JPH11211886A - Recovering method after full closure of main steam isolation valve - Google Patents

Recovering method after full closure of main steam isolation valve

Info

Publication number
JPH11211886A
JPH11211886A JP10009076A JP907698A JPH11211886A JP H11211886 A JPH11211886 A JP H11211886A JP 10009076 A JP10009076 A JP 10009076A JP 907698 A JP907698 A JP 907698A JP H11211886 A JPH11211886 A JP H11211886A
Authority
JP
Japan
Prior art keywords
main steam
reactor
pressure
valve
fully closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10009076A
Other languages
Japanese (ja)
Inventor
Yasuo Ota
康雄 大田
Keiichi Ui
佳一 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10009076A priority Critical patent/JPH11211886A/en
Publication of JPH11211886A publication Critical patent/JPH11211886A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the excessive fluctuations of reactor pressure and reactor water level, to take the pressure equalizing action of a main steam pipe without disturbance, to reduce the load of an operating operator and to take a recovering action itself quickly and surely. SOLUTION: In the recovering method after a main steam isolation valve 2 is fully closed, a main steam relief safety valve 3 is automatically opened when the pressure of a reactor 1 rises to the operating pressure of the main steam relief safety valve 3 or when the water level of the reactor 1 rises to the prescribed upper limit value, and the main steam relief safety valve 3 is automatically closed when the pressure of the reactor 1 is lowered to the operating pressure lower limit value of the main steam relief safety valve 3 or when the water level of the reactor 1 is lowered to the prescribed lower limit value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、改良沸騰水型原子
力発電プラントにおいて主蒸気隔離弁全閉後の復旧方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recovery method after a main steam isolation valve is fully closed in an improved boiling water nuclear power plant.

【0002】[0002]

【従来の技術】従来の主蒸気隔離弁(以下、ΜSIVと
称す。)全閉後の主要原子炉パラメータおよび主要弁の
挙動を図5に示す。すなわち、ΜSIV全閉事象が発生
した場合、原子力発電プラントの挙動は、図5に示すよ
うにΜSIVが全閉することによって原子炉スクラムが
発生し、原子炉圧力の上昇および原子炉水位の低下が起
こる。原子炉圧力が上昇して主蒸気逃がし安全弁(以
下、SRVと称す。)が原子炉圧力高設定値に至ると、
SRVは開弁動作を行い原子炉圧力を抑制していく。な
お、原子炉圧力が原子炉圧力設定値より上昇すると、タ
ービンバイパス弁(以下、ΤBVと称す。)が自動的に
開弁する。
2. Description of the Related Art FIG. 5 shows main reactor parameters and behavior of a main steam isolation valve (hereinafter referred to as ΔSIV) after fully closed. That is, when the ΜSIV fully closed event occurs, the behavior of the nuclear power plant is such that the reactor scram is generated by the ΜSIV being fully closed as shown in FIG. 5, and the reactor pressure rises and the reactor water level decreases. Occur. When the reactor pressure rises and the main steam relief valve (hereinafter referred to as SRV) reaches the reactor pressure high set value,
The SRV performs a valve opening operation to suppress the reactor pressure. When the reactor pressure rises above the reactor pressure set value, the turbine bypass valve (hereinafter referred to as ΤBV) opens automatically.

【0003】その後の復旧操作は、第1段階としてSR
Vが開閉を繰り返し、原子炉内に蓄積されたエネルギー
をサプレッションプールに排出しつつ、原子炉圧力の上
昇を抑制する。その間、原子炉内の冷却材は、冷却材再
循環ポンプのみで循環され、給水ポンプからの炉内注入
が行われないため、原子炉停止時に発生する崩壊熱によ
り炉内冷却材がサブクールされない状態となり、冷却材
の膨張が発生するので、原子炉水位は徐々に上昇してい
く。
[0003] The restoring operation is performed as a first step by the SR
The V repeatedly opens and closes and discharges energy stored in the reactor to the suppression pool, while suppressing an increase in the reactor pressure. In the meantime, the coolant in the reactor is circulated only by the coolant recirculation pump, and is not injected from the water supply pump, so that the coolant inside the reactor is not subcooled by the decay heat generated when the reactor is stopped Then, since the coolant expands, the reactor water level gradually rises.

【0004】上述のSRVの開閉を繰り返すことによっ
て原子炉圧力および原子炉水位が十分に抑制されたら復
旧操作の第2段階としては、主蒸気管の均圧操作として
主蒸気管の均圧弁を開弁操作することにより、ΜSIV
の閉弁により隔離された原子炉側とタービン側とを均圧
し、その均圧終了後にΜSIVを開弁するまでが主要な
復旧操作である。
When the reactor pressure and the reactor water level are sufficiently suppressed by repeating the above-mentioned opening and closing of the SRV, the second stage of the recovery operation is to open the equalization valve of the main steam pipe as the equalization operation of the main steam pipe. By operating the valve, ΜSIV
The main recovery operation is to equalize the reactor side and turbine side isolated by closing the valve, and to open the ΜSIV after the equalization is completed.

【0005】以下、図6および図7(A),(B)を参
照して主蒸気隔離弁全閉後の復旧方法の従来例のメカニ
ズムについて説明する。図6は沸騰水型原子力発電プラ
ントを示す概略構成図、図7(A),(B)は従来のS
RV逃がし弁機能および原子炉圧力設定変更の従来例を
示すシーケンス図である。
Hereinafter, a conventional mechanism of a recovery method after the main steam isolation valve is fully closed will be described with reference to FIGS. 6 and 7A and 7B. FIG. 6 is a schematic configuration diagram showing a boiling water nuclear power plant, and FIGS.
It is a sequence diagram which shows the conventional example of RV relief valve function and reactor pressure setting change.

【0006】ΜSIV全閉事象が発生した場合には、図
6に示すように原子炉圧力容器1が設置された原子炉側
とタービン側とがΜSIV2を境界として速やかに隔離
され、原子炉スクラムが発生する。
[0006] When the ΜSIV fully closed event occurs, as shown in FIG. 6, the reactor side where the reactor pressure vessel 1 is installed and the turbine side are quickly separated from each other with the ΜSIV2 as a boundary, and the reactor scram is Occur.

【0007】復旧操作の第1段階として、隔離された原
子炉圧力容器1は、冷却水温度が高い間、蒸気を発生し
続け、原子炉圧力が上昇し続けていくため、原子炉圧力
容器1内の上昇した圧力を逃がすためにSRV3の逃が
し弁機能を用いてサプレッションプール4に原子炉圧力
容器1内の圧力を逃がして原子炉圧力を抑制している。
[0007] As a first stage of the recovery operation, the isolated reactor pressure vessel 1 continues to generate steam while the cooling water temperature is high, and the reactor pressure continues to rise. The pressure in the reactor pressure vessel 1 is released to the suppression pool 4 by using the relief valve function of the SRV 3 to release the increased pressure in the reactor, thereby suppressing the reactor pressure.

【0008】ここで、SRV3の開弁操作に関しては、
図7(A)のシーケンス図に示す通り、原子炉圧力の上
昇に伴い原子炉圧力がSRV作動設定値に到達しての自
動開、または運転操作員の判断による手動開操作で行わ
れることになっている。そのSRV開動作時には、スウ
ェリングによる原子炉水位の上昇が一時的に発生するも
のの、SRV3を長時間開動作していると、原子炉冷却
材のサプレッションプール4への排出に伴って原子炉水
位は徐々に低下していくため、SRV3の開閉時には、
原子炉水位は給水ポンプ5がトリップする水位および非
常用炉心冷却系ポンプ(ECCSポンプ)が作動する水
位に達しないような操作を行って原子炉水位を調整して
いる。
Here, regarding the valve opening operation of the SRV3,
As shown in the sequence diagram of FIG. 7 (A), the operation is performed by automatic opening when the reactor pressure reaches the SRV operation set value with the increase of the reactor pressure, or by manual opening operation determined by the operator. Has become. During the SRV opening operation, the reactor water level rises temporarily due to swelling. However, if the SRV 3 is opened for a long time, the reactor water level is discharged along with the discharge of the reactor coolant to the suppression pool 4. Gradually decreases, so when opening and closing the SRV3,
The reactor water level is adjusted such that the reactor water level does not reach the level at which the feed water pump 5 trips and the level at which the emergency core cooling system pump (ECCS pump) operates.

【0009】また、復旧操作の第2段階としての主蒸気
管の均圧操作においては、タービン側の放射性物質の漏
洩を防止するため復水器6が真空状態に保たれており、
ΜSIV全閉後にタービン側が隔離されると、タービン
側の圧力は速やかに減少していく。さらに、原子炉圧力
が原子炉圧力設定値より上昇すると、ΤBV7が自動的
に開弁し、復水器6に直通のラインが形成されるためタ
ービン側は負圧になる。その結果、原子炉側とタービン
側には大きな差圧が生じてしまう。
In the pressure equalization operation of the main steam pipe as the second stage of the recovery operation, the condenser 6 is kept in a vacuum state in order to prevent leakage of radioactive substances on the turbine side.
ΜWhen the turbine side is isolated after the SIV is fully closed, the pressure on the turbine side rapidly decreases. Further, when the reactor pressure rises above the reactor pressure set value, the ΤBV 7 opens automatically and a line directly connected to the condenser 6 is formed, so that the turbine side becomes negative pressure. As a result, a large pressure difference occurs between the reactor side and the turbine side.

【0010】このようにΜSIV2は、その前後におい
て系統設計値以上の差圧を有していると、開弁操作が不
可能である。そのため、原子炉圧力および原子炉水位を
十分抑制した後、均圧弁8を開弁することで、原子炉側
とタービン側とを均圧し、ΜSIV2を全開させること
となっている。
As described above, if the ΔSIV2 has a differential pressure greater than the system design value before and after the ΔSIV2, the valve opening operation cannot be performed. Therefore, after sufficiently suppressing the reactor pressure and the reactor water level, the pressure equalizing valve 8 is opened to equalize the pressure on the reactor side and the turbine side, and the ΜSIV2 is fully opened.

【0011】この原子炉側とタービン側とを均圧するに
際し、ΤBV7が自動的に開弁するのを防止するため、
原子炉圧力設定を上限値まで変更することになる。これ
を図7(B)のインターロック図に示す。図7(B)に
示すように手動モードの場合には、運転操作員がプッシ
ュボタン(PB)を連続的に押し続けて設定し、追従モ
ードの場合には、原子力圧力値にバイアスとして所定圧
力値を加算して設定している。
When equalizing the pressure on the reactor side and the turbine side, in order to prevent automatic opening of the ΤBV7,
The reactor pressure setting will be changed to the upper limit. This is shown in the interlock diagram of FIG. As shown in FIG. 7 (B), in the manual mode, the operator continuously presses and sets the push button (PB), and in the following mode, a predetermined pressure is applied as a bias to the nuclear pressure value. Value is added and set.

【0012】なお、図6において、原子炉圧力容器1で
発生した蒸気は、主蒸気管9に介挿されたSRV3およ
びΜSIV2を通り、蒸気加減弁10にてその流量が制
御されて蒸気タービン11に導かれ、この蒸気タービン
11の回転に供される。これにより、蒸気タービン11
に直結された発電機12が駆動されて電力を発生する。
In FIG. 6, the steam generated in the reactor pressure vessel 1 passes through the SRV 3 and the IVSIV 2 inserted in the main steam pipe 9, and the flow rate thereof is controlled by a steam control valve 10 so that the steam turbine 11 To be supplied to the rotation of the steam turbine 11. Thereby, the steam turbine 11
Is directly driven to generate electric power.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上述の
従来の主蒸気隔離弁全閉後の復旧方法では、原子炉圧力
の上昇に伴いSRV3が作動するに際し、現状の原子炉
圧力監視のみで作動するSRV3が開動作を開始する
と、急激に原子炉圧力は減少してスウェリング効果によ
り原子炉水位は急激に上昇する。そのため、原子炉水位
が高い状態でSRV3が開弁すると、図6に示す給水ポ
ンプ5がトリップする原子炉水位に至る可能性がある。
However, in the above-mentioned conventional restoring method after the main steam isolation valve is fully closed, when the SRV 3 is operated in accordance with the increase in the reactor pressure, it operates only by monitoring the present reactor pressure. When the SRV 3 starts the opening operation, the reactor pressure sharply decreases, and the reactor water level sharply rises due to the swelling effect. Therefore, if the SRV 3 is opened in a state where the reactor water level is high, there is a possibility that the reactor water level at which the feedwater pump 5 shown in FIG. 6 trips will be reached.

【0014】また、SRV3の開弁状態が長時間に渡る
と、原子炉冷却材のサプレッションプール4への排出と
SRV閉弁動作時のスウェリングの停止に伴い原子炉水
位が急激に減少することとなり、非常用炉心冷却系ポン
プが作動する原子炉水位に至る可能性がある。
If the SRV 3 is open for a long time, the reactor water level will rapidly decrease due to the discharge of the reactor coolant to the suppression pool 4 and the stop of swelling during the SRV valve closing operation. This may lead to a reactor water level at which the emergency core cooling system pump operates.

【0015】さらに、隔離された原子炉側とタービン側
とを均圧するため、均圧操作の妨げとなるΤBV7の開
弁動作を防止するには、原子炉設定圧力を上限値まで変
更する必要があるものの、現状では手動で連続的に圧力
設定値を変更しなければならないため、時間を要し、そ
の結果運転操作員が1人必要となる。
Further, in order to equalize the isolated reactor side and the turbine side, in order to prevent the opening operation of the ΔBV7 which hinders the equalizing operation, it is necessary to change the reactor set pressure to the upper limit value. However, at present, since the pressure set value must be continuously changed manually, it takes time, and as a result, one operator is required.

【0016】なお、原子炉圧力設定を上限まで変更して
も、原子炉圧力が設定値より高く上昇した場合には、Τ
BV7が開弁するため、主蒸気管9の均圧操作を行って
いても圧力が抜けてしまい復旧操作の妨げとなる。その
結果、復旧時間に長い時間を要することとなる。
Even if the reactor pressure setting is changed to the upper limit, if the reactor pressure rises higher than the set value,
Since the BV 7 is opened, the pressure is released even when the equalizing operation of the main steam pipe 9 is performed, which hinders the recovery operation. As a result, a long recovery time is required.

【0017】本発明は上述した事情を考慮してなされた
もので、主蒸気隔離弁全閉事象が発生した場合の復旧操
作に際し、原子炉圧力および原子炉水位の過大な変動を
抑制し、主蒸気管の均圧操作を外乱なく行うことを可能
とし、運転操作員の負担を軽減し、復旧操作自体を速や
かにかつ確実に行う主蒸気隔離弁全閉後の復旧方法を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and suppresses excessive fluctuations in reactor pressure and reactor water level during a recovery operation in the event of a main steam isolation valve fully closed event. An object of the present invention is to provide a recovery method after a main steam isolation valve is fully closed, which enables a pressure equalization operation of a steam pipe to be performed without disturbance, reduces a burden on an operator, and promptly and reliably performs a recovery operation itself. And

【0018】[0018]

【課題を解決するための手段】上述した課題を解決する
ために、請求項1記載の発明は、原子炉側とタービン側
とを隔離可能に主蒸気管に設置された主蒸気隔離弁の全
閉事象が発生した場合、主蒸気逃がし安全弁を開閉して
前記原子炉に蓄積されたエネルギーを放出した後、前記
主蒸気管の均圧操作を行う主蒸気隔離弁全閉後の復旧方
法において、前記原子炉の圧力が前記主蒸気逃がし安全
弁作動圧力まで上昇するか、前記原子炉の水位が所定上
限値まで上昇した場合に前記主蒸気逃がし安全弁を自動
開する一方、前記原子炉の圧力が前記主蒸気逃がし安全
弁作動圧力下限値または前記原子炉の水位が所定下限値
まで下降した場合に前記主蒸気逃がし安全弁を自動閉す
ることを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is an invention in which a main steam isolation valve installed in a main steam pipe so as to isolate a reactor side and a turbine side is provided. When a closing event occurs, after opening and closing the main steam release safety valve to release the energy stored in the reactor, in the restoration method after the main steam isolation valve is fully closed, which equalizes the main steam pipe, While the pressure of the reactor rises to the main steam relief safety valve operating pressure or when the water level of the reactor rises to a predetermined upper limit, the main steam relief safety valve is automatically opened, while the pressure of the reactor is The main steam release safety valve is automatically closed when the operating pressure lower limit value of the main steam release safety valve or the water level of the reactor falls to a predetermined lower limit value.

【0019】請求項2記載の発明は、原子炉側とタービ
ン側とを隔離可能に主蒸気管に設置された主蒸気隔離弁
の全閉事象が発生した場合、主蒸気逃がし安全弁を開閉
して前記原子炉に蓄積されたエネルギーを放出した後、
前記主蒸気管の均圧操作を行う主蒸気隔離弁全閉後の復
旧方法において、前記原子炉圧力高による前記主蒸気逃
がし安全弁の開閉条件に加え、前記主蒸気隔離弁全閉時
に前記主蒸気逃がし安全弁が作動する水位の高低設定値
を前記原子炉へ給水するための給水ポンプがトリップす
る水位から非常用炉心冷却系ポンプが作動する水位以内
に設定したことを特徴とする。
According to a second aspect of the present invention, when a main steam isolation valve installed in a main steam pipe is fully closed so that the reactor side and the turbine side can be isolated, the main steam release safety valve is opened and closed. After releasing the energy stored in the reactor,
In the method for restoring the main steam isolation valve after fully closing the main steam pipe for equalizing the main steam pipe, in addition to the opening and closing conditions of the main steam release safety valve due to the reactor pressure high, the main steam isolation valve may be closed when the main steam isolation valve is fully closed. A high and low set value of a water level at which the relief safety valve operates is set within a water level at which the water supply pump for supplying water to the reactor trips and a water level at which the emergency core cooling system pump operates.

【0020】請求項3記載の発明は、原子炉側とタービ
ン側とを隔離可能に主蒸気管に設置された主蒸気隔離弁
の全閉事象が発生した場合、主蒸気逃がし安全弁を開閉
して前記原子炉に蓄積されたエネルギーを放出した後、
前記主蒸気管の均圧操作を行う主蒸気隔離弁全閉後の復
旧方法において、前記主蒸気隔離弁が全閉した際、前記
主蒸気逃し安全弁の逃し弁機能作動圧力設定値を、前記
原子炉圧力高による前記主蒸気逃し安全弁の逃し弁機能
作動圧力設定値より低い値に設定したことを特徴とす
る。
According to a third aspect of the present invention, when the main steam isolation valve installed in the main steam pipe is fully closed so that the reactor side and the turbine side can be isolated, the main steam release safety valve is opened and closed. After releasing the energy stored in the reactor,
In the method for restoring the main steam isolation valve after the main steam isolation valve is fully closed for performing the equalization operation of the main steam pipe, when the main steam isolation valve is fully closed, the relief valve function operating pressure set value of the main steam relief safety valve is set to the atomic pressure. It is characterized in that it is set to a value lower than the relief valve function operating pressure set value of the main steam relief safety valve due to the furnace pressure.

【0021】請求項4記載の発明は、原子炉側とタービ
ン側とを隔離可能に主蒸気管に設置された主蒸気隔離弁
の全閉事象が発生した場合、主蒸気逃がし安全弁を開閉
して前記原子炉に蓄積されたエネルギーを放出した後、
前記主蒸気管の均圧操作を行う主蒸気隔離弁全閉後の復
旧方法において、前記主蒸気隔離弁が全閉した際、前記
原子炉の圧力設定を自動で上限値に変更することを特徴
とする。
According to a fourth aspect of the present invention, when a main steam isolation valve installed in a main steam pipe so that the reactor side and the turbine side can be isolated from each other, a main steam release safety valve is opened and closed. After releasing the energy stored in the reactor,
In the restoration method after the main steam isolation valve is fully closed, which performs the equalization operation of the main steam pipe, the pressure setting of the reactor is automatically changed to an upper limit value when the main steam isolation valve is fully closed. And

【0022】[0022]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】図1は本発明に係る主蒸気隔離弁全閉後の
復旧方法の第1実施形態における主蒸気逃がし安全弁を
開閉するための制御回路図、図2は図1のインターロッ
ク図である。なお、第1実施形態において適用する沸騰
水型原子力発電プラントの構成は、図6と同様であるの
で同一の符号を用いて説明する。
FIG. 1 is a control circuit diagram for opening and closing a main steam release safety valve in a first embodiment of a recovery method after the main steam isolation valve is fully closed according to the present invention, and FIG. 2 is an interlock diagram of FIG. . The configuration of the boiling water nuclear power plant applied in the first embodiment is the same as that in FIG. 6 and will be described using the same reference numerals.

【0024】図1に示すように、原子炉圧力容器1で発
生した蒸気は、主蒸気管9に介挿されたSRV3および
ΜSIV2を通り、図示しない蒸気加減弁にてその流量
が制御されて蒸気タービンに導かれ、この蒸気タービン
の回転に供される。これにより、蒸気タービンに直結さ
れた発電機が駆動されて電力を発生する。
As shown in FIG. 1, the steam generated in the reactor pressure vessel 1 passes through the SRV 3 and the ΜSIV 2 inserted in the main steam pipe 9, and its flow rate is controlled by a steam control valve (not shown). The steam is guided to a turbine and used for rotation of the steam turbine. Thereby, the generator directly connected to the steam turbine is driven to generate electric power.

【0025】また、原子炉圧力容器1には、その蒸気圧
を検出する圧力検出器13と、原子炉圧力容器1内の水
位を検出する水位検出器14とが設置されている。
Further, the reactor pressure vessel 1 is provided with a pressure detector 13 for detecting the vapor pressure thereof and a water level detector 14 for detecting a water level in the reactor pressure vessel 1.

【0026】そして、本実施形態では、SRV3の開閉
を制御するSRV開閉制御回路15を有し、このSRV
開閉制御回路15は、ΜSIV2の全閉事象が発生した
場合、原子炉圧力容器1内の圧力をサプレッションプー
ル4に逃がすためにSRV3の開閉を制御する。
In this embodiment, an SRV opening / closing control circuit 15 for controlling the opening / closing of the SRV 3 is provided.
The switching control circuit 15 controls the opening and closing of the SRV 3 in order to release the pressure in the reactor pressure vessel 1 to the suppression pool 4 when the fully closed event of the ΜSIV 2 occurs.

【0027】また、SRV開閉制御回路15は、複数の
比較器16a〜16eを有し、これら比較器16a,1
6c,16eは、圧力検出器13からの出力信号を設定
値と比較して出力信号が設定値を超えた場合に信号を出
力し、比較器16b,16dは水位検出器14からの出
力信号を設定値と比較して出力信号が設定値を超えた場
合に信号を出力する。
The SRV switching control circuit 15 has a plurality of comparators 16a to 16e.
6c and 16e compare the output signal from the pressure detector 13 with the set value and output a signal when the output signal exceeds the set value, and the comparators 16b and 16d output the signal from the water level detector 14 Outputs a signal when the output signal exceeds the set value as compared with the set value.

【0028】図1および図2に示すように、比較器16
aの設定値は、原子炉圧力高によるSRV3の逃し弁機
能作動圧力設定値より低い値(原子炉圧力A)であり、
比較器16cの設定値は、原子炉圧力高によるSRV3
の逃し弁機能作動圧力設定値(原子炉圧力高)であり、
比較器16eの設定値は、SRV3の逃し弁機能作動圧
力下限値(原子炉圧力AA)である。また、比較器16
bの設定値は、原子炉水位の所定の上限値(原子炉水位
B)であり、比較器16dの設定値は、原子炉水位の所
定の下限値(原子炉水位BB)である。
As shown in FIGS. 1 and 2, the comparator 16
The set value of a is a value (reactor pressure A) lower than the SRV3 relief valve function operating pressure set value due to the reactor pressure high,
The set value of the comparator 16c is SRV3 based on the reactor pressure high.
Of the relief valve function operating pressure (reactor pressure high)
The set value of the comparator 16e is the lower limit value of the relief valve function operating pressure (reactor pressure AA) of the SRV3. Further, the comparator 16
The set value of b is a predetermined upper limit of the reactor water level (reactor water level B), and the set value of the comparator 16d is a predetermined lower limit of the reactor water level (reactor water level BB).

【0029】SRV開閉制御回路15は判定部17を有
し、この判定部17はOR回路18,AND回路19,
OR回路20およびOR回路21を備え、OR回路18
は比較器16aまたは16bのいずれかから信号が出力
された時に、その信号をAND回路19に出力する。こ
のAND回路19には、ΜSIV全閉信号およびOR回
路18の出力信号の双方が入力された時にOR回路20
に信号を出力する。
The SRV opening / closing control circuit 15 has a judging section 17, and this judging section 17 has an OR circuit 18, an AND circuit 19,
An OR circuit 18 including an OR circuit 20 and an OR circuit 21
Outputs a signal to the AND circuit 19 when a signal is output from either of the comparators 16a or 16b. When both the 時 に SIV fully closed signal and the output signal of the OR circuit 18 are input to the AND circuit 19,
Output the signal.

【0030】このOR回路20には、AND回路19か
らの信号の他、比較器16cからの信号または手動開す
るための信号が入力し、これらの信号のいずれかが出力
された時、SRV3に開信号を出力する。また、OR回
路21は、比較器16dおよび比較器16eのいずれか
から信号が出力された時、SRV3に閉信号を出力す
る。
In addition to the signal from the AND circuit 19, a signal from the comparator 16c or a signal for manual opening is input to the OR circuit 20, and when one of these signals is output, the signal is output to the SRV3. Outputs open signal. The OR circuit 21 outputs a close signal to the SRV 3 when a signal is output from one of the comparator 16d and the comparator 16e.

【0031】次に、本発明に係る主蒸気隔離弁全閉後の
復旧方法の第1実施形態を説明する。
Next, a first embodiment of a recovery method after the main steam isolation valve is fully closed according to the present invention will be described.

【0032】ΜSIV2の全閉事象が発生すると、図1
および図2に示すようにΜSIV全閉信号がAND回路
19に入力するとともに、原子炉圧力容器1の圧力が原
子炉圧力高によるSRV3の逃し弁機能作動圧力設定値
より低い値(原子炉圧力A)まで上昇して比較器16a
から信号が出力されるか、原子炉圧力容器1の水位が所
定の上限値(原子炉水位B)まで上昇して比較器16b
から信号が出力された場合には、OR回路18,AND
回路19およびOR回路20を経てSRV3に開信号が
出力され、SRV3が自動で開弁動作を行う。これによ
り、原子炉圧力上昇およびスウェリングによる水位上昇
が発生して給水ポンプがトリップする原子炉水位になる
のを未然に回避することができる。
When the fully closed event of SIV2 occurs, FIG.
As shown in FIG. 2 and FIG. 2, the ΜSIV fully closed signal is input to the AND circuit 19, and the pressure in the reactor pressure vessel 1 is lower than the SRV 3 relief valve function operating pressure set value due to the reactor pressure high (reactor pressure A ) To the comparator 16a
Or the water level of the reactor pressure vessel 1 rises to a predetermined upper limit (reactor water level B) and the comparator 16b
Output from the OR circuit 18, AND
An open signal is output to the SRV3 via the circuit 19 and the OR circuit 20, and the SRV3 automatically performs a valve opening operation. As a result, it is possible to prevent the reactor water level at which the feedwater pump is tripped due to the reactor pressure rise and the water level rise due to swelling occurring.

【0033】一方、原子炉圧力がSRV3の作動圧力下
限値(原子炉圧力AA)まで低下して比較器16dから
信号が出力されるか、原子炉圧力容器1の水位が所定の
下限値(原子炉水位BB)まで下降して比較器16eか
ら信号が出力された場合には、OR回路21を経てSR
V3に閉信号が出力され、SRV3が自動で閉弁動作を
行う。これにより、原子炉圧力および原子炉水位の変動
を抑制することが可能となる。
On the other hand, the reactor pressure decreases to the operating pressure lower limit value of the SRV 3 (reactor pressure AA) and a signal is output from the comparator 16d, or the water level of the reactor pressure vessel 1 is reduced to a predetermined lower limit value (reactor pressure AA). When the signal has been output from the comparator 16e after falling to the reactor water level BB), the SR
A closing signal is output to V3, and SRV3 automatically performs a valve closing operation. This makes it possible to suppress fluctuations in the reactor pressure and the reactor water level.

【0034】また、本実施形態では、比較器16bの設
定値である水位の所定上限値(原子炉水位B)が給水ポ
ンプがトリップする水位より低い値に設定されるととも
に、比較器16dの設定値である水位の所定下限値(原
子炉水位BB)が非常用炉心冷却系ポンプが作動する水
位より高い値に設定され、つまりΜSIV2の全閉時に
SRV3が作動する水位の高低設定値が給水ポンプがト
リップする水位から非常用炉心冷却系ポンプが作動する
水位以内に設定されている。
In this embodiment, the predetermined upper limit of the water level (reactor water level B), which is the set value of the comparator 16b, is set to a value lower than the water level at which the water supply pump trips, and the setting of the comparator 16d is set. The predetermined lower limit of the water level (reactor water level BB) is set to a value higher than the water level at which the emergency core cooling system pump operates, that is, the water pump at which the SRV 3 operates when the SIV 2 is fully closed is set to the water supply pump. Is set within the water level at which the emergency core cooling system pump operates from the water level at which the trip occurs.

【0035】したがって、原子炉水位を給水ポンプがト
リップする水位と非常用炉心冷却系ポンプが作動する水
位に達することを未然に防止し、原子炉水位の変動をも
抑制することができるため、ΜSIV全閉後の復旧操作
を円滑に行うことが可能となる。
Therefore, it is possible to prevent the reactor water level from reaching the water level at which the feed water pump trips and the water level at which the emergency core cooling system pump operates, and to suppress the fluctuation of the reactor water level. Recovery operation after fully closed can be performed smoothly.

【0036】さらに、本実施形態では、比較器16aの
設定値を原子炉圧力高によるSRV3の逃し弁機能作動
圧力設定値より低い値(原子炉圧力A)に設定すること
により、ΜSIV全閉信号が入った際、通常の原子炉圧
力高によるSRV3の開動作より早いタイミングで原子
炉内の減圧を行い、原子炉圧力設定値以上に原子炉圧力
が上昇するのを防止することができる。
Further, in this embodiment, by setting the set value of the comparator 16a to a value (reactor pressure A) lower than the set value of the SRV3 relief valve function operating pressure due to the reactor pressure high, the ΔSIV fully closed signal , The pressure in the reactor is reduced at a timing earlier than the opening operation of the SRV 3 due to the normal reactor pressure high, and it is possible to prevent the reactor pressure from rising above the reactor pressure set value.

【0037】その結果、原子炉圧力が原子炉圧力設定値
に到達することによって生じるTBV7の開弁動作を抑
制することが可能となり、主蒸気管9の均圧操作を行っ
ている際、原子炉圧力が上昇することがあってもTBV
7の開弁による均圧操作の妨げを未然に防止することが
できる。
As a result, the valve opening operation of the TBV 7 caused by the reactor pressure reaching the reactor pressure set value can be suppressed, and when the equalizing operation of the main steam pipe 9 is performed, the reactor TBV even if pressure rises
The obstruction of the equalizing operation by the opening of the valve 7 can be prevented.

【0038】このように構成された本実施形態の主蒸気
隔離弁全閉後の復旧方法において、主要パラメータおよ
び主要弁の挙動を図5に示す従来の主要パラメータおよ
び主要弁の挙動と比較して考えると、ΜSIV全閉事象
発生に伴いSRV3は、ΜSIV全閉時のみに作用する
原子炉圧力Aにより、従来より早いタイミングでSRV
が開動作をし、原子炉圧力を抑制し始める。
In the recovery method after the main steam isolation valve is fully closed according to the present embodiment, the main parameters and the behavior of the main valve are compared with the conventional main parameters and the behavior of the main valve shown in FIG. Considering the occurrence of the ΜSIV fully-closed event, the SRV3 becomes faster than the conventional SRV due to the reactor pressure A acting only when the ΜSIV is fully closed.
Opens and begins to throttle reactor pressure.

【0039】1回目のSRV作動時には、圧力上昇がか
なり大きいため、原子炉圧力はΜSIV全閉信号が入っ
た時に変更される原子炉圧力設定値の上限値に至った場
合にはΤBVが開動作を行うが、それ以降は、原子炉圧
力の上昇率は緩やかになっていくため、原子炉圧力設定
値より低い値の原子炉圧力Aにより原子炉圧力の減圧を
行っているため、TBVの開動作を抑制することが可能
となる。
At the time of the first SRV operation, since the pressure rise is considerably large, when the reactor pressure reaches the upper limit of the reactor pressure set value changed when the ΜSIV fully closed signal is input, the ΤBV is opened. After that, since the rate of increase of the reactor pressure becomes slower, the reactor pressure is reduced by the reactor pressure A, which is lower than the reactor pressure set value. Operation can be suppressed.

【0040】また、SRV3の開閉動作に関しては、原
子炉水位の高低により作動可能であるため、水位が上昇
している時、スウェリングによる水位上昇を考慮した原
子炉水位(給水ポンプがトリップする水位)より低い原
子炉水位BでSRV3が開弁動作を行うため、給水ポン
プがトリップする原子炉水位に達するのを防止すること
ができるとともに、非常用炉心冷却系ポンプが作動する
水位に到達する前に原子炉水位BBによってSRV3が
閉動作を行うため、原子炉水位を非常用炉心冷却系ポン
プが作動する水位に達するのを防止することができる。
The opening and closing operation of the SRV 3 can be performed by adjusting the reactor water level. Therefore, when the water level is rising, the reactor water level (water level at which the feedwater pump trips) taking into account the rising of the water level due to swelling is considered. ) Since the SRV 3 performs the valve-opening operation at the lower reactor water level B, it is possible to prevent the feed water pump from reaching the reactor water level that trips and before reaching the water level at which the emergency core cooling system pump operates. Since the SRV 3 performs the closing operation according to the reactor water level BB, it is possible to prevent the reactor water level from reaching the level at which the emergency core cooling system pump operates.

【0041】なお、本実施形態では、原子炉圧力および
原子炉水位の双方を監視してSRV3の開閉を行うた
め、SRV3の1回の作動時間は短くなるものの、SR
V3の開閉回数が増加すると考えられる。
In this embodiment, since the SRV 3 is opened and closed by monitoring both the reactor pressure and the reactor water level, one operation time of the SRV 3 is shortened.
It is considered that the number of times of opening and closing of V3 increases.

【0042】図3は本発明に係る主蒸気隔離弁全閉後の
復旧方法の第2実施形態における原子炉圧力設定値を自
動変更するための回路図、図4は図3のインターロック
図である。なお、前記第1実施形態と同一の部分には、
同一の符号を付して説明する。
FIG. 3 is a circuit diagram for automatically changing a reactor pressure set value in a second embodiment of the recovery method after the main steam isolation valve is fully closed according to the present invention, and FIG. 4 is an interlock diagram of FIG. is there. The same parts as those in the first embodiment include:
The description is given with the same reference numerals.

【0043】図3および図4に示すように、圧力検出器
13により得られた炉内の圧力信号は、加算器22に出
力されるとともに、減算器23に出力される。加算器2
2は、原子炉圧力設定が追従モードの場合に炉内の圧力
信号にバイアスとして所定圧力信号を加算して接点24
を介して圧力設定回路25に出力される。また、手動モ
ードの場合には、運転操作員がプッシュボタン(PB)
を押し、その圧力設定信号が接点26を介して圧力設定
回路25に出力される。
As shown in FIGS. 3 and 4, the pressure signal in the furnace obtained by the pressure detector 13 is output to the adder 22 and also to the subtractor 23. Adder 2
2 is to add a predetermined pressure signal as a bias to the pressure signal in the reactor when the reactor pressure setting is the follow-up mode,
Is output to the pressure setting circuit 25 via Further, in the case of the manual mode, the driving operator presses a push button (PB).
Is pressed, and the pressure setting signal is output to the pressure setting circuit 25 via the contact 26.

【0044】さらに、減算器23は炉内の圧力信号と圧
力設定回路25からの圧力信号との差を得て、その差が
−の場合には圧力調整器27を経て閉信号をΤBV7に
出力してΤBV7を閉にする。一方、減算器23による
減算結果が+の場合には、圧力調整器27を経て開信号
をΤBV7に出力してΤBV7を開にする。
Further, the subtractor 23 obtains a difference between the pressure signal in the furnace and the pressure signal from the pressure setting circuit 25, and outputs a closing signal to the 信号 BV7 via the pressure regulator 27 when the difference is-. ΤBV7 is closed. On the other hand, when the result of the subtraction by the subtractor 23 is +, an open signal is output to the ΤBV7 via the pressure regulator 27 to open the ΤBV7.

【0045】そして、ΜSIV全閉信号が入った時に
は、接点28を閉じる一方、接点24および26が開に
なり、圧力設定回路25を介して原子炉圧力設定が上限
値まで変更され、減算器23による減算結果が−にな
る。その結果、圧力調整器27を経て閉信号がΤBV7
に出力されてΤBV7を閉にする。
When the ΜSIV fully closed signal is received, the contact 28 is closed and the contacts 24 and 26 are opened, the reactor pressure setting is changed to the upper limit value via the pressure setting circuit 25, and the subtractor 23 Results in-. As a result, the closing signal passes through the pressure regulator 27 and becomes {BV7
ΤBV7 is closed.

【0046】したがって、本実施形態では、ΜSIV全
閉信号が入った時に原子炉圧力設定が瞬時に自動で上限
値まで変更されるため、MSIV全閉後の復旧操作の第
1段階における原子炉圧力および原子炉水位の変動を抑
制するための操作時にも原子炉圧力が原子炉圧力設定値
以上に上昇しない限り、TBV7の不要な開動作を抑制
することが可能となる。また、復旧操作の第2段階にお
いて主蒸気管9の均圧操作を開始している際もTBV7
の開動作を防止することが可能となる。
Therefore, in this embodiment, when the ΜSIV fully closed signal is input, the reactor pressure setting is automatically and instantaneously changed to the upper limit value. Therefore, the reactor pressure in the first stage of the recovery operation after the MSIV is fully closed is set. Unless the reactor pressure rises above the reactor pressure set value even during an operation for suppressing fluctuations in the reactor water level, unnecessary opening operation of the TBV 7 can be suppressed. Also, when the pressure equalizing operation of the main steam pipe 9 is started in the second stage of the recovery operation, the TBV 7
Can be prevented from opening.

【0047】このように本実施形態によれば、原子炉圧
力設定値がΜSIV全閉事象発生時には、自動で上限値
まで瞬時に変更されることにより、ΤBV7の開弁動作
の抑制タイミングが速くなり、それに伴い主蒸気管9の
均圧操作を速やかに行うことができ、復旧操作を迅速か
つ確実に行うことが可能となる。
As described above, according to the present embodiment, when the 圧 力 SIV fully closed event occurs, the reactor pressure set value is automatically and instantaneously changed to the upper limit value, so that the timing of suppressing the valve opening operation of ΤBV7 becomes faster. Accordingly, the equalizing operation of the main steam pipe 9 can be performed promptly, and the restoring operation can be performed quickly and reliably.

【0048】[0048]

【発明の効果】以上説明したように、本発明の請求項1
記載の発明によれば、原子炉圧力監視に加え、ΜSIV
全閉時には原子炉水位の変動においてもSRVが自動開
閉することが可能となり、原子炉圧力および原子炉水位
の変動を自動で抑制することが可能である。
As described above, according to the first aspect of the present invention,
According to the described invention, in addition to reactor pressure monitoring,
When fully closed, the SRV can automatically open and close even when the reactor water level fluctuates, and it is possible to automatically suppress fluctuations in the reactor pressure and the reactor water level.

【0049】請求項2記載の発明によれば、ΜSIV全
閉時には、原子炉水位の変動においてもSRVの開閉を
可能とするため、SRV作動水位高低の設定値を給水ポ
ンプがトリップする水位から非常用炉心冷却系ポンプが
作動する水位以内に設定することで、給水ポンプがトリ
ップする水位および非常用炉心冷却系ポンプが作動する
水位に達するのを防止することができる。
According to the second aspect of the present invention, when the SIV is fully closed, the SRV can be opened and closed even if the reactor water level fluctuates. By setting the water level within the water level at which the core cooling system pump operates, it is possible to prevent the water level at which the water supply pump trips and the water level at which the emergency core cooling system pump operates to be reached.

【0050】請求項3記載の発明によれば、ΜSIV全
閉時には、SRV開動作作動圧力を原子炉圧力設定上限
値以内でSRVを作動させることにより、原子炉圧力を
原子炉圧力設定値以内に抑制し、TBV開動作による外
乱を防止し、円滑かつ迅速な復旧操作を行うことが可能
である。
According to the third aspect of the present invention, when the SIV is fully closed, the SRV is operated within the reactor pressure setting upper limit by operating the SRV so that the SRV opening operation pressure is within the reactor pressure setting upper limit. It is possible to suppress the disturbance, prevent disturbance due to the TBV opening operation, and perform a smooth and quick recovery operation.

【0051】請求項4記載の発明によれば、ΜSIV全
閉事象が発生した場合、原子炉圧力設定が上限値に瞬時
に変更されるため、原子炉圧力抑制中においてもTBV
の開動作回数を抑制することが可能であり、主蒸気管の
均圧操作に至っても不要なTBVの開動作を防止するこ
とができる。
According to the fourth aspect of the present invention, when the ΜSIV fully closed event occurs, the reactor pressure setting is instantaneously changed to the upper limit value.
Can be suppressed, and unnecessary TBV opening operation can be prevented even when pressure equalizing operation of the main steam pipe is performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る主蒸気隔離弁全閉後の復旧方法の
第1実施形態における主蒸気逃がし安全弁を開閉するた
めの制御回路図。
FIG. 1 is a control circuit diagram for opening and closing a main steam release safety valve in a first embodiment of a recovery method after a main steam isolation valve is fully closed according to the present invention.

【図2】図1のインターロック図。FIG. 2 is an interlock diagram of FIG.

【図3】本発明に係る主蒸気隔離弁全閉後の復旧方法の
第2実施形態における原子炉圧力設定値を自動変更する
ための回路図。
FIG. 3 is a circuit diagram for automatically changing a reactor pressure set value in a second embodiment of the recovery method after the main steam isolation valve is fully closed according to the present invention.

【図4】図3のインターロック図。FIG. 4 is an interlock diagram of FIG. 3;

【図5】主蒸気隔離弁全閉後の主要原子炉パラメータお
よび主要弁の挙動を示すタイミングチャート。
FIG. 5 is a timing chart showing main reactor parameters and main valve behavior after the main steam isolation valve is fully closed.

【図6】沸騰水型原子力発電プラントを示す概略構成
図。
FIG. 6 is a schematic configuration diagram showing a boiling water nuclear power plant.

【図7】(A),(B)は従来のSRV逃がし弁機能お
よび原子炉圧力設定変更の従来例を示すシーケンス図。
FIGS. 7A and 7B are sequence diagrams showing a conventional example of a conventional SRV relief valve function and a change in reactor pressure setting.

【符号の説明】[Explanation of symbols]

1 原子炉圧力容器 2 主蒸気隔離弁(ΜSIV) 3 主蒸気逃がし安全弁(SRV) 4 サプレッションプール 5 給水ポンプ 6 復水器 7 タービンバイパス弁(ΤBV) 8 均圧弁 9 主蒸気管 10 蒸気加減弁 11 蒸気タービン 12 発電機 13 圧力検出器 14 水位検出器 15 SRV開閉制御回路 16a〜16e 比較器 17 判定部 18 OR回路 19 AND回路 20 OR回路 21 OR回路 22 加算器 23 減算器 24 接点 25 圧力設定回路 26 接点 27 圧力調整器 28 接点 DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 2 Main steam isolation valve (主 SIV) 3 Main steam relief safety valve (SRV) 4 Suppression pool 5 Feedwater pump 6 Condenser 7 Turbine bypass valve (ΤBV) 8 Equalization valve 9 Main steam pipe 10 Steam control valve 11 Steam turbine 12 Generator 13 Pressure detector 14 Water level detector 15 SRV switching control circuit 16a to 16e Comparator 17 Judgment unit 18 OR circuit 19 AND circuit 20 OR circuit 21 OR circuit 22 Adder 23 Subtractor 24 Contact 25 Pressure setting circuit 26 contacts 27 pressure regulator 28 contacts

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原子炉側とタービン側とを隔離可能に主
蒸気管に設置された主蒸気隔離弁の全閉事象が発生した
場合、主蒸気逃がし安全弁を開閉して前記原子炉に蓄積
されたエネルギーを放出した後、前記主蒸気管の均圧操
作を行う主蒸気隔離弁全閉後の復旧方法において、前記
原子炉の圧力が前記主蒸気逃がし安全弁作動圧力まで上
昇するか、前記原子炉の水位が所定上限値まで上昇した
場合に前記主蒸気逃がし安全弁を自動開する一方、前記
原子炉の圧力が前記主蒸気逃がし安全弁作動圧力下限値
または前記原子炉の水位が所定下限値まで下降した場合
に前記主蒸気逃がし安全弁を自動閉することを特徴とす
る主蒸気隔離弁全閉後の復旧方法。
When a main steam isolation valve installed in a main steam pipe is fully closed so that a reactor side and a turbine side can be isolated from each other, a main steam release safety valve is opened and closed to accumulate in the reactor. After releasing the energy, the pressure in the reactor increases to the operating pressure of the main steam release safety valve, or the reactor While the main steam release safety valve is automatically opened when the water level of the reactor rises to a predetermined upper limit, the reactor pressure has decreased to the main steam release safety valve operating pressure lower limit value or the reactor water level to a predetermined lower limit value. A method for automatically closing the main steam release safety valve when the main steam isolation valve is fully closed.
【請求項2】 原子炉側とタービン側とを隔離可能に主
蒸気管に設置された主蒸気隔離弁の全閉事象が発生した
場合、主蒸気逃がし安全弁を開閉して前記原子炉に蓄積
されたエネルギーを放出した後、前記主蒸気管の均圧操
作を行う主蒸気隔離弁全閉後の復旧方法において、前記
原子炉圧力高による前記主蒸気逃がし安全弁の開閉条件
に加え、前記主蒸気隔離弁全閉時に前記主蒸気逃がし安
全弁が作動する水位の高低設定値を前記原子炉へ給水す
るための給水ポンプがトリップする水位から非常用炉心
冷却系ポンプが作動する水位以内に設定したことを特徴
とする主蒸気隔離弁全閉後の復旧方法。
2. In the event that a main steam isolation valve installed in a main steam pipe so that the reactor side and the turbine side can be isolated from each other occurs, a main steam release safety valve is opened and closed to accumulate in the reactor. In the method for restoring the main steam isolation valve after the main steam isolation valve is fully closed after releasing the energy that has been released, the main steam isolation valve is opened and closed due to the reactor pressure high, and the main steam isolation safety valve is opened and closed. When the valve is fully closed, the main steam release safety valve operates at a high or low water level set within a water level at which a water supply pump for supplying water to the reactor trips and a water level at which an emergency core cooling system pump operates. Recovery method after the main steam isolation valve is fully closed.
【請求項3】 原子炉側とタービン側とを隔離可能に主
蒸気管に設置された主蒸気隔離弁の全閉事象が発生した
場合、主蒸気逃がし安全弁を開閉して前記原子炉に蓄積
されたエネルギーを放出した後、前記主蒸気管の均圧操
作を行う主蒸気隔離弁全閉後の復旧方法において、前記
主蒸気隔離弁が全閉した際、前記主蒸気逃し安全弁の逃
し弁機能作動圧力設定値を、前記原子炉圧力高による前
記主蒸気逃し安全弁の逃し弁機能作動圧力設定値より低
い値に設定したことを特徴とする主蒸気隔離弁全閉後の
復旧方法。
3. When a main steam isolation valve installed in a main steam pipe so that the reactor side and the turbine side can be isolated from each other, a main steam release safety valve is opened and closed to accumulate in the reactor. In the restoring method after the main steam isolation valve is fully closed after performing the pressure equalizing operation of the main steam pipe after releasing the energy that has been released, when the main steam isolation valve is fully closed, the relief function of the main steam relief safety valve is activated. A recovery method after the main steam isolation valve is fully closed, wherein a pressure set value is set to a value lower than a relief valve function operating pressure set value of the main steam relief safety valve due to the reactor pressure high.
【請求項4】 原子炉側とタービン側とを隔離可能に主
蒸気管に設置された主蒸気隔離弁の全閉事象が発生した
場合、主蒸気逃がし安全弁を開閉して前記原子炉に蓄積
されたエネルギーを放出した後、前記主蒸気管の均圧操
作を行う主蒸気隔離弁全閉後の復旧方法において、前記
主蒸気隔離弁が全閉した際、前記原子炉の圧力設定を自
動で上限値に変更することを特徴とする主蒸気隔離弁全
閉後の復旧方法。
4. When a main steam isolation valve installed in a main steam pipe is fully closed so that the reactor side and the turbine side can be isolated from each other, a main steam release safety valve is opened and closed to accumulate in the reactor. In the recovery method after the main steam isolation valve is fully closed after performing the equalizing operation of the main steam pipe after releasing the energy that has been released, when the main steam isolation valve is fully closed, the pressure setting of the reactor is automatically set to an upper limit. Recovery method after fully closing the main steam isolation valve, characterized by changing to a value.
JP10009076A 1998-01-20 1998-01-20 Recovering method after full closure of main steam isolation valve Pending JPH11211886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10009076A JPH11211886A (en) 1998-01-20 1998-01-20 Recovering method after full closure of main steam isolation valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10009076A JPH11211886A (en) 1998-01-20 1998-01-20 Recovering method after full closure of main steam isolation valve

Publications (1)

Publication Number Publication Date
JPH11211886A true JPH11211886A (en) 1999-08-06

Family

ID=11710532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10009076A Pending JPH11211886A (en) 1998-01-20 1998-01-20 Recovering method after full closure of main steam isolation valve

Country Status (1)

Country Link
JP (1) JPH11211886A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882915B2 (en) 2001-08-23 2005-04-19 Nissan Motor Co., Ltd. Driving assist system
US20210313082A1 (en) * 2020-04-01 2021-10-07 Korea Atomic Energy Research Institute Steam generator accident mitigation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882915B2 (en) 2001-08-23 2005-04-19 Nissan Motor Co., Ltd. Driving assist system
US20210313082A1 (en) * 2020-04-01 2021-10-07 Korea Atomic Energy Research Institute Steam generator accident mitigation system
US11823804B2 (en) * 2020-04-01 2023-11-21 Korea Atomic Energy Research Institute Steam generator accident mitigation system

Similar Documents

Publication Publication Date Title
JPS6396405A (en) Feedwater flow control method to steam generator
US4440715A (en) Method of controlling nuclear power plant
JPH08170998A (en) Reinforcement protective system against transient excessive output
JPH11211886A (en) Recovering method after full closure of main steam isolation valve
JP4230638B2 (en) Steam turbine controller for nuclear power plant
JP2001099989A (en) Pressure equalizing method of main steam isolation valve
JPS6050318B2 (en) Reactor control device
JP3095485B2 (en) Full capacity turbine bypass nuclear power plant
JP7228477B2 (en) Residual heat removal equipment, its operating method and residual heat removal method
JPH06317691A (en) Selected control rod inserting method
JPS5828689A (en) Method and device for controlling reactor power at load loss
JPH0429921B2 (en)
JPH1130693A (en) Transient relaxation system for nuclear reactor
JPS5897697A (en) Feedwater recirculation flow rate cooperation control device
JPH07270593A (en) Automatic output controller for reactor
CN115966322A (en) High-temperature gas cooled reactor nuclear steam supply module switching method
JPH0566292A (en) Suppressing device for nuclear reactor scram
JPS6128893A (en) Nuclear power plant
JPS6011605A (en) Steam turbine control
JPH0514878B2 (en)
JPH0843590A (en) Controlling method for boiling water reactor power plant
JPH05164891A (en) Nuclear reactor output control device
JPH0980195A (en) Steam turbine controller for nuclear reactor power plant
JPH04309896A (en) Water supply pump controller for system generating plant
JP2000056068A (en) Control rod extraction monitoring device and control rod control device