JPH11211613A - Method and apparatus for measuring inner loss coefficient - Google Patents

Method and apparatus for measuring inner loss coefficient

Info

Publication number
JPH11211613A
JPH11211613A JP10009846A JP984698A JPH11211613A JP H11211613 A JPH11211613 A JP H11211613A JP 10009846 A JP10009846 A JP 10009846A JP 984698 A JP984698 A JP 984698A JP H11211613 A JPH11211613 A JP H11211613A
Authority
JP
Japan
Prior art keywords
measurement
light
measuring
loss coefficient
internal loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10009846A
Other languages
Japanese (ja)
Inventor
Norio Komine
典男 小峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10009846A priority Critical patent/JPH11211613A/en
Publication of JPH11211613A publication Critical patent/JPH11211613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the inner loss coefficient of an optical material in the wavelength region of 200 nm or less. SOLUTION: Divergence angle of the measuring light from a light source 2 is set at 10 milli radian or less at a position transmitting an object M by varying the width of slits 4, 6 or the diameter of a pinhole 9, or shifting a collimator lens 10, or the like, in the direction of the optical axis. Furthermore, pressure in a vacuum chamber 20 is set at 10×10<-2> Torr or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、200nm以下の
波長領域の紫外線を透過する光学材料の内部損失係数を
測定する方法及びその実施に好適な測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an internal loss coefficient of an optical material which transmits ultraviolet light in a wavelength region of 200 nm or less, and a measuring apparatus suitable for carrying out the method.

【0002】[0002]

【従来の技術】近年、例えばエキシマレーザリソグラフ
ィ装置、エキシマレーザCVD装置、エキシマレーザ加
工装置など、エキシマレーザを光源とした各種の光学
系、或いはエキシマレーザと同様にパルス発振運転を行
う紫外線パルスレーザ光を光源とした光学系を有する各
種産業用光学装置が研究されている。これらの装置は、
特に、ArFエキシマレーザリソグラフィ装置、ArF
エキシマレーザCVD装置、ArFエキシマレーザ加工
装置などに組み込まれている、波長193nmのArF
エキシマレーザを光源とした各種の光学系、或いは波長
200nm以下の紫外線、真空紫外線或いは同波長領域
のレーザを光源とした照明用光学系或いは結像用光学系
などのレンズ部材、ファイバ、窓部材、ミラー、エタロ
ン、プリズムなどの光学素子として使用される、石英ガ
ラスや各種の光学用結晶材料に対して有用である。
2. Description of the Related Art In recent years, various optical systems using an excimer laser as a light source, such as an excimer laser lithography apparatus, an excimer laser CVD apparatus, and an excimer laser processing apparatus, or an ultraviolet pulse laser beam performing a pulse oscillation operation in the same manner as an excimer laser Various industrial optical devices having an optical system using a light source have been studied. These devices are
In particular, ArF excimer laser lithography apparatus, ArF
ArF having a wavelength of 193 nm incorporated in an excimer laser CVD apparatus, an ArF excimer laser processing apparatus, and the like.
Various optical systems using an excimer laser as a light source, or lens members such as an illumination optical system or an imaging optical system using a UV light having a wavelength of 200 nm or less, vacuum ultraviolet light or a laser having the same wavelength region as a light source, a fiber, a window member, It is useful for quartz glass and various optical crystal materials used as optical elements such as mirrors, etalons, and prisms.

【0003】そして、これらの装置に設置された光学系
を構成する上記のような光学素子には、光源の紫外線に
対する高い初期透過率(透過率自体が高いこと)と高い
耐紫外線性(透過率の変動が小さいこと)が要求され
る。このようなことから光学素子の材料としては石英ガ
ラス、フッ化カルシウム結晶などのような紫外線に対し
て高い透過率を有する材料が用いられるが、たとえ高い
透過率を有する光学素子材料を用いていても、多数の光
学素子が組み合わされて作られる光学系においては、光
学系全体としての透過率をいかに高くするかということ
が問題となる。このため、このような光学素子の材料が
どの程度の透過率を有し、どの程度光吸収するかを正確
に評価する必要がある。すなわち、その光学材料の内部
損失係数を正確に測定する必要がある。
[0003] The above-described optical elements constituting the optical system installed in these apparatuses have a high initial transmittance (high transmittance itself) to ultraviolet light of the light source and a high ultraviolet resistance (transmittance). Is small). For this reason, materials having a high transmittance for ultraviolet rays, such as quartz glass and calcium fluoride crystals, are used as materials for the optical element. However, even if an optical element material having a high transmittance is used, However, in an optical system made by combining a large number of optical elements, there is a problem how to increase the transmittance of the entire optical system. Therefore, it is necessary to accurately evaluate how much the material of such an optical element has transmittance and how much light is absorbed. That is, it is necessary to accurately measure the internal loss coefficient of the optical material.

【0004】従来、紫外線例えばエキシマレーザ光に対
する光学材料の内部損失係数の測定は、分光光度計を用
いて、測定対象を透過した後の透過光の強度Iと、測定
対象を透過する前の参照光の強度I0とを求め、透過率
T=I/I0を算出することにより求めていた。
Conventionally, the internal loss coefficient of an optical material with respect to ultraviolet light such as excimer laser light is measured by using a spectrophotometer, and the intensity I of transmitted light after passing through the object to be measured and a reference before passing through the object to be measured. The light intensity I 0 was obtained, and the transmittance T = I / I 0 was calculated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、市販の
分光光度計を用いて上記のような透過率測定(すなわち
内部損失係数測定)を行う場合には、以下のような問題
が生じていた。そしてこのような問題点のため、200
nm以下の波長領域において、光学材料の内部損失係数
を高精度に測定することは困難であった。
However, when the above-described transmittance measurement (that is, internal loss coefficient measurement) is performed using a commercially available spectrophotometer, the following problems have occurred. And because of these problems, 200
It has been difficult to measure the internal loss coefficient of the optical material with high accuracy in the wavelength region of nm or less.

