JPH11223101A - Gas turbine moving blade - Google Patents

Gas turbine moving blade

Info

Publication number
JPH11223101A
JPH11223101A JP2330598A JP2330598A JPH11223101A JP H11223101 A JPH11223101 A JP H11223101A JP 2330598 A JP2330598 A JP 2330598A JP 2330598 A JP2330598 A JP 2330598A JP H11223101 A JPH11223101 A JP H11223101A
Authority
JP
Japan
Prior art keywords
shroud
cavity
blade
moving blade
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2330598A
Other languages
Japanese (ja)
Other versions
JP3426948B2 (en
Inventor
Ichiro Fukue
一郎 福江
Eiji Akita
栄司 秋田
Kiyoshi Suenaga
潔 末永
Yasuoki Tomita
康意 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP02330598A priority Critical patent/JP3426948B2/en
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to EP99102032A priority patent/EP0935052B1/en
Priority to DE69931088T priority patent/DE69931088T2/en
Priority to EP03025023.7A priority patent/EP1391581B1/en
Priority to EP09178798.6A priority patent/EP2157280B1/en
Priority to US09/243,821 priority patent/US6152695A/en
Priority to CA002261107A priority patent/CA2261107C/en
Publication of JPH11223101A publication Critical patent/JPH11223101A/en
Application granted granted Critical
Publication of JP3426948B2 publication Critical patent/JP3426948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat transfer coefficient by promoting convection at the internal part of the moving blade, to improve the cooling effect of a shroud, and to improve the cooling effect of the whole of the moving blade. SOLUTION: The internal part of a moving blade 1 forms an internal cavity throughout a whole length and a number of pin fins fixed on the two wall surface of an internal cavity are mounted on a whole wall surface. An enlargement cavity 6 is arranged at the internal part of a shroud 2 at the tip part of the moving blade 1, and a cooling air is caused to flow out downward of the shroud 2 through holes 7 from the periphery of the enlargement cavity 6. Since cooling air flows in the enlargement cavity 6 through the cavity of the moving blade and flows out downward of the shroud through the holes 7 in the periphery, the whole surface of the shroud and the periphery are evenly cooled. This constitution improves the heat transfer coefficient of the moving blade and improves the cooling effect of the whole of the moving blade through uniform cooling of the whole surface of the shroud.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は火力発電などに使用
されるガスタービン動翼に関し、特にシュラウドの冷却
構造を簡素化し、冷却性能を向上させるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine blade used for thermal power generation and the like, and more particularly to a structure for simplifying a shroud cooling structure and improving a cooling performance.

【0002】[0002]

【従来の技術】図7は従来の代表的なガスタービン動翼
を示し、(a)は動翼の縦断面図、(b)はそのE−E
断面図である。図において、21は動翼であり、22は
その先端のシュラウド、23はシュラウド22に設けら
れたフィンである。24は動翼21内に穿設されたマル
チホール、25は動翼21内壁に設けられたピンフィ
ン、26はリブであり空胴29を支持するものである。
27はハブ部、28は翼根部であり、29は前述の空胴
である。
2. Description of the Related Art FIG. 7 shows a typical conventional gas turbine blade, in which (a) is a longitudinal sectional view of the blade, and (b) is an EE thereof.
It is sectional drawing. In the figure, 21 is a rotor blade, 22 is a shroud at its tip, and 23 is a fin provided on the shroud 22. 24 is a multi-hole formed in the moving blade 21, 25 is a pin fin provided on the inner wall of the moving blade 21, 26 is a rib for supporting the cavity 29.
27 is a hub portion, 28 is a blade root portion, and 29 is the aforementioned cavity.

