JPH11211417A - Method and device for measuring light wave interference - Google Patents

Method and device for measuring light wave interference

Info

Publication number
JPH11211417A
JPH11211417A JP10026597A JP2659798A JPH11211417A JP H11211417 A JPH11211417 A JP H11211417A JP 10026597 A JP10026597 A JP 10026597A JP 2659798 A JP2659798 A JP 2659798A JP H11211417 A JPH11211417 A JP H11211417A
Authority
JP
Japan
Prior art keywords
light
frequency
beam splitter
mirror
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10026597A
Other languages
Japanese (ja)
Inventor
Jun Kawakami
潤 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10026597A priority Critical patent/JPH11211417A/en
Publication of JPH11211417A publication Critical patent/JPH11211417A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To cope with the high speed movement of an object without producing a nonlinear error by shifting the optical paths of two luminous fluxes incident on at least one of a fixed mirror and a moving mirror to measure the displacement of the moving mirror by the interference. SOLUTION: In this light wave interference measuring device, either one of the frequencies (f1-f2±Δf) and (f1-f2±Δf') detected by detectors 14, 16 is moved to high frequency side in both cases of a moving mirror MC leaving the detectors 14, 16 and approaching thereto. Thus, the measurement signals S2, S2' from the detectors 14, 16 are properly switched according to the moving direction of the moving mirror MC, whereby the moving mirror MD can be moved at a high speed regardless of the moving direction. Further, since this device is constituted so that the light coaxially emitted from a light source is separated/divided, shifted from the same axis, and directed to the moving mirror MC and a fixed mirror 10, and only the light to be detected by the detectors 14, 16 is set coaxial just before the detectors 14, 16, a measurement generating no linear error can be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物体の変位を高精
度で測定する光波干渉測定方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical interference measuring method and apparatus for measuring displacement of an object with high accuracy.

【0002】[0002]

【従来の技術】物体の長さ、変位、密度等の測定を行う
ための光波干渉測定装置の代表的な例として、ヘテロダ
イン干渉法を用いた光波干渉測定装置について図5を用
いて簡単に説明する。図5は従来の光波干渉測定装置の
概略の構成を示している。図5において、レーザ光源2
02は、偏光方位が互いに直交し、わずかに異なる2つ
の周波数f1、f2の光を射出する。ここで、周波数f
1の光は紙面に平行な偏光方位を有し、周波数f2の光
は紙面に垂直な偏光方位を有しているものとする。レー
ザ光源202を射出した2つの光は同軸で偏光ビームス
プリッタ204に入射し、周波数f1の光はp偏光の光
として偏光ビームスプリッタ204を透過して測定光路
上の移動鏡(コーナ・キューブ・プリズム)MXで反射
し、光路をずらされて再び偏光ビームスプリッタ204
を透過する。周波数f2の光はs偏光の光として偏光ビ
ームスプリッタ204で反射して参照光路上の固定鏡
(コーナ・キューブ・プリズム)206で反射し、光路
をずらされて再び偏光ビームスプリッタ204で反射す
る。
2. Description of the Related Art As a typical example of a light wave interferometer for measuring the length, displacement, density, etc. of an object, a light wave interferometer using a heterodyne interferometry will be briefly described with reference to FIG. I do. FIG. 5 shows a schematic configuration of a conventional light wave interference measuring apparatus. In FIG. 5, a laser light source 2
No. 02 emits light of two frequencies f1 and f2 whose polarization directions are orthogonal to each other and are slightly different. Where the frequency f
It is assumed that the light of No. 1 has a polarization direction parallel to the paper surface and the light of frequency f2 has a polarization direction perpendicular to the paper surface. The two lights emitted from the laser light source 202 enter the polarization beam splitter 204 coaxially, and the light of the frequency f1 passes through the polarization beam splitter 204 as p-polarized light and travels on the measurement optical path (corner cube prism). ) Reflected by MX, the optical path is shifted, and the polarization beam splitter 204
Through. The light having the frequency f2 is reflected by the polarization beam splitter 204 as s-polarized light, reflected by a fixed mirror (corner cube prism) 206 on the reference optical path, shifted in the optical path, and reflected again by the polarization beam splitter 204.

【0003】測定光路上の移動鏡MXで反射して偏光ビ
ームスプリッタ204を透過した周波数f1の光と、参
照光路を通って偏光ビームスプリッタ204で反射した
周波数f2の光とは同軸で検出器212に入射する。検
出器212内では、周波数f1、f2の偏光方位を一致
させた後干渉させ、その干渉光が受光系で受光されて光
電変換される。光電変換された干渉光は、(f1−f
2)のビート周波数に移動鏡MXの移動に伴って生じる
ドップラー効果による周波数変化±Δf(Δfは正の値
とする)で変調された周波数(f1−f2±Δf)を有
する測定信号S2として検出器212から位相比較器1
に入力される。一方、レーザ光源202からは周波数f
1の光と周波数f2の光を干渉させて得られた(f1−
f2)のビート周波数を有する信号が参照信号S1とし
て位相比較器1に入力される。ここで、移動鏡MXが検
出器212から遠ざかる方向に移動すると周波数変化−
Δfが生じ、検出器212に近づく方向に移動すると周
波数変化+Δfが生じるものとする。
The light of the frequency f1 reflected by the moving mirror MX on the measurement optical path and transmitted through the polarization beam splitter 204 and the light of the frequency f2 reflected by the polarization beam splitter 204 through the reference optical path are coaxial and have a detector 212. Incident on. In the detector 212, the polarization directions of the frequencies f1 and f2 are matched and then caused to interfere, and the interference light is received by a light receiving system and photoelectrically converted. The photoelectrically converted interference light is represented by (f1-f
2) Detected as a measurement signal S2 having a frequency (f1−f2 ± Δf) modulated by a frequency change ± Δf (Δf is a positive value) due to the Doppler effect caused by the movement of the movable mirror MX at the beat frequency of 2). From the comparator 212 to the phase comparator 1
Is input to On the other hand, the frequency f
(F1-) obtained by causing light of frequency 1 to interfere with light of frequency f2.
The signal having the beat frequency of f2) is input to the phase comparator 1 as the reference signal S1. Here, when the moving mirror MX moves in a direction away from the detector 212, the frequency changes.
When Δf occurs and moves in a direction approaching the detector 212, a frequency change + Δf occurs.

【0004】参照信号S1と測定信号S2の位相差が、
位相比較器1で検出され、その出力φ(位相差)が積算
器に送られ、この位相差φの変化分を積算することで、
移動鏡MXの変位に比例した信号Pが求められる。これ
を数式を用いて説明すれば以下のようになる。移動鏡M
Xの変位に伴う周波数の変化をΔf(t)として、
The phase difference between the reference signal S1 and the measurement signal S2 is
The output φ (phase difference) detected by the phase comparator 1 is sent to an integrator, and by integrating the change of the phase difference φ,
A signal P proportional to the displacement of the moving mirror MX is obtained. This will be described below using mathematical expressions. Moving mirror M
The change in frequency due to the displacement of X is Δf (t),

【0005】 P=∫dφ =∫(dφ/dt)dt =∫±ΔfdtP = ∫dφ = ∫ (dφ / dt) dt = ∫ ± Δfdt

【0006】ここで、ドップラー効果から、移動鏡MX
の移動速度をv、測定ビームの波長をλ、光路折り返し
数をmとすれば、
Here, from the Doppler effect, the moving mirror MX
Where v is the moving speed, λ is the wavelength of the measurement beam, and m is the number of optical path turns,

【0007】±Δf=±2mv/λ 従って、 P=±2m/λ∫vdt± Δf = ± 2 mv / λ Therefore, P = ± 2 m / λ∫vdt

【0008】となる。移動鏡MXの変位量をDとする
と、 D=±∫vdt =±λ/2m・P
[0008] Assuming that the displacement amount of the movable mirror MX is D, D = ± ∫vdt = ± λ / 2m · P

【0009】となる。位相比較器1の電気的な分解能を
1/256とし、He−Neガスレーザ(λ=633n
m)を光源として用いると、測定光路が図5に示したよ
うなシングルパスの場合m=1であるので、結局、変位
量Dは、633nm/(2×256)=1.236nm
の分解能で検出することが可能になる。
## EQU1 ## The electrical resolution of the phase comparator 1 is set to 1/256, and a He-Ne gas laser (λ = 633n) is used.
When m) is used as the light source, since the measurement optical path is m = 1 in the case of a single path as shown in FIG. 5, the displacement D is 633 nm / (2 × 256) = 1.236 nm.
It is possible to detect with a resolution of.

【0010】この光波干渉測定装置では、移動鏡MXが
検出器212から遠ざかる方向の移動速度vを大きくさ
せていくと、ドップラー効果により生じる周波数変化Δ
fが大きくなり、周波数(f1−f2−Δf)の値が低
周波側に移動してついにはゼロとなり、さらにマイナス
となる状態が生じ得る。ところが、検出器212では正
負の判断ができないため、従来の光波干渉測定装置で
は、移動鏡MXを所定の移動速度以上で移動させると変
位測定ができなくなるという問題を有していた。
In this optical interference measuring apparatus, when the moving speed MX of the moving mirror MX in the direction away from the detector 212 increases, the frequency change Δ caused by the Doppler effect occurs.
As f increases, the value of the frequency (f1−f2−Δf) moves to the low frequency side, eventually becomes zero, and a state where the value becomes further negative may occur. However, since the detector 212 cannot make a positive / negative determination, the conventional light wave interference measurement apparatus has a problem that displacement measurement cannot be performed when the movable mirror MX is moved at a predetermined moving speed or higher.

【0011】これに対し、特開昭61−162714号
公報において、移動鏡MXの移動速度を向上させること
ができる光波干渉測定装置が開示されている。上記公報
に開示された光波干渉測定装置を図6を用いて説明す
る。なお、図5に示した構成要素と同一の機能作用を有
する構成要素には同一の符号を付してその説明は省略す
る。図6において、レーザ光源202から同軸で射出し
た周波数f1、f2の光はビームスプリッタ302に入
射する。ビームスプリッタ302において、周波数f
1、f2の光はそれぞれ分割されて測定光路と参照光路
に進む。測定光路に進んだ周波数f1、f2の光は移動
鏡MXで反射し、光路をずらされて再びビームスプリッ
タ302で透過光と反射光に分割される。
On the other hand, Japanese Patent Application Laid-Open No. Sho 61-162714 discloses a light wave interference measuring device capable of improving the moving speed of a moving mirror MX. The optical interference measuring apparatus disclosed in the above publication will be described with reference to FIG. Components having the same functions and functions as the components shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 6, light beams having frequencies f1 and f2 emitted coaxially from a laser light source 202 enter a beam splitter 302. In the beam splitter 302, the frequency f
Lights 1 and f2 are respectively split and travel to the measurement optical path and the reference optical path. The light having the frequencies f1 and f2 that have traveled to the measurement optical path is reflected by the movable mirror MX, shifted in the optical path, and is again split by the beam splitter 302 into transmitted light and reflected light.