【0006】その第1は、測定光は測定対象を透過す
る位置において充分なコリメートがなされない。従っ
て、測定対象内を透過した測定光(透過光)は屈折して
光路が変化してしまい、受光面上で検出される測定対象
の像は正確な大きさのものではなくなってしまう。検
出器(例えば、光電子増倍管)の受光面には空間的な感
度むらが存在するため、のように測定対象の像の大き
さが変化すると検出器からの出力値が変化してしまう、
という問題である。このため、測定対象の内部透過率が
実際よりも大きく算出される虞があった(場合によって
は内部透過率が100%を越えてしまうようなことも有
り得た)。
First, sufficient collimation of the measuring light is not performed at the position where the measuring light passes through the measuring object. Therefore, the measurement light (transmitted light) transmitted through the measurement target is refracted and the optical path changes, and the image of the measurement target detected on the light receiving surface is not of an accurate size. Since the light receiving surface of the detector (for example, a photomultiplier tube) has spatial sensitivity unevenness, the output value from the detector changes when the size of the image of the measurement target changes as in
That is the problem. For this reason, there is a possibility that the internal transmittance of the measurement target may be calculated to be larger than the actual value (in some cases, the internal transmittance may exceed 100%).

【0007】第2は、測定領域の短波長化に伴って、一
般に、分光光度計の光源の強度は低下し、高精度な透過
率測定が困難になることである。測定対象の内部透過率
が非常に高い(内部吸収が微弱な)場合には尚更であ
り、従来の方法では精度良い内部透過率測定を行うこと
は非常に困難であった。
Second, as the wavelength of the measurement area becomes shorter, the intensity of the light source of the spectrophotometer generally decreases, and it becomes difficult to measure the transmittance with high accuracy. This is especially true when the internal transmittance of the measurement target is very high (the internal absorption is weak), and it is very difficult to measure the internal transmittance with high accuracy by the conventional method.

【0008】第3は、200nm以下の波長領域になる
と、測定光の光路上の雰囲気(通常は空気)中の酸素分
子の吸収の影響が無視できなくなることである。すなわ
ち、200nm以下の波長領域になると酸素分子の吸収
係数は0.001cm-1オーダーとなり、測定対象の内
部損失係数βが非常に大きい場合(例えば、β>0.1
cm-1の場合)には酸素分子の吸収が問題になることは
ないが、測定対象の内部損失係数βが非常に小さい場合
(例えば、β<0.01cm-1)には酸素分子の吸収が
内部損失係数の測定に大きな影響を及ぼすようになって
くる。
Third, in the wavelength region of 200 nm or less, the influence of absorption of oxygen molecules in the atmosphere (normally, air) on the optical path of the measurement light cannot be ignored. That is, in the wavelength region of 200 nm or less, the absorption coefficient of oxygen molecules is on the order of 0.001 cm −1, and when the internal loss coefficient β of the measurement object is very large (for example, β> 0.1
cm −1 ), the absorption of oxygen molecules does not matter, but if the internal loss coefficient β of the measurement object is very small (eg, β <0.01 cm −1 ), the absorption of oxygen molecules Has a great influence on the measurement of the internal loss factor.

【0009】このことを具体的に説明する。分光光度計
を用いて光学材料の透過率測定を行う場合には透過光強
度Iと参照光強度I0 とを求める必要があるが、通常、
透過光強度Iは測定対象を測定光路上に挿入した状態で
検出され、一方、参照光強度I0 は測定対象を測定光路
上に挿入しないブランクの状態で検出する。しかし、測
定対象は厚さLを有しているため、参照光強度の測定時
には透過光強度の測定時に比較して、測定光路長が相対
的に長さL分だけ長くなる。従って、求められる参照光
強度I0 は、光路長Lの雰囲気中の酸素分子による吸収
分だけ、実際よりも大きくなる。このため参照光強度I
0 は実際よりも低く測定されることとなり、これにより
測定対象の透過率が実際より高めに測定されてしまう虞
があった。
This will be described specifically. When measuring the transmittance of an optical material using a spectrophotometer, it is necessary to determine the transmitted light intensity I and the reference light intensity I 0 , but usually,
The transmitted light intensity I is detected in a state where the measurement target is inserted on the measurement optical path, while the reference light intensity I 0 is detected in a blank state where the measurement target is not inserted on the measurement optical path. However, since the measurement target has the thickness L, the measurement optical path length is relatively longer by the length L when measuring the reference light intensity than when measuring the transmitted light intensity. Therefore, the required reference light intensity I 0 is larger than the actual value by the amount absorbed by the oxygen molecules in the atmosphere having the optical path length L. Therefore, the reference light intensity I
0 is measured lower than the actual value, and there is a possibility that the transmittance of the measurement object may be measured higher than the actual value.

【0010】本発明は、このような問題に鑑みてなされ
たものであり、200nm以下の波長領域において、光
学材料の内部損失係数を高精度に測定することのできる
内部損失係数の測定方法及び測定装置を提供することを
目的とする。
The present invention has been made in view of such a problem, and a method and a method for measuring an internal loss coefficient capable of measuring an internal loss coefficient of an optical material with high accuracy in a wavelength region of 200 nm or less. It is intended to provide a device.

