存在する場合には,その部分に
漏洩磁束が存在することになるため,表面欠陥SDのな
い部分よりも強い磁界が生じている。そこで次に,磁化
された鋼材2表面に水等を媒体にして磁粉散布装置4に
よって蛍光磁粉FMが散布される(蛍光磁粉付着工
程)。このとき蛍光磁粉FMは,強い磁界が生じている
表面欠陥SD付近に高密度で付着し,かつ他の欠陥のな
い部分と較べて剥離し難い。次に,洗浄装置5によっ
て,表面欠陥SD部分以外に付着した余計な蛍光磁粉が
鋼材表面から洗い流される。しかしながら,表面欠陥S
D以外の部分でも鋼材2表面の油滴等の周りに蛍光磁粉
が固まって付着したために,洗い流されず,そのまま鋼
材2表面に残ってしまう蛍光磁粉FMもある。いわゆる
磁粉溜まりである。この磁粉溜まり(非表面欠陥部分)
MSは,通常点状に形成される。図2(b)に上記非表
面欠陥部分MSの形状の一例を示す。図2(b)では,
非表面欠陥部分MSの直径がNであらわされている。次
に,紫外線照射装置6によって紫外線を線状に照射して
上記蛍光磁粉FMを蛍光させた状態で,上記ラインセン
サ7により鋼材2表面が撮像される(撮像工程)。
The details of the above-described fluorescent magnetic particle flaw detection apparatus will be described together with the fluorescent magnetic particle flaw detection method according to the present invention.
In order to detect the surface defect SD, in the fluorescent magnetic particle inspection apparatus 0, as a first step, the steel material 2 transported in the predetermined direction DD by the transport device 1 is uniformly magnetized by the excitation magnet 3. (Magnetization step). However,
When the surface defect SD exists in the steel material 2, since a leakage magnetic flux exists in that portion, a stronger magnetic field is generated than in the portion having no surface defect SD. Then, next, the magnetic powder FM is sprayed on the surface of the magnetized steel material 2 by the magnetic powder spraying device 4 using water or the like as a medium (fluorescent magnetic powder attaching step). At this time, the fluorescent magnetic powder FM adheres at a high density in the vicinity of the surface defect SD where a strong magnetic field is generated, and is less likely to be peeled off as compared with other defect-free portions. Next, unnecessary fluorescent magnetic powder attached to portions other than the surface defect SD portion is washed away from the steel material surface by the cleaning device 5. However, the surface defect S
Even in portions other than D, the fluorescent magnetic powder FM solidifies and adheres around oil droplets and the like on the surface of the steel material 2, so that there is also a fluorescent magnetic powder FM that is not washed away and remains on the surface of the steel material 2 as it is. This is a so-called magnetic powder pool. This magnetic powder pool (non-surface defect part)
The MS is usually formed in a point shape. FIG. 2B shows an example of the shape of the non-surface defect portion MS. In FIG. 2B,
The diameter of the non-surface defect portion MS is represented by N. Next, the surface of the steel material 2 is imaged by the line sensor 7 in a state in which the fluorescent magnetic particles FM are fluoresced by irradiating ultraviolet rays linearly with the ultraviolet irradiating device 6 (imaging step).

【0009】上記ラインセンサ7は,鋼材2が搬送され
る方向と直交する方向に複数の画素9が一列に配置され
たものである。図3に示すように,上記鋼材2表面に付
着した蛍光磁粉FSの蛍光は,鋼材2表面の鉛直方向又
はそれに近い方向に光軸を有する結像光学系10によっ
て上記ラインセンサ7の画素9上に結像される。また,
上記ラインセンサ7では,例えばフォトダイオード等の
画素9内に光があたると,その分だけ電荷が蓄積され
る。所定の露光時間の間に各画素9に蓄積された電荷量
は,外部から定期的に与えられる転送パルスに応じて一
括して読み出される。上記鋼材2は上記搬送装置1によ
って上記所定方向DDに順次搬送されるので,上記ライ
ンセンサ7から出力される映像出力を積算することによ
って,上記鋼材2表面の撮像画像を得ることができる。
また,上記画素9には,上記鋼材2が搬送される上記所
定方向DDに長い矩形状のものが用いられる。上記矩形
状の画素9の短辺側の長さは,検査対象となる最小の上
記表面欠陥SD部分の上記所定方向DDと直交する方向
の長さLに基づいて設定され,例えば上記長さLの半分
以下のものが用いられる。また,上記矩形状の画素9の
長辺側の長さは,上記表面欠陥SD部分の上記所定方向
DDの長さMと上記非表面欠陥部分MSの上記所定方向
DDの長さNとに基づいて設定され,例えば上記長さN
の2倍以上であって上記長さM以下のものが用いられ
る。さらに,1画素当たりの露光時間,又は1ラインの
スキャン速度が上記搬送装置1によって搬送される鋼材
2の移動速度と較べて十分に短くない場合には,上記露
光時間の間の上記鋼材2の移動量を,上記画素9の長辺
側の長さに考慮する必要がある。この場合には,露光時
間の間の移動した部分の光量も当該画素9に加算される
ので,上記矩形状の画素9の長辺側の長さを,上記矩形
状の画素9の上記所定方向DDの長さと上記露光時間の
間の鋼材2の移動量とを加算したものに換算する必要が
ある。
The line sensor 7 has a plurality of pixels 9 arranged in a line in a direction perpendicular to the direction in which the steel material 2 is conveyed. As shown in FIG. 3, the fluorescence of the fluorescent magnetic powder FS attached to the surface of the steel material 2 is reflected on the pixels 9 of the line sensor 7 by an imaging optical system 10 having an optical axis in a direction perpendicular to or near the surface of the steel material 2. Is imaged. Also,
In the line sensor 7, for example, when light strikes the pixel 9 such as a photodiode, the charge is accumulated by that amount. The charge amount accumulated in each pixel 9 during a predetermined exposure time is read out collectively according to a transfer pulse periodically supplied from the outside. Since the steel material 2 is sequentially conveyed in the predetermined direction DD by the conveyance device 1, a captured image of the surface of the steel material 2 can be obtained by integrating the video output output from the line sensor 7.
Further, a rectangular pixel long in the predetermined direction DD in which the steel material 2 is transported is used as the pixel 9. The length of the short side of the rectangular pixel 9 is set based on the length L of the minimum surface defect SD to be inspected in a direction orthogonal to the predetermined direction DD. Or less than half of the The length of the long side of the rectangular pixel 9 is based on the length M of the surface defect SD in the predetermined direction DD and the length N of the non-surface defect MS in the predetermined direction DD. Is set, for example, the length N
The length is not less than twice and not more than the length M. Further, if the exposure time per pixel or the scanning speed of one line is not sufficiently shorter than the moving speed of the steel material 2 conveyed by the conveyance device 1, the steel material 2 during the exposure time is not used. It is necessary to consider the movement amount based on the length of the long side of the pixel 9. In this case, the light amount of the moved portion during the exposure time is also added to the pixel 9, so that the length of the long side of the rectangular pixel 9 is determined by the predetermined direction of the rectangular pixel 9. It is necessary to convert to the sum of the length of the DD and the amount of movement of the steel material 2 during the above exposure time.

