JPH11205260A - Parallel transmission method - Google Patents

Parallel transmission method

Info

Publication number
JPH11205260A
JPH11205260A JP10003525A JP352598A JPH11205260A JP H11205260 A JPH11205260 A JP H11205260A JP 10003525 A JP10003525 A JP 10003525A JP 352598 A JP352598 A JP 352598A JP H11205260 A JPH11205260 A JP H11205260A
Authority
JP
Japan
Prior art keywords
carriers
transmission method
frequency
parallel transmission
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10003525A
Other languages
Japanese (ja)
Other versions
JP3507683B2 (en
Inventor
Yasuyoshi Suzuki
恭宜 鈴木
Toshio Nojima
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
NTT Mobile Communications Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, NTT Mobile Communications Networks Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP00352598A priority Critical patent/JP3507683B2/en
Priority to CA002285198A priority patent/CA2285198C/en
Priority to PCT/JP1999/000022 priority patent/WO1999035772A1/en
Publication of JPH11205260A publication Critical patent/JPH11205260A/en
Application granted granted Critical
Publication of JP3507683B2 publication Critical patent/JP3507683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a parallel transmission method to realize high speed and high quality transmission without the need for a radio circuit having a broad band frequency characteristic and a processor to conduct sophisticated digital signal processings by using existing circuit techniques so as to set a frequency interval of a plurality of carriers at a coherence band width or over or in the vicinity of the band width and to conductor communication. SOLUTION: A frequency interval of a plurality of carriers is set at a coherence band width or over. Through this setting, a plurality of carriers receive sets of fading width almost non-correlation. Thus, even when a spectrum 112 of a specific carrier receives fading during a speech and the quality of channel is deteriorated, spectrums 111, 113 of the remaining carriers are used to continue the speech. The remaining reception signals are synchronously detected and the signals are synthesized at a maximum ratio. Since the carriers are regarded almost independent in this case, diversity reception with a synthesis at a maximum ratio or branches corresponding to the carriers used for communication is attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の異なるベー
スバンド信号を複数の搬送波を用いて周波数分割多重方
式で無線通信、特に陸上移動通信を行う並列伝送方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a parallel transmission method for performing radio communication, in particular, land mobile communication of a plurality of different baseband signals in a frequency division multiplex system using a plurality of carriers.

【0002】[0002]

【従来の技術】近年、高速伝送、高品質伝送が要求され
る陸上移動通信などに代表される無線通信において、高
品質伝送および高速伝送の実現を目的として、種々の無
線通信方式が提案されてきた。例えば、符号分割多元接
続(Code Division Multiple Access;CDMA)方式、
適応変調方式、16QAM−4マルチキャリヤ伝送方
式、直交周波数分割多重(Orthogonal Frequency Divis
ion Multiplexing:OFDM)方式などが提案されてき
た。
2. Description of the Related Art In recent years, various radio communication systems have been proposed for realizing high quality transmission and high speed transmission in radio communication represented by land mobile communication requiring high speed transmission and high quality transmission. Was. For example, a code division multiple access (CDMA) scheme,
Adaptive modulation method, 16QAM-4 multicarrier transmission method, Orthogonal Frequency Division (Orthogonal Frequency Divis)
An ion multiplexing (OFDM) system and the like have been proposed.

【0003】これらの無線伝送方式での所要伝送品質を
確保する方法は、これまで第2世代移動通信方式、例え
ば、PDC(Personal Digital Cellular) 、GSM(Glo
balSystem for Mobile communication)、IS−95な
どに用いられている誤り訂正技術や固定マイクロ波回線
に用いられている周波数ダイバーシチ受信、空間ダイバ
ーシチ受信、偏波ダイバーシチ受信などのダイバーシチ
受信技術を適用する方法である。
[0003] Methods for ensuring the required transmission quality in these wireless transmission systems have hitherto been known as second-generation mobile communication systems such as PDC (Personal Digital Cellular) and GSM (Glo- ble).
balSystem for Mobile communication), error correction technology used in IS-95, etc., and diversity reception technology such as frequency diversity reception, space diversity reception, and polarization diversity reception used in fixed microwave links. is there.

【0004】また高速伝送では、伝送路の状況に応じて
最適な変調方式を選択する適応変調方式、広帯域CDM
A、ディジタル放送方式として適用が検討されているO
FDM方式などが知られている。
In high-speed transmission, an adaptive modulation method for selecting an optimum modulation method according to the condition of a transmission path, a wideband CDM
A, O being considered for application as a digital broadcasting system
An FDM system and the like are known.

【0005】上述の高速伝送および高品質伝送のシステ
ムは、単一スペクトラムを複数の搬送波で分割したり、
広帯域の単一搬送波に誤り訂正技術やダイバーシチ受信
技術を用いていた。これらシステムに用いる無線機を実
現するには、広帯域にわたって所要の周波数特性をもつ
無線回路と高度なディジタル信号処理を行うプロセッサ
を必要としていた。例えば、フィルタ、送信電力増幅器
などのRF用無線回線と誤り訂正用復号器などのプロセ
ッサなどである。
The above-described high-speed transmission and high-quality transmission systems split a single spectrum by a plurality of carriers,
Error correction technology and diversity reception technology were used for a wideband single carrier. In order to realize a wireless device used in these systems, a wireless circuit having required frequency characteristics over a wide band and a processor for performing advanced digital signal processing were required. For example, an RF wireless line such as a filter and a transmission power amplifier and a processor such as an error correction decoder are used.

【0006】周波数利用効率の高い無線通信システムを
構築するには、無線チャネル間のガード・バンドをより
少なくする回路技術が必須であり、この無線回路技術と
して、特に、フィルタの帯域外減衰特性と送信系の線形
性の改善が必須となる。
[0006] In order to construct a radio communication system with high frequency utilization efficiency, a circuit technique for reducing the guard band between radio channels is indispensable. It is essential to improve the linearity of the transmission system.

【0007】高速伝送および高品質伝送を可能にし、周
波数利用効率の高い無線通信システムを実現するために
は、高度な回路技術を必要としていた。例えば、10M
bpsの情報を伝送するために、変調をQPSK、ロー
ルオフフィルタ係数0.5とすれば、周波数帯域幅が
7.5MHz必要である。これを単一搬送波で伝送する
場合、無線機で用いられる受信フィルタの通過帯域幅
(3dB帯域幅)は4.6MHzとなる。移動機が隣接
搬送波との遠近問題を受けないために、隣接チャネル減
衰量80dB必要とすれば、前記受信フィルタは広い通
過帯域幅と急峻な減衰特性を必要とする。もし、小型軽
量の無線機を作るなら、従来よりも高性能の小型フィル
タの開発を必要とする。
In order to realize high-speed transmission and high-quality transmission, and to realize a radio communication system with high frequency utilization efficiency, advanced circuit technology was required. For example, 10M
In order to transmit bps information, if the modulation is QPSK and the roll-off filter coefficient is 0.5, a frequency bandwidth of 7.5 MHz is required. When this is transmitted by a single carrier, the pass bandwidth (3 dB bandwidth) of the reception filter used in the radio device is 4.6 MHz. If the mobile station needs 80 dB of the adjacent channel attenuation so that the mobile station does not suffer from the near-far problem with the adjacent carrier, the receiving filter needs a wide pass bandwidth and a steep attenuation characteristic. If a small and lightweight radio is to be made, it is necessary to develop a small filter with higher performance than before.

【0008】[0008]

【発明が解決しようとする課題】このように、上述のよ
うな従来の高速伝送および高品質伝送のシステムでは、
単一スペクトラムを複数の搬送波で分割したり、広帯域
の単一搬送波に誤り訂正技術やダイバーシチ受信技術を
用いていた。これらシステムに用いる無線機を実現する
には、広帯域の周波数特性をもつ無線回路と高度なディ
ジタル信号処理を行うプロセッサを必要としていた。
As described above, in the conventional high-speed transmission and high-quality transmission systems as described above,
A single spectrum is divided by a plurality of carriers, and an error correction technique and a diversity reception technique are used for a single carrier in a wide band. In order to realize radio equipment used in these systems, a radio circuit having a wide frequency characteristic and a processor for performing advanced digital signal processing were required.

【0009】そこで、本発明の目的は、上記課題を解決
するためになされたものであり、既存の回路技術を用い
て、複数の搬送波の各々の周波数間隔がコヒーレンス帯
域幅以上または付近になるように周波数間隔を設定して
通信を行うことにより、広帯域の周波数特性をもつ無線
回路と高度なディジタル信号処理を行うプロセッサを必
要としない高速伝送および高品質伝送を実現できる並列
伝送方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problem, and the frequency intervals of a plurality of carriers are set to be equal to or more than a coherence bandwidth by using existing circuit technology. To provide a parallel transmission method capable of realizing high-speed transmission and high-quality transmission that does not require a radio circuit having a wideband frequency characteristic and a processor that performs advanced digital signal processing by performing communication with a frequency interval set in the communication. It is in.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は、
M個(M>1)の異なるベースバンド信号をM個の搬送
波を用いて周波数分割多重方式で無線通信を行う並列伝
送方法において、前記M個の搬送波の各々の周波数間隔
がコヒーレンス帯域幅以上に周波数間隔を設定して通信
を行う。
According to the first aspect of the present invention,
In a parallel transmission method in which M (M> 1) different baseband signals are wirelessly communicated by frequency division multiplexing using M carriers, a frequency interval between each of the M carriers is greater than a coherence bandwidth. Communication is performed by setting the frequency interval.

【0011】請求項2記載の発明は、M個(M>1)の
異なるベースバンド信号をM個の搬送波を用いて周波数
分割多重方式の無線通信を行う並列伝送方法において、
前記M個の搬送波の各々の周波数間隔がコヒーレンス帯
域幅付近に周波数間隔を設定して通信を行う。
According to a second aspect of the present invention, there is provided a parallel transmission method for performing frequency division multiplexing wireless communication of M (M> 1) different baseband signals using M carrier waves.
The communication is performed by setting the frequency interval of each of the M carrier waves near the coherence bandwidth.

【0012】請求項3記載の発明は、請求項1または2
において、前記M個の搬送波にM個以下の複数の異なる
変調方法を用いることができる。
The invention described in claim 3 is the first or second invention.
In the above, a plurality of M or less different modulation methods can be used for the M carrier waves.

【0013】請求項4記載の発明は、請求項3におい
て、前記M個以下の異なる変調方法は、PSK、QAM
またはFSKから選択されることができる。
According to a fourth aspect of the present invention, in the third aspect, the M or less different modulation methods are PSK, QAM
Alternatively, it can be selected from FSK.

【0014】[0014]

【発明の実施の形態】まず本発明の並列伝送方法の概略
を説明する。本発明の並列伝送方法では、高速伝送を可
能にするマルチキャリア無線通信方法において、使用す
る各搬送波間の周波数相関値をある一定値以下に設定す
る。例えば搬送波間の周波数相関値は、各搬送波間をほ
ぼ無相関にみなせるコヒーレンス帯域以上の周波数間隔
に設定する。ここで周波数相関値ρ(Ω)は、2つのフ
ェージング受信波の周波数をf1 とf1 +Ω、受信局に
到来する素波の強度が同程度で伝搬路の長さの広がりを
Δl、最短の伝搬路の長さをl0 、光速をcとすれば、
(1)式となることが知られている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an outline of a parallel transmission method according to the present invention will be described. According to the parallel transmission method of the present invention, in a multi-carrier wireless communication method capable of high-speed transmission, a frequency correlation value between each used carrier is set to a certain value or less. For example, the frequency correlation value between the carrier waves is set to a frequency interval equal to or larger than the coherence band in which the carrier waves can be regarded as substantially uncorrelated. Here, the frequency correlation value ρ (Ω) is such that the frequencies of the two fading reception waves are f 1 and f 1 + Ω, the intensity of the element wave arriving at the receiving station is almost the same, the spread of the propagation path length is Δl, and the shortest is If the length of the propagation path is l 0 and the speed of light is c,
It is known that equation (1) is obtained.

【0015】[0015]

【数1】 (Equation 1)

【0016】|ρ(Ω)|が0.5となる周波数間隔Ω
をコヒーレンス帯域幅と定義することが知られている。
一般にほぼ無相関にみなせる周波数間隔Ωとは、ρ
(Ω)≦0.5となるΩであることが知られている。
The frequency interval Ω at which | ρ (Ω) | is 0.5
Is known to be defined as the coherence bandwidth.
Generally, the frequency interval Ω that can be regarded as almost uncorrelated is ρ
It is known that Ω satisfies (Ω) ≦ 0.5.

【0017】本発明の並列伝送方法では、仮にいくつか
の搬送波がフェージング等の伝搬路の変動により所定の
回線品質が得られなくても、無線回線全体の回線品質の
劣化を回避できる。このため、たとえば従来の周波数分
割多重(Frequency DivisionMultiple:FDM) のよう
に複数の搬送波を単一スペクトルにする並列伝送方法と
比べて、本発明の並列伝送方法は伝送容量を保ちつつ伝
送路での回線品質の劣化を影響を受けにくい。
According to the parallel transmission method of the present invention, even if some carriers do not achieve a predetermined line quality due to fluctuations in the propagation path such as fading, deterioration of the line quality of the entire radio line can be avoided. For this reason, for example, the parallel transmission method of the present invention maintains the transmission capacity while maintaining the transmission capacity, as compared with a parallel transmission method in which a plurality of carriers are made into a single spectrum such as a conventional frequency division multiplexing (FDM). Less susceptible to line quality degradation.

【0018】各搬送波の周波数間隔がほぼ無相関とみな
せる程度に離れているために、本発明を具現化する無線
回路は、局部発振周波数の異なる複数の無線回路をもつ
ことにより実現できる。従来の並列伝送方法で必要とし
ていた広帯域の通過帯域幅をもつフィルタが不要とな
る。無線回路の線形性は各独立した無線回路毎に達成す
ればよく、従来の並列伝送方法用の無線回路で要求され
る広帯域の線形性を必要としない。ディジタル信号処理
を行うプロセッサについてもほぼ独立な狭帯域の搬送波
を用いることにより、より処理能力の低いプロセッサを
使用できる。これは、ディジタル回路の消費電力の低下
に貢献する。
Since the frequency intervals of the carriers are so far as to be regarded as substantially uncorrelated, a radio circuit embodying the present invention can be realized by having a plurality of radio circuits having different local oscillation frequencies. This eliminates the need for a filter having a wide-band passband required by the conventional parallel transmission method. The linearity of the wireless circuit may be achieved for each independent wireless circuit, and does not require the wide-band linearity required in the wireless circuit for the conventional parallel transmission method. By using a substantially independent narrowband carrier wave for a processor that performs digital signal processing, a processor with lower processing capability can be used. This contributes to a reduction in the power consumption of the digital circuit.

【0019】以下、図面を参照して本発明の実施の形態
を詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0020】図8は、本発明の並列伝送方法に用いられ
る送信機の一構成例を示す。
FIG. 8 shows a configuration example of a transmitter used in the parallel transmission method of the present invention.

【0021】図8において、複数のベースバンド処理部
800、805、...、810で処理されたベースバ
ンド信号は、各々D/A変換器820、82
5、...、830でD/A変換されて直交変調器84
0、845、...、850で直交変換される。その後
各々周波数変換器860、865、...、870で制
御器880によりf1 、f2 、...、fN に周波数変
換される。ここで、従来の並列伝送方法では、f1 、f
2 、...,fN がほぼ等しいかまたは各々がコヒーレ
ンス帯域幅以下であるように設定されていたが、本発明
の並列伝送方法では制御器880によりf1 、f
2 、...,fN がコヒーレンス帯域幅以上に設定され
る。この後、信号多重器890で多重され、送信電力増
幅器895で電力増幅され、アンテナ897を介して送
信される。
In FIG. 8, a plurality of baseband processing units 800, 805,. . . , 810 processed by the D / A converters 820, 82, respectively.
5,. . . , 830, the D / A conversion and the quadrature modulator 84
0, 845,. . . , 850 are orthogonally transformed. Thereafter, each of the frequency converters 860, 865,. . . , 870 by the controller 880 at f 1 , f 2 ,. . . , It is frequency-converted to f N. Here, in the conventional parallel transmission method, f 1 , f
2 ,. . . , F N although is set to be substantially equal to or respectively is not more than the coherence bandwidth, f 1, by the controller 880 in the parallel transmission method of the present invention f
2 ,. . . , F N are set to be equal to or larger than the coherence bandwidth. Thereafter, the signal is multiplexed by a signal multiplexer 890, power-amplified by a transmission power amplifier 895, and transmitted via an antenna 897.

【0022】図9は、本発明の並列伝送方法に用いられ
る送信機の別の構成例を示す。
FIG. 9 shows another configuration example of a transmitter used in the parallel transmission method of the present invention.

【0023】図9において、複数のベースバンド処理部
900、905、...、910で処理されたベースバ
ンド信号は、制御器920により信号多重器915で周
波数を上記のf1 、f2 、...,fN のようにずらし
て多重され、D/A変換器925でD/A変換されて、
直交変調器930で直交変換される。その後周波数変換
器935で周波数変換され、送信電力増幅器940で電
力増幅され、アンテナ945を介して送信される。ここ
で、従来の並列伝送方法では、f1 、f2 、...,f
N がほぼ等しい、コヒーレンス帯域幅以下に設定されて
いたが、本発明の並列伝送方法では制御器920により
1 、f2 、...,fN がコヒーレンス帯域幅以上に
設定される。
In FIG. 9, a plurality of baseband processing units 900, 905,. . . , 910 are processed by the controller 920 to change the frequency in the signal multiplexer 915 to the above f 1 , f 2 ,. . . , F N , shifted and multiplexed, and D / A converted by a D / A converter 925,
The orthogonal transform is performed by the orthogonal modulator 930. Thereafter, the frequency is converted by a frequency converter 935, the power is amplified by a transmission power amplifier 940, and transmitted via an antenna 945. Here, in the conventional parallel transmission method, f 1 , f 2 ,. . . , F
N is set to be equal to or less than the coherence bandwidth, but in the parallel transmission method of the present invention, the controller 920 sets f 1 , f 2 ,. . . , F N are set to be equal to or larger than the coherence bandwidth.

【0024】図10は、本発明の並列伝送方法に用いら
れる受信機の一構成例を示す。
FIG. 10 shows a configuration example of a receiver used in the parallel transmission method of the present invention.

【0025】図10において、アンテナ1000、10
05で受信された電波は切り替え器1010で受信増幅
器1020、1025の出力をレベル検出器1110、
1115で検出し、制御器1100で受信レベルの大き
い方のANT1000、1005に切り替えられ、周波
数変換器1030、1035で制御器1040により周
波数f1 、f2 に変換される。この後、帯域通過フィル
タ(Band Pass Filter: BPF)1050と1055、
自動利得制御器(Automatic Gain Control : AGC)1
060、1065を介して、検波器1070、1075
で検波され、A/D変換器1080、1085でA/D
変換され、同相合成器1090で位相を合わせて、符号
を判定する判定器1095に入力される。
In FIG. 10, antennas 1000, 10
In the radio wave received at 05, the output of the receiving amplifiers 1020 and 1025 is changed by the switch 1010 to the level detector 1110,
Detected at 1115, the controller 1100 switches to the ANT 1000 or 1005 with the higher reception level, and the frequency converters 1030 and 1035 convert the signals to frequencies f 1 and f 2 by the controller 1040. Thereafter, band pass filters (BPF) 1050 and 1055,
Automatic Gain Control (AGC) 1
Detectors 1070, 1075 via 060, 1065
Is detected by the A / D converters 1080 and 1085.
The converted signal is input to a determinator 1095 that determines the sign by matching the phases in the in-phase combiner 1090.

【0026】(実施の形態1)図1は、周波数間隔をコ
ヒーレンス帯域幅以上に設定した実施の形態を、縦軸を
スペクトル軸100、横軸を周波数軸110として示
す。図1では、3つの異なる情報を3つの搬送波を用い
る無線局130と無線局140との間の並列伝送方法を
説明する。
(Embodiment 1) FIG. 1 shows an embodiment in which the frequency interval is set to be equal to or larger than the coherence bandwidth, wherein the vertical axis is a spectrum axis 100 and the horizontal axis is a frequency axis 110. FIG. 1 illustrates a parallel transmission method between wireless station 130 and wireless station 140 using three carriers for three different pieces of information.

【0027】図1において、3つの搬送波によるスペク
トル111、112、113の周波数間隔120、12
5は、コヒーレンス帯域幅以上に設定(115)する。
この設定115により、図1の3つの搬送波によるスペ
クトル111、112、113は互いにほぼ無相関なフ
ェージングを受ける。従って、通話中に2番目の搬送波
によるスペクトル112がフェージングを受けて回線品
質の劣化が生じても残りの1番目の搬送波によるスペク
トル111と3番目の搬送波によるスペクトル113に
より通話を続けることが可能である。図10に示すよう
に、1番目の搬送波によるスペクトル111と3番目の
搬送波によるスペクトル113を同期検波し、検波器1
070、1075による検波後に最大比合成する。この
とき、各搬送波間をほぼ独立とみなせるので、2ブラン
チ最大比合成のタイバーシチ受信が可能である。
In FIG. 1, frequency intervals 120, 12 of spectra 111, 112, 113 by three carrier waves are shown.
5 is set to be equal to or larger than the coherence bandwidth (115).
With this setting 115, the spectra 111, 112, and 113 of the three carriers in FIG. 1 undergo fading that is substantially uncorrelated with each other. Therefore, even if the spectrum 112 due to the second carrier is fading during the call and the line quality is degraded, the call can be continued by the spectrum 111 using the remaining first carrier and the spectrum 113 using the third carrier. is there. As shown in FIG. 10, the spectrum 111 based on the first carrier and the spectrum 113 based on the third carrier are synchronously detected, and the detector 1
After the detection by 070 and 1075, maximum ratio combining is performed. At this time, since the carrier waves can be regarded as substantially independent, it is possible to perform two-branch maximum ratio combining diversity reception.

【0028】(実施の形態2)図2は、周波数間隔をコ
ヒーレンス帯域幅付近に設定した実施の形態を、縦軸を
スペクトル軸100、横軸を周波数軸110として示
す。図2では、3つの異なる情報を3つの搬送波を用い
る無線局130と無線局140との間の並列伝送方法を
説明する。
(Embodiment 2) FIG. 2 shows an embodiment in which the frequency interval is set near the coherence bandwidth, where the vertical axis is the spectrum axis 100 and the horizontal axis is the frequency axis 110. FIG. 2 illustrates a parallel transmission method between the wireless station 130 and the wireless station 140 using three carriers for three different pieces of information.

【0029】図2の3つの搬送波によるスペクトル21
1、212、213の周波数間隔220、225は、コ
ヒーレンス帯域幅付近に設定(215)する。この設定
(215)により、図2の3つの搬送波によるスペクト
ル211、212、213は互いにほぼ無相関なフェー
ジングを受ける。従って、通話中に2番目の搬送波によ
るスペクトル212がフェージングを受けて回線品質の
劣化が生じても残りの1番目の搬送波によるスペクトル
211と3番目の搬送波によるスペクトル213により
通話を続けることが可能である。図10に示すように、
1番目の搬送波によるスペクトル211と3番目の搬送
波によるスペクトル213を同期検波し、検波器107
0、1075による検波後に最大比合成する。このと
き、各搬送波間をほぼ独立とみなせるので、2ブランチ
最大比合成のタイバーシチ受信が可能である。
Spectrum 21 with three carriers in FIG.
The frequency intervals 220 and 225 of 1, 212 and 213 are set near the coherence bandwidth (215). With this setting (215), the spectra 211, 212, and 213 of the three carriers in FIG. 2 undergo fading that is substantially uncorrelated with each other. Therefore, even if the spectrum 212 due to the second carrier is fading during communication and the line quality is degraded, the communication can be continued with the spectrum 211 using the remaining first carrier and the spectrum 213 using the third carrier. is there. As shown in FIG.
The spectrum 211 of the first carrier and the spectrum 213 of the third carrier are synchronously detected, and the detector 107
After the detection by 0 and 1075, the maximum ratio is synthesized. At this time, since the carrier waves can be regarded as substantially independent, it is possible to perform two-branch maximum ratio combining diversity reception.

【0030】(実施の形態3)図3は、複数の変調方法
を用いた実施の形態を、縦軸をスペクトル軸100、横
軸を周波数軸110として示す。図3では、3つの異な
る情報を3つの搬送波を用いる無線局130と無線局1
40との間の並列伝送方法を説明する。
(Embodiment 3) FIG. 3 shows an embodiment using a plurality of modulation methods, in which the vertical axis is the spectrum axis 100 and the horizontal axis is the frequency axis 110. In FIG. 3, the wireless station 130 and the wireless station 1 using three different information
Next, a parallel transmission method between H.40 and H.40 will be described.

【0031】図3において、3つの搬送波によるスペク
トル311、312、313の各変調方式をQPSK、
16QAM、FSKとした。3つの搬送波によるスペク
トル311、312、313の周波数間隔320、32
5は、コヒーレンス帯域幅以上に設定(315)する。
この設定(315)により、図3の3つの搬送波による
スペクトル311、312、313は互いにほぼ無相関
なフェージングを受ける。ここで、3番目の搬送波によ
るスペクトル313がフェージングを受けて回線品質の
劣化が生じても、1番目の搬送波によるスペクトル31
1と2番目の搬送波によるスペクトル312により通話
を連続できる。3番目の搬送波によるスペクトル313
で本来伝送するべき情報を2番の搬送波によるスペクト
ル312に振り分けることもできる。ここで、2番目の
搬送波によるスペクトル312は16QAMを用いる。
これにより、本発明による並列伝送方法は、フェージン
グによる影響を受けても帯域幅を拡大することなく所定
の伝送容量を常に保てる。
In FIG. 3, each modulation scheme of spectrums 311, 312, 313 by three carriers is represented by QPSK,
16QAM and FSK were used. Frequency intervals 320, 32 of spectra 311, 312, 313 by three carriers
5 is set to be equal to or larger than the coherence bandwidth (315).
With this setting (315), the spectra 311, 312, and 313 of the three carriers in FIG. 3 undergo fading that is substantially uncorrelated with each other. Here, even if the spectrum 313 due to the third carrier is fading and the line quality is deteriorated, the spectrum 31 due to the first carrier is used.
The communication can be continued by the spectrum 312 by the first and second carriers. Spectrum 313 with third carrier
, The information to be transmitted can be distributed to the spectrum 312 by the second carrier. Here, the spectrum 312 by the second carrier uses 16QAM.
As a result, the parallel transmission method according to the present invention can always maintain a predetermined transmission capacity without increasing the bandwidth even when affected by fading.

【0032】(実施の形態4)図4は複数の変調方法を
用いた実施の形態を、縦軸をスペクトル軸100、横軸
を周波数軸110として示す。図4では、3つの異なる
情報を3つの搬送波を用いる無線局130と無線局14
0との間の並列伝送方法を説明する。
(Embodiment 4) FIG. 4 shows an embodiment using a plurality of modulation methods, in which the vertical axis is the spectrum axis 100 and the horizontal axis is the frequency axis 110. In FIG. 4, the wireless station 130 and the wireless station 14 using three carriers for three different pieces of information.
A parallel transmission method between 0 and 0 will be described.

【0033】図4において、3つの搬送波によるスペク
トル411、412、413の各変調方式をQPSK、
16QAM、16QAMとした。3つの搬送波によるス
ペクトル411、412、413の周波数間隔420、
425は、コヒーレンス帯域幅以上に設定(415)す
る。この設定(415)により、図4の3つの搬送波に
よるスペクトル411、412、413は互いにほぼ無
相関なフェージングを受ける。ここで、3番の搬送波に
よるスペクトル413がフェージングを受けて回線品質
の劣化が生じても、1番目の搬送波によるスペクトル4
11と2番目の搬送波によるスペクトル412により通
話を連続できる。3番目の搬送波によるスペクトル41
3で本来伝送するべき情報を2番目の搬送波によるスペ
クトル412に振り分ける。ここで、2番目の搬送波に
よるスペクトル412は16QAMを用いる。これによ
り、本発明の並列伝送方法は、フェージングによる影響
を受けても帯域幅を拡大することなく所定の伝送容量を
常に保てる。このように搬送波の数(3)と異なる数
(2)の変調方法を用いることもできる。
In FIG. 4, each modulation scheme of spectra 411, 412, and 413 by three carriers is represented by QPSK,
16QAM, 16QAM. Frequency spacing 420 of spectra 411, 412, 413 by three carriers,
425 is set to be equal to or larger than the coherence bandwidth (415). With this setting (415), the spectra 411, 412, and 413 of the three carriers in FIG. Here, even if the spectrum 413 due to the third carrier is fading and the line quality is degraded, the spectrum 413 due to the first carrier is used.
The communication can be continued by the spectrum 412 by the 11th and 2nd carrier waves. Spectrum 41 with third carrier
In step 3, information to be transmitted is allocated to the spectrum 412 by the second carrier. Here, the spectrum 412 by the second carrier uses 16QAM. As a result, the parallel transmission method of the present invention can always maintain a predetermined transmission capacity without increasing the bandwidth even when affected by fading. As described above, a modulation method having a number (2) different from the number (3) of carrier waves can be used.

【0034】(実施の形態5)図5は、PDCで規格化
されている周波数間隔の搬送波を用いた実施の形態を、
縦軸をスペクトル軸500、横軸を周波数軸510とし
て示す。図5では、4つの異なる情報を4つの異なる搬
送波によるスペクトル511、512、513、514
を用いる無線局530と無線局540との間の並列伝送
方法を説明する。
(Embodiment 5) FIG. 5 shows an embodiment using carriers at frequency intervals standardized by PDC.
The vertical axis is the spectrum axis 500, and the horizontal axis is the frequency axis 510. In FIG. 5, four different information are converted into spectra 511, 512, 513 and 514 by four different carriers.
A parallel transmission method between the wireless station 530 and the wireless station 540 using the method will be described.

【0035】図5において、各搬送波によるスペクトル
511、512、513、514はほぼ独立である。各
搬送波によるスペクトル511、512、513、51
4を用いる場合、図5はPDCの4倍の伝送容量にな
る。1搬送波によるスペクトルあたり11.2kbps
とすれば44.8kbpsの伝送容量が得られる。この
ように、本発明を用いた並列伝送方法は高速伝送に有効
である。
In FIG. 5, the spectra 511, 512, 513, and 514 of each carrier are almost independent. Spectrum 511, 512, 513, 51 by each carrier
5, the transmission capacity in FIG. 5 is four times that of PDC. 11.2 kbps per spectrum with one carrier
Then, a transmission capacity of 44.8 kbps can be obtained. Thus, the parallel transmission method using the present invention is effective for high-speed transmission.

【0036】(実施の形態6)図6は、本発明の並列伝
送方法を同報サービスに適用した場合の実施の形態を、
縦軸をスペクトル軸600、横軸を周波数軸610とし
て示す。図6では、4つの異なる搬送波によるスペクト
ル611、612、613、614を用いる無線局63
0と無線局640との間の並列伝送方法を説明する。
(Embodiment 6) FIG. 6 shows an embodiment in which the parallel transmission method of the present invention is applied to a broadcast service.
The vertical axis is the spectrum axis 600 and the horizontal axis is the frequency axis 610. In FIG. 6, a wireless station 63 using spectra 611, 612, 613, 614 with four different carriers.
A parallel transmission method between the wireless station 0 and the wireless station 640 will be described.

【0037】下り回線650において、通話チャネル6
11の他に同報サービスを提供するチャネル612、6
13、614に割り当てる。上り回線655において、
通話チャネル651のみ用いるとすると、この下り回線
650で用いられるチャネル612、613、614の
変調方式は、音声チャネルの変調方式でもよいし他の変
調方式でもよい。
In the down link 650, the communication channel 6
11 and channels 612 and 6 for providing broadcast services
13, 614. On the uplink 655,
Assuming that only the communication channel 651 is used, the modulation method of the channels 612, 613, and 614 used in the downlink 650 may be the modulation method of the voice channel or another modulation method.

【0038】本実施の形態により利用者は各自の移動機
を用いて、音声通信、たとえばPDCによる通話をしな
がら下り回線650を通して同報サービスを受けること
ができる。同報サービスとして、カーナビゲーションな
どに代表されるITS(Intelligent Tutoring System)
と類似のサービス(例えば渋滞情報、天気予報、各種ニ
ュースサービスなど)を受けることができる。このよう
に、上り655と下り650で異なる回線容量と信頼性
を設定できる。
According to the present embodiment, a user can receive a broadcast service through downlink 650 while performing voice communication, for example, a PDC call, using his / her own mobile device. ITS (Intelligent Tutoring System) represented by car navigation etc. as a broadcast service
(For example, traffic information, weather forecast, various news services, etc.). In this way, different line capacities and reliability can be set for the upstream 655 and downstream 650.

【0039】(実施の形態7)図7は音声とデータ伝送
が混在している場合の実施の形態を、縦軸をスペクトル
軸700、横軸を周波数軸710として示す。図7で
は、3つの異なる搬送波によるスペクトル711、71
2、713を用いる無線局730と無線局740との間
の並列伝送方法を説明する。
(Embodiment 7) FIG. 7 shows an embodiment in which voice and data transmission coexist, in which the vertical axis represents the spectrum axis 700 and the horizontal axis represents the frequency axis 710. In FIG. 7, spectra 711, 71 with three different carriers.
A method of parallel transmission between the wireless station 730 and the wireless station 740 using 2,713 will be described.

【0040】下り回線750において、各チャネルの変
調方式はチャネル711がQPSK、チャネル712が
16QAM、チャネル713がFSKである。上り回線
755において、各チャネルの変調方式はチャネル75
1が16QAM、チャネル752がQPSK、チャネル
753がFSKである。本実施の形態により、同一の帯
域幅であれば、各搬送波によるスペクトル711、71
2、713の変調方式に制限はない。これは、音声にP
DCを用いて、16QAM変調を用いたデータ伝送も可
能である。このように、本発明の並列伝送方法は、音声
やデータ伝送等の所要回線品質の異なるサービスを同一
の伝送方式で柔軟に実現できる。
In the downlink 750, the modulation scheme of each channel is QPSK for channel 711, 16QAM for channel 712, and FSK for channel 713. In the uplink 755, the modulation scheme of each channel is channel 75
1 is 16QAM, channel 752 is QPSK, and channel 753 is FSK. According to the present embodiment, if the bandwidth is the same, spectra 711 and 71 due to each carrier wave are obtained.
There is no limitation on the modulation method of 2,713. This is P
Data transmission using 16QAM modulation using DC is also possible. As described above, the parallel transmission method of the present invention can flexibly realize services with different required line qualities, such as voice and data transmission, using the same transmission method.

【0041】[0041]

【発明の効果】以上説明したように、本発明の並列伝送
方法によれば、既存の回路技術を用いて、複数の搬送波
の各々の周波数間隔がコヒーレンス帯域幅以上または付
近に設定して通信を行うことにより、広帯域の周波数特
性をもつ無線回路と高度なディジタル信号処理を行うプ
ロセッサを必要としない高速伝送および高品質伝送を実
現できる並列伝送方法を提供することが可能である。
As described above, according to the parallel transmission method of the present invention, communication is performed by setting the frequency interval of each of a plurality of carriers to be equal to or larger than the coherence bandwidth using the existing circuit technology. By doing so, it is possible to provide a parallel transmission method capable of realizing high-speed transmission and high-quality transmission that does not require a radio circuit having wideband frequency characteristics and a processor that performs advanced digital signal processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】周波数間隔をコヒーレンス帯域幅以上に設定し
た実施の形態を示す図である。
FIG. 1 is a diagram showing an embodiment in which a frequency interval is set to be equal to or larger than a coherence bandwidth.

【図2】周波数間隔をコヒーレンス帯域幅付近に設定し
た実施の形態を示す図である。
FIG. 2 is a diagram showing an embodiment in which a frequency interval is set near a coherence bandwidth.

【図3】複数の変調方法を用いた実施の形態を示す図で
ある。
FIG. 3 is a diagram showing an embodiment using a plurality of modulation methods.

【図4】複数の変調方法を用いた実施の形態を示す図で
ある。
FIG. 4 is a diagram showing an embodiment using a plurality of modulation methods.

【図5】PDCで規格化されている周波数間隔の搬送波
を用いた実施の形態を示す図である。
FIG. 5 is a diagram showing an embodiment using carriers with frequency intervals standardized by PDC.

【図6】本発明を同報通信に適用した実施の形態を示す
図である。
FIG. 6 is a diagram showing an embodiment in which the present invention is applied to broadcast communication.

【図7】音声とデータ伝送が混在している場合の実施の
形態を示す図である。
FIG. 7 is a diagram showing an embodiment in a case where voice and data transmission are mixed.

【図8】送信機の一構成例を示す図である。FIG. 8 is a diagram illustrating a configuration example of a transmitter.

【図9】送信機の一構成例を示す図である。FIG. 9 is a diagram illustrating a configuration example of a transmitter.

【図10】受信機の一構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a receiver.

【符号の説明】[Explanation of symbols]

100、500、600、700 スペクトル軸 110、510、610、710 周波数軸 111、112、113、211、212、213、3
11、312、313、411、412、413、51
1、512、513、514、611、612、61
3、614、651、711、712、713、75
1、752、753搬送波によるスペクトル 120、125、220、225、320、325、4
20、425 周波数間隔 130,140、530、540、630、640、7
30、740 無線局 800、805、810、900、905、910 ベ
ースバンド処理部 820、825、830、925 D/A変換器 840、845、850、930 直交変調器 860、865、870、935、1030、1035
周波数変換器 880、920、1040、1100 制御器 890、915 信号多重器 895、940 送信電力増幅器 897、945、1000 アンテナ(ANT) 1010 切り替え器 1020、1025 受信増幅器 1050、1055 帯域通過フィルタ(BPF) 1060、1065 自動利得制御器(AGC) 1070、1075 検波器 1080、1085 A/D変換器 1090 同相合成器 1095 判定器 1110、1115 レベル検出器
100, 500, 600, 700 Spectral axis 110, 510, 610, 710 Frequency axis 111, 112, 113, 211, 212, 213, 3
11, 312, 313, 411, 412, 413, 51
1, 512, 513, 514, 611, 612, 61
3,614,651,711,712,713,75
Spectrum with 1,752,753 carriers 120,125,220,225,320,325,4
20, 425 Frequency interval 130, 140, 530, 540, 630, 640, 7
30, 740 Radio stations 800, 805, 810, 900, 905, 910 Baseband processing units 820, 825, 830, 925 D / A converters 840, 845, 850, 930 Quadrature modulators 860, 865, 870, 935, 1030, 1035
Frequency converter 880, 920, 1040, 1100 Controller 890, 915 Signal multiplexer 895, 940 Transmission power amplifier 897, 945, 1000 Antenna (ANT) 1010 Switcher 1020, 1025 Receive amplifier 1050, 1055 Bandpass filter (BPF) 1060, 1065 Automatic gain controller (AGC) 1070, 1075 Detector 1080, 1085 A / D converter 1090 In-phase combiner 1095 Judge 1110, 1115 Level detector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 M個(M>1)の異なるベースバンド信
号をM個の搬送波を用いて周波数分割多重方式で無線通
信を行う並列伝送方法において、 前記M個の搬送波の各々の周波数間隔がコヒーレンス帯
域幅以上に周波数間隔を設定して通信を行うことを特徴
とする並列伝送方法。
1. A parallel transmission method for performing wireless communication of M (M> 1) different baseband signals by frequency division multiplexing using M carriers, wherein each of the M carriers has a frequency interval. A parallel transmission method wherein communication is performed by setting a frequency interval equal to or larger than a coherence bandwidth.
【請求項2】 M個(M>1)の異なるベースバンド信
号をM個の搬送波を用いて周波数分割多重方式の無線通
信を行う並列伝送方法において、 前記M個の搬送波の各々の周波数間隔がコヒーレンス帯
域幅付近に周波数間隔を設定して通信を行うことを特徴
とする並列伝送方法。
2. A parallel transmission method for performing frequency division multiplexing wireless communication of M (M> 1) different baseband signals using M carriers, wherein each of the M carriers has a frequency interval. A parallel transmission method, wherein communication is performed by setting a frequency interval near a coherence bandwidth.
【請求項3】 請求項1または2記載の並列伝送方法に
おいて、 前記M個の搬送波にM個以下の複数の異なる変調方法を
用いることを特徴とする並列伝送方法。
3. The parallel transmission method according to claim 1, wherein a plurality of M or less different modulation methods are used for the M carrier waves.
【請求項4】 請求項3記載の並列伝送方法において、 前記M個以下の異なる変調方法は、PSK、QAMまた
はFSKから選択されることを特徴とする並列伝送方
法。
4. The parallel transmission method according to claim 3, wherein the M or less different modulation methods are selected from PSK, QAM or FSK.
JP00352598A 1998-01-09 1998-01-09 Parallel transmission method Expired - Lifetime JP3507683B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP00352598A JP3507683B2 (en) 1998-01-09 1998-01-09 Parallel transmission method
CA002285198A CA2285198C (en) 1998-01-09 1999-01-07 Parallel transmission method
PCT/JP1999/000022 WO1999035772A1 (en) 1998-01-09 1999-01-07 Parallel transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00352598A JP3507683B2 (en) 1998-01-09 1998-01-09 Parallel transmission method

Publications (2)

Publication Number Publication Date
JPH11205260A true JPH11205260A (en) 1999-07-30
JP3507683B2 JP3507683B2 (en) 2004-03-15

Family

ID=11559805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00352598A Expired - Lifetime JP3507683B2 (en) 1998-01-09 1998-01-09 Parallel transmission method

Country Status (3)

Country Link
JP (1) JP3507683B2 (en)
CA (1) CA2285198C (en)
WO (1) WO1999035772A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518849A (en) * 1999-12-20 2003-06-10 タンティビ・コミュニケーションズ・インコーポレーテッド Method and apparatus for spectrum based cellular communication
US7022282B2 (en) * 2000-08-07 2006-04-04 Murata Manufacturing Co., Ltd. Lead-free solder and soldered article
WO2008108366A1 (en) * 2007-03-06 2008-09-12 Mitsubishi Electric Corporation Radio communication system
JP2010193484A (en) * 2010-03-26 2010-09-02 Fujitsu Ltd Multicarrier communication method, multicarrier communication system and base station used therefor
US8463255B2 (en) 1999-12-20 2013-06-11 Ipr Licensing, Inc. Method and apparatus for a spectrally compliant cellular communication system
JP2016506666A (en) * 2012-12-21 2016-03-03 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for transmitting and receiving signals in a communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110489A (en) * 1991-10-16 1993-04-30 Canon Inc Radio communication equipment
JP3431785B2 (en) * 1996-12-24 2003-07-28 シャープ株式会社 Orthogonal frequency multiplex modulation signal demodulator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518849A (en) * 1999-12-20 2003-06-10 タンティビ・コミュニケーションズ・インコーポレーテッド Method and apparatus for spectrum based cellular communication
JP2009284510A (en) * 1999-12-20 2009-12-03 Tantivy Communications Inc Method and apparatus for spectrally compliant cellular communication system
JP2013102501A (en) * 1999-12-20 2013-05-23 Ipr Licensing Inc Method and apparatus for spectrally compliant cellular communication
US8463255B2 (en) 1999-12-20 2013-06-11 Ipr Licensing, Inc. Method and apparatus for a spectrally compliant cellular communication system
US9306658B2 (en) 1999-12-20 2016-04-05 Ipr Licensing, Inc. Method and apparatus for a spectrally compliant cellular communication system
US7022282B2 (en) * 2000-08-07 2006-04-04 Murata Manufacturing Co., Ltd. Lead-free solder and soldered article
WO2008108366A1 (en) * 2007-03-06 2008-09-12 Mitsubishi Electric Corporation Radio communication system
JPWO2008108366A1 (en) * 2007-03-06 2010-06-17 三菱電機株式会社 Wireless communication system
JP2010193484A (en) * 2010-03-26 2010-09-02 Fujitsu Ltd Multicarrier communication method, multicarrier communication system and base station used therefor
JP2016506666A (en) * 2012-12-21 2016-03-03 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for transmitting and receiving signals in a communication system

Also Published As

Publication number Publication date
CA2285198A1 (en) 1999-07-15
WO1999035772A1 (en) 1999-07-15
JP3507683B2 (en) 2004-03-15
CA2285198C (en) 2006-03-21

Similar Documents

Publication Publication Date Title
RU2405258C2 (en) Device and method of signal transmission via superior-to-subordinate communication channel
US7636344B2 (en) Diversity transceiver for a wireless local area network
US8059963B2 (en) Time division duplexing remote station having low-noise amplifier shared for uplink and downlink operations and wired relay method using the same
US7881741B2 (en) Mobile station apparatus and wireless communication method
KR100352852B1 (en) A transmitting device of receiving signal for optical bts
US20040264548A1 (en) Radio transmitting apparatus, radio receiving apparatus and method therefor
US7430430B2 (en) Adjusting a signal at a diversity system
JP2005039765A (en) Multimode radio terminal and radio transmitting/receiving part
KR20070052267A (en) Non-simultaneous frequency diversity in radio communication systems
JP2000224139A (en) Diversity receiver
US6917803B2 (en) Wireless communications equipment
KR100453501B1 (en) Bnad selective repeater and method for signal relay in mobile network
JP3507683B2 (en) Parallel transmission method
KR20050122795A (en) Ttg/rtg setup metod and device in ofdma-tdd communication systems
US7002945B2 (en) FDM-CDMA transmitting method, FDM-CDMA receiving method, FDM-CDMA transmitting device and FDM-CDMA receiving device
JP3022865B1 (en) Dual frequency network system and its transmitter.
WO2000030276A1 (en) Radio communication device and transmission antenna switching method
JP2000261405A (en) Diversity transmitter-receiver
AT&T Paper Title (use style: paper title)
JP2001168788A (en) Radio communication system and radio communication equipment
KR19990011052A (en) Transceiver device for wideband code division multiple access wireless subscriber network base station system
JPH11215020A (en) Base station device
JPH066325A (en) Radio transmission system
JPH0756953B2 (en) Mobile satellite communication system
JP2000165938A (en) Cdma cellular radio base station

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031219

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term