【0011】[0011]

【課題を解決するための手段】このような目的達成のた
め、本発明に係る測定方法では、200nm以下の波長
の測定光を測定対象に照射し、測定対象を透過する前の
測定光から抽出した参照光の強度及び測定対象を透過し
た後の測定光から抽出した透過光の強度を測定すること
によりその測定対象の透過率を求める工程を有する光学
材料の内部損失係数の測定方法において、測定対象を透
過する位置における測定光の発散角を微小(好ましく
は、10ミリラジアン以下)とし、且つ、測定光の光路
周辺の雰囲気を真空にする。本発明において真空とは、
例えば密閉された雰囲気の圧力を、好ましくは1×10
-2Torr以下とするものである。なお、発散角とは、
測定光の光軸から計られる片側分の広がり角のことであ
る。
In order to achieve such an object, a measuring method according to the present invention irradiates a measuring object with a wavelength of 200 nm or less to a measuring object and extracts the measuring light from the measuring light before passing through the measuring object. Measuring the intensity of the reference light and the intensity of the transmitted light extracted from the measurement light after transmission through the measurement target to determine the transmittance of the measurement target. The divergence angle of the measurement light at the position where the light passes through the target is made small (preferably, 10 milliradians or less), and the atmosphere around the optical path of the measurement light is evacuated. In the present invention, the vacuum is
For example, the pressure of a closed atmosphere is preferably 1 × 10
-2 Torr or less. The divergence angle is
The divergence angle of one side measured from the optical axis of the measurement light.

【0012】このように、測定対象を透過するときの測
定光の発散角を微小角度範囲内に調整してほぼ平行光と
することで、測定対象内での屈折による測定光路の変化
を小さくすることができるので、検出器の受光面の感度
むらに起因する測定誤差の影響を小さくすることができ
る。また、測定光路周辺の雰囲気を真空とすることによ
り、測定対象厚さに起因する、透過光の光路長と参照光
の光路長の差分内の酸素分子による吸収の影響を小さく
することができる。この方法を用いて、同一の光学材料
で作製された厚さの異なる複数枚の試験片を測定対象と
して複数枚の試験片各々の透過率を求めれば、200n
m以下の波長領域において、光学材料の内部損失係数を
高精度に測定することができる。
As described above, by adjusting the divergence angle of the measurement light when transmitted through the measurement object within a minute angle range and making it substantially parallel light, a change in the measurement optical path due to refraction in the measurement object is reduced. Therefore, it is possible to reduce the influence of a measurement error caused by uneven sensitivity of the light receiving surface of the detector. In addition, by setting the atmosphere around the measurement optical path to a vacuum, the influence of absorption by oxygen molecules in the difference between the optical path length of the transmitted light and the optical path length of the reference light due to the thickness of the measurement object can be reduced. When the transmittance of each of the plurality of test pieces made of the same optical material and having different thicknesses is measured using this method, the transmittance is 200 n.
In the wavelength region of m or less, the internal loss coefficient of the optical material can be measured with high accuracy.

【0013】また、このような方法を好適に実施するた
めに、本発明に係る測定装置は、200nm以下の波長
の測定光を測定対象に照射する光源と、測定対象を透過
する位置における測定光の発散角を調整可能な発散角調
整手段と、測定対象を透過する前の測定光から抽出した
参照光の強度及び測定対象を透過した後の測定光から抽
出した透過光の強度を検出する光強度検出手段と、測定
光の光路周辺の雰囲気を密閉するとともに密閉された雰
囲気の気圧を少なくとも1×10-2Torr以下に設定
可能な真空チャンバとを有して構成される。
[0013] Further, in order to preferably carry out such a method, the measuring apparatus according to the present invention comprises a light source for irradiating a measuring object with a wavelength of 200 nm or less to the measuring object, and a measuring light at a position transmitting the measuring object. Divergence angle adjusting means capable of adjusting the divergence angle of the light, and light for detecting the intensity of the reference light extracted from the measurement light before passing through the measurement target and the intensity of the transmitted light extracted from the measurement light after passing through the measurement target The apparatus includes an intensity detecting means, and a vacuum chamber capable of sealing the atmosphere around the optical path of the measurement light and setting the pressure of the sealed atmosphere to at least 1 × 10 -2 Torr or less.

【0014】なお、上記した参照光強度及び透過光強度
の測定方法及び装置には、測定対象透過前の測定光を二
つに分離し、分離した一方の測定光を測定対象を透過さ
せずに参照光とし、他方は測定対象を透過させて透過光
としてこれらの強度を同時に測定する方法及び装置のほ
か、測定光路上に測定対象を挿入しない状態で測定され
る測定光を参照光とし、これと同一の測定光路上に測定
対象を挿入した状態で測定される測定光を透過光として
これらの強度を別個に測定する方法及び装置が含まれ
る。
The above-described method and apparatus for measuring the intensity of the reference light and the intensity of the transmitted light separate the measurement light before transmission through the measurement target into two, and allow one of the separated measurement lights to pass through the measurement target. In addition to the method and apparatus for transmitting the measurement object and simultaneously measuring these intensities as transmitted light as the reference light, the measurement light measured without inserting the measurement object on the measurement optical path is referred to as the reference light. A method and an apparatus for separately measuring the intensities of measurement light measured with the measurement target inserted on the same measurement light path as the transmitted light are included.

【0015】[0015]

【発明の実施の形態】以下、図面を参照して本発明の好
ましい実施形態について説明する。図1に本発明の内部
損失係数の測定装置1の構成を示す。ArFエキシマレ
ーザ(波長193.4nm)光源2から照射された測定
光は第1集光レンズ3において集光された後、分光器入
射スリット4を介して回折格子5へ入射される。この回
折格子5において反射回折された測定光は分光器出射ス
リット6を介して第2集光レンズ7へ照射され、ここで
再び集光された後、絞り8により明度調整がなされる。
絞り8を通った測定光はピンホール9において所定の形
に整形された後、コリメータレンズ10において平行光
線とされ、第1ハーフミラー11へ照射される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of an internal loss coefficient measuring device 1 of the present invention. The measurement light emitted from the ArF excimer laser (wavelength 193.4 nm) light source 2 is condensed by the first condenser lens 3 and then incident on the diffraction grating 5 via the spectroscope entrance slit 4. The measuring light reflected and diffracted by the diffraction grating 5 is applied to a second condenser lens 7 via a spectroscope exit slit 6, where it is condensed again, and the brightness is adjusted by a stop 8.
The measurement light that has passed through the stop 8 is shaped into a predetermined shape in the pinhole 9, converted into a parallel light beam by the collimator lens 10, and emitted to the first half mirror 11.