【0010】ここで,図3を用いて上記画素9の具体的
な大きさの一例を定める。上記結像光学系10の光学倍
率は1/8,上記表面欠陥SD部分のy方向の長さを5
mm,x方向の長さを0.5mm,上記非表面欠陥部分
MSの直径を1mm,鋼材2の移動速度を1000mm
/秒,1ラインのスキャン速度を1/1000秒とす
る。この場合,上記鋼材2表面にある上記表面欠陥SD
部分の上記ラインセンサ7上の結像面11における大き
さは,y方向について5/8mm,x方向について0.
5/8mmとなり,上記非表面欠陥部分MSの直径は1
/8mmとなる。また,上記ラインセンサ7の各画素9
について1走査する間に,上記鋼材2は上記所定方向D
D(y方向)に1mm移動し,上記結像面10上では1
/8mm移動する。そこで,上記矩形状の画素9の長辺
側の長さ(y方向の長さ)は, 2×1/8mm≦1/8mm+(y方向の長さ)≦5/
8mm を満たす,即ち0.125mm以上0.500mm以下
の値で,例えば0.200mmに設定される。一方,上
記矩形状の画素9の短辺側の長さ(x方向の長さ)は, (x方向の長さ)≦0.5/8mm/2 を満たす,即ち0.03125mm以下の値で,例えば
0.020mmに設定される。上記のようにして求めた
画素9と,表面欠陥SD部分,及び非欠陥部分MSとの
大きさの関係を図4に示す。尚,1ラインのスキャン速
度が上記搬送装置1によって搬送される鋼材2の移動速
度と較べて十分に短い場合には,上記露光時間の間の上
記鋼材2の移動量は無視してもよい。さらに,上記のよ
うにスキャン速度が上記矩形状の画素9のy方向の長さ
と関係することは,上記露光時間を変更することによっ
て,ハードウェアの変更なしに上記矩形状の画素9のy
方向の長さを実質的に変更可能であることを意味する。
これにより,上記表面欠陥SDの大きさに応じた調整が
可能となる。ただし,露光時間変更に伴い感度が変わっ
てしまうため,ダイナミックレンジの大きい画素を用い
る必要がある。
Here, an example of a specific size of the pixel 9 will be determined with reference to FIG. The optical magnification of the imaging optical system 10 is 1/8, and the length of the surface defect SD portion in the y direction is 5
mm, the length in the x direction is 0.5 mm, the diameter of the non-surface defect portion MS is 1 mm, and the moving speed of the steel material 2 is 1000 mm.
/ Sec, and the scanning speed of one line is 1/1000 second. In this case, the surface defect SD on the surface of the steel material 2
The size of the portion on the image plane 11 on the line sensor 7 is 5/8 mm in the y direction and 0. 0 in the x direction.
5/8 mm, and the diameter of the non-surface defect portion MS is 1
/ 8 mm. In addition, each pixel 9 of the line sensor 7
During one scan, the steel material 2 moves in the predetermined direction D
1 mm in the direction D (y direction), and 1 mm on the image plane 10.
/ 8 mm. Therefore, the length (length in the y direction) of the longer side of the rectangular pixel 9 is 2 × 1 / mm ≦ 1 / mm + (length in the y direction) ≦ 5 /
8mm, that is, a value between 0.125 mm and 0.500 mm, for example, set to 0.200 mm. On the other hand, the length (length in the x direction) of the short side of the rectangular pixel 9 satisfies (length in the x direction) ≦ 0.5 / 8 mm / 2, that is, a value of 0.03125 mm or less. , For example, set to 0.020 mm. FIG. 4 shows the relationship between the size of the pixel 9, the surface defect SD portion, and the non-defect portion MS obtained as described above. When the scanning speed of one line is sufficiently shorter than the moving speed of the steel material 2 conveyed by the conveying device 1, the moving amount of the steel material 2 during the exposure time may be ignored. Further, the fact that the scanning speed is related to the length of the rectangular pixel 9 in the y direction as described above is based on the fact that the exposure time is changed so that the y of the rectangular pixel 9 can be changed without changing the hardware.
This means that the length in the direction can be substantially changed.
This enables adjustment according to the size of the surface defect SD. However, since the sensitivity changes as the exposure time changes, it is necessary to use pixels with a large dynamic range.