【0012】参照光路に進んだ周波数f1、f2の光は
1/4波長板300を透過してから固定鏡206で反射
し、光路をずらされて再び1/4波長板300を透過し
てビームスプリッタ302で反射光と透過光に分割され
る。参照光路を通過した周波数f1の光は、1/4波長
板を2回通過したことにより、その偏光方位が90°回
転させられて、紙面に平行であった当初の偏光方位から
紙面に垂直な偏光方位に変換される。一方、参照光路を
通過した周波数f2の光も、1/4波長板を2回通過し
たことにより、その偏光方位が90°回転させられて、
紙面に垂直であった当初の偏光方位から紙面に平行な偏
光方位に変換される。
The light having the frequencies f1 and f2 that have traveled to the reference light path passes through the quarter-wave plate 300, is reflected by the fixed mirror 206, is shifted in the optical path, and passes through the quarter-wave plate 300 again to form a beam. The light is split by the splitter 302 into reflected light and transmitted light. The light having the frequency f1 that has passed through the reference optical path has been rotated twice by 90 ° by passing through the quarter-wave plate twice, so that the light is shifted from the original polarization orientation parallel to the plane of the drawing to the direction perpendicular to the plane of the drawing. It is converted to a polarization direction. On the other hand, the light of frequency f2 that has passed through the reference optical path also has its polarization direction rotated by 90 ° by passing through the quarter-wave plate twice,
The polarization direction is converted from the original polarization direction perpendicular to the paper surface to the polarization direction parallel to the paper surface.

【0013】測定光路上の移動鏡MXで反射してビーム
スプリッタ302を透過した周波数f1、f2の光と、
参照光路を通ってビームスプリッタ302で反射した周
波数f1、f2の光とは同軸で偏光ビームスプリッタ3
04に入射する。偏光ビームスプリッタ304におい
て、紙面に平行な偏光方位を有する周波数f1、f2の
光は、p偏光の光として偏光ビームスプリッタ304を
透過し、紙面に垂直な偏光方位を有する周波数f1、f
2の光は、s偏光の光として偏光ビームスプリッタ30
4で反射する。
Light of frequencies f1 and f2 reflected by the moving mirror MX on the measurement optical path and transmitted through the beam splitter 302;
The polarization beam splitter 3 is coaxial with the light of frequencies f1 and f2 reflected by the beam splitter 302 through the reference optical path.
04. In the polarization beam splitter 304, the lights of frequencies f1 and f2 having the polarization directions parallel to the paper surface pass through the polarization beam splitter 304 as p-polarized light, and the frequencies f1 and f having the polarization directions perpendicular to the paper surface.
2 is converted into s-polarized light by the polarization beam splitter 30.
It is reflected at 4.

【0014】偏光ビームスプリッタ304を透過した周
波数f1、f2の光は検出器306に入射し、その干渉
光が受光系で受光されて光電変換される。光電変換され
た干渉光は、(f1−f2)のビート周波数に移動鏡M
Xの移動に伴って生じるドップラー効果による周波数変
化±Δf(Δfは正の値)で変調された周波数(f1−
f2±Δf)を有する測定信号S2として検出器306
から位相比較器1に入力される。
The lights of frequencies f1 and f2 transmitted through the polarizing beam splitter 304 are incident on a detector 306, and the interference light is received by a light receiving system and photoelectrically converted. The interference light that has been photoelectrically converted is moved to the moving mirror M at a beat frequency of (f1-f2).
The frequency (f1--f1) modulated by the frequency change. +-.. DELTA.f (.DELTA.f is a positive value) due to the Doppler effect caused by the movement of X.
f2 ± Δf) as the measurement signal S2
Are input to the phase comparator 1.

【0015】一方、偏光ビームスプリッタ304で反射
した周波数f1、f2の光は検出器308に入射し、そ
の干渉光が受光系で受光されて光電変換される。光電変
換された干渉光は、(f1−f2)のビート周波数に移
動鏡MXの移動に伴って生じるドップラー効果による周
波数変化±Δf’(Δf’は正の値)で変調された周波
数の、
On the other hand, the light beams of the frequencies f1 and f2 reflected by the polarization beam splitter 304 are incident on a detector 308, and the interference light is received by a light receiving system and photoelectrically converted. The photoelectrically converted interference light has a frequency modulated by a frequency change ± Δf ′ (Δf ′ is a positive value) due to the Doppler effect caused by the movement of the movable mirror MX at a beat frequency of (f1−f2).

【0016】[0016]

【数1】 (Equation 1)

【0017】を有する測定信号S2’として検出器30
8から位相比較器1に入力される。また一方、レーザ光
源202からは周波数f1の光と周波数f2の光を干渉
させて得られた(f1−f2)のビート周波数を有する
信号が参照信号S1として位相比較器1に入力される。
ここで、移動鏡MXが検出器306、308から遠ざか
る方向に移動すると移動鏡MXで反射した周波数f1、
f2の光にはそれぞれ−Δf、−Δf’の周波数変化が
生じ、検出器306、308に近づく方向に移動すると
移動鏡MXで反射した周波数f1、f2の光にはそれぞ
れ+Δf、+Δf’の周波数変化が生じる。
The detector 30 as a measurement signal S2 'having
8 to the phase comparator 1. On the other hand, a signal having a beat frequency of (f1−f2) obtained by causing light of frequency f1 and light of frequency f2 to interfere with each other is input from laser light source 202 to phase comparator 1 as reference signal S1.
Here, when the movable mirror MX moves in a direction away from the detectors 306 and 308, the frequency f1 reflected by the movable mirror MX,
The f2 light undergoes frequency changes of -Δf and -Δf ', respectively. When the light moves in a direction approaching the detectors 306 and 308, the light of frequencies f1 and f2 reflected by the moving mirror MX has frequencies of + Δf and + Δf', respectively. Changes occur.

【0018】つまり、図6に示す光波干渉測定装置で
は、移動鏡MXが検出器306、308から遠ざかる場
合であっても、近づく場合であっても、検出器306、
308で検出される周波数(f1−f2±Δf)と、
That is, in the optical interference measurement apparatus shown in FIG. 6, the detector 306 can be used regardless of whether the moving mirror MX moves away from or close to the detectors 306 and 308.
Frequency (f1−f2 ± Δf) detected at 308;

【0019】[0019]

【数2】 (Equation 2)

【0020】のいずれか一方は高周波側に移動すること
になる。従って、移動鏡MXの移動方向に応じて適宜検
出器306、308からの測定信号S2、S2’を切り
替えるようにすれば、移動方向に無関係に移動鏡MXを
高速で移動させることができるようになる。これに類す
る技術としては、特開平9−138105号公報、特開
平9−138106号公報、および特開平9−1381
09号公報等に類似技術が開示されている。
Either one moves to the high frequency side. Therefore, if the measurement signals S2 and S2 'from the detectors 306 and 308 are appropriately switched according to the moving direction of the moving mirror MX, the moving mirror MX can be moved at high speed regardless of the moving direction. Become. Japanese Patent Application Laid-Open Nos. 9-138105, 9-138106, and 9-13881 disclose similar technologies.
No. 09 discloses a similar technique.

【0021】[0021]

【発明が解決しようとする課題】ところで、図6に示す
構成の光波干渉測定装置では、測定に用いる周波数f
1、f2の光が測定光路を同軸で通過して偏光ビームス
プリッタ304に至り、偏光ビームスプリッタ304で
分離されるようになっている。しかしながら、この構成
では非線形誤差を除去することができない。ここで非線
形誤差とは、偏光ビームスプリッタ304に入射した周
波数(f1±Δf)の光と周波数(f2±Δf’)の
光、および固定鏡206で反射された周波数f1、f2
の光の偏光ビームスプリッタ304での分離が不完全で
あることに起因して、測定に悪影響を及ぼす周波数の光
が検出器306、308に入射してしまうために生じる
測定誤差のことである。この測定誤差は、移動鏡MXの
移動に応じて、測定光の波長の1/2、あるいは1/4
等の周期で発生する。
By the way, in the light wave interference measuring apparatus having the structure shown in FIG.
Lights 1 and f2 pass through the measurement optical path coaxially, reach the polarization beam splitter 304, and are separated by the polarization beam splitter 304. However, this configuration cannot remove the nonlinear error. Here, the non-linear errors are the light of the frequency (f1 ± Δf) and the light of the frequency (f2 ± Δf ′) incident on the polarization beam splitter 304, and the frequencies f1 and f2 reflected by the fixed mirror 206.
Is a measurement error caused by light having a frequency that adversely affects the measurement being incident on the detectors 306 and 308 due to incomplete separation of the light by the polarization beam splitter 304. This measurement error is 1 / or の of the wavelength of the measurement light depending on the movement of the movable mirror MX.
And so on.

【0022】このような非線形誤差は、偏光ビームスプ
リッタ304で所望の光を分離できないことから生じ
る。例えば偏光ビームスプリッタ304の配置が不適切
である場合、すなわち、入射する光の偏光方位に対して
偏光ビームスプリッタ304の配置角度(特に光軸回り
の角度)が傾いていると偏光の混入が発生してしまう。
また、偏光ビームスプリッタ304の性能(消光比)が
低いと、p偏光の光およびs偏光の光を完全に分離する
ことができない。ところが、偏光ビームスプリッタ30
4の配置および性能が完全であっても、移動鏡MXおよ
び固定鏡206でビームが反射されるときに偏光状態が
変化し、さらに移動鏡MXが移動する際に発生するピッ
チング成分あるいはヨーイング成分により移動鏡MXで
反射する光の偏光状態が変化してしまう。
Such a non-linear error results from the inability of the polarization beam splitter 304 to separate desired light. For example, when the arrangement of the polarization beam splitter 304 is inappropriate, that is, when the arrangement angle of the polarization beam splitter 304 (especially the angle around the optical axis) is inclined with respect to the polarization direction of the incident light, the polarization is mixed. Resulting in.
If the performance (extinction ratio) of the polarizing beam splitter 304 is low, p-polarized light and s-polarized light cannot be completely separated. However, the polarization beam splitter 30
Even if the arrangement and performance of 4 are perfect, the polarization state changes when the beam is reflected by moving mirror MX and fixed mirror 206, and furthermore, the pitching component or yawing component generated when moving mirror MX moves. The polarization state of the light reflected by the moving mirror MX changes.

【0023】このように、従来の光波干渉測定装置で
は、移動方向に係わらず移動鏡を高速移動させることは
できるようになったが、非線形誤差による測定精度の劣
化を防止することができないという問題を有している。
As described above, in the conventional optical interference measuring apparatus, the movable mirror can be moved at high speed irrespective of the moving direction. However, the problem that the measurement accuracy is not deteriorated due to the nonlinear error cannot be prevented. have.