【0016】第1ハーフミラー11において反射された
測定光は、測定光用オプティカルチョッパ13を介して
測定対象Mへ照射される。測定対象Mを透過した透過光
はミラー15、第2ハーフミラー16及び集光レンズ1
7を介して検出器18へ照射される。一方、第1ハーフ
ミラー11を透過した参照光は第1ミラー12、参照光
用オプティカルチョッパー14を介して第2ハーフミラ
ー16へ照射され、この第2ハーフミラー16で反射さ
れた参照光は集光レンズ17を介して検出器18へ照射
される。検出器18で受光された透過光と参照光は処理
装置19において分離処理され、透過光強度Iと参照光
強度I0 とが求められる。また、検出器18及び処理装
置19を除く装置は全て真空チャンバ20の中に密閉さ
れて設けられている。そしてこの真空チャンバ20によ
り、測定光周辺の雰囲気を真空に近い圧力に設定するこ
とができる。
The measuring light reflected by the first half mirror 11 is irradiated to the measuring object M via an optical chopper 13 for measuring light. The transmitted light that has passed through the measurement target M is the mirror 15, the second half mirror 16, and the condenser lens 1.
The light is radiated to the detector 18 through 7. On the other hand, the reference light transmitted through the first half mirror 11 is applied to the second half mirror 16 via the first mirror 12 and the optical chopper 14 for reference light, and the reference light reflected by the second half mirror 16 is collected. The light is emitted to the detector 18 via the optical lens 17. The transmitted light and the reference light received by the detector 18 are separated by the processing device 19 to obtain the transmitted light intensity I and the reference light intensity I 0 . All devices except the detector 18 and the processing device 19 are hermetically provided in a vacuum chamber 20. The vacuum chamber 20 can set the atmosphere around the measurement light to a pressure close to vacuum.

【0017】なお、測定対象Mを透過する位置における
測定光の発散角は、分光器入射スリット4と分光器出射
スリット6のスリット幅及びピンホール9の穴径を変更
させ、且つ、第2集光レンズ7、絞り8、ピンホール9
及びコリメータレンズ10を光軸に沿って移動させるこ
とによって調節することが可能である。
The divergence angle of the measurement light at the position transmitting the object to be measured M changes the slit width of the spectroscope entrance slit 4 and the spectrometer exit slit 6 and the hole diameter of the pinhole 9, and the second collection point. Optical lens 7, aperture 8, pinhole 9
It can be adjusted by moving the collimator lens 10 along the optical axis.

【0018】上記のような測定装置1を用い、光学材料
の内部損失係数を求める手順を説明する。先ず、内部損
失係数を測定する対象の光学材料を用いて、複数の試験
片を作製する。そして測定装置1を用いて各々の試験片
の透過率Tを求めるが、ここで透過率Tは、検出器18
及び処理装置19から得られる参照光の強度I0と透過
光の強度Iとを用いてT=I/I0 として求められる。
ここで、透過率Tは内部損失係数β及び測定対象厚さL
と式(1)の関係を有する。
A procedure for obtaining the internal loss coefficient of the optical material using the measuring device 1 as described above will be described. First, a plurality of test pieces are prepared using an optical material whose internal loss coefficient is to be measured. Then, the transmittance T of each test piece is obtained by using the measuring device 1, where the transmittance T is determined by the detector 18.
And T = I / I 0 using the intensity I 0 of the reference light and the intensity I of the transmitted light obtained from the processing device 19.
Here, the transmittance T is the internal loss coefficient β and the thickness L to be measured.
And Equation (1).

【0019】[0019]

【数1】T=I/I0 =exp(−βL)・・・(1)T = I / I 0 = exp (−βL) (1)

【0020】なお、内部損失係数βは内部係数α及び内
部散乱係数τとβ=α+τの関係がある。式(1)に示
すように、測定装置1により透過光強度I及び参照光強
度I0 を求めて透過率Tを算出することにより、測定対
象Mの内部損失係数βを求めることができる。
The internal loss coefficient β has a relation of β = α + τ with the internal coefficient α and the internal scattering coefficient τ. As shown in Expression (1), the internal loss coefficient β of the measurement target M can be obtained by calculating the transmittance T by obtaining the transmitted light intensity I and the reference light intensity I 0 by the measuring device 1.

【0021】ここで、測定対象Mが光学材料すなわち固
体材料である場合、測定対象Mの屈折率はその測定対象
が置かれている雰囲気の屈折率と異なるので、測定対象
Mと雰囲気との界面で生ずる反射のために、透過率Tの
式(1)は、式(2)のように書き換えるられる。
Here, when the measuring object M is an optical material, that is, a solid material, the refractive index of the measuring object M is different from the refractive index of the atmosphere in which the measuring object is placed. Equation (1) of the transmittance T can be rewritten as Equation (2) due to the reflection caused by

【0022】[0022]

【数2】 T=I/I0 ={(1−R)2exp(−βL)}/{1−R2exp(−2βL)} ・・・(2)## EQU2 ## T = I / I 0 = {(1-R) 2 exp (-βL)} / {1-R 2 exp (-2βL)} ··· (2)

【0023】ここで、測定対象Mは厚さLの平行平板の
形状に加工されるとともに、その2面の平面は光学研磨
されており、更に測定対象Mはその2つの研磨面が紫外
線測定光軸に対して垂直に配置されている。従って式
(2)には、研磨面2面間での多重反射も考慮されてい
る。また、式(2)中のRは測定対象Mの研磨面1面当
たりの反射率であり、測定光の光路周辺の雰囲気の屈折
率n1 及び測定対象Mの屈折率n2 のみを用いて、以下
の式で表すことができる。
Here, the measurement object M is processed into the shape of a parallel plate having a thickness of L, and its two planes are optically polished. It is arranged perpendicular to the axis. Therefore, in equation (2), multiple reflection between the two polished surfaces is also considered. Further, R in the formula (2) is a reflectance per polished surface of the measuring object M, and is calculated using only the refractive index n 1 of the atmosphere around the optical path of the measuring light and the refractive index n 2 of the measuring object M. , Can be represented by the following equation.