【0011】そして,上記ラインセンサ7から出力され
る映像信号は,上記検査部8に入力され蓄積される。上
記検査部8では,上記矩形状の画素9を単位として上記
映像信号が処理され,上記鋼材2について上記表面欠陥
SDの有無が検査される(検査工程)。ここで,図4
は,ある画素内に上記表面欠陥部分又は上記非表面欠陥
部分が含まれた状態を示す図である。図5において,あ
る画素9内に上記表面欠陥SD部分が含まれた場合(図
5(a)参照)と,上記非表面欠陥部分MSが含まれた
場合(図5(b)参照)とを較べれば,上記画素9が矩
形状であるため,上記表面欠陥SD部分が含まれる場合
の方が,上記非表面欠陥部分MSが含まれる場合よりも
画素9内で占有する面積が大きくなる。即ち,ある画素
9内における受光量が,上記表面欠陥SD部分が含まれ
る場合の方が上記非表面欠陥部分MSが含まれる場合と
較べて大きくなる。このため,ある画素9に対して所定
のしきい値を設定して表面欠陥SDの有無を検査する場
合でも,本来表面欠陥である部分を欠陥でないと判定す
る未検出や,本来表面欠陥でない部分を欠陥であると判
定する過検出が行われ難くなる。また,ハードウェアで
あるフォトダイオード等によって表面欠陥SD部分の強
調が行われるため,複雑な処理が要らず処理速度が速
く,構成も簡単になる。また,上記画素9の大きさも,
上記表面欠陥部分の半分程度のものであればよいから,
画素密度を大きくする必要もない。上記検査部8におけ
る表面欠陥SDの有無を判定する場合のしきい値は,上
記画素9のほぼ全域に光が当たった状態を基準にして定
めるのがよい。例えば上記画素9のほぼ全域に光が当た
った場合の光量が10とし,最小の値が0とするなら
ば,しきい値は9程度に設定する。このように設定すれ
ば,図4に示したような画素9の大きさで,上記表面欠
陥SD部分と,上記非表面欠陥部分MSとが分離され
る。この場合,例えば画素9a,9b,9cにおいて上
記表面欠陥SD部分が存在するとの判定がなされる。上
記検査部8は,隣接する画素9について上記表面欠陥S
D部分があると判定された場合には,これらを一つの表
面欠陥SDとして扱う等の処理を行うことにより,形状
認識等の処理を行うことなく,上記表面欠陥SDの存在
範囲を簡単に特定することができる。
The video signal output from the line sensor 7 is input to the inspection unit 8 and stored. The inspection unit 8 processes the video signal in units of the rectangular pixels 9 and inspects the steel material 2 for the presence or absence of the surface defect SD (inspection step). Here, FIG.
FIG. 4 is a diagram showing a state in which a certain pixel includes the above-mentioned surface defect portion or the above-mentioned non-surface defect portion. In FIG. 5, a case where the surface defect SD portion is included in a certain pixel 9 (see FIG. 5A) and a case where the non-surface defect portion MS is included (see FIG. 5B) are shown. In comparison, since the pixel 9 is rectangular, the area occupied in the pixel 9 when the surface defect SD portion is included is larger than when the non-surface defect portion MS is included. That is, the amount of received light in a certain pixel 9 is larger when the surface defect SD portion is included than when the non-surface defect portion MS is included. For this reason, even when a predetermined threshold value is set for a certain pixel 9 and the presence / absence of a surface defect SD is inspected, a part which is originally a surface defect is not detected as a part which is not a defect, or a part which is not originally a surface defect It is difficult to perform over-detection for determining that is a defect. Further, since the surface defect SD portion is emphasized by a photodiode or the like as hardware, complicated processing is not required, the processing speed is high, and the configuration is simple. Also, the size of the pixel 9 is
As long as it is about half of the above surface defects,
There is no need to increase the pixel density. The threshold value for determining the presence or absence of the surface defect SD in the inspection unit 8 is preferably determined based on a state in which light is applied to almost the entire area of the pixel 9. For example, if the light amount when light hits almost the entire area of the pixel 9 is 10 and the minimum value is 0, the threshold value is set to about 9. With this setting, the surface defect SD portion and the non-surface defect portion MS are separated by the size of the pixel 9 as shown in FIG. In this case, for example, it is determined that the surface defect SD portion exists in the pixels 9a, 9b, and 9c. The inspection unit 8 performs the above-described surface defect S for the adjacent pixels 9.
If it is determined that there is a D portion, the existence range of the surface defect SD is easily specified without performing a process such as shape recognition by performing a process such as treating them as one surface defect SD. can do.