【0024】本発明の目的は、非線形誤差を発生させず
に物体の高速移動に対応できる光波干渉測定方法および
装置を提供することにある。
An object of the present invention is to provide a light wave interference measuring method and apparatus which can cope with a high-speed movement of an object without generating a nonlinear error.

【0025】[0025]

【課題を解決するための手段】本発明の一実施の形態を
表す図1乃至図4に対応付けて説明すると上記目的は、
異なる周波数(f1、f2)を有した2つの光束のそれ
ぞれを、固定して配設された固定鏡(10、46)と移
動可能な移動鏡(MC、MP)とに入射させ、2つの光
束の干渉により移動鏡(MC、MP)の変位を測定する
光波干渉測定方法において、固定鏡(10、46)と移
動鏡(MC、MP)との少なくとも一方に入射する2つ
の光束の光路をずらすステップを含むことを特徴とする
光波干渉測定方法によって達成される。また、本発明の
光波干渉測定方法において、2つの光束は、第1の偏光
方位と、該第1の偏光方位と直交する第2の偏光方位と
を有し同軸で射出されることを特徴とする。また、本発
明の光波干渉測定方法において、2つの光束を分割する
ステップと、2つの光束を偏光状態に応じて分割するス
テップとを含むことを特徴とする。
The above object will be described with reference to FIGS. 1 to 4 showing an embodiment of the present invention.
Each of the two light beams having different frequencies (f1, f2) is made incident on a fixed mirror (10, 46) and a movable movable mirror (MC, MP) which are fixedly arranged, and the two light beams In the light wave interference measurement method for measuring the displacement of the movable mirror (MC, MP) due to interference of light, the optical path of two light beams incident on at least one of the fixed mirror (10, 46) and the movable mirror (MC, MP) is shifted. The method is attained by a light wave interference measurement method including the steps of: Further, in the light wave interference measurement method of the present invention, the two light beams have a first polarization direction and a second polarization direction orthogonal to the first polarization direction and are emitted coaxially. I do. Further, the light wave interference measurement method of the present invention is characterized in that it includes a step of dividing two light beams and a step of dividing the two light beams according to a polarization state.

【0026】また、上記目的は、異なる周波数(f1、
f2)を有した2つの光束のそれぞれが入射する固定し
て配設された固定鏡(10、46)と移動可能な移動鏡
(MC、MP)とを有し、2つの光束の干渉により移動
鏡(MC、MP)の変位を測定する光波干渉測定装置に
おいて、固定鏡(10、46)と移動鏡(MC、MP)
との少なくとも一方に入射する2つの光束の光路をずら
す光学系(6,8,20,22等)を含むことを特徴と
する光波干渉測定装置によって達成される。本発明の光
波干渉測定装置において、2つの光束は、第1の偏光方
位と、該第1の偏光方位と直交する第2の偏光方位とを
有し同軸で射出されることを特徴とする。また、本発明
の光波干渉測定装置において、2つの光束を分割する分
割素子(6,8,20,22等)と、2つの光束を偏光
状態に応じて分割する偏光素子(4,12,26等)と
を含むことを特徴とする。
Further, the above-mentioned object is achieved at different frequencies (f1, f1,
f2) has a fixed mirror (10, 46) which is fixedly arranged to receive each of the two light beams, and a movable mirror (MC, MP) movable, and moves by interference of the two light beams In a light wave interferometer for measuring displacement of a mirror (MC, MP), a fixed mirror (10, 46) and a movable mirror (MC, MP)
This is achieved by a light wave interference measurement device characterized by including an optical system (6, 8, 20, 22, etc.) for shifting the optical path of two light beams incident on at least one of the above. In the light wave interference measuring apparatus according to the present invention, the two light beams are emitted coaxially with a first polarization direction and a second polarization direction orthogonal to the first polarization direction. Further, in the light wave interference measuring apparatus of the present invention, a splitting element (6, 8, 20, 22, etc.) for splitting two light beams and a polarizing element (4, 12, 26) for splitting two light beams according to the polarization state. Etc.).

【0027】[0027]

【発明の実施の形態】本発明の第1の実施の形態による
光波干渉測定方法および装置を図1を用いて説明する。
図1において、レーザ光源2は、偏光方位が互いに直交
し、わずかに異なる2つの周波数f1、f2の光を射出
する。ここで、周波数f1の光は紙面に平行な偏光方位
を有し、周波数f2の光は紙面に垂直な偏光方位を有し
ている。レーザ光源2を射出した2つの光は同軸で偏光
ビームスプリッタ4に入射し、周波数f1の光はp偏光
の光として偏光ビームスプリッタ4を透過し、周波数f
2の光はs偏光の光として偏光ビームスプリッタ4で反
射する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical interference measuring method and apparatus according to a first embodiment of the present invention will be described with reference to FIG.
In FIG. 1, a laser light source 2 emits light of two frequencies f1 and f2 whose polarization directions are orthogonal to each other and are slightly different. Here, the light of frequency f1 has a polarization direction parallel to the paper surface, and the light of frequency f2 has a polarization direction perpendicular to the paper surface. The two lights emitted from the laser light source 2 enter the polarization beam splitter 4 coaxially, and the light of frequency f1 passes through the polarization beam splitter 4 as p-polarized light, and the frequency f
The second light is reflected by the polarization beam splitter 4 as s-polarized light.

【0028】偏光ビームスプリッタ4を透過した周波数
f1の光は、さらにビームスプリッタ6に入射して2つ
に分割され、ビームスプリッタ6を透過した周波数f1
の光は測定光路上の移動鏡(コーナ・キューブ・プリズ
ム)MCで反射して光路をずらされて偏光ビームスプリ
ッタ12に入射する。一方、ビームスプリッタ6で反射
した周波数f1の光は、参照光路上の固定鏡(コーナ・
キューブ・プリズム)10で反射して光路をずらされて
偏光ビームスプリッタ12に入射する。このとき、図1
に示すように、周波数f1の2つの光が偏光ビームスプ
リッタ12の偏光分離面において光路がずれるように各
光学系は配置されている。
The light of frequency f1 transmitted through the polarization beam splitter 4 is further incident on the beam splitter 6 and split into two, and the frequency f1 transmitted through the beam splitter 6 is split.
Is reflected by a moving mirror (corner / cube / prism) MC on the measurement optical path, is shifted in optical path, and enters the polarization beam splitter 12. On the other hand, the light of the frequency f1 reflected by the beam splitter 6 is transmitted to a fixed mirror (corner / corner) on the reference optical path.
The light is reflected by a cube prism (10) and deviated from the optical path to enter a polarization beam splitter (12). At this time, FIG.
As shown in (1), each optical system is arranged such that the two light beams of the frequency f1 are displaced in the optical path on the polarization splitting surface of the polarization beam splitter 12.

【0029】一方、偏光ビームスプリッタ4で反射した
周波数f2の光は、さらにビームスプリッタ8に入射し
て2つに分割され、ビームスプリッタ8で反射した周波
数f2の光は、測定光路上の周波数f1の光と平行だが
異なる光路を進んで測定光路上の移動鏡MCに入射し、
移動鏡MCで光路をずらされて偏光ビームスプリッタ1
2に入射する。一方、ビームスプリッタ8を透過した周
波数f2の光は、参照光路上の周波数f1の光と平行だ
が異なる光路を進んで参照光路上の固定鏡10で反射し
て光路をずらされて偏光ビームスプリッタ12に入射す
る。このとき、図1に示すように、偏光ビームスプリッ
タ12の偏光分離面において、測定光路を経た周波数f
2の光は、参照光路を経た周波数f1の光と一致し、参
照光路を経た周波数f2の光は、測定光路を経た周波数
f1の光と一致するように各光学系の配置関係が調整さ
れている。
On the other hand, the light of the frequency f2 reflected by the polarization beam splitter 4 is further incident on the beam splitter 8 and split into two, and the light of the frequency f2 reflected by the beam splitter 8 is converted to the frequency f1 on the measurement optical path. Travels along a different optical path, but parallel to the light, and enters the movable mirror MC on the measurement optical path,
The optical path is shifted by the moving mirror MC, and the polarization beam splitter 1
2 is incident. On the other hand, the light of the frequency f2 transmitted through the beam splitter 8 is parallel to the light of the frequency f1 on the reference optical path but travels a different optical path, is reflected by the fixed mirror 10 on the reference optical path, is shifted in the optical path, and is deflected. Incident on. At this time, as shown in FIG. 1, the frequency f passing through the measurement optical path is
The arrangement of the respective optical systems is adjusted so that the light of frequency 2 coincides with the light of frequency f1 that has passed through the reference optical path, and the light of frequency f2 that has passed through the reference optical path matches the light of frequency f1 that has passed through the measurement optical path. I have.

【0030】偏光ビームスプリッタ12において、測定
光路を経て移動鏡MCの移動に伴って変調された周波数
f1±Δfの光は、その偏光方位が紙面に平行であるの
でp偏光の光として偏光ビームスプリッタ12を透過
し、参照光路を経た周波数f2の光はその偏光方位が紙
面に垂直であるのでs偏光の光として偏光ビームスプリ
ッタ12で反射して、両光は同軸となって偏光子付きの
検出器14に入射する。検出器14の偏光子は、周波数
f1、f2の光の偏光方位に対し45°傾いており、参
照光路を通ってきた周波数f2の光と、測長光路を通っ
てきた周波数f1±Δfの光は、この偏光子を通った後
干渉して、その干渉光が受光系で受光されて光電変換さ
れる。光電変換された干渉光は、(f1−f2)のビー
ト周波数に移動鏡MCの移動に伴って生じるドップラー
効果による周波数変化±Δf(Δfは正の値)で変調さ
れた周波数(f1−f2±Δf)を有する測定信号S2
として検出器14から位相比較器18に入力される。
In the polarization beam splitter 12, the light of the frequency f1 ± Δf modulated with the movement of the movable mirror MC through the measurement optical path is polarized light splitter as p-polarized light because its polarization direction is parallel to the paper. The light of frequency f2 that has passed through the reference optical path and has passed through the reference optical path is reflected by the polarization beam splitter 12 as s-polarized light because its polarization direction is perpendicular to the plane of the paper. Incident on the vessel 14. The polarizer of the detector 14 is inclined by 45 ° with respect to the polarization direction of the light of the frequencies f1 and f2, and the light of the frequency f2 passing through the reference optical path and the light of the frequency f1 ± Δf passing through the length measuring optical path. After passing through the polarizer, the light interferes, and the interference light is received by the light receiving system and is photoelectrically converted. The photoelectrically converted interference light has a frequency (f1−f2 ±) modulated at a beat frequency of (f1−f2) at a frequency change ± Δf (Δf is a positive value) due to the Doppler effect generated with movement of the movable mirror MC. Measurement signal S2 having Δf)
From the detector 14 to the phase comparator 18.