【0024】[0024]

【数3】 R={(n1 −n2 )/(n1 +n2 )}2・・・(3)R = {(n 1 −n 2 ) / (n 1 + n 2 )} 2 (3)

【0025】式(2)において、測定対象Mの内部損失
係数βを零と仮定した場合の透過率Tは理論透過率と呼
ばれ、これは、雰囲気の屈折率n1 及び測定対象Mの屈
折率n2 が分かれば式(2)及び式(3)を用いて計算
で求めることができる。このとき、理論透過率T0 は式
(4)で表される。
In equation (2), the transmittance T when the internal loss coefficient β of the measuring object M is assumed to be zero is called the theoretical transmittance, which is the refractive index n 1 of the atmosphere and the refractive index of the measuring object M. If the rate n 2 is known, it can be obtained by calculation using equations (2) and (3). At this time, the theoretical transmittance T 0 is expressed by equation (4).

【0026】[0026]

【数4】T0 =(1−R)2/(1−R2)・・・(4)T 0 = (1−R) 2 / (1−R 2 ) (4)

【0027】式(2)中において2・β・L≪1が成り
立つとして、式(2)を式(4)で割ることにより式
(5)が得られる。
Assuming that 2 · β · L≪1 holds in equation (2), equation (5) is obtained by dividing equation (2) by equation (4).

【0028】[0028]

【数5】T/T0 =exp(−βL)・・・(5)T / T 0 = exp (−βL) (5)

【0029】式(5)により、既知である理論透過率T
0の値と、測定装置1により求められる透過率Tとか
ら、L(測定対象Mの厚さ)とβ・L(内部損失係数β
と試験片厚さLとの積)の関係を得ることができる。そ
して、全ての試験片についての同様な測定を行い、それ
らの関係をプロットしてその傾きを調べることにより、
内部損失係数βの値を求めることができる。
From equation (5), the known theoretical transmittance T
From the value of 0 and the transmittance T obtained by the measuring device 1, L (thickness of the measuring object M) and β · L (internal loss coefficient β
And the product of the test piece thickness L). Then, by performing the same measurement for all the test pieces, plotting their relationship and examining the slope,
The value of the internal loss coefficient β can be obtained.

【0030】このような手順による内部損失係数βの測
定を、測定対象Mを透過する位置における測定光の発散
角及び真空チャンバ20内の圧力の条件を変化させ種々
行った。その結果、測定対象Mを透過する位置における
測定光の発散角を10ミリラジアン(0.57度)以下
としたとき、測定対象Mでの屈折による測定光路の変化
を小さくすることができ、検出器18の受光面の感度む
らに起因する測定誤差の発生を防止できることが分かっ
た。なお、このような検出器18の感度むらの影響をな
くす方法は、検出器18の前に積分球を置く方法と比較
して、測定光の光量が低下しないという利点がある。
The measurement of the internal loss coefficient β according to the above procedure was carried out by changing the conditions of the divergence angle of the measuring light at the position transmitting the measuring object M and the pressure in the vacuum chamber 20. As a result, when the divergence angle of the measurement light at the position transmitting the measurement target M is set to 10 milliradians (0.57 degrees) or less, the change in the measurement optical path due to refraction in the measurement target M can be reduced, and the detector It has been found that the occurrence of measurement error due to uneven sensitivity of the light receiving surface of No. 18 can be prevented. It should be noted that the method of eliminating the influence of the uneven sensitivity of the detector 18 has an advantage that the light amount of the measurement light does not decrease compared to the method of placing an integrating sphere in front of the detector 18.

【0031】また、測定光の光路周辺の雰囲気を1×1
-2Torr(1.33Pa)以下の圧力、酸素分圧に
して2×10-3Torr(0.27Pa)以下の圧力の
真空としたとき、従来問題となっていた測定対象厚さに
起因する透過光の光路長と参照光の光路長との差分内の
酸素分子による吸収の影響を小さくすることができるこ
とが分かった。そして、測定対象Mを透過する位置にお
ける測定光の発散角を10ミリラジアン(0.57度)
以下とし、且つ、測定光の光路周辺の雰囲気を1×10
-2Torr(1.33Pa)以下の圧力、酸素分圧にし
て2×10-3Torr(0.27Pa)としたとき、2
00nm以下の波長領域において微弱な内部損失係数β
(β<0.01cm-1以下)を精度良く測定することが
できた。
The atmosphere around the optical path of the measuring light is 1 × 1
When the pressure is 0 -2 Torr (1.33 Pa) or less and the partial pressure of oxygen is a vacuum of 2 × 10 -3 Torr (0.27 Pa) or less, the thickness of the object to be measured has conventionally been a problem. It has been found that the influence of absorption by oxygen molecules in the difference between the optical path length of the transmitted light and the optical path length of the reference light can be reduced. Then, the divergence angle of the measurement light at the position transmitting the measurement object M is set to 10 milliradians (0.57 degrees).
And the atmosphere around the optical path of the measurement light is 1 × 10
-2 Torr (1.33 Pa) or less, when the oxygen partial pressure is set to 2 × 10 −3 Torr (0.27 Pa), 2
Weak internal loss coefficient β in the wavelength region of 00 nm or less
(Β <0.01 cm −1 or less) could be accurately measured.

【0032】なお、上述した測定装置1では、参照光強
度と透過光強度を同一の検出器18により検出する構成
であったが、参照光強度と透過光強度をそれぞれ別の検
出器により検出する構成としても構わない。また、測定
装置1における参照光強度及び透過光強度の測定方法
は、測定対象透過前の測定光を二つに分離し、分離した
一方の測定光を測定対象を透過させずに参照光とし、他
方は測定対象を透過させて透過光としてこれらの強度を
同時に測定する方法によるものであったが、このような
装置及び方法に替えて、測定光路上に測定対象を挿入し
ない状態で測定される測定光を参照光とし、これと同一
の測定光路上に測定対象を挿入した状態で測定される測
定光を透過光としてこれらの強度を別個に測定する装置
及び方法を用いても良い。
In the measuring apparatus 1 described above, the reference light intensity and the transmitted light intensity are detected by the same detector 18, but the reference light intensity and the transmitted light intensity are detected by different detectors. It may be configured. Further, the measuring method of the reference light intensity and the transmitted light intensity in the measuring device 1 is to separate the measurement light before transmission through the measurement target into two, and to use one of the separated measurement light as the reference light without transmitting the measurement target, The other method is based on a method of simultaneously measuring these intensities as transmitted light by transmitting an object to be measured. Instead of such an apparatus and method, measurement is performed without inserting the object to be measured on a measurement optical path. It is also possible to use an apparatus and a method for separately measuring the intensities of the measurement light as reference light and the measurement light measured in a state where the measurement target is inserted on the same measurement optical path as the transmitted light.

【0033】[0033]

【実施例】以下に、具体的な実施例を示す。本実施例の
試験片には、直接法で合成された合成石英ガラスを用い
た。試験片のアルカリ土類金属のMg、Ca、遷移金属
のSc、Ti、V、Cr、Mn、Fe、Co、Ni、C
u、Zn、そしてAlの各不純物元素濃度はそれぞれ2
0ppb以下であった。更に、Cl濃度は30ppm、
Na濃度は検出下限(1ppb)以下であり、K濃度も
検出下限(50ppb)以下であった。また、OH基濃
度は1000ppmであった。なお、Na、K、Clの
定量は熱中性子線照射による放射化分析によって行っ
た。また、アルカリ土類金属、遷移金属及びAl元素の
定量は誘導結合型プラズマ発光分光法によって行った。
また、OH基濃度は赤外線吸収分光法(OH基による
1.38μmの吸収量を測定する)によって測定した。
EXAMPLES Specific examples will be described below. For the test piece of this example, a synthetic quartz glass synthesized by a direct method was used. Mg and Ca of alkaline earth metals and Sc, Ti, V, Cr, Mn, Fe, Co, Ni and C of transition metals
Each of the impurity element concentrations of u, Zn, and Al is 2
It was 0 ppb or less. Further, the Cl concentration is 30 ppm,
The Na concentration was below the lower limit of detection (1 ppb), and the K concentration was below the lower limit of detection (50 ppb). The OH group concentration was 1000 ppm. The quantification of Na, K, and Cl was performed by activation analysis using thermal neutron irradiation. The quantification of alkaline earth metals, transition metals and Al elements was performed by inductively coupled plasma emission spectroscopy.
The OH group concentration was measured by infrared absorption spectroscopy (measuring the absorption amount of 1.38 μm by the OH group).

【0034】上記の合成石英ガラスを加工して、φ60
mmで厚さ2、5、10、20、30、40、50mm
の形状を持つ7種類の試験片を作製した。これらの試験
片に、互いに向かい合う2つの研磨面を平行度が10秒
以内、片面ごとの平坦度がニュートンリング3本以内、
片面ごとの表面粗さがrms=10オングストローム以
下になるように精密研磨を施し、最終的に試験片の厚さ
がそれぞれ±0.1mmの公差内に入るように研磨し
た。更に、表面吸収の原因となる研磨剤が表面に残留し
ないよう、高純度SiO2 粉による仕上げ研磨加工を施
した。
The above-mentioned synthetic quartz glass is processed to have a diameter of φ60.
2,5,10,20,30,40,50mm thickness in mm
7 types of test pieces having the following shapes were produced. On these test pieces, two polished surfaces facing each other were parallelized within 10 seconds, the flatness of each side was within 3 Newton rings,
Precision polishing was performed so that the surface roughness of each side was rms = 10 Å or less, and the test pieces were finally polished so that the thickness of each test piece was within a tolerance of ± 0.1 mm. Further, a finish polishing process using high-purity SiO 2 powder was performed so that an abrasive agent causing surface absorption did not remain on the surface.

【0035】測定装置1を用い、上記7種類の試験片を
測定対象Mとしてそれぞれ透過率測定を行い、式(7)
を用いて内部損失係数βと試験片厚さLとの積β・L値
と、試験片厚さLとの関係を求めた。ここで、測定対象
Mを透過する位置における測定光の発散角は8.7ミリ
ラジアン(0.5度)とした。また、真空チャンバ20
内の圧力は1×10-3Torr(約0.13Pa)とし
た。なお、この圧力は酸素分圧に換算すると2×10-4
Torr(約0.03Pa)である。β・L値を測定対
象厚さLに対してプロットした結果を図2に示す。得ら
れた直線の傾きから、本実施例における光学材料の内部
損失係数βは0.0024cm-1と求められた。
Using the measuring apparatus 1, the transmittance was measured for each of the above seven types of test pieces as a measurement object M, and the equation (7) was obtained.
Was used to determine the relationship between the product β · L value of the internal loss coefficient β and the test piece thickness L and the test piece thickness L. Here, the divergence angle of the measurement light at the position transmitting the measurement object M was 8.7 mrad (0.5 degrees). Also, the vacuum chamber 20
The internal pressure was 1 × 10 −3 Torr (about 0.13 Pa). Note that this pressure is 2 × 10 −4 in terms of oxygen partial pressure.
Torr (about 0.03 Pa). FIG. 2 shows the result of plotting the β · L value with respect to the thickness L to be measured. From the slope of the obtained straight line, the internal loss coefficient β of the optical material in this example was determined to be 0.0024 cm −1 .

【0036】[0036]

【比較例】次に、上記実施例に対する比較例を示す。比
較例1では、実施例と同一の装置構成及び同一の発散角
とし、真空チャンバ20内を真空ではなく窒素パージと
した。この結果を図2に示す。この比較例1において
は、内部損失係数βは0.0022cm-1と求められ
た。比較例2では、実施例と同一の装置構成及び同一の
発散角とし、真空チャンバ20内を真空ではなく、大気
開放とした。この結果を図2に示す。この比較例2にお
いては、内部損失係数βは0.0009cm-1と求めら
れた。比較例3では、実施例と同一の装置構成とし、測
定対象Mを透過する位置における測定光の発散角を17
4ミリラジアン(10度)とするとともに、真空チャン
バ20内を真空ではなく窒素パージとした。このときの
測定結果を図2に示す。図2に示すように、比較例3で
はβ・L値の測定対象厚さLに対する直線性が得られ
ず、内部損失係数βを算出するには至らなかった。
Comparative Example Next, a comparative example with respect to the above embodiment will be described. In Comparative Example 1, the same apparatus configuration and the same divergence angle as those of the Example were used, and the inside of the vacuum chamber 20 was not purged with nitrogen but purged with nitrogen. The result is shown in FIG. In Comparative Example 1, the internal loss coefficient β was determined to be 0.0022 cm −1 . In Comparative Example 2, the same apparatus configuration and the same divergence angle as those of the Example were used, and the inside of the vacuum chamber 20 was opened to the atmosphere instead of vacuum. The result is shown in FIG. In Comparative Example 2, the internal loss coefficient β was determined to be 0.0009 cm −1 . In Comparative Example 3, the divergence angle of the measurement light at the position transmitting the measurement target M was set to 17
The pressure was set to 4 milliradians (10 degrees), and the inside of the vacuum chamber 20 was purged with nitrogen instead of vacuum. The measurement result at this time is shown in FIG. As shown in FIG. 2, in Comparative Example 3, linearity of the β · L value with respect to the thickness L to be measured was not obtained, and the internal loss coefficient β could not be calculated.

【0037】[0037]

【発明の効果】以上のように、本発明に係る内部損失係
数の測定方法及び測定装置によれば、測定対象を透過す
る位置における測定光の発散角を微小とすることによ
り、測定光をほぼ平行光として測定対象での屈折による
測定光路の変化を小さくすることができるので、検出器
の受光面の感度むらに起因する測定誤差の影響を小さく
することができる。また、測定光路周辺の雰囲気を真空
とすることにより、測定対象厚さに起因する、透過光の
光路長と参照光の光路長との差分内の酸素分子による吸
収の影響を小さくすることができる。これにより、20
0nm以下の波長領域において、光学材料の内部損失係
数を高精度に測定することができる。
As described above, according to the method and the apparatus for measuring the internal loss coefficient according to the present invention, the divergence angle of the measuring light at the position transmitting the object to be measured is made small, so that the measuring light can be substantially Since the change in the measurement optical path due to refraction at the measurement target as parallel light can be reduced, the influence of measurement error due to uneven sensitivity of the light receiving surface of the detector can be reduced. In addition, by making the atmosphere around the measurement optical path a vacuum, the influence of absorption by oxygen molecules in the difference between the optical path length of the transmitted light and the optical path length of the reference light due to the thickness of the measurement object can be reduced. . As a result, 20
In the wavelength region of 0 nm or less, the internal loss coefficient of the optical material can be measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の内部損失係数の測定装置の構成図であ
る。
FIG. 1 is a configuration diagram of an apparatus for measuring an internal loss coefficient according to the present invention.

【図2】実施例及び比較例における、試験片厚さLに対
するβ・L値を示した図である。
FIG. 2 is a diagram showing β · L values with respect to a test piece thickness L in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

2 光源 5 回折格子 8 絞り 9 ピンホール 10 コリメータレンズ 18 検出器 20 真空チャンバ M 測定対象 2 Light source 5 Diffraction grating 8 Aperture 9 Pinhole 10 Collimator lens 18 Detector 20 Vacuum chamber M Measurement target

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 200nm以下の波長の測定光を測定対
象に照射し、前記測定対象を透過する前の前記測定光か
ら抽出した参照光の強度及び前記測定対象を透過した後
の前記測定光から抽出した透過光の強度を測定すること
により前記測定対象の透過率を求める工程を有する光学
材料の内部損失係数の測定方法において、 前記測定対象を透過する位置における前記測定光の発散
角が微小であり、且つ、前記測定光の光路周辺の雰囲気
が真空であることを特徴とする内部損失係数の測定方
法。
1. A measurement light having a wavelength of 200 nm or less is irradiated on a measurement target, and the intensity of reference light extracted from the measurement light before transmission through the measurement target and the measurement light after transmission through the measurement target are measured. In the method for measuring an internal loss coefficient of an optical material having a step of determining the transmittance of the measurement target by measuring the intensity of the extracted transmitted light, the divergence angle of the measurement light at a position transmitting the measurement target is minute. A method of measuring an internal loss coefficient, wherein an atmosphere around an optical path of the measurement light is a vacuum.
【請求項2】 同一の光学材料で作製された厚さの異な
る複数枚の試験片を前記測定対象とし、前記複数枚の試
験片各々の透過率を求めることにより前記光学材料の内
部損失係数を求めることを特徴とする請求項1記載の内
部損失係数の測定方法。
2. A plurality of test pieces made of the same optical material and having different thicknesses are used as the measurement object, and the transmittance of each of the plurality of test pieces is determined to determine the internal loss coefficient of the optical material. The method for measuring an internal loss coefficient according to claim 1, wherein the value is obtained.
【請求項3】 前記測定対象を透過する位置における前
記測定光の前記発散角が10ミリラジアン以下であるこ
とを特徴とする請求項1又は請求項2記載の内部損失係
数の測定方法。
3. The method for measuring an internal loss coefficient according to claim 1, wherein the divergence angle of the measurement light at a position transmitting the measurement target is 10 milliradians or less.
【請求項4】 前記測定光の光路周辺の雰囲気の圧力が
1×10-2Torr以下であることを特徴とする請求項
1記載〜請求項3のいずれかに記載の内部損失係数の測
定方法。
4. The method for measuring an internal loss coefficient according to claim 1, wherein a pressure of an atmosphere around an optical path of the measurement light is 1 × 10 −2 Torr or less. .
【請求項5】 200nm以下の波長の測定光を測定対
象に照射する光源と、 前記測定対象を透過する位置における前記測定光の発散
角を調整可能な発散角調整手段と、 前記測定対象を透過する前の前記測定光から抽出した参
照光の強度及び前記測定対象を透過した後の前記測定光
から抽出した透過光の強度を検出する光強度検出手段
と、 前記測定光の光路周辺の雰囲気を密閉するとともに前記
密閉された雰囲気の気圧を少なくとも1×10-2Tor
r以下に設定可能な真空チャンバとを有して構成される
ことを特徴とする内部損失係数の測定装置。
5. A light source for irradiating a measurement light having a wavelength of 200 nm or less to a measurement target, a divergence angle adjusting means capable of adjusting a divergence angle of the measurement light at a position transmitting the measurement target, and transmitting the measurement target. Light intensity detecting means for detecting the intensity of the reference light extracted from the measurement light before the measurement and the intensity of the transmitted light extracted from the measurement light after passing through the measurement object, and the atmosphere around the optical path of the measurement light. The atmosphere is sealed and the pressure of the sealed atmosphere is at least 1 × 10 −2 Torr.
An internal loss coefficient measuring device, comprising: a vacuum chamber that can be set to r or less.
JP10009846A 1998-01-21 1998-01-21 Method and apparatus for measuring inner loss coefficient Pending JPH11211613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10009846A JPH11211613A (en) 1998-01-21 1998-01-21 Method and apparatus for measuring inner loss coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10009846A JPH11211613A (en) 1998-01-21 1998-01-21 Method and apparatus for measuring inner loss coefficient

Publications (1)

Publication Number Publication Date
JPH11211613A true JPH11211613A (en) 1999-08-06

Family

ID=11731504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10009846A Pending JPH11211613A (en) 1998-01-21 1998-01-21 Method and apparatus for measuring inner loss coefficient

Country Status (1)

Country Link
JP (1) JPH11211613A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235430A (en) * 2000-02-25 2001-08-31 Nikon Corp Optical inspection instrument and optical surface inspection instrument
US6320661B1 (en) 1999-04-01 2001-11-20 Nikon Corporation Method for measuring transmittance of optical members for ultraviolent use, synthetic silica glass, and photolithography apparatus using the same
US6835683B2 (en) 2001-04-19 2004-12-28 Nikon Corporation Quartz glass member and projection aligner
JP2015087109A (en) * 2013-10-28 2015-05-07 東海光学株式会社 Method for calculating reflectance of transparent body, method for calculating transmittance per unit thickness of transparent body base material, and method for calculating refractive index and film thickness of coat layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320661B1 (en) 1999-04-01 2001-11-20 Nikon Corporation Method for measuring transmittance of optical members for ultraviolent use, synthetic silica glass, and photolithography apparatus using the same
JP2001235430A (en) * 2000-02-25 2001-08-31 Nikon Corp Optical inspection instrument and optical surface inspection instrument
US6835683B2 (en) 2001-04-19 2004-12-28 Nikon Corporation Quartz glass member and projection aligner
JP2015087109A (en) * 2013-10-28 2015-05-07 東海光学株式会社 Method for calculating reflectance of transparent body, method for calculating transmittance per unit thickness of transparent body base material, and method for calculating refractive index and film thickness of coat layer

Similar Documents

Publication Publication Date Title
KR100288313B1 (en) Object inspection method and device
FI91021B (en) Apparatus for identifying and measuring the concentration of gases and a method for identifying gases
KR20070001051A (en) Vacuum ultraviolet referencing reflectometer
JPH08304282A (en) Gas analyzer
US5055692A (en) System for measuring ambient pressure and temperature
JPH11211613A (en) Method and apparatus for measuring inner loss coefficient
US20020105642A1 (en) Method and apparatus for evaluating the quality of an optical crystal
JPH1183676A (en) Method and device for measuring transmittance for ultraviolet rays pulse laser beam
CN111103247A (en) Ultraviolet-visible spectrophotometer
US6856395B2 (en) Reflectometer arrangement and method for determining the reflectance of selected measurement locations of measurement objects reflecting in a spectrally dependent manner
Weidner Spectral reflectance
JP3627396B2 (en) Method and apparatus for measuring internal absorption coefficient of synthetic quartz glass
JPS62278436A (en) Fluorescence light measuring method and apparatus
WO1996000887A1 (en) An improved optical sensor and method
US20240110874A1 (en) Intensity calibration of multipass raman systems using standard reference materials
JP2008051662A (en) Measuring method and measuring instrument for absolute reflection factor
GB2295227A (en) Classifying diamonds
AU675941C (en) Method and apparatus for examining an object
RU2073834C1 (en) Polarization device
KR100897109B1 (en) Vacuum ultraviolet referencing reflectometer
Elder et al. Optical characterization of damage resistant kilolayer rugate filters
Hlubuček et al. CONSTRUCTION OF A VACUUM ULTRAVIOLET TRANSMISSION SPECTROMETER
Hsieh et al. The retroreflective array as a new optical element in atomic absorption spectroscopy
JPS6366424A (en) Luminescence spectroscopic measuring apparatus
Shaw et al. Characterization of materials using an ultraviolet radiometric beamline at SURF III

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080321