【0012】ところで,各画素の大きさを上記のように
上記矩形状の画素9の短辺側の長さを,例えば上記長さ
Lの半分以下に設定し,また上記矩形状の画素9の長辺
側の長さを,例えば上記長さNの2倍以上であって上記
長さM以下に設定するのは,上記表面欠陥SD部分から
の光量と上記非表面欠陥部分MSの光量との比,即ちS
/N比を確保するためである。図5(a)に示したよう
に,上記矩形状の画素9の短辺側の長さと上記表面欠陥
SD部分のx方向の長さがほぼ同じような場合,上記表
面欠陥SDのx方向の中心が図6(a)のように画素9
の境界に位置すると,上記表面欠陥SD部分からの光量
は,ほぼ半分になる。上記図6(a)の状態から上記表
面欠陥SD部分がx方向に少しでもずれると,隣接する
画素9a又は画素9bのどちらかの光量が増加するか
ら,図6(a)に示した状態が,ある表面欠陥SDにと
って上記S/N比が最低となる状態である。言い換えれ
ば,図6(b)に示すように,上記矩形状の画素9の短
辺側の長さを,上記表面欠陥SD部分のx方向の長さL
の半分以下に設定すれば,ある表面欠陥SDについて隣
接するいずれかの画素9で,画素9ほぼ全域に上記表面
欠陥SDが存在するような状態にすることができる。ま
た,上記表面欠陥SD部分と上記非表面欠陥部分MSと
を十分に分離するために上記S/N比を2程度確保する
場合には,上記表面欠陥SD部分と上記非表面欠陥部分
MSとの単位面積当たりの輝度が等しいという前提で,
上記画素9の長辺側の長さを,上記非表面欠陥部分MS
の直径Nの2倍程度に設定することになる。上記非表面
欠陥部分MSの輝度は,上記表面欠陥SD部分の輝度よ
りも大きい場合もあるので,それ以上に大きいことが望
ましい。一方,上記表面欠陥SD部分のy方向の長さよ
りも上記画素9の長辺側の長さを大きくすると,それだ
け上記表面欠陥SD部分が上記画素9内を占有する割合
が低下するので,上記画素9のy方向の長さは上記表面
欠陥SD部分のy方向の長さ以下に設定するのがよい。
このように,本実施の形態に係る蛍光磁粉探傷装置で
は,鋼材の搬送方向に長い矩形状の画素を利用すること
により,簡単に表面欠陥と磁粉溜まり等の非表面欠陥と
を判別することができ,処理速度の迅速化,構成の簡素
化を図ることが可能となる。
By the way, the size of each pixel is set as described above such that the length of the short side of the rectangular pixel 9 is set to, for example, half or less of the length L. The length of the long side is set to be, for example, not less than twice the length N and not more than the length M, because the light amount from the surface defect SD portion and the light amount of the non-surface defect portion MS are determined. Ratio, ie S
This is for ensuring the / N ratio. As shown in FIG. 5A, when the length of the short side of the rectangular pixel 9 is substantially the same as the length of the surface defect SD portion in the x direction, the surface defect SD in the x direction is substantially the same. The center is the pixel 9 as shown in FIG.
, The amount of light from the surface defect SD becomes almost half. If the surface defect SD portion slightly deviates in the x direction from the state of FIG. 6A, the light amount of either the adjacent pixel 9a or the pixel 9b increases, so that the state shown in FIG. In this state, the S / N ratio is the lowest for a certain surface defect SD. In other words, as shown in FIG. 6B, the length of the short side of the rectangular pixel 9 is determined by the length L in the x direction of the surface defect SD portion.
If the surface defect SD is set to be less than half, it is possible to make a state in which the surface defect SD exists in almost all the pixels 9 in any of the pixels 9 adjacent to a certain surface defect SD. When the S / N ratio is about 2 in order to sufficiently separate the surface defect SD portion and the non-surface defect portion MS, the S / N ratio between the surface defect SD portion and the non-surface defect portion MS is reduced. Assuming that the luminance per unit area is equal,
The length of the long side of the pixel 9 is determined by the non-surface defect portion MS.
Is set to about twice the diameter N of Since the luminance of the non-surface defect portion MS may be higher than the luminance of the surface defect SD portion, it is desirable that the luminance be higher than that. On the other hand, if the length of the long side of the pixel 9 is made longer than the length of the surface defect SD portion in the y direction, the ratio of the surface defect SD portion occupying the inside of the pixel 9 decreases accordingly. 9 is preferably set to be equal to or less than the length of the surface defect SD portion in the y direction.
As described above, the fluorescent magnetic particle flaw detector according to the present embodiment makes it possible to easily discriminate between a surface defect and a non-surface defect such as a magnetic particle pool by using a rectangular pixel that is long in the transport direction of the steel material. As a result, the processing speed can be increased and the configuration can be simplified.

【0013】[0013]