【0003】図8は図7におけるF−F断面図、図9は
図8におけるG−G断面図であり、両図において、シュ
ラウド22内部には2つのキャビティ30,31が独立
に形成されており、キャビティ30,31にはそれぞれ
プラグ32,33が上面より挿入されて内部を密閉し、
動翼21のマルチホール24がキャビティ30,31に
それぞれ連通し、冷却空気を供給している。キャビティ
30,31にはそれぞれ両側に向かって複数の冷却穴3
4が連通し、冷却穴34はそれぞれ両端面で開口し、冷
却空気を流出する構成である。
FIG. 8 is a sectional view taken along line FF in FIG. 7, and FIG. 9 is a sectional view taken along line GG in FIG. 8. In both figures, two cavities 30, 31 are independently formed inside the shroud 22. The plugs 32 and 33 are inserted into the cavities 30 and 31 from the upper surface to seal the inside,
The multi-holes 24 of the moving blade 21 communicate with the cavities 30 and 31, respectively, and supply cooling air. Each of the cavities 30 and 31 has a plurality of cooling holes 3 toward both sides.
4, the cooling holes 34 are opened at both end surfaces, and the cooling air flows out.

【0004】上記構成の動翼においては、冷却空気は矢
印で図示するように翼根部28より空胴29に流入し、
ピンフィン25により熱伝達率を向上させて基部を冷却
してマルチホール24を流れて先端部へ導かれる。先端
部からはシュラウド22のキャビティ30,31に流入
し、キャビティ30,31から各冷却穴34を通り、互
に対向するシュラウド22の両端面へ流出し、シュラウ
ド全面を冷却している。
In the rotor blade having the above structure, cooling air flows into the cavity 29 from the blade root portion 28 as shown by the arrow,
The heat transfer coefficient is improved by the pin fins 25 to cool the base and flow through the multi-hole 24 to be guided to the tip. From the tip end, it flows into the cavities 30, 31 of the shroud 22, passes through the cooling holes 34 from the cavities 30, 31, and flows out to both end surfaces of the shroud 22 facing each other, thereby cooling the entire shroud.

【0005】上記に説明の動翼においては、前述のよう
に、動翼21の先端にはインテグラル状をなすシュラウ
ド22が動翼21と一体に形成されている。シュラウド
22は動翼21の先端から漏洩するガスを減少させると
ともに、シュラウド22の端面を隣接するシュラウド2
2の端面に圧接させて一連のグループ翼を形成させるこ
とにより動翼21の耐振動強度を向上させている。動翼
21には回転軸方向と円周方向との2方向の振動が発生
するが、シュラウド22の端面を斜めに形成することに
より両方向の振動が抑制される。また、シュラウド22
には動翼21の先端部から漏洩するガスを減少させるた
めとケーシング側との接触を防止するため、フィン23
が削り出して設けられている。
In the moving blade described above, an integral shroud 22 is formed integrally with the moving blade 21 at the tip of the moving blade 21 as described above. The shroud 22 reduces the gas leaking from the tip of the rotor blade 21, and reduces the end face of the shroud 22 to the adjacent shroud 2.
The vibration resistance of the rotor blade 21 is improved by forming a series of group blades by pressing against the end face of the rotor blade 2. Vibration in the rotating blade 21 is generated in two directions, that is, the rotation axis direction and the circumferential direction. By forming the end face of the shroud 22 obliquely, vibrations in both directions are suppressed. Also, shroud 22
In order to reduce gas leaking from the tip of the rotor blade 21 and to prevent contact with the casing side,
Is cut out and provided.

【0006】[0006]

【発明が解決しようとする課題】前述のように、従来の
ガスタービン動翼においては、シュラウド22の対向す
る両側の冷却穴34より冷却空気が流出し、シュラウド
22全体を冷却して温度を低下させるが、冷却空気の消
費の面からは、冷却空気が動翼21のマルチホール24
からキャビティ30,31に合流し、キャビティ30,
31から両側に分かれ互に対向する冷却穴34に流れ、
それぞれ両側に流れる。従って、各キャビティから両側
へ複数の冷却穴34が配置されており、各冷却穴34の
抵抗のちがいにより、各冷却穴によって流量が異なり、
冷却空気が均等に流れず、均等な冷却空気の分配調整が
むずかしく、シュラウドの均一な冷却ができない状況に
ある。
As described above, in the conventional gas turbine blade, cooling air flows out of the cooling holes 34 on both sides of the shroud 22 facing each other, and the entire shroud 22 is cooled to lower the temperature. However, from the viewpoint of cooling air consumption, the cooling air is
From the cavities 30, 31 and
31 flows into the cooling holes 34 which are divided into two sides and face each other,
Each flows on both sides. Therefore, a plurality of cooling holes 34 are arranged on both sides from each cavity, and the flow rate differs for each cooling hole due to the difference in resistance of each cooling hole 34.
The cooling air does not flow evenly, and it is difficult to control the uniform distribution of the cooling air, so that the shroud cannot be cooled uniformly.