【0031】一方、偏光ビームスプリッタ12におい
て、測定光路を経て移動鏡MCの移動に伴って変調され
た周波数f2±Δf’の光は、その偏光方位が紙面に垂
直であるのでs偏光の光として偏光ビームスプリッタ1
2で反射し、参照光路を経た周波数f1の光はその偏光
方位が紙面に平行であるのでp偏光の光として偏光ビー
ムスプリッタ12を透過して、両光は同軸となって偏光
子付きの検出器16に入射する。検出器16の偏光子
も、周波数f1、f2の光の偏光方位に対し45°傾い
ており、参照光路を通ってきた周波数f1の光と、測長
光路を通ってきた周波数f2±Δf’の光は、この偏光
子を通った後干渉して、その干渉光が受光系で受光され
て光電変換される。光電変換された干渉光は、(f1−
f2)のビート周波数に移動鏡MCの移動に伴って生じ
るドップラー効果による周波数変化±Δf’(Δf’は
正の値)で変調された周波数
On the other hand, in the polarization beam splitter 12, the light of the frequency f2 ± Δf ′ modulated by the movement of the movable mirror MC via the measurement optical path is converted into s-polarized light because its polarization direction is perpendicular to the paper. Polarizing beam splitter 1
2, the light of frequency f1 passing through the reference optical path is transmitted through the polarization beam splitter 12 as p-polarized light because its polarization direction is parallel to the plane of the paper, and both lights are coaxial and detected with a polarizer. Incident on the vessel 16. The polarizer of the detector 16 is also inclined by 45 ° with respect to the polarization directions of the lights of the frequencies f1 and f2, and the light of the frequency f1 that has passed through the reference optical path and the light of the frequency f2 ± Δf ′ that has passed through the length measurement optical path. The light interferes after passing through the polarizer, and the interference light is received by the light receiving system and photoelectrically converted. The photoelectrically converted interference light is represented by (f1-
The frequency modulated by the frequency change ± Δf ′ (Δf ′ is a positive value) due to the Doppler effect that occurs with the movement of the movable mirror MC at the beat frequency of f2)

【0032】[0032]

【数3】 (Equation 3)

【0033】を有する測定信号S2’として検出器16
から位相比較器18に入力される。また、レーザ光源2
からは周波数f1の光と周波数f2の光を干渉させて得
られた(f1−f2)のビート周波数を有する信号が参
照信号S1として位相比較器18に入力される。ここ
で、移動鏡MCが検出器14、16から遠ざかる方向に
移動すると周波数変化−Δf、−Δf’が生じ、検出器
14、16に近づく方向に移動すると周波数変化+Δ
f、+Δf’が生じるものとする。
The detector 16 as a measurement signal S2 'having
Are input to the phase comparator 18. In addition, laser light source 2
Then, a signal having a beat frequency of (f1−f2) obtained by causing the light of the frequency f1 and the light of the frequency f2 to interfere with each other is input to the phase comparator 18 as the reference signal S1. Here, when the movable mirror MC moves away from the detectors 14 and 16, frequency changes −Δf and −Δf ′ occur. When the movable mirror MC moves closer to the detectors 14 and 16, the frequency change + Δ.
f, + Δf ′.

【0034】このように本実施の形態による光波干渉測
定装置では、移動鏡MCが検出器14、16から遠ざか
る場合であっても、近づく場合であっても、検出器1
4、16で検出される周波数(f1−f2±Δf)と、
As described above, in the light wave interference measuring apparatus according to the present embodiment, the detector 1 can be used regardless of whether the movable mirror MC moves away from or close to the detectors 14 and 16.
Frequencies (f1−f2 ± Δf) detected at 4, 16;

【0035】[0035]

【数4】 (Equation 4)

【0036】のいずれか一方は高周波側に移動すること
になる。従って、移動鏡MCの移動方向に応じて適宜検
出器14、16からの測定信号S2、S2’を切り替え
るようにすれば、移動方向に無関係に移動鏡MCを高速
で移動させることができるようになる。さらに、光源か
ら同軸で射出した光を分離/分割して同軸から外して移
動鏡MCおよび固定鏡10に向かわせ、検出器14、1
6で検出されるべき光だけを検出器14、16の直前で
同軸にするように構成しているので、非線形誤差を発生
させない測定が可能になる。
Either one moves to the high frequency side. Therefore, if the measurement signals S2 and S2 'from the detectors 14 and 16 are appropriately switched according to the moving direction of the moving mirror MC, the moving mirror MC can be moved at high speed regardless of the moving direction. Become. Further, the light emitted coaxially from the light source is separated / divided, decoupled from the coaxial light, and directed to the movable mirror MC and the fixed mirror 10, and the detectors 14, 1
Since only the light to be detected at 6 is configured to be coaxial just before the detectors 14 and 16, measurement without generating a non-linear error becomes possible.

【0037】次に、本発明の第2の実施の形態による光
波干渉測定方法および装置を図2を用いて説明する。本
実施の形態は、第1の実施の形態による光波干渉測定装
置の移動鏡MCおよび固定鏡10をコーナ・キューブ・
プリズムに代えてそれぞれ平面鏡を用いた点に特徴を有
している。図2において、レーザ光源2は、偏光方位が
互いに直交し、わずかに異なる2つの周波数f1、f2
の光を射出する。ここで、周波数f1の光は紙面に平行
な偏光方位を有し、周波数f2の光は紙面に垂直な偏光
方位を有している。レーザ光源2を射出した2つの光は
同軸でビームスプリッタ30に入射してそれぞれ2つに
分割される。ビームスプリッタ30を透過した周波数f
1、f2の光は、同軸で偏光ビームスプリッタ32に入
射して、周波数f1の光はp偏光の光として偏光ビーム
スプリッタ32を透過して測定光路中の移動鏡(平面
鏡)MPで反射し、周波数f2の光はs偏光の光として
偏光ビームスプリッタ32で反射した後、さらに偏光ビ
ームスプリッタ38で反射して、周波数f1の光の測定
光路に対して所定の間隔を有して平行な測定光路を進ん
で移動鏡MPで反射する。
Next, an optical interference measurement method and apparatus according to a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the movable mirror MC and the fixed mirror 10 of the optical interference measuring apparatus according to the first embodiment are
It is characterized in that a plane mirror is used instead of the prism. In FIG. 2, a laser light source 2 has two frequencies f1 and f2 whose polarization directions are orthogonal to each other and slightly different from each other.
To emit light. Here, the light of frequency f1 has a polarization direction parallel to the paper surface, and the light of frequency f2 has a polarization direction perpendicular to the paper surface. The two lights emitted from the laser light source 2 enter the beam splitter 30 coaxially and are split into two. Frequency f transmitted through beam splitter 30
The light of f1 and the light of f2 are incident on the polarization beam splitter 32 coaxially, and the light of the frequency f1 is transmitted as p-polarized light through the polarization beam splitter 32 and reflected by the moving mirror (plane mirror) MP in the measurement optical path. The light having the frequency f2 is reflected by the polarization beam splitter 32 as s-polarized light, and further reflected by the polarization beam splitter 38, and is parallel to the measurement optical path having a predetermined interval with respect to the measurement optical path of the light having the frequency f1. And reflected by the moving mirror MP.

【0038】測定光路上には1/4波長板34が設けら
れており、従って、移動鏡MPに入射して戻ってくる周
波数f1の光は、この1/4波長板34を2回通過して
その偏光方位が90°回転させられてs偏光の光となる
ため、偏光ビームスプリッタ32で反射させられる。偏
光ビームスプリッタ32で反射した周波数f1の光は、
固定鏡(コーナ・キューブ・プリズム)36で反射して
光路をずらされて再び偏光ビームスプリッタ32に入射
して反射し、測定光路を進んで再び移動鏡MPで反射す
る。移動鏡MPに入射して戻ってくる周波数f1の光
は、上述と同様に1/4波長板34を2回通過してその
偏光方位が90°回転させられてp偏光の光となるた
め、今度は偏光ビームスプリッタ32を透過する。移動
鏡MPの移動に伴って周波数が変化した周波数f1±Δ
fの光は、偏光ビームスプリッタ32を透過した後、さ
らに偏光ビームスプリッタ54を透過して検出器14に
入射する。
A quarter-wave plate 34 is provided on the measurement optical path, so that light having a frequency f1 which enters the movable mirror MP and returns passes through the quarter-wave plate 34 twice. The polarization direction is rotated by 90 ° to become s-polarized light, and is reflected by the polarization beam splitter 32. The light of the frequency f1 reflected by the polarization beam splitter 32 is
The light is reflected by a fixed mirror (corner cube prism) 36, the optical path is shifted, the light is again incident on the polarization beam splitter 32, reflected, travels along the measurement optical path, and is reflected again by the movable mirror MP. The light having the frequency f1 that is incident on the movable mirror MP and returns passes through the quarter-wave plate 34 twice as described above, and its polarization direction is rotated by 90 ° to become p-polarized light. This time, the light passes through the polarization beam splitter 32. Frequency f1 ± Δ whose frequency changes with movement of movable mirror MP
The light of f transmits through the polarization beam splitter 32 and further transmits through the polarization beam splitter 54 and enters the detector 14.

【0039】一方、周波数f1の光の測定光路に対して
所定の間隔を有して平行な測定光路を進んだ周波数f2
の光も、1/4波長板34を2回通過してその偏光方位
が90°回転させられてp偏光の光となるため、偏光ビ
ームスプリッタ38を透過して固定鏡(コーナ・キュー
ブ・プリズム)40で反射して光路をずらされて再び偏
光ビームスプリッタ38を透過して、測定光路を進んで
再び移動鏡MPで反射する。移動鏡MPに入射して戻っ
てくる周波数f2の光は、上述と同様に1/4波長板3
4を2回通過してその偏光方位が90°回転させられて
s偏光の光となるため、今度は偏光ビームスプリッタ3
8で反射する。移動鏡MPの移動に伴って周波数が変化
した周波数f2±Δf’の光は、偏光ビームスプリッタ
38で反射してさらに偏光ビームスプリッタ32、54
で反射した後、検出器16に入射する。
On the other hand, the frequency f2 which travels along the parallel measurement optical path at a predetermined interval from the measurement optical path of the light of frequency f1
Also passes through the quarter-wave plate 34 twice and its polarization direction is rotated by 90 ° to become p-polarized light, so that it passes through the polarization beam splitter 38 and passes through a fixed mirror (corner cube prism). ) Reflected at 40, the optical path is shifted and transmitted again through the polarizing beam splitter 38, travels along the measuring optical path, and is reflected again by the moving mirror MP. The light having the frequency f2 that is incident on the movable mirror MP and returns is transmitted to the quarter wavelength plate 3 in the same manner as described above.
4 twice and its azimuth is rotated by 90 ° to become s-polarized light.
Reflect at 8. The light of the frequency f2 ± Δf ′, the frequency of which has changed with the movement of the movable mirror MP, is reflected by the polarization beam splitter 38, and further reflected by the polarization beam splitters 32 and 54.
Then, the light is incident on the detector 16.

【0040】ここで、固定鏡40でずらされる光路の幅
を固定鏡36でずらされる光路の幅と異なるように固定
鏡36、40の相対位置をずらして配置しているので、
偏光ビームスプリッタ32で分離された周波数f1、f
2の光は再び同軸になることなくそれぞれの検出器1
4、16に入射するようになっている。
The relative positions of the fixed mirrors 36 and 40 are shifted so that the width of the optical path shifted by the fixed mirror 40 is different from the width of the optical path shifted by the fixed mirror 36.
The frequencies f1, f separated by the polarization beam splitter 32
The two lights do not become coaxial again, and each detector 1
4 and 16 are incident.

【0041】また、ビームスプリッタ30で反射した周
波数f1、f2の光は、同軸で偏光ビームスプリッタ4
2に入射して、周波数f1の光はp偏光の光として偏光
ビームスプリッタ42を透過して参照光路中の固定鏡
(平面鏡)46で反射し、周波数f2の光はs偏光の光
として偏光ビームスプリッタ42で反射した後、さらに
偏光ビームスプリッタ50で反射して、周波数f1の光
の参照光路に対して所定の間隔を有して平行な参照光路
を進んで固定鏡46で反射する。
The lights of frequencies f1 and f2 reflected by the beam splitter 30 are coaxial and polarized beam splitter 4
2, the light of frequency f1 passes through the polarization beam splitter 42 as p-polarized light and is reflected by a fixed mirror (plane mirror) 46 in the reference optical path, and the light of frequency f2 is polarized light as s-polarized light. After being reflected by the splitter 42, the light is further reflected by the polarization beam splitter 50, travels along a reference light path parallel to the reference light path of the light of the frequency f <b> 1 at a predetermined interval, and is reflected by the fixed mirror 46.

【0042】参照光路上には1/4波長板44が設けら
れており、従って、固定鏡46に入射して戻ってくる周
波数f1の光は、この1/4波長板44を2回通過して
その偏光方位が90°回転させられてs偏光の光となる
ため、偏光ビームスプリッタ42で反射させられる。偏
光ビームスプリッタ42で反射した周波数f1の光は、
固定鏡(コーナ・キューブ・プリズム)48で反射して
光路をずらされて再び偏光ビームスプリッタ42に入射
して反射し、参照光路を進んで再び固定鏡46で反射す
る。固定鏡46に入射して戻ってくる周波数f1の光
は、上述と同様に1/4波長板44を2回通過してその
偏光方位が90°回転させられてp偏光の光となるた
め、今度は偏光ビームスプリッタ42を透過した後、さ
らに偏光ビームスプリッタ54を透過して検出器16に
入射する。
A quarter-wave plate 44 is provided on the reference optical path, so that light of frequency f1 which enters the fixed mirror 46 and returns passes through the quarter-wave plate 44 twice. The polarization direction is rotated by 90 ° to become s-polarized light, and is reflected by the polarization beam splitter 42. The light of the frequency f1 reflected by the polarization beam splitter 42 is
The light is reflected by a fixed mirror (corner cube prism) 48, the optical path is shifted, the light is again incident on the polarization beam splitter 42, reflected, travels along the reference light path, and is reflected again by the fixed mirror 46. The light of the frequency f1 that is incident on the fixed mirror 46 and returns is transmitted through the quarter-wave plate 44 twice as described above, and its polarization direction is rotated by 90 ° to become p-polarized light. This time, after passing through the polarization beam splitter 42, it further passes through the polarization beam splitter 54 and enters the detector 16.

【0043】一方、周波数f1の光の参照光路に対して
所定の間隔を有して平行な参照光路を進んだ周波数f2
の光も、1/4波長板44を2回通過してその偏光方位
が90°回転させられてp偏光の光となるため、偏光ビ
ームスプリッタ50を透過して固定鏡(コーナ・キュー
ブ・プリズム)52で反射して光路をずらされて再び偏
光ビームスプリッタ50を透過して、参照光路を進んで
再び固定鏡46で反射する。固定鏡46に入射して戻っ
てくる周波数f2の光は、上述と同様に1/4波長板4
4を2回通過してその偏光方位が90°回転させられて
s偏光の光となるため、今度は偏光ビームスプリッタ5
0で反射し、さらに偏光ビームスプリッタ42、54で
反射した後、検出器14に入射する。
On the other hand, the frequency f2 which travels along the reference light path parallel to the reference light path of the light having the frequency f1 at a predetermined interval from the reference light path.
Also passes through the quarter-wave plate 44 twice, and its polarization direction is rotated by 90 ° to become p-polarized light, so that it passes through the polarization beam splitter 50 and passes through a fixed mirror (corner cube prism). ) Reflected at 52, the optical path is shifted and transmitted again through the polarizing beam splitter 50, travels along the reference optical path, and is reflected again by the fixed mirror 46. The light having the frequency f2 that is incident on the fixed mirror 46 and returns is transmitted to the 波長 wavelength plate 4 in the same manner as described above.
4 is rotated twice by 90 ° to become s-polarized light, so that the polarization beam splitter 5
After being reflected at 0 and further reflected by the polarization beam splitters 42 and 54, the light enters the detector 14.

【0044】ここで、固定鏡48でずらされる光路の幅
を固定鏡52でずらされる光路の幅と異なるように固定
鏡48、52の相対位置をずらして配置しているので、
偏光ビームスプリッタ42で分離された周波数f1、f
2の光は再び同軸になることなく検出器14または検出
器16に入射するようになっている。
Here, since the relative positions of the fixed mirrors 48 and 52 are shifted so that the width of the optical path shifted by the fixed mirror 48 is different from the width of the optical path shifted by the fixed mirror 52,
The frequencies f1, f separated by the polarization beam splitter 42
The two lights are incident on the detector 14 or the detector 16 without being coaxial again.

【0045】偏光ビームスプリッタ54からは、測定光
路を経た周波数f1±Δfの光と参照光路を経た周波数
f2の光が同軸で検出器14に入射し、これらと異なる
位置で同軸にされた測定光路を経た周波数f2±Δf’
の光と参照光路を経た周波数f1の光が同軸で検出器1
6に入射する。これ以降の構成および動作は第1の実施
の形態と同様なので説明は省略する。このように本実施
の形態による光波干渉測定装置においても、移動鏡MP
が検出器14、16から遠ざかる場合であっても、近づ
く場合であっても、検出器14、16で検出される周波
数(f1−f2±Δf)と、
From the polarization beam splitter 54, light having a frequency f1 ± Δf passing through a measurement optical path and light having a frequency f2 passing through a reference optical path enter the detector 14 coaxially, and are coaxially measured at a different position from these. F2 ± Δf '
And the light of frequency f1 passing through the reference optical path are coaxial and the detector 1
6 is incident. Subsequent configurations and operations are the same as in the first embodiment, and a description thereof will be omitted. As described above, also in the optical interference measuring apparatus according to the present embodiment, the moving mirror MP
Irrespective of whether the distance is far from or close to the detectors 14 and 16, the frequency (f1−f2 ± Δf) detected by the detectors 14 and 16;

【0046】[0046]

【数5】 (Equation 5)

【0047】のいずれか一方は高周波側に移動すること
になる。従って、移動鏡MPの移動方向に応じて適宜検
出器14、16からの測定信号S2、S2’を切り替え
るようにすれば、移動方向に無関係に移動鏡MPを高速
で移動させることができるようになる。さらに、光源か
ら同軸で射出した光を分離/分割して同軸から外して移
動鏡MPおよび固定鏡46に向かわせ、検出器14、1
6で検出されるべき光だけを検出器14、16の直前で
同軸にするように構成しているので、非線形誤差を発生
させない測定が可能になる。また、本実施の形態によれ
ば、第1の実施の形態に比較して移動鏡に平面鏡を用い
たダブルパスの構成にしたので、光学的に測定分解能を
2倍にすることができる。また、固定鏡36、40、4
8、52の直後に偏光子を適切な角度で配置すれば、さ
らに精度の高い測定が可能となる。
Either one moves to the high frequency side. Therefore, if the measurement signals S2 and S2 'from the detectors 14 and 16 are appropriately switched according to the moving direction of the moving mirror MP, the moving mirror MP can be moved at high speed regardless of the moving direction. Become. Further, the light emitted coaxially from the light source is separated / divided and decoupled from the coaxial light and directed to the movable mirror MP and the fixed mirror 46, and the detectors 14, 1
Since only the light to be detected at 6 is configured to be coaxial just before the detectors 14 and 16, measurement without generating a non-linear error becomes possible. Further, according to the present embodiment, since a double-pass configuration using a plane mirror as the movable mirror is used as compared with the first embodiment, the measurement resolution can be optically doubled. In addition, fixed mirrors 36, 40, 4
If the polarizer is arranged at an appropriate angle immediately after 8, 52, more accurate measurement is possible.

【0048】次に、本発明の第3の実施の形態による光
波干渉測定方法および装置を図3を用いて説明する。図
3において、レーザ光源2は、偏光方位が互いに直交
し、わずかに異なる2つの周波数f1、f2の光を射出
する。周波数f1の光は紙面に平行な偏光方位を有し、
周波数f2の光は紙面に垂直な偏光方位を有している。
レーザ光源2を射出した2つの光は、ビームスプリッタ
20に入射してそれぞれ分割され、ビームスプリッタ2
0を透過した周波数f1、f2の光は、偏光ビームスプ
リッタ26に入射し、周波数f1の光はp偏光の光とし
て偏光ビームスプリッタ26を透過し、周波数f2の光
はs偏光の光として偏光ビームスプリッタ26で反射す
る。
Next, an optical interference measurement method and apparatus according to a third embodiment of the present invention will be described with reference to FIG. In FIG. 3, a laser light source 2 emits light of two frequencies f1 and f2 whose polarization directions are orthogonal to each other and are slightly different. The light of the frequency f1 has a polarization direction parallel to the paper surface,
The light of frequency f2 has a polarization direction perpendicular to the plane of the drawing.
The two lights emitted from the laser light source 2 are incident on the beam splitter 20 and split respectively, and
The lights of frequencies f1 and f2 that have passed through 0 enter the polarization beam splitter 26, the light of frequency f1 passes through the polarization beam splitter 26 as p-polarized light, and the light of frequency f2 is a polarization beam as s-polarized light. The light is reflected by the splitter 26.

【0049】偏光ビームスプリッタ26を透過した周波
数f1の光は、測定光路上の移動鏡MCで反射して光路
をずらされて再び偏光ビームスプリッタ26に入射す
る。一方、偏光ビームスプリッタ26で反射した周波数
f2の光は、参照光路上の固定鏡10で反射して光路を
ずらされて再び偏光ビームスプリッタ26に入射する。
移動鏡MCの移動に伴って周波数が変調された周波数f
1±Δfの光はp偏光の光として偏光ビームスプリッタ
26を透過し、参照光路を経た周波数f2の光はs偏光
の光として偏光ビームスプリッタ26で反射して、両光
は同軸となって偏光子付きの検出器14に入射する。検
出器14の偏光子は、周波数f1、f2の光の偏光方位
に対し45°傾いており、参照光路を通ってきた周波数
f2の光と、測長光路を通ってきた周波数f1±Δfの
光は、この偏光子を通った後干渉して、その干渉光が受
光系で受光されて光電変換される。光電変換された干渉
光は、(f1−f2)のビート周波数に移動鏡MCの移
動に伴って生じるドップラー効果による周波数変化±Δ
f(Δfは正の値)で変調された周波数(f1−f2±
Δf)を有する測定信号S2として検出器14から位相
比較器18に入力される。
The light of frequency f1 transmitted through the polarization beam splitter 26 is reflected by the movable mirror MC on the measurement optical path, the optical path is shifted, and then enters the polarization beam splitter 26 again. On the other hand, the light of the frequency f2 reflected by the polarization beam splitter 26 is reflected by the fixed mirror 10 on the reference optical path, is shifted in the optical path, and enters the polarization beam splitter 26 again.
The frequency f whose frequency is modulated with the movement of the movable mirror MC
The light of 1 ± Δf passes through the polarization beam splitter 26 as p-polarized light, and the light of frequency f2 that has passed through the reference optical path is reflected by the polarization beam splitter 26 as s-polarized light. The light enters the detector 14 with a child. The polarizer of the detector 14 is inclined by 45 ° with respect to the polarization direction of the light of the frequencies f1 and f2, and the light of the frequency f2 passing through the reference optical path and the light of the frequency f1 ± Δf passing through the length measuring optical path. After passing through the polarizer, the light interferes, and the interference light is received by the light receiving system and is photoelectrically converted. The interference light that has been photoelectrically converted has a frequency change ± Δ due to the Doppler effect caused by the movement of the movable mirror MC at the beat frequency of (f1−f2).
f (Δf is a positive value) (f1-f2 ±
The measurement signal S2 having Δf) is input from the detector 14 to the phase comparator 18.

【0050】一方、ビームスプリッタ20で反射した周
波数f1、f2の光は、ミラー22で反射して、ビーム
スプリッタ20を透過した周波数f1、f2の光の光路
と所定の間隔を有して平行に射出して、1/2波長板2
4を透過する。1/2波長板24を透過した周波数f
1、f2の光はそれぞれ偏光方位を90°回転させられ
て、周波数f1の光はs偏光の光として偏光ビームスプ
リッタ26で反射し、周波数f2の光はp偏光の光とし
て偏光ビームスプリッタ26を透過する。
On the other hand, the lights of the frequencies f1 and f2 reflected by the beam splitter 20 are reflected by the mirror 22, and are parallel to the optical path of the lights of the frequencies f1 and f2 transmitted through the beam splitter 20 at a predetermined interval. Inject and 1 / wavelength plate 2
4 is transmitted. Frequency f transmitted through half-wave plate 24
The lights of f1 and f2 are each rotated by 90 ° in the polarization direction, the light of frequency f1 is reflected by the polarization beam splitter 26 as s-polarized light, and the light of frequency f2 is reflected by the polarization beam splitter 26 as p-polarized light. To Penetrate.

【0051】偏光ビームスプリッタ26を透過した周波
数f2の光は、測定光路上の移動鏡MCで反射して光路
をずらされて再び偏光ビームスプリッタ26に入射す
る。一方、偏光ビームスプリッタ26で反射した周波数
f1の光は、参照光路上の固定鏡10で反射して光路を
ずらされて再び偏光ビームスプリッタ26に入射する。
移動鏡MCの移動に伴って周波数が変調された周波数f
2±Δf’の光はp偏光の光として偏光ビームスプリッ
タ26を透過し、参照光路を経た周波数f1の光はs偏
光の光として偏光ビームスプリッタ26で反射して、両
光は同軸となって偏光子付きの検出器16に入射する。
検出器16の偏光子も、周波数f1、f2の光の偏光方
位に対し45°傾いており、参照光路を通ってきた周波
数f1の光と、測長光路を通ってきた周波数f2±Δ
f’の光は、この偏光子を通った後干渉して、その干渉
光が受光系で受光されて光電変換される。光電変換され
た干渉光は、(f1−f2)のビート周波数に移動鏡M
Cの移動に伴って生じるドップラー効果による周波数変
化±Δf’(Δf’は正の値)で変調された周波数であ
る、
The light of frequency f2 transmitted through the polarization beam splitter 26 is reflected by the movable mirror MC on the measurement optical path, is shifted in the optical path, and enters the polarization beam splitter 26 again. On the other hand, the light of the frequency f1 reflected by the polarization beam splitter 26 is reflected by the fixed mirror 10 on the reference optical path, is shifted in optical path, and enters the polarization beam splitter 26 again.
The frequency f whose frequency is modulated with the movement of the movable mirror MC
The light of 2 ± Δf ′ passes through the polarization beam splitter 26 as p-polarized light, and the light of frequency f1 that has passed through the reference optical path is reflected by the polarization beam splitter 26 as s-polarized light. The light enters the detector 16 with a polarizer.
The polarizer of the detector 16 is also inclined by 45 ° with respect to the polarization directions of the lights of the frequencies f1 and f2, and the light of the frequency f1 passing through the reference optical path and the frequency f2 ± Δ passing through the length measuring optical path.
The light of f 'interferes after passing through the polarizer, and the interference light is received by the light receiving system and is photoelectrically converted. The interference light that has been photoelectrically converted is moved to the moving mirror M at a beat frequency of (f1-f2).
A frequency modulated by a frequency change ± Δf ′ (Δf ′ is a positive value) due to the Doppler effect caused by the movement of C.

【0052】[0052]

【数6】 (Equation 6)

【0053】を有する測定信号S2’として検出器16
から位相比較器18に入力される。また、レーザ光源2
からは周波数f1の光と周波数f2の光を干渉させて得
られた(f1−f2)のビート周波数を有する信号が参
照信号S1として位相比較器18に入力される。ここ
で、移動鏡MCが検出器14、16から遠ざかる方向に
移動すると周波数変化−Δf、−Δf’が生じ、検出器
14、16に近づく方向に移動すると周波数変化+Δ
f、+Δf’が生じるものとする。
The detector 16 as a measurement signal S2 'having
Are input to the phase comparator 18. In addition, laser light source 2
Then, a signal having a beat frequency of (f1−f2) obtained by causing the light of the frequency f1 and the light of the frequency f2 to interfere with each other is input to the phase comparator 18 as the reference signal S1. Here, when the movable mirror MC moves away from the detectors 14 and 16, frequency changes −Δf and −Δf ′ occur. When the movable mirror MC moves closer to the detectors 14 and 16, the frequency change + Δ.
f, + Δf ′.

【0054】このように本実施の形態による光波干渉測
定装置では、移動鏡MCが検出器14、16から遠ざか
る場合であっても、近づく場合であっても、検出器1
4、16で検出される周波数(f1−f2±Δf)と、
As described above, in the lightwave interference measuring apparatus according to the present embodiment, the detector 1 can be used regardless of whether the moving mirror MC is far from or close to the detectors 14 and 16.
Frequencies (f1−f2 ± Δf) detected at 4, 16;

【0055】[0055]

【数7】 (Equation 7)

【0056】のいずれか一方は高周波側に移動すること
になる。従って、移動鏡MCの移動方向に応じて適宜検
出器14、16からの測定信号S2、S2’を切り替え
るようにすれば、移動方向に無関係に移動鏡MCを高速
で移動させることができるようになる。さらに、光源か
ら同軸で射出した光を分離/分割して同軸から外して移
動鏡MCおよび固定鏡10に向かわせ、検出器14、1
6で検出されるべき光だけを検出器14、16の直前で
同軸にするように構成しているので、非線形誤差を発生
させない測定が可能になる。
Either one moves to the high frequency side. Therefore, if the measurement signals S2 and S2 'from the detectors 14 and 16 are appropriately switched according to the moving direction of the moving mirror MC, the moving mirror MC can be moved at high speed regardless of the moving direction. Become. Further, the light emitted coaxially from the light source is separated / divided, decoupled from the coaxial light, and directed to the movable mirror MC and the fixed mirror 10, and the detectors 14, 1
Since only the light to be detected at 6 is configured to be coaxial just before the detectors 14 and 16, measurement without generating a non-linear error becomes possible.

【0057】次に、本発明の第4の実施の形態による光
波干渉測定方法および装置を図4を用いて説明する。本
実施の形態は、第3の実施の形態による光波干渉測定装
置の移動鏡MCおよび固定鏡10をコーナ・キューブ・
プリズムに代えてそれぞれ平面鏡を用いた点に特徴を有
している。図4において、レーザ光源2は、偏光方位が
互いに直交し、わずかに異なる2つの周波数f1、f2
の光を射出する。ここで、周波数f1の光は紙面に平行
な偏光方位を有し、周波数f2の光は紙面に垂直な偏光
方位を有している。レーザ光源2を射出した2つの光
は、ビームスプリッタ20に入射してそれぞれ分割さ
れ、ビームスプリッタ20を透過した周波数f1の光は
p偏光の光として偏光ビームスプリッタ26を透過して
測定光路中の移動鏡(平面鏡)MPで反射する。測定光
路上には1/4波長板34が設けられており、従って、
移動鏡MPに入射して戻ってくる周波数f1の光は、こ
の1/4波長板34を2回通過してその偏光方位が90
°回転させられてs偏光の光となるため、偏光ビームス
プリッタ26で反射させられる。
Next, an optical interference measurement method and apparatus according to a fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the movable mirror MC and the fixed mirror 10 of the optical interference measurement apparatus according to the third embodiment are
It is characterized in that a plane mirror is used instead of the prism. In FIG. 4, a laser light source 2 has two frequencies f1 and f2 whose polarization directions are orthogonal to each other and slightly different from each other.
To emit light. Here, the light of frequency f1 has a polarization direction parallel to the paper surface, and the light of frequency f2 has a polarization direction perpendicular to the paper surface. The two lights emitted from the laser light source 2 enter the beam splitter 20 and are respectively split. The light having the frequency f1 that has passed through the beam splitter 20 passes through the polarization beam splitter 26 as p-polarized light and passes through the measurement optical path. The light is reflected by a moving mirror (plane mirror) MP. A 測定 wavelength plate 34 is provided on the measurement optical path, and
The light of the frequency f1 that is incident on the movable mirror MP and returns passes through the quarter-wave plate 34 twice and has a polarization direction of 90.
Since the light is rotated by ° and becomes s-polarized light, it is reflected by the polarization beam splitter 26.

【0058】偏光ビームスプリッタ26で反射した周波
数f1の光は、固定鏡60で反射して光路をずらされて
再び偏光ビームスプリッタ26に入射して反射し、測定
光路を進んで再び移動鏡MPで反射する。移動鏡MPに
入射して戻ってくる周波数f1の光は、上述と同様に1
/4波長板34を2回通過してその偏光方位が90°回
転させられてp偏光の光となるため、今度は偏光ビーム
スプリッタ26を透過する。移動鏡MPの移動に伴って
周波数が変化した周波数f1±Δfの光は、偏光ビーム
スプリッタ26を透過した後、検出器14に入射する。
The light of the frequency f1 reflected by the polarization beam splitter 26 is reflected by the fixed mirror 60, the optical path is shifted, the light is again incident on the polarization beam splitter 26, reflected, travels along the measurement optical path, and is again moved by the movable mirror MP. reflect. The light having the frequency f1 that is incident on the movable mirror MP and returns is 1 in the same manner as described above.
Since the light passes through the 波長 wavelength plate 34 twice and its polarization direction is rotated by 90 ° to become p-polarized light, it is transmitted through the polarization beam splitter 26 this time. The light of the frequency f1 ± Δf, the frequency of which changes with the movement of the movable mirror MP, passes through the polarization beam splitter 26 and then enters the detector 14.

【0059】一方、周波数f2の光はs偏光の光として
偏光ビームスプリッタ26で反射して参照光路中の固定
鏡46で反射する。参照光路上には1/4波長板44が
設けられており、従って、固定鏡46に入射して戻って
くる周波数f2の光は、この1/4波長板44を2回通
過してその偏光方位が90°回転させられてp偏光の光
となるため、偏光ビームスプリッタ26を透過する。偏
光ビームスプリッタ26を透過した周波数f2の光は、
固定鏡60で反射して光路をずらされて再び偏光ビーム
スプリッタ26を透過し、参照光路を進んで再び固定鏡
46で反射する。固定鏡46に入射して戻ってくる周波
数f2の光は、上述と同様に1/4波長板44を2回通
過してその偏光方位が90°回転させられてs偏光の光
となるため、今度は偏光ビームスプリッタ26で反射し
て検出器14に入射する。
On the other hand, the light of the frequency f2 is reflected by the polarization beam splitter 26 as s-polarized light, and is reflected by the fixed mirror 46 in the reference optical path. A quarter-wave plate 44 is provided on the reference optical path. Therefore, the light having the frequency f2 that is incident on the fixed mirror 46 and returns therethrough passes through the quarter-wave plate 44 twice and its polarization. Since the azimuth is rotated by 90 ° to become p-polarized light, the azimuth is transmitted through the polarization beam splitter 26. The light of frequency f2 transmitted through the polarizing beam splitter 26 is
The light is reflected by the fixed mirror 60, the optical path is shifted, the light passes through the polarization beam splitter 26 again, travels along the reference light path, and is reflected again by the fixed mirror 46. The light of the frequency f2 that is incident on the fixed mirror 46 and returns is transmitted through the quarter-wave plate 44 twice as described above, and its polarization direction is rotated by 90 ° to become s-polarized light. This time, the light is reflected by the polarization beam splitter 26 and enters the detector 14.

【0060】また、ビームスプリッタ20で反射した周
波数f1、f2の光は、ミラー22で反射して、ビーム
スプリッタ20を透過した周波数f1、f2の光の光路
と所定の間隔を有して平行に射出して、1/2波長板2
4を透過する。1/2波長板24を透過した周波数f
1、f2の光はそれぞれ偏光方位を90°回転させられ
て、周波数f1の光はs偏光の光として偏光ビームスプ
リッタ26で反射し、周波数f2の光はp偏光の光とし
て偏光ビームスプリッタ26を透過する。偏光ビームス
プリッタ26を透過した周波数f2の光は測定光路中の
移動鏡MPで反射する。測定光路上には1/4波長板3
4が設けられており、従って、移動鏡MPに入射して戻
ってくる周波数f2の光は、この1/4波長板34を2
回通過してその偏光方位が90°回転させられてs偏光
の光となるため、偏光ビームスプリッタ26で反射させ
られる。
The lights of the frequencies f1 and f2 reflected by the beam splitter 20 are reflected by the mirror 22, and are parallel to the optical path of the lights of the frequencies f1 and f2 transmitted through the beam splitter 20 at a predetermined interval. Inject and 1 / wavelength plate 2
4 is transmitted. Frequency f transmitted through half-wave plate 24
The lights of f1 and f2 are each rotated by 90 ° in the polarization direction, the light of frequency f1 is reflected by the polarization beam splitter 26 as s-polarized light, and the light of frequency f2 is reflected by the polarization beam splitter 26 as p-polarized light. To Penetrate. The light of the frequency f2 transmitted through the polarization beam splitter 26 is reflected by the moving mirror MP in the measurement optical path. 1/4 wavelength plate 3 on the measurement optical path
4 is provided, so that the light having the frequency f2 that is incident on the movable mirror MP and returns, passes through the quarter-wave plate
The light passes through the light beam once, and its polarization direction is rotated by 90 ° to become s-polarized light, so that the light is reflected by the polarization beam splitter 26.

【0061】偏光ビームスプリッタ26で反射した周波
数f2の光は、固定鏡60で反射して光路をずらされて
再び偏光ビームスプリッタ26に入射して反射し、測定
光路を進んで再び移動鏡MPで反射する。移動鏡MPに
入射して戻ってくる周波数f2の光は、上述と同様に1
/4波長板34を2回通過してその偏光方位が90°回
転させられてp偏光の光となるため、今度は偏光ビーム
スプリッタ26を透過する。移動鏡MPの移動に伴って
周波数が変化した周波数f2±Δf’の光は、偏光ビー
ムスプリッタ26を透過した後、検出器16に入射す
る。
The light of frequency f2 reflected by the polarization beam splitter 26 is reflected by the fixed mirror 60, the optical path is shifted, and is incident on the polarization beam splitter 26 again, reflected, travels along the measurement optical path, and is again moved by the movable mirror MP. reflect. The light of the frequency f2 that is incident on the movable mirror MP and returns is 1 in the same manner as described above.
Since the light passes through the 波長 wavelength plate 34 twice and its polarization direction is rotated by 90 ° to become p-polarized light, it is transmitted through the polarization beam splitter 26 this time. The light of the frequency f2 ± Δf ′, the frequency of which has changed with the movement of the movable mirror MP, passes through the polarization beam splitter 26 and then enters the detector 16.

【0062】一方、周波数f1の光はs偏光の光として
偏光ビームスプリッタ26で反射して参照光路中の固定
鏡46で反射する。参照光路上には1/4波長板44が
設けられており、従って、固定鏡46に入射して戻って
くる周波数f1の光は、この1/4波長板44を2回通
過してその偏光方位が90°回転させられてp偏光の光
となるため、偏光ビームスプリッタ26を透過する。偏
光ビームスプリッタ26を透過した周波数f1の光は、
固定鏡60で反射して光路をずらされて再び偏光ビーム
スプリッタ26を透過し、参照光路を進んで再び固定鏡
46で反射する。固定鏡46に入射して戻ってくる周波
数f1の光は、上述と同様に1/4波長板44を2回通
過してその偏光方位が90°回転させられてs偏光の光
となるため、今度は偏光ビームスプリッタ26で反射し
て検出器16に入射する。
On the other hand, the light of the frequency f1 is reflected by the polarization beam splitter 26 as s-polarized light and is reflected by the fixed mirror 46 in the reference optical path. A quarter-wave plate 44 is provided on the reference optical path. Therefore, the light having the frequency f1 that is incident on the fixed mirror 46 and returns is transmitted through the quarter-wave plate 44 twice and its polarization. Since the azimuth is rotated by 90 ° to become p-polarized light, the azimuth is transmitted through the polarization beam splitter 26. The light of frequency f1 transmitted through the polarizing beam splitter 26 is
The light is reflected by the fixed mirror 60, the optical path is shifted, the light passes through the polarization beam splitter 26 again, travels along the reference light path, and is reflected again by the fixed mirror 46. The light having the frequency f1 that is incident on the fixed mirror 46 and returns is transmitted through the quarter-wave plate 44 twice as described above, and its polarization direction is rotated by 90 ° to become s-polarized light. This time, the light is reflected by the polarization beam splitter 26 and enters the detector 16.

【0063】従って、偏光ビームスプリッタ26から
は、測定光路を経た周波数f1±Δfの光と参照光路を
経た周波数f2の光が同軸で検出器14に入射し、これ
らと異なる位置で同軸にされた測定光路を経た周波数f
2±Δf’の光と参照光路を経た周波数f1の光が同軸
で検出器16に入射する。これ以降の構成および動作は
第3の実施の形態と同様なので説明は省略する。
Accordingly, from the polarization beam splitter 26, the light of the frequency f1 ± Δf passing through the measuring optical path and the light of the frequency f2 passing through the reference optical path enter the detector 14 coaxially, and are made coaxial at different positions. Frequency f through measurement optical path
The light of 2 ± Δf ′ and the light of frequency f1 passing through the reference optical path enter the detector 16 coaxially. The subsequent configuration and operation are the same as in the third embodiment, and a description thereof will not be repeated.

【0064】このように本実施の形態による光波干渉測
定装置においても、移動鏡MPが検出器14、16から
遠ざかる場合であっても、近づく場合であっても、検出
器14、16で検出される周波数(f1−f2±Δf)
と、
As described above, also in the optical interference measuring apparatus according to the present embodiment, whether the moving mirror MP moves away from or near the detectors 14 and 16 is detected by the detectors 14 and 16. Frequency (f1-f2 ± Δf)
When,

【0065】[0065]

【数8】 (Equation 8)

【0066】のいずれか一方は高周波側に移動すること
になる。従って、移動鏡MPの移動方向に応じて適宜検
出器14、16からの測定信号S2、S2’を切り替え
るようにすれば、移動方向に無関係に移動鏡MPを高速
で移動させることができるようになる。そして、本実施
の形態においても、検出器14に入射する周波数f1、
f2の光の光路と、検出器16に入射する周波数f1、
f2の光の光路が完全に分離されるように構成している
ので非線形誤差を発生させない測定が可能になる。ま
た、本実施の形態によれば、第3の実施の形態に比較し
て移動鏡に平面鏡を用いたダブルパスの構成にしたの
で、光学的に測定分解能を2倍にすることができる。
One of them moves to the high frequency side. Therefore, if the measurement signals S2 and S2 'from the detectors 14 and 16 are appropriately switched according to the moving direction of the moving mirror MP, the moving mirror MP can be moved at high speed regardless of the moving direction. Become. And also in this embodiment, the frequency f1, which is incident on the detector 14,
The optical path of the light of f2 and the frequency f1 incident on the detector 16;
Since the configuration is such that the optical path of the light of f2 is completely separated, it is possible to perform measurement without generating a nonlinear error. In addition, according to the present embodiment, a double-pass configuration using a plane mirror as the movable mirror is used as compared with the third embodiment, so that the measurement resolution can be optically doubled.

【0067】本発明は、上記実施の形態に限らず種々の
変形が可能である。例えば、上記実施の形態において
は、移動鏡の変位を測定する構成だけを示したが、測定
光路の気体(空気)の屈折率変動を測定する干渉システ
ムを付加してさらに高精度な移動鏡の変位測定を行うよ
うにすることももちろん可能である。
The present invention is not limited to the above embodiment, but can be variously modified. For example, in the above-described embodiment, only the configuration for measuring the displacement of the movable mirror has been described. However, an interference system for measuring a change in the refractive index of gas (air) in the measurement optical path has been added, and a more accurate movable mirror has been provided. Of course, it is also possible to carry out a displacement measurement.

【0068】また、上記第2および第4の実施の形態に
おいて、測定光路、および参照光路にそれぞれ1枚の1
/4波長板34、44を挿入しているが、本発明はこれ
に限られず、測定光路上および参照光路上の各4本の光
路毎に別個の小型の1/4波長板を用いるようにしても
もちろんよい。
In the second and fourth embodiments, each of the measurement optical path and the reference optical path has one
Although the quarter wave plates 34 and 44 are inserted, the present invention is not limited to this, and separate small quarter wave plates are used for each of the four light paths on the measurement light path and the reference light path. Of course you can.

【0069】また、上記実施の形態における光波干渉測
定装置は、半導体装置あるいは液晶表示装置等の製造の
際のフォトリソグラフィ工程で多用される露光装置の、
ウェハやレチクルを載置して2次元移動するステージ系
の位置決め制御システムに用いて好適である。
The light wave interference measuring apparatus according to the above embodiment is a light exposure apparatus which is frequently used in a photolithography process in manufacturing a semiconductor device or a liquid crystal display device.
It is suitable for use in a stage-based positioning control system in which a wafer or a reticle is placed and two-dimensionally moved.

【0070】[0070]

【発明の効果】以上の通り、本発明によれば、測定光路
の移動鏡が検出器から遠ざかる場合であっても、近づく
場合であっても、その移動方向に無関係に移動鏡を高速
で移動させることができるようになると共に、2つの検
出器に入射する周波数f1、f2の光の光路が完全に分
離されるように構成しているので非線形誤差を発生させ
ない測定を行うことがでできる。
As described above, according to the present invention, the moving mirror can be moved at a high speed regardless of the moving direction, regardless of whether the moving mirror moves away from the detector or approaches the detector. In addition, since the optical paths of the light having the frequencies f1 and f2 incident on the two detectors are completely separated from each other, it is possible to perform the measurement without generating the non-linear error.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による光波干渉測定
装置を示す図である。
FIG. 1 is a diagram showing an optical interference measuring apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態による光波干渉測定
装置を示す図である。
FIG. 2 is a diagram showing an optical interference measuring apparatus according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態による光波干渉測定
装置を示す図である。
FIG. 3 is a diagram showing an optical interference measuring apparatus according to a third embodiment of the present invention.

【図4】本発明の第4の実施の形態による光波干渉測定
装置を示す図である。
FIG. 4 is a diagram showing an optical interference measurement apparatus according to a fourth embodiment of the present invention.

【図5】従来の光波干渉測定装置を示す図である。FIG. 5 is a diagram showing a conventional light wave interference measurement device.

【図6】従来の他の光波干渉測定装置を示す図である。FIG. 6 is a diagram showing another conventional light wave interference measurement device.

【符号の説明】[Explanation of symbols]

2 レーザ光源 4 偏光ビームスプリッタ 6、8 ビームスプリッタ 10 固定鏡 14、16 検出器 18 位相比較器 MC、MP、MX 移動鏡 2 Laser light source 4 Polarizing beam splitter 6, 8 Beam splitter 10 Fixed mirror 14, 16 Detector 18 Phase comparator MC, MP, MX Moving mirror

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】異なる周波数を有した2つの光束のそれぞ
れを、固定して配設された固定鏡と移動可能な移動鏡と
に入射させ、前記2つの光束の干渉により前記移動鏡の
変位を測定する光波干渉測定方法において、 前記固定鏡と前記移動鏡との少なくとも一方に入射する
前記2つの光束の光路をずらすステップを含むことを特
徴とする光波干渉測定方法。
1. A method according to claim 1, wherein each of the two light beams having different frequencies is made incident on a fixed mirror and a movable movable mirror which are fixedly arranged, and the displacement of the movable mirror is caused by interference of the two light beams. An optical interference measurement method for measuring, comprising: shifting an optical path of the two light beams incident on at least one of the fixed mirror and the movable mirror.
【請求項2】請求項1記載の光波干渉測定方法におい
て、 前記2つの光束は、第1の偏光方位と、該第1の偏光方
位と直交する第2の偏光方位とを有し同軸で射出される
ことを特徴とする光波干渉測定方法。
2. The light wave interference measuring method according to claim 1, wherein the two light beams have a first polarization direction and a second polarization direction orthogonal to the first polarization direction and are emitted coaxially. A light wave interference measurement method.
【請求項3】請求項2記載の光波干渉測定方法におい
て、 前記2つの光束を分割するステップと、 前記2つの光束を偏光状態に応じて分割するステップと
を含むことを特徴とする光波干渉測定方法。
3. The light wave interference measurement method according to claim 2, further comprising: a step of splitting the two light beams; and a step of splitting the two light beams according to a polarization state. Method.
【請求項4】異なる周波数を有した2つの光束のそれぞ
れが入射する固定して配設された固定鏡と移動可能な移
動鏡とを有し、前記2つの光束の干渉により前記移動鏡
の変位を測定する光波干渉測定装置において、 前記固定鏡と前記移動鏡との少なくとも一方に入射する
前記2つの光束の光路をずらす光学系を含むことを特徴
とする光波干渉測定装置。
4. A movable mirror having a fixed mirror and a movable movable mirror, each of which receives two light beams having different frequencies, and the movable mirror is displaced by interference of the two light beams. A light wave interference measurement device, comprising: an optical system that shifts an optical path of the two light beams incident on at least one of the fixed mirror and the movable mirror.
【請求項5】請求項4記載の光波干渉測定装置におい
て、 前記2つの光束は、第1の偏光方位と、該第1の偏光方
位と直交する第2の偏光方位とを有し同軸で射出される
ことを特徴とする光波干渉測定装置。
5. The light wave interference measuring apparatus according to claim 4, wherein the two light beams have a first polarization direction and a second polarization direction orthogonal to the first polarization direction and are emitted coaxially. A light wave interference measurement device characterized by being performed.
【請求項6】請求項5記載の光波干渉測定装置におい
て、 前記2つの光束を分割する分割素子と、 前記2つの光束を偏光状態に応じて分割する偏光素子と
を含むことを特徴とする光波干渉測定装置。
6. The light wave interference measuring apparatus according to claim 5, further comprising: a splitting element for splitting the two light fluxes; and a polarizing element for splitting the two light fluxes according to a polarization state. Interferometer.
JP10026597A 1998-01-22 1998-01-22 Method and device for measuring light wave interference Withdrawn JPH11211417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10026597A JPH11211417A (en) 1998-01-22 1998-01-22 Method and device for measuring light wave interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10026597A JPH11211417A (en) 1998-01-22 1998-01-22 Method and device for measuring light wave interference

Publications (1)

Publication Number Publication Date
JPH11211417A true JPH11211417A (en) 1999-08-06

Family

ID=12197949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10026597A Withdrawn JPH11211417A (en) 1998-01-22 1998-01-22 Method and device for measuring light wave interference

Country Status (1)

Country Link
JP (1) JPH11211417A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528575A (en) * 2012-09-19 2015-09-28 ハルビン インスティテュート オブ テクノロジーHarbin Institute Of Technology High speed and high resolution heterodyne interferometry method and system
WO2016190151A1 (en) * 2015-05-25 2016-12-01 Ckd株式会社 Three-dimensional measurement device
CN107110640A (en) * 2015-05-25 2017-08-29 Ckd株式会社 Three-dimensional measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528575A (en) * 2012-09-19 2015-09-28 ハルビン インスティテュート オブ テクノロジーHarbin Institute Of Technology High speed and high resolution heterodyne interferometry method and system
WO2016190151A1 (en) * 2015-05-25 2016-12-01 Ckd株式会社 Three-dimensional measurement device
CN107110640A (en) * 2015-05-25 2017-08-29 Ckd株式会社 Three-dimensional measuring apparatus
CN107110640B (en) * 2015-05-25 2019-08-13 Ckd株式会社 Three-dimensional measuring apparatus
US10704888B2 (en) 2015-05-25 2020-07-07 Ckd Corporation Three-dimensional measurement device

Similar Documents

Publication Publication Date Title
US5404222A (en) Interferametric measuring system with air turbulence compensation
US6208424B1 (en) Interferometric apparatus and method for measuring motion along multiple axes
US5106191A (en) Two-frequency distance and displacement measuring interferometer
US7355719B2 (en) Interferometer for measuring perpendicular translations
JP2006275531A (en) Displacement measuring method and its devise
JPH09178415A (en) Light wave interference measuring device
JPH07101166B2 (en) Interferometer
WO2013013345A1 (en) Interferometer with six axes and 4 subdivisions
US5767971A (en) Apparatus for measuring refractive index of medium using light, displacement measuring system using the same apparatus, and direction-of-polarization rotating unit
JP2003083711A (en) Interferometer and beam coupling method
JPH11183116A (en) Method and device for light wave interference measurement
JPH11211417A (en) Method and device for measuring light wave interference
JPS62233704A (en) Differential plane-mirror interferometer system
US6519042B1 (en) Interferometer system for displacement and straightness measurements
JPH11125503A (en) Heterodyne interferometer
JPH09280822A (en) Light wave interference measuring device
JP2000018910A (en) Optical wave interference measuring method and apparatus thereof
JP2000146525A (en) Light wave interference measuring instrument and projection aligner using same instrument
JPH1144503A (en) Light wave interference measuring device
JPH06137814A (en) Minute displacement measuring method and its device
JP3141363B2 (en) Interferometer
JPH10281718A (en) Polarizing optical element, method for adjusting polarizing azimuth, and light wave interferometer using the same
JPH0510733A (en) Three-dimensional shape measuring apparatus
JPH06129812A (en) Heterodyne interference length measuring instrument
JPH11344303A (en) Laser interference length measuring apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405