【実施例】上記実施の形態では,鋼材2について蛍光磁
粉探傷方法を適用して表面欠陥SDの有無の検査を行っ
たが,線状の表面欠陥SDと点状の非表面欠陥MSが存
在するような他の部材についての表面欠陥探傷に本発明
を適用することも可能である。このような表面欠陥探傷
装置も本発明における表面欠陥探傷装置の一例である。
また,上記実施の形態では,上記検査部8において上記
ラインセンサ7の画素9からの映像信号をそのまま用い
て表面欠陥SDの有無の検査を行ったが,上記映像信号
を蓄積して,図7に示すような2次元画像Iを作成し,
これに空間フィルタリングを施すことによって,例えば
画素9aと画素9dからなる新しい画素9sを作成し,
この画素9sを単位として上記表面欠陥SDの有無を検
査するようにしてもよい。これにより,任意の形状の表
面欠陥SDについて有効な検査を行うことができる。ま
た,ある画像について異なる空間フィルタリングを複数
回行うことによって検査精度をさらに高めることが可能
となる。このような表面欠陥探傷装置及び蛍光磁粉探傷
方法も本発明における表面欠陥探傷装置及び蛍光磁粉探
傷方法の一例である。
EXAMPLE In the above embodiment, the steel material 2 was inspected for the presence or absence of a surface defect SD by applying the fluorescent magnetic particle flaw detection method. However, a linear surface defect SD and a point-like non-surface defect MS are present. The present invention can be applied to surface defect inspection for such other members. Such a surface defect inspection apparatus is also an example of the surface defect inspection apparatus according to the present invention.
In the above-described embodiment, the inspection unit 8 performs the inspection for the presence or absence of the surface defect SD using the video signal from the pixel 9 of the line sensor 7 as it is. Create a two-dimensional image I as shown in
By applying spatial filtering to this, a new pixel 9s composed of, for example, pixel 9a and pixel 9d is created,
The presence or absence of the surface defect SD may be inspected in units of the pixel 9s. Thereby, an effective inspection can be performed for the surface defect SD having an arbitrary shape. In addition, by performing different spatial filtering on a certain image a plurality of times, it is possible to further improve the inspection accuracy. Such a surface defect inspection apparatus and a fluorescent magnetic particle inspection method are also examples of the surface defect inspection apparatus and the fluorescent magnetic particle inspection method in the present invention.

【0014】[0014]

【発明の効果】上記のように上記請求項1〜9のいずれ
か1項に記載の表面欠陥探傷装置によれば,鋼材等の物
品が搬送される所定方向に長い矩形状の画素を単位とし
て撮像画像に処理を施すことにより,上記所定方向に線
状に形成された表面欠陥と磁粉溜まり等の非表面欠陥と
を簡易且つ精度良く判別することができ,しかも処理速
度の迅速化,構成の簡素化を図ることが可能となる。特
に鋼材の表面欠陥を蛍光磁粉探傷方法を用いて探傷する
場合に有効である。さらに,上記矩形状の画素の露光時
間を変更することによって,実際の上記画素の大きさを
変更することなく,実質的に上記矩形状の画素の上記所
定方向の長さを変化させることにより,表面欠陥の大き
さに合わせた調整を容易に行うことができる。さらに,
上記矩形状の画素の大きさの調整は,撮像画像に空間フ
ィルタリングを施すことによっても可能であり,より自
由な調整が可能となる。また,上記請求項10又は11
に記載の蛍光磁粉探傷方法によれば,鋼材が搬送される
所定方向に長い矩形状の画素を単位として撮像画像に処
理を施すことにより,上記所定方向に線状に形成された
表面欠陥と磁粉溜まり等の非表面欠陥とを簡易且つ精度
良く判別することができ,しかも処理速度の迅速化,構
成の簡素化を図ることが可能となる。
As described above, according to the surface defect inspection apparatus according to any one of the first to ninth aspects, a rectangular pixel long in a predetermined direction in which an article such as a steel material is conveyed is used as a unit. By performing processing on the captured image, surface defects linearly formed in the above-mentioned predetermined direction and non-surface defects such as magnetic powder accumulation can be easily and accurately distinguished. Simplification can be achieved. In particular, it is effective when detecting a surface defect of a steel material using a fluorescent magnetic particle flaw detection method. Further, by changing the exposure time of the rectangular pixel, by changing the length of the rectangular pixel in the predetermined direction substantially without changing the actual size of the pixel, Adjustment according to the size of the surface defect can be easily performed. further,
The adjustment of the size of the rectangular pixel can also be performed by performing spatial filtering on the captured image, and more flexible adjustment is possible. Further, the above-mentioned claim 10 or 11
According to the fluorescent magnetic particle flaw detection method described in (1), by processing the captured image in units of rectangular pixels that are long in the predetermined direction in which the steel material is conveyed, the surface defects linearly formed in the predetermined direction and the magnetic powder are processed. Non-surface defects such as pools can be easily and accurately discriminated, and the processing speed can be increased and the configuration can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態に係る蛍光磁粉探傷装
置の概略構成を示す図。
FIG. 1 is a diagram showing a schematic configuration of a fluorescent magnetic particle flaw detector according to an embodiment of the present invention.

【図2】 表面欠陥部分と非表面欠陥部分の形状の一例
を示す図。
FIG. 2 is a diagram showing an example of the shape of a surface defect portion and a non-surface defect portion.

【図3】 結像光学系を説明するための図。FIG. 3 is a diagram illustrating an imaging optical system.

【図4】 画素,表面欠陥部分,非表面欠陥部分の大き
さの関係の具体例を示す図。
FIG. 4 is a diagram showing a specific example of the relationship between the sizes of pixels, surface defect portions, and non-surface defect portions.

【図5】 表面欠陥部分と非表面欠陥部分の判別を説明
するための図。
FIG. 5 is a diagram for explaining the determination of a surface defect portion and a non-surface defect portion.

【図6】 表面欠陥部分のS/N比を説明するための
図。
FIG. 6 is a view for explaining an S / N ratio of a surface defect portion.

【図7】 空間フィルタリングによる画素形成を説明す
るための図。
FIG. 7 is a diagram illustrating pixel formation by spatial filtering.

【図8】 蛍光磁粉探傷方法を実施することのできる自
動探傷装置の概略構成を示す図。
FIG. 8 is a diagram showing a schematic configuration of an automatic flaw detection apparatus capable of performing the fluorescent magnetic particle flaw detection method.

【図9】 上記自動探傷装置による表面欠陥の検出結果
を示す図。
FIG. 9 is a view showing a detection result of a surface defect by the automatic flaw detector.