【0007】そこで本発明はガスタービン動翼のシュラ
ウドにおいて、シュラウドに設けた冷却穴に流入する冷
却空気の流量調整を容易とし、冷却効果が均一になるよ
うなシュラウドの構造とし、シュラウドの温度が均等に
低下するようなガスタービン動翼を提供することを課題
としてなされたものである。
In view of the above, the present invention provides a shroud for a gas turbine blade in which the flow rate of cooling air flowing into a cooling hole provided in the shroud is easily adjusted, and the shroud is structured so that the cooling effect is uniform. It is an object of the present invention to provide a gas turbine blade that is uniformly reduced.

【0008】[0008]

【課題を解決するための手段】本発明は前述の課題を解
決するために次の(1)乃至(3)の手段を提供する。
The present invention provides the following means (1) to (3) to solve the above-mentioned problems.

【0009】(1)翼先端にシュラウドを有し、同翼の
内部に基部から先端に向けて冷却通路を設けて冷却空気
を流して前記シュラウド内に導き、同シュラウドの周囲
より流出させるガスタービンの動翼において、前記シュ
ラウド内部には周囲を残して拡大キャビティを形成し、
同拡大キャビティは前記動翼の冷却通路に連通すると共
に、前記シュラウド内で対向する両側に伸び周辺におい
て下方に屈曲して同シュラウド下面に開口する複数の穴
に連通することを特徴とするガスタービン動翼。
(1) A gas turbine having a shroud at the blade tip, providing a cooling passage inside the blade from the base to the tip, flowing cooling air into the shroud, and flowing out from around the shroud. In the rotor blade of the shroud, forming an enlarged cavity leaving a periphery inside the shroud,
The gas turbine is characterized in that the enlarged cavity communicates with a cooling passage of the rotor blade and extends to opposite sides in the shroud, is bent downward at the periphery, and communicates with a plurality of holes opened on the lower surface of the shroud. Bucket.

【0010】(2)上記(1)の発明において、前記動
翼の冷却通路は翼全長にわたった一体の空胴からなり、
同空胴内壁には多数のピンフィンを設けたことを特徴と
するガスタービン動翼。
(2) In the invention of the above (1), the cooling passage of the moving blade comprises an integral cavity extending over the entire length of the blade.
A gas turbine blade having a number of pin fins provided on an inner wall of the cavity.

【0011】(3)上記(1)の発明において、前記動
翼の冷却通路は翼の基部側が一体の空胴と同空胴に設け
た多数のピンフィン、先端側が先端に向かう多数の細穴
からなることを特徴とするガスタービン動翼。
(3) In the invention of the above (1), the cooling passage of the rotor blade is formed by an integral cavity on the base side of the blade, a number of pin fins provided in the cavity, and a number of small holes whose tip end faces the tip. A gas turbine rotor blade comprising:

【0012】本発明の(1)においては、シュラウド内
に拡大キャビティを設けているのでシュラウド内部がほ
とんどこの拡大キャビティが占めることになり、シュラ
ウドの周辺には多数の穴が設けられる構成である。従っ
て、動翼の冷却通路から流入する冷却空気はこの拡大キ
ャビティ内を満たし、拡大キャビティの主要部を冷却す
る。一方、拡大キャビティの周辺の穴は拡大キャビティ
に連通し、冷却空気をシュラウド外へ流出するので、拡
大キャビティ内の冷却空気は中央部より周辺に向かって
流動し、シュラウドの主要部の冷却効果を高める。更
に、穴から流出する冷却空気はシュラウドの穴が下向き
に流出するのでシュラウドの周辺を効果的に冷却し、全
体が均一に冷却される。
In (1) of the present invention, since the enlarged cavity is provided in the shroud, almost the inside of the shroud is occupied by the enlarged cavity, and a large number of holes are provided around the shroud. Therefore, the cooling air flowing from the cooling passage of the bucket fills the enlarged cavity and cools the main part of the enlarged cavity. On the other hand, the holes around the enlarged cavity communicate with the enlarged cavity and allow the cooling air to flow out of the shroud, so that the cooling air in the enlarged cavity flows from the center to the periphery, reducing the cooling effect of the main part of the shroud. Enhance. Further, the cooling air flowing out of the holes effectively cools the periphery of the shroud because the holes of the shroud flow downward, and the whole is uniformly cooled.