【符号の説明】[Explanation of symbols]

1…搬送装置 2…鋼材(物品) 7…ラインセンサ(撮像手段) 8…検査部(検査手段) 9…画素 FM…蛍光磁粉 SD…表面欠陥 MS…非表面欠陥部分 DESCRIPTION OF SYMBOLS 1 ... Conveying apparatus 2 ... Steel material (article) 7 ... Line sensor (imaging means) 8 ... Inspection part (inspection means) 9 ... Pixel FM ... Fluorescent magnetic powder SD ... Surface defect MS ... Non-surface defect part

フロントページの続き (72)発明者 勝見 栄雄 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 鈴木 紀生 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 田中 浩信 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 七瀬谷 則吉 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 海田 浩明 兵庫県神戸市灘区灘浜東町2番地 株式会 社神戸製鋼所神戸製鉄所内 (72)発明者 熊谷 克俊 兵庫県神戸市灘区灘浜東町2番地 株式会 社神戸製鋼所神戸製鉄所内Continuation of the front page (72) Inventor Hideo Katsumi 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel Co., Ltd. No. 1 Inside Kobe Steel, Ltd.Takasago Works (72) Inventor Hironobu Tanaka 1st Kanazawa-cho, Kakogawa-shi, Hyogo Prefecture Inside Kobe Steel, Ltd.Kakogawa Works (72) Inventor Noriyoshi Nanaseya Kanazawa-cho, Kakogawa-shi, Hyogo 1 Kobe Steel Works Kakogawa Works (72) Inventor Hiroaki Kaita 2 Nadahama-Higashi-cho, Nada-ku, Kobe City, Hyogo Prefecture Kobe Steel Works Kobe Steel Works, Ltd. (72) Inventor Katsutoshi Kumagai Natsu-ku, Kobe City, Hyogo Prefecture Nadahama Higashicho 2 Kobe Steel Works Kobe Works

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 物品を所定方向に搬送する搬送手段と,
上記所定方向と交差する方向に複数配列された画素を有
し,上記搬送手段により搬送される物品の表面を撮像す
る撮像手段と,上記撮像手段により撮像された物品表面
の画像を処理し,上記物品の表面の上記所定方向に線状
に形成された表面欠陥の有無を検査する検査手段とを具
備してなる表面欠陥探傷装置において,上記検査手段
が,上記所定方向に長い矩形状の画素を単位として上記
物品表面の画像を処理するものであり,上記矩形状の画
素の短辺側の長さは,検査対象となる最小の上記表面欠
陥がある部分の上記所定方向と交差する方向の長さに基
づいて設定されてなることを特徴とする表面欠陥探傷装
置。
1. A conveying means for conveying an article in a predetermined direction,
An imager having a plurality of pixels arranged in a direction intersecting with the predetermined direction and imaging the surface of the article conveyed by the conveyor; processing an image of the article surface imaged by the imager; An inspection means for inspecting the presence or absence of a surface defect linearly formed in the predetermined direction on the surface of the article, wherein the inspection means detects a rectangular pixel long in the predetermined direction. The image of the surface of the article is processed as a unit, and the length of the short side of the rectangular pixel is the length of the portion having the smallest surface defect to be inspected in the direction intersecting the predetermined direction. A surface defect flaw detection device characterized by being set based on the surface defect.
【請求項2】 上記矩形状の画素の短辺側の長さが,上
記表面欠陥がある部分の上記所定方向と交差する方向の
長さの半分以下に設定されてなる請求項1に記載の表面
欠陥探傷装置。
2. The device according to claim 1, wherein the length of the short side of the rectangular pixel is set to be less than half the length of the portion having the surface defect in the direction intersecting the predetermined direction. Surface flaw detection equipment.
【請求項3】 上記矩形状の画素の長辺側の長さが,上
記物品の表面に形成された点状の非表面欠陥部分及び上
記表面欠陥のある部分の上記所定方向の長さに基づいて
設定されてなる請求項1又は2に記載の表面欠陥探傷装
置。
3. The method according to claim 1, wherein the length of the long side of the rectangular pixel is based on the length of the point-like non-surface defect portion formed on the surface of the article and the portion having the surface defect in the predetermined direction. The surface defect flaw detection device according to claim 1, wherein the surface flaw detection device is set by setting.
【請求項4】 上記矩形状の画素の長辺側の長さが,上
記非表面欠陥部分の上記所定方向の長さの2倍以上であ
って上記表面欠陥部分の上記所定方向の長さ以下に設定
されてなる請求項3に記載の表面欠陥探傷装置。
4. The length of the long side of the rectangular pixel is at least twice the length of the non-surface defect portion in the predetermined direction and not more than the length of the surface defect portion in the predetermined direction. The surface defect flaw detection apparatus according to claim 3, wherein the flaw detection apparatus is set to:
【請求項5】 上記撮像手段が全画素に対して所定時間
の露光を定期的に行うものであって,上記矩形状の画素
の長辺側の長さが,上記矩形状の画素の上記所定方向の
長さと上記所定時間内の物品の移動量とを加算したもの
に換算されてなる請求項1〜4のいずれか1項に記載の
表面欠陥探傷装置。
5. The apparatus according to claim 1, wherein the imaging means periodically performs exposure for all pixels for a predetermined time, and a length of a long side of the rectangular pixel is equal to the predetermined length of the rectangular pixel. The surface defect inspection apparatus according to any one of claims 1 to 4, wherein the apparatus is converted into a value obtained by adding a length in a direction and a movement amount of the article within the predetermined time.
【請求項6】 上記矩形状の画素が,上記受光素子から
入力された信号列に対して空間フィルタリングを行うこ
とにより作成されてなる請求項1〜5のいずれか1項に
記載の表面欠陥探傷装置。
6. The surface defect inspection according to claim 1, wherein the rectangular pixels are created by performing spatial filtering on a signal sequence input from the light receiving element. apparatus.
【請求項7】 上記物品表面の像を上記撮像手段上に結
像する結像光学系を更に具備すると共に,上記画素の大
きさが上記撮像手段における結像面上の上記表面欠陥の
ある部分の大きさに基づいて設定されてなる請求項1〜
6のいずれか1項に記載の表面欠陥探傷装置。
7. An image forming optical system for forming an image of the surface of the article on the image pickup means, and a portion of the image pickup means having the surface defect on the image forming surface of the image pickup means. Claim 1 which is set based on the size of
7. The surface defect flaw detector according to any one of 6.
【請求項8】 上記検査手段が,上記画素の輝度値が所
定の判定値より大きいか小さいかにより表面欠陥の有無
を検査してなる請求項1〜7のいずれか1項に記載の表
面欠陥探傷装置。
8. The surface defect according to claim 1, wherein said inspection means inspects the presence or absence of a surface defect based on whether the luminance value of said pixel is larger or smaller than a predetermined judgment value. Flaw detector.
【請求項9】 上記物品が鋼材であって,上記撮像手段
が,磁化された上記鋼材表面に付着した蛍光磁粉の蛍光
を撮像するものである請求項1〜8のいずれか1項に記
載の表面欠陥探傷装置。
9. The article according to claim 1, wherein the article is a steel material, and wherein the imaging means images fluorescence of the fluorescent magnetic powder attached to the surface of the magnetized steel material. Surface flaw detection equipment.
【請求項10】 所定方向に搬送される鋼材を磁化する
磁化工程と,磁化された上記鋼材表面の上記所定方向に
形成された表面欠陥に蛍光磁粉を付着させる蛍光磁粉付
着工程と,上記所定の方向と交差する方向に複数配列さ
れた画素を用いて,上記鋼材の表面に付着した蛍光磁粉
の蛍光を撮像する撮像工程と,撮像された上記鋼材表面
の画像を処理し,上記鋼材の表面の上記所定方向に線状
に形成された表面欠陥の有無を検査する検査工程とを具
備してなる蛍光磁粉探傷方法において,上記検査工程
が,上記所定方向に長い矩形状の画素を単位として上記
鋼材表面の画像を処理するものであり,上記矩形状の画
素の長辺側の長さは,上記鋼材表面に点状に蛍光磁粉が
付着して形成された非表面欠陥部分,及び上記表面欠陥
に蛍光磁粉が付着した表面欠陥部分の上記所定方向の長
さに基づいて設定され,上記矩形状の画素の短辺側の長
さは,検査対象となる最小の上記表面欠陥部分の上記所
定方向と交差する方向の長さに基づいて設定されてなる
ことを特徴とする蛍光磁粉探傷方法。
10. A magnetizing step of magnetizing a steel material conveyed in a predetermined direction, a fluorescent magnetic powder attaching step of attaching fluorescent magnetic powder to a surface defect formed in the predetermined direction on the surface of the magnetized steel material, and An imaging step of imaging the fluorescence of the fluorescent magnetic powder attached to the surface of the steel material by using a plurality of pixels arranged in a direction intersecting with the direction, and processing the captured image of the surface of the steel material to obtain an image of the surface of the steel material. An inspection step of inspecting the presence or absence of a surface defect linearly formed in the predetermined direction, wherein the inspection step is performed by using the steel material in units of rectangular pixels long in the predetermined direction. The image of the surface is processed. The length of the long side of the rectangular pixel is determined by the non-surface defect portion formed by the point-like fluorescent magnetic powder attached to the steel material surface and the surface defect. Fluorescent magnetic powder attached The length of the short side of the rectangular pixel is set based on the length of the surface defect portion in the predetermined direction. The length of the short side of the rectangular pixel in the direction intersecting the predetermined direction of the minimum surface defect portion to be inspected is set. A fluorescent magnetic particle flaw detection method, wherein the method is set based on the following.
【請求項11】 上記矩形状の画素の長辺側の長さが,
上記非表面欠陥部分の上記所定方向の長さの2倍以上で
あって上記表面欠陥部分の上記所定方向の長さ以下に設
定され,上記矩形状の画素の短辺側の長さが,上記表面
欠陥部分の上記所定方向と交差する方向の長さの半分以
下に設定されてなる請求項10に記載の蛍光磁粉探傷方
法。
11. The length of the long side of the rectangular pixel is:
The length of the non-surface defect portion is set to be at least twice the length in the predetermined direction and the length of the surface defect portion to be equal to or less than the length in the predetermined direction. The fluorescent magnetic particle flaw detection method according to claim 10, wherein the length of the surface defect portion is set to be equal to or less than half the length in a direction intersecting the predetermined direction.
JP02332898A 1998-02-04 1998-02-04 Surface defect inspection apparatus and fluorescent magnetic particle inspection method Expired - Fee Related JP3492509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02332898A JP3492509B2 (en) 1998-02-04 1998-02-04 Surface defect inspection apparatus and fluorescent magnetic particle inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02332898A JP3492509B2 (en) 1998-02-04 1998-02-04 Surface defect inspection apparatus and fluorescent magnetic particle inspection method