【0013】本発明の(2)は上記(1)のシュラウド
が、動翼内部が全長にわたって一体の空胴と同空胴に設
けられたピンフィンで構成された翼先端に設けられ、
又、(2)の発明は上記(1)のシュラウドが、動翼内
部が従来例のように基部側が空胴とピンフィン、先端側
が多数の細穴からなる翼先端に設けられるので、どのよ
うな形式の冷却構造を有する動翼にも適用でき、動翼の
熱伝達率向上による冷却効果とシュラウド全体の均一な
冷却とにより動翼全体の冷却効果が高まるものである。
According to a second aspect of the present invention, the shroud according to the first aspect is provided at a tip of a blade which is constituted by an integral cavity over the entire length of the rotor blade and a pin fin provided in the cavity.
In the invention of (2), the shroud of (1) is provided at the tip of the blade having a cavity and pin fins on the base side and a number of small holes on the tip side, as in the conventional example. The present invention can also be applied to a moving blade having a type of cooling structure. The cooling effect by improving the heat transfer coefficient of the moving blade and the uniform cooling of the entire shroud enhance the cooling effect of the whole moving blade.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の第1形態に係るガスタービン動翼の縦断面図であ
る。図において1は動翼であり、2はその先端のシュラ
ウド、3は翼根部である。4はリブであり、内部空胴1
0内を製造時に形成し、この空胴10を支持するための
ものであり、本発明にとっては特に必要としないもので
ある。5は内部空胴10内の両壁面に固定されて形成さ
れた多数のピンフィンである。10は前述の動翼1内に
形成された内部空胴である。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a gas turbine bucket according to a first embodiment of the present invention. In the figure, 1 is a moving blade, 2 is a shroud at the tip, and 3 is a blade root. Reference numeral 4 denotes a rib, and the internal cavity 1
0 is formed at the time of manufacture to support the cavity 10, and is not particularly required for the present invention. Reference numeral 5 denotes a number of pin fins fixed to both wall surfaces inside the internal cavity 10. Reference numeral 10 denotes an internal cavity formed in the rotor blade 1 described above.

【0015】このように本実施の第1形態の動翼は内部
を全長にわたり内部空胴10とし、多数のピンフィン5
を設けた構造として内部の冷却空気の流通と対流を良く
し、冷却効果を高めるようにし、更に次に述べるように
先端のシュラウドの冷却にも特徴を持たせたものであ
る。
As described above, the rotor blade of the first embodiment of the present invention has an internal cavity 10 over its entire length, and a large number of pin fins 5.
The structure is provided with a structure to improve the flow and convection of the cooling air inside, to enhance the cooling effect, and to also provide a feature in cooling the shroud at the tip as described below.

【0016】図2は図1におけるA−A断面図であり、
図3は図1におけるB−B断面図である。両図におい
て、シュラウド2内部には拡大キャビティ6が設けら
れ、シュラウドの周囲を残し、内部を空胴に形成してい
る。
FIG. 2 is a sectional view taken along the line AA in FIG.
FIG. 3 is a sectional view taken along line BB in FIG. In both figures, an enlarged cavity 6 is provided inside the shroud 2, and the inside is formed as a cavity, leaving the periphery of the shroud.

【0017】図4は図3におけるC−C断面図であり、
拡大キャビティ6は動翼1内の内部空胴10と連通して
おり、冷却空気30が導かれる。シュラウド2の周囲に
は図3に示すように拡大キャビティ6と連通する多数の
穴7が下向きに設けられており、拡大キャビティ6内の
冷却空気を下向きに流出する。
FIG. 4 is a sectional view taken along the line CC in FIG.
The enlarged cavity 6 communicates with the internal cavity 10 in the bucket 1, and the cooling air 30 is guided. A large number of holes 7 communicating with the enlarged cavity 6 are provided downward around the shroud 2 as shown in FIG. 3, and the cooling air in the enlarged cavity 6 flows out downward.

【0018】上記構成の実施の第1形態の動翼において
冷却空気30が翼根部3より翼内部へ流入し、内部空胴
10内の多数のピンフィン5により乱流となって熱伝達
を良好にし、先端部へ流れる過程で翼を冷却し、シュラ
ウド2内へ流入する。
In the rotor blade of the first embodiment having the above-described structure, cooling air 30 flows into the blade from the blade root 3 and becomes turbulent due to a large number of pin fins 5 in the internal cavity 10 to improve heat transfer. In the process of flowing to the tip, the blade cools and flows into the shroud 2.

【0019】シュラウド2に流入した冷却空気は拡大キ
ャビティ6内を満たし、所定の圧力以上になると、その
周囲の穴7より下向きに流出し、拡大キャビティ6内で
冷却空気が中央部の内部空胴10との接続部から周辺に
向かって流れを作り、拡大キャビティ6の上,下面を一
様に冷却する。
The cooling air that has flowed into the shroud 2 fills the inside of the enlarged cavity 6 and, when the pressure exceeds a predetermined pressure, flows downward through a hole 7 around the same. A flow is created from the connection portion with 10 to the periphery, and the upper and lower surfaces of the enlarged cavity 6 are uniformly cooled.

【0020】穴7より流出する冷却空気は下向きとなっ
ているので、冷却がしにくいシュラウド2の周端部が効
果的に冷却されて、拡大キャビティ6により、中央部
を、穴6によって周端部を主に冷却し、シュラウド2が
全面にわたって均一に冷却されることになる。
Since the cooling air flowing out of the hole 7 is directed downward, the peripheral end of the shroud 2 which is difficult to cool is effectively cooled. The main part is cooled, and the shroud 2 is uniformly cooled over the entire surface.

【0021】図5,図6は本発明の実施の第2形態に係
るガスタービン動翼を示し、図5はシュラウドの断面
図、図6はそのD−D断面図である。この実施の第2形
態における動翼は従来例で説明した図7で示す動翼であ
り、図5は図7における断面F−F(図9)に相当する
図である。従って、動翼の都合は図7と同じであるので
説明は省略し、図5,図6に基づいて説明する。
FIGS. 5 and 6 show a gas turbine rotor blade according to a second embodiment of the present invention. FIG. 5 is a sectional view of a shroud, and FIG. 6 is a sectional view taken along line DD of FIG. The moving blade in the second embodiment is the moving blade shown in FIG. 7 described in the conventional example, and FIG. 5 is a view corresponding to a cross section FF (FIG. 9) in FIG. Therefore, the convenience of the moving blade is the same as that of FIG. 7, and the description is omitted, and the description will be made based on FIGS.

【0022】図5において、シュラウド2、拡大キャビ
ティ6、穴7の配置は図3に示す実施の第1形態と同じ
であり、拡大キャビティ6は動翼のマルチホール24に
連通している。その他の構造は図3に示す実施の第1形
態と同じである。
5, the arrangement of the shroud 2, the enlarged cavity 6, and the hole 7 is the same as that of the first embodiment shown in FIG. 3, and the enlarged cavity 6 communicates with the multihole 24 of the rotor blade. Other structures are the same as those of the first embodiment shown in FIG.

【0023】上記の実施の第2形態の動翼において、従
来例でも説明したように冷却空気30は動翼の基部より
翼内部に流入し、ピンフィン25により対流を促進して
基部側を冷却し、マルチホール24を通って先端部を冷
却し、その後シュラウド2内に流入する。シュラウド2
には多数のマルチホール24と拡大シュラウド6とが連
通しているので、冷却空気は拡大キャビティ6内を満た
し、所定の圧力以上となるとシュラウド2周辺の穴7よ
り下向きに流出し、実施の第1形態と同様にシュラウド
2全面及び周辺を均一に冷却することができる。
In the moving blade of the second embodiment, as described in the conventional example, the cooling air 30 flows into the inside of the blade from the base of the moving blade and promotes convection by the pin fins 25 to cool the base side. , Cools the tip through the multi-hole 24, and then flows into the shroud 2. Shroud 2
Since the multi-hole 24 and the enlarged shroud 6 communicate with each other, the cooling air fills the enlarged cavity 6 and flows downward from the hole 7 around the shroud 2 when the pressure exceeds a predetermined pressure. As in the first embodiment, the entire surface and the periphery of the shroud 2 can be uniformly cooled.

【0024】[0024]

【発明の効果】本発明の(1)のガスタービン動翼は、
翼先端にシュラウドを有し、同翼の内部に基部から先端
に向けて冷却通路を設けて冷却空気を流して前記シュラ
ウド内に導き、同シュラウドの周囲より流出させるガス
タービンの動翼において、前記シュラウド内部には周囲
を残して拡大キャビティを形成し、同拡大キャビティは
前記動翼の冷却通路に連通すると共に、前記シュラウド
内で対向する両側に伸び周辺において下方に屈曲して同
シュラウド下面に開口する複数の穴に連通することを特
徴としている。このような構成により、拡大キャビティ
でシュラウドの主要部を冷却し、周辺の穴より流出する
冷却空気によりシュラウドの周囲を冷却するので、シュ
ラウド全面にわたって均一に冷却することができる。
The gas turbine rotor blade (1) of the present invention has the following features.
A blade of a gas turbine having a shroud at a blade tip, providing a cooling passage from a base to a tip inside the blade, flowing cooling air into the shroud, and flowing out from around the shroud. An enlarged cavity is formed inside the shroud while leaving a periphery, and the enlarged cavity communicates with the cooling passage of the blade, extends on both sides facing the inside of the shroud, bends downward at the periphery, and opens to the lower surface of the shroud. It is characterized in that it communicates with a plurality of holes. With such a configuration, the main portion of the shroud is cooled by the enlarged cavity, and the periphery of the shroud is cooled by the cooling air flowing out from the peripheral holes, so that the entire shroud can be uniformly cooled.

【0025】本発明の(2)は、上記(1)の発明にお
いて、前記動翼の冷却通路は翼全長にわたった一体の空
胴からなり、同空胴内壁には多数のピンフィンを設けた
ことを特徴としている。又、(3)の発明は、上記
(1)の発明において、前記動翼の冷却通路は翼の基部
側が一体の空胴と同空胴に設けた多数のピンフィン、先
端側が先端に向かう多数の細穴からなることを特徴とし
ている。このような構成により、(1)のシュラウドが
各種の冷却構造を有する動翼の先端にも適用でき、動翼
の冷却効果とシュラウドの均一な冷却効果との相乗効果
により動翼全体を効果的に冷却することができる。
According to a second aspect of the present invention, in the first aspect of the present invention, the cooling passage of the rotor blade includes an integral cavity extending over the entire length of the blade, and a number of pin fins are provided on the inner wall of the cavity. It is characterized by: According to a third aspect of the present invention, in the first aspect of the present invention, the cooling passage of the rotor blade has a cavity in which a base portion of the blade is an integral cavity, a large number of pin fins provided in the cavity, and a large number of pin fins whose leading end faces the distal end. It is characterized by a small hole. With such a configuration, the shroud of (1) can be applied to the tip of a moving blade having various cooling structures, and the entire moving blade can be effectively controlled by a synergistic effect of a cooling effect of the moving blade and a uniform cooling effect of the shroud. Can be cooled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態に係るガスタービン動
翼の縦断面図である。
FIG. 1 is a longitudinal sectional view of a gas turbine bucket according to a first embodiment of the present invention.

【図2】図1におけるA−A断面図である。FIG. 2 is a sectional view taken along line AA in FIG.

【図3】図1におけるB−B断面図である。FIG. 3 is a sectional view taken along line BB in FIG.

【図4】図3におけるC−C断面図である。FIG. 4 is a sectional view taken along the line CC in FIG. 3;

【図5】本発明の実施の第2形態に係るガスタービン動
翼のシュラウドの断面図である。
FIG. 5 is a sectional view of a shroud of a gas turbine rotor blade according to a second embodiment of the present invention.

【図6】図5におけるD−D断面図である。FIG. 6 is a sectional view taken along line DD in FIG. 5;

【図7】従来のガスタービン動翼を示し、(a)は縦断
面図、(b)は(a)におけるE−E断面図である。
7A and 7B show a conventional gas turbine blade, wherein FIG. 7A is a longitudinal sectional view, and FIG. 7B is an EE sectional view in FIG.

【図8】図7におけるF−F断面図である。FIG. 8 is a sectional view taken along line FF in FIG. 7;

【図9】図8におけるG−G断面図である。FIG. 9 is a sectional view taken along line GG in FIG.

【符号の説明】[Explanation of symbols]

1,21 動翼 2 シュラウド 3 翼根部 4 リブ 5 ピンフィン 6 拡大キャビテイ 7 穴 10 内部空洞 24 マルチホール 30 冷却空気 1, 21 bucket 2 shroud 3 blade root 4 rib 5 pin fin 6 enlarged cavity 7 hole 10 internal cavity 24 multi-hole 30 cooling air

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富田 康意 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasushi Tomita 2-1-1 Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Mitsubishi Heavy Industries, Ltd. Takasago Machinery Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 翼先端にシュラウドを有し、同翼の内部
に基部から先端に向けて冷却通路を設けて冷却空気を流
して前記シュラウド内に導き、同シュラウドの周囲より
流出させるガスタービンの動翼において、前記シュラウ
ド内部には周囲を残して拡大キャビティを形成し、同拡
大キャビティは前記動翼の冷却通路に連通すると共に、
前記シュラウド内で対向する両側に伸び周辺において下
方に屈曲して同シュラウド下面に開口する複数の穴に連
通することを特徴とするガスタービン動翼。
1. A gas turbine having a shroud at a blade tip, a cooling passage provided inside the blade from a base to a tip, and flowing cooling air into the shroud to flow out from around the shroud. In the rotor blade, an enlarged cavity is formed inside the shroud leaving a periphery, and the enlarged cavity communicates with a cooling passage of the rotor blade,
A gas turbine rotor blade which extends to opposite sides in the shroud, bends downward at the periphery, and communicates with a plurality of holes opened on the lower surface of the shroud.
【請求項2】 前記動翼の冷却通路は翼全長にわたった
一体の空胴からなり、同空胴内壁には多数のピンフィン
を設けたことを特徴とする請求項1記載のガスタービン
動翼。
2. The gas turbine rotor blade according to claim 1, wherein the cooling passage of the rotor blade comprises an integral cavity extending over the entire length of the blade, and a plurality of pin fins are provided on the inner wall of the cavity. .
【請求項3】 前記動翼の冷却通路は翼の基部側が一体
の空胴と同空胴に設けた多数のピンフィン、先端側が先
端に向かう多数の細穴からなることを特徴とする請求項
1記載のガスタービン動翼。
3. The cooling passage of the rotor blade comprises a cavity on the base side of the blade, a number of pin fins provided in the cavity, and a number of narrow holes on the tip side toward the tip. A gas turbine blade as described.
JP02330598A 1998-02-04 1998-02-04 Gas turbine blade Expired - Lifetime JP3426948B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP02330598A JP3426948B2 (en) 1998-02-04 1998-02-04 Gas turbine blade
DE69931088T DE69931088T2 (en) 1998-02-04 1999-02-01 Gas turbine rotor blade
EP03025023.7A EP1391581B1 (en) 1998-02-04 1999-02-01 Gas turbine moving blade
EP09178798.6A EP2157280B1 (en) 1998-02-04 1999-02-01 Gas turbine rotor blade
EP99102032A EP0935052B1 (en) 1998-02-04 1999-02-01 Gas turbine rotor blade
US09/243,821 US6152695A (en) 1998-02-04 1999-02-03 Gas turbine moving blade
CA002261107A CA2261107C (en) 1998-02-04 1999-02-03 Gas turbine moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02330598A JP3426948B2 (en) 1998-02-04 1998-02-04 Gas turbine blade

Publications (2)

Publication Number Publication Date
JPH11223101A true JPH11223101A (en) 1999-08-17
JP3426948B2 JP3426948B2 (en) 2003-07-14

Family

ID=12106903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02330598A Expired - Lifetime JP3426948B2 (en) 1998-02-04 1998-02-04 Gas turbine blade

Country Status (1)

Country Link
JP (1) JP3426948B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168014A (en) * 2008-01-10 2009-07-30 General Electric Co <Ge> Turbine blade tip shroud
JP2013117227A (en) * 2011-12-01 2013-06-13 General Electric Co <Ge> Cooled turbine blade and method for cooling turbine blade
JP2013194733A (en) * 2012-03-15 2013-09-30 General Electric Co <Ge> Turbo-machine blade for improving stiffness to weight ratio
US20170114648A1 (en) * 2015-10-27 2017-04-27 General Electric Company Turbine bucket having cooling passageway
JP2017210959A (en) * 2016-05-24 2017-11-30 ゼネラル・エレクトリック・カンパニイ Cooling passage for gas turbine rotor blade
US9885243B2 (en) 2015-10-27 2018-02-06 General Electric Company Turbine bucket having outlet path in shroud
US10508554B2 (en) 2015-10-27 2019-12-17 General Electric Company Turbine bucket having outlet path in shroud

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140023497A1 (en) * 2012-07-19 2014-01-23 General Electric Company Cooled turbine blade tip shroud with film/purge holes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168014A (en) * 2008-01-10 2009-07-30 General Electric Co <Ge> Turbine blade tip shroud
JP2013117227A (en) * 2011-12-01 2013-06-13 General Electric Co <Ge> Cooled turbine blade and method for cooling turbine blade
JP2013194733A (en) * 2012-03-15 2013-09-30 General Electric Co <Ge> Turbo-machine blade for improving stiffness to weight ratio
US20170114648A1 (en) * 2015-10-27 2017-04-27 General Electric Company Turbine bucket having cooling passageway
US9885243B2 (en) 2015-10-27 2018-02-06 General Electric Company Turbine bucket having outlet path in shroud
US10156145B2 (en) * 2015-10-27 2018-12-18 General Electric Company Turbine bucket having cooling passageway
US10508554B2 (en) 2015-10-27 2019-12-17 General Electric Company Turbine bucket having outlet path in shroud
US11078797B2 (en) 2015-10-27 2021-08-03 General Electric Company Turbine bucket having outlet path in shroud
JP2017210959A (en) * 2016-05-24 2017-11-30 ゼネラル・エレクトリック・カンパニイ Cooling passage for gas turbine rotor blade

Also Published As

Publication number Publication date
JP3426948B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
EP2157280B1 (en) Gas turbine rotor blade
JP4713423B2 (en) Oblique tip hole turbine blade
JP3367697B2 (en) Blades for turbines
JP5848019B2 (en) Turbine bucket with radial cooling holes
JP3632003B2 (en) Gas turbine split ring
JP4902157B2 (en) Turbine blade with a groove at the tip
US8864438B1 (en) Flow control insert in cooling passage for turbine vane
CN101749053B (en) hollow channel
JP3510467B2 (en) Gas turbine blades
JP2010509532A (en) Turbine blade
US8267659B2 (en) Turbine blade
CA2480393C (en) Impingement cooling of gas turbine blades or vanes
US20080019834A1 (en) Cooling fan for rotating machine
JPH112101A (en) Gas turbine cooling moving blade
JPH09273401A (en) Turbine cooling device
US5779447A (en) Turbine rotor
JPH11223101A (en) Gas turbine moving blade
JPH0828303A (en) Moving blade of gas turbine
JPS6380004A (en) Gas turbine stator blade
JP5524137B2 (en) Gas turbine blade
US20150184525A1 (en) Structural configurations and cooling circuits in turbine blades
JPH11229808A (en) Gas turbine rotor blade
JPH11223102A (en) Gas turbine moving blade
JP3546134B2 (en) Gas turbine blade
JP3403051B2 (en) Gas turbine blade

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term