Publications (2)

Publication Number Publication Date
JPH11223610A true JPH11223610A (en) 1999-08-17
JP3492509B2 JP3492509B2 (en) 2004-02-03

Family

ID=12107525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02332898A Expired - Fee Related JP3492509B2 (en) 1998-02-04 1998-02-04 Surface defect inspection apparatus and fluorescent magnetic particle inspection method

Country Status (1)

Country Link
JP (1) JP3492509B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303851A (en) * 2006-05-09 2007-11-22 Shimadzu Corp In-line x-ray fluoroscopic apparatus
JP2008292345A (en) * 2007-05-25 2008-12-04 Kobe Steel Ltd Surface scratch inspection method and surface scratch inspection device for rolled material
JP2012083285A (en) * 2010-10-14 2012-04-26 Daido Steel Co Ltd Exterior appearance inspection method and exterior appearance inspection device
JP2013117463A (en) * 2011-12-05 2013-06-13 Ihi Corp Flaw detection device and flaw detection method of inspection object surface
KR101370878B1 (en) * 2012-10-12 2014-03-12 현진소재주식회사 A magnetic particle testing device with a rotation and a variable support structure of an abject being tested
CN104165893A (en) * 2014-08-18 2014-11-26 天津戴卡轮毂制造有限公司 Fluorescent penetrant inspection system and method
CN104422693A (en) * 2013-08-23 2015-03-18 上海金艺检测技术有限公司 Qualitative detection method for cold roller surface micro linear defect
CN108593657A (en) * 2018-04-23 2018-09-28 电子科技大学 A kind of image acquiring device for small-size magnetic material parts
JP2019078640A (en) * 2017-10-25 2019-05-23 Jfeスチール株式会社 Surface defect detection method and surface defect detector
EP3792620A1 (en) * 2019-09-12 2021-03-17 Jtekt Corporation Magnetic particle inspection device
CN112657746A (en) * 2020-12-15 2021-04-16 李小丹 Micropore atomization PT detection device
CN114252507A (en) * 2021-12-20 2022-03-29 济宁鲁科检测器材有限公司 Magnetic particle inspection defect identification system and method based on convolutional neural network

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303851A (en) * 2006-05-09 2007-11-22 Shimadzu Corp In-line x-ray fluoroscopic apparatus
JP2008292345A (en) * 2007-05-25 2008-12-04 Kobe Steel Ltd Surface scratch inspection method and surface scratch inspection device for rolled material
JP2012083285A (en) * 2010-10-14 2012-04-26 Daido Steel Co Ltd Exterior appearance inspection method and exterior appearance inspection device
JP2013117463A (en) * 2011-12-05 2013-06-13 Ihi Corp Flaw detection device and flaw detection method of inspection object surface
KR101370878B1 (en) * 2012-10-12 2014-03-12 현진소재주식회사 A magnetic particle testing device with a rotation and a variable support structure of an abject being tested
CN104422693A (en) * 2013-08-23 2015-03-18 上海金艺检测技术有限公司 Qualitative detection method for cold roller surface micro linear defect
CN104165893A (en) * 2014-08-18 2014-11-26 天津戴卡轮毂制造有限公司 Fluorescent penetrant inspection system and method
JP2019078640A (en) * 2017-10-25 2019-05-23 Jfeスチール株式会社 Surface defect detection method and surface defect detector
CN108593657A (en) * 2018-04-23 2018-09-28 电子科技大学 A kind of image acquiring device for small-size magnetic material parts
EP3792620A1 (en) * 2019-09-12 2021-03-17 Jtekt Corporation Magnetic particle inspection device
CN112657746A (en) * 2020-12-15 2021-04-16 李小丹 Micropore atomization PT detection device
CN114252507A (en) * 2021-12-20 2022-03-29 济宁鲁科检测器材有限公司 Magnetic particle inspection defect identification system and method based on convolutional neural network

Also Published As

Publication number Publication date
JP3492509B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
JPH11223610A (en) Surface defect inspection device and fluorescent magnetic particle flaw inspecting method
JP2011013007A (en) Magnetic particle flaw inspection apparatus
JPH10282063A (en) Automatic inspection apparatus for surface flaw
JPH08101130A (en) Surface flaw inspecting device
JP3332208B2 (en) Defect detection method and apparatus for netted glass
JP2008039444A (en) Method and apparatus for inspecting foreign matter
JP4015436B2 (en) Gold plating defect inspection system
WO2023135833A1 (en) Defect detecting device, and defect detecting method
JP3283356B2 (en) Surface inspection method
JP2005083906A (en) Defect detector
JPH08190633A (en) Defect judging method
JPH09113465A (en) Detection apparatus for surface fault for galvanized steel plate
JPH09210969A (en) Automatic magnetic particle inspection device
JPS5922895B2 (en) Automatic surface flaw detection method and equipment
JPH1019801A (en) Surface defect detector
JPH0763699A (en) Flaw inspection apparatus
JP2000111527A (en) Magnetic particle inspection apparatus
JP2965370B2 (en) Defect detection device
JP4474006B2 (en) Inspection device
JPH05142161A (en) Method and device for inspecting appearance, method and device for inspecting magnetic head, and magnetic head manufacturing facility
JP2000111528A (en) Magnetic particle inspection apparatus
Perng et al. A novel vision system for CRT panel auto-inspection
JPH09113467A (en) Method for deciding defect
JPS5847015B2 (en) edge detection device
JP2004347410A (en) Method and device for testing nuclear fuel pellet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees