JPH11201560A - Supercritical refrigerating cycle - Google Patents

Supercritical refrigerating cycle

Info

Publication number
JPH11201560A
JPH11201560A JP257198A JP257198A JPH11201560A JP H11201560 A JPH11201560 A JP H11201560A JP 257198 A JP257198 A JP 257198A JP 257198 A JP257198 A JP 257198A JP H11201560 A JPH11201560 A JP H11201560A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
compressor
control valve
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP257198A
Other languages
Japanese (ja)
Inventor
Motohiro Yamaguchi
素弘 山口
Shin Nishida
伸 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP257198A priority Critical patent/JPH11201560A/en
Publication of JPH11201560A publication Critical patent/JPH11201560A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a decrease in a refrigerating capacity when a rotational speed of a compressor is decelerated. SOLUTION: When a rotational speed of a compressor 1 is decelerated so that a pressure of a low pressure side becomes a prescribed value or more, an opening of a pressure control valve 3 is reduced to enhance an output side refrigerant pressure of a radiator 2 to higher than a prescribed pressure decided by an optimum control line ηmax, and the opening of the valve 5 is reduced to increase a heating degree to larger than a prescribed value. Thus, since a specific enthalpy difference of an evaporator 6 can be increased, even when the rotational speed to the compressor 1 is decelerated, it can prevent a refrigerating capacity from being largely lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機の吐出側
(高圧側)の圧力が、冷媒を臨界圧力を超える超臨界冷
凍サイクルに関するもので、車両用に用いて有効であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical refrigeration cycle in which the pressure on the discharge side (high pressure side) of a compressor exceeds a critical pressure of a refrigerant, and is effective for use in vehicles.

【0002】[0002]

【従来の技術】二酸化炭素(CO2 )を冷媒とする超臨
界冷凍サイクル(以下、この超臨界冷凍サイクルをCO
2 サイクルと呼ぶ。)では、冷凍能力を増大させるとき
には、特表平3−503206号公報に記載のごとく、
放熱器出口側(高圧側)のCO 2 圧力を上昇させる必要
がある。
2. Description of the Related Art Carbon dioxide (CO)Two) As a refrigerant
Field refrigeration cycle (hereinafter, this supercritical refrigeration cycle is referred to as CO
TwoCalled a cycle. ) Then, when increasing the refrigeration capacity
As described in JP-A-3-503206,
CO at radiator outlet side (high pressure side) TwoNeed to increase pressure
There is.

【0003】しかし、冷凍能力を増大させるべく、単純
に高圧側の圧力を上昇させると、冷凍能力の増大量に比
べて圧縮機の圧縮仕事の増大量の方が上回るので、CO
2 サイクルの成績係数が悪化してしまうという問題が発
生する。そこで、出願人は、成績係数が最大となるよう
に、放熱器出口側のCO2 温度に基づいて放熱器出口側
のCO2 圧力を制御する圧力制御弁を既に出願している
(特願平9−231249等)。
However, if the pressure on the high pressure side is simply increased to increase the refrigeration capacity, the amount of increase in the compression work of the compressor is larger than the increase in the refrigeration capacity.
There is a problem that the coefficient of performance of two cycles is deteriorated. Therefore, the applicant has already filed an application for a pressure control valve that controls the CO 2 pressure at the radiator outlet side based on the CO 2 temperature at the radiator outlet side so that the coefficient of performance is maximized (Japanese Patent Application No. Hei 10-26138). 9-231249).

【0004】[0004]

【発明が解決しようとする課題】ところで、車両用空調
装置では、圧縮機は車両走行用エンジンにより駆動され
ているので、車両停止時(アイドリング時)などのエン
ジン回転数の低いときには、圧縮機の回転数も低下して
しまう。このため、CO2 サイクルを車両用空調装置に
適用した場合には、アイドリング時のごとくエンジン回
転数が低いときには、圧縮機の回転数が低下してCO2
サイクル内を循環するCO2 の質量流量が低下すること
に加えて、上記圧力制御弁は、成績係数が最大となるよ
うにその開度を調節するため、冷凍能力が不足してしま
う(図2に2点鎖線)。
In a vehicle air conditioner, the compressor is driven by an engine for running the vehicle. Therefore, when the engine speed is low such as when the vehicle is stopped (during idling), the compressor is not operated. The number of revolutions also decreases. For this reason, when the CO 2 cycle is applied to an air conditioner for a vehicle, when the engine speed is low, such as during idling, the speed of the compressor decreases and the CO 2
In addition to the decrease in the mass flow rate of CO 2 circulating in the cycle, the pressure control valve adjusts its opening so as to maximize the coefficient of performance, so that the refrigeration capacity becomes insufficient (FIG. 2). To the two-dot chain line).

【0005】さらに、CO2 サイクルでは、フロンを冷
媒とする冷凍サイクルに比べて圧力が高い領域(超臨界
域)で稼動していることに加えて、CO2 の飽和気線の
傾きがフロンの飽和気線の傾きに比べて小さいことか
ら、圧縮機の回転数の低下とともに質量流量が低下して
蒸発器内(低圧側)の圧力が上昇すると、フロンを冷媒
とする冷凍サイクルに比べて大きく冷凍能力が低下する
(図6)。
[0005] Further, in the CO 2 cycle, in addition to operating in a region (supercritical region) where the pressure is higher than that of a refrigeration cycle using chlorofluorocarbon as a refrigerant, the slope of the CO 2 saturated air line is reduced. Since it is smaller than the slope of the saturated air line, when the mass flow rate decreases as the compressor rotation speed decreases and the pressure in the evaporator (low pressure side) increases, it becomes larger than the refrigeration cycle using Freon as a refrigerant. The refrigeration capacity decreases (FIG. 6).

【0006】本発明は、上記点に鑑み、圧縮機の回転数
が低下したときなどに冷凍能力が低下することを防止す
ることを目的とする。
SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to prevent a decrease in the refrigerating capacity when the number of rotations of a compressor decreases.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の技術的手段を用いる。請求項1、
3に記載の発明では、圧縮機(1)の吸入側の冷媒圧力
が第2所定圧力を超えたときには、圧力制御弁(3)の
開度を縮小させて放熱器(2)の出口側冷媒圧力を第1
所定圧力より高くするとともに、加熱度制御弁(5)の
開度を縮小させて加熱度を所定値より大きくすることを
特徴とする。
The present invention uses the following technical means to achieve the above object. Claim 1,
In the invention described in Item 3, when the refrigerant pressure on the suction side of the compressor (1) exceeds the second predetermined pressure, the opening degree of the pressure control valve (3) is reduced to reduce the refrigerant on the outlet side of the radiator (2). Pressure first
It is characterized in that the heating degree is higher than a predetermined value and the opening degree of the heating degree control valve (5) is reduced to make the heating degree larger than a predetermined value.

【0008】これにより、蒸発器(6)の入口側と出口
側との比エンタルピ差を大きくすることができるので、
圧縮機(1)の吸入側の冷媒圧力が第2所定圧力を超え
て圧縮機(1)の回転数が低下したときであっても、冷
凍能力が大きく低下することを防止できる。請求項2、
3に記載の発明では、圧縮機(1)の回転数が所定回転
数以下のときには、圧力制御弁(3)の開度を縮小させ
て放熱器(2)の出口側冷媒圧力を所定圧力より高くす
るとともに、加熱度制御弁(5)の開度を縮小させて加
熱度を所定値より大きくすることを特徴とする。
As a result, the specific enthalpy difference between the inlet side and the outlet side of the evaporator (6) can be increased.
Even when the refrigerant pressure on the suction side of the compressor (1) exceeds the second predetermined pressure and the number of revolutions of the compressor (1) decreases, it is possible to prevent the refrigerating capacity from greatly decreasing. Claim 2,
In the invention described in Item 3, when the rotation speed of the compressor (1) is equal to or lower than the predetermined rotation speed, the opening degree of the pressure control valve (3) is reduced to reduce the outlet-side refrigerant pressure of the radiator (2) from the predetermined pressure. In addition to increasing the heating degree, the opening degree of the heating degree control valve (5) is reduced to make the heating degree larger than a predetermined value.

【0009】これにより、請求項1に記載の発明と同様
な効果を得ることができる。なお、上記各手段の括弧内
の符号は、後述する実施形態記載の具体的手段との対応
関係を示すものである。
Thus, the same effect as the first aspect of the present invention can be obtained. In addition, the code | symbol in the parenthesis of each said means shows the correspondence with the concrete means of embodiment mentioned later.

【0010】[0010]

【発明の実施の形態】(第1実施形態)本実施形態は、
本発明に係るCO2 サイクルを車両用冷凍サイクルに適
用したものであり、図1は本実施形態に係るCO2 サイ
クルの模式図である。1は車両走行用エンジンから駆動
力を得てCO2 を圧縮する圧縮機であり、2は圧縮機1
から吐出した冷媒を冷却する放熱器(ガスクーラ)であ
る。なお、放熱器2内の温度は、後述するように、定各
状態(通常運転状態)では冷媒(CO2 )の臨界温度を
超えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment)
The CO 2 cycle according to the present invention is applied to a vehicle refrigeration cycle, and FIG. 1 is a schematic diagram of a CO 2 cycle according to the present embodiment. Reference numeral 1 denotes a compressor that obtains driving force from a vehicle driving engine to compress CO 2 , and 2 denotes a compressor 1
A radiator (gas cooler) for cooling the refrigerant discharged from the radiator. Note that the temperature inside the radiator 2 exceeds the critical temperature of the refrigerant (CO 2 ) in each state (normal operation state), as described later.

【0011】3は放熱器2の出口側のCO2 温度とCO
2 温度とが、最適制御線ηmax (図2参照)で示される
関係となるように、その開度が制御される電気式の圧力
制御弁であり、4は圧力制御弁3にて減圧されて気液2
相状態となったCO2 のうち液相冷媒のみを流出すると
ともに、CO2 サイクル中の余剰CO2 を貯えるレシー
バである。
Reference numeral 3 denotes the CO 2 temperature at the outlet side of the radiator 2 and the CO 2 temperature.
2 is an electric pressure control valve whose opening is controlled so that the temperature has a relationship shown by an optimum control line ηmax (see FIG. 2). Gas liquid 2
This is a receiver that flows out only the liquid-phase refrigerant out of the CO 2 in the phase state and stores excess CO 2 during the CO 2 cycle.

【0012】なお、最適制御線ηmax とは、放熱器2の
出口側冷媒(CO2 )温度に対して、CO2 サイクル
(超臨界冷凍サイクル)の成績係数が最大となる放熱器
2の出口側冷媒(CO2 )圧力をモリエル線図上に描い
たものである。また、5はレシーバ4から流出した液相
CO2 をさらに減圧するとともに、圧縮機1の入口側
(後述する蒸発器6の出口側)のCO2 の加熱度が所定
値(本実施形態では0℃)となるように、その開度が制
御される電気式の加熱度制御弁であり、6は加熱度制御
弁5から流出した液相冷媒を蒸発させる蒸発器である。
The optimum control line ηmax is defined as the temperature at the outlet of the radiator 2 at which the coefficient of performance of the CO 2 cycle (supercritical refrigeration cycle) becomes maximum with respect to the temperature of the refrigerant at the outlet of the radiator 2 (CO 2 ). The refrigerant (CO 2 ) pressure is drawn on a Mollier diagram. Reference numeral 5 further decompresses the liquid phase CO 2 flowing out of the receiver 4 and sets the degree of heating of the CO 2 on the inlet side of the compressor 1 (the outlet side of the evaporator 6 described later) to a predetermined value (0 in this embodiment). (° C.) is an electric heating degree control valve whose opening is controlled, and 6 is an evaporator for evaporating the liquid-phase refrigerant flowing out of the heating degree control valve 5.

【0013】なお、7は放熱器2の出口側のCO2 温度
を検出する第1温度センサ(第1温度検出手段)であ
り、8は圧縮機1の入口側(蒸発器6の出口側)のCO
2 温度を検出する第2温度センサ(第2温度検出手段)
である。9は放熱器2の出口側のCO2 圧力を検出する
第1圧力センサ(第1圧力検出手段)であり、10は圧
縮機1の入口側(蒸発器6の出口側)のCO2 圧力を検
出する第2圧力センサ(第2圧力検出手段)である。そ
して、電子制御装置(ECU)11は、これらセンサ7
〜10の信号に基づいて予め設定されたプログラムに従
って両制御弁3、5を制御する。
Reference numeral 7 denotes a first temperature sensor (first temperature detecting means) for detecting the CO 2 temperature on the outlet side of the radiator 2, and 8 denotes an inlet side of the compressor 1 (an outlet side of the evaporator 6). CO
A second temperature sensor for detecting a second temperature (second temperature detection means)
It is. Reference numeral 9 denotes a first pressure sensor (first pressure detecting means) for detecting the CO 2 pressure on the outlet side of the radiator 2, and reference numeral 10 denotes the CO 2 pressure on the inlet side of the compressor 1 (the outlet side of the evaporator 6). This is a second pressure sensor (second pressure detecting means) for detecting. The electronic control unit (ECU) 11
The control valves 3 and 5 are controlled in accordance with a preset program on the basis of the signals (10) to (10).

【0014】次に、本実施形態に係るCO2 サイクルの
作動および特徴について述べる。 1.定各運転時 蒸発器6の出口側(圧縮機1の吸入側)の圧力が所定の
圧力範囲であるときは、電子制御装置11は、CO2
イクルが定各運転状態にあるとして、CO2 サイクルを
図2の実線に示すように作動するように制御する。な
お、ここで、所定の圧力範囲としたのは、CO2 サイク
ルの運転が安定している場合であっても、圧縮機1の吸
入側の圧力は、所定圧力(第2所定圧力)を略中心とし
て変動することを考慮したからである。
Next, the operation and features of the CO 2 cycle according to this embodiment will be described. 1. As when the pressure constant each run at the outlet side of the evaporator 6 (the suction side of the compressor 1) is a predetermined pressure range, the electronic control device 11, CO 2 cycle is the constant respective operating state, CO 2 The cycle is controlled to operate as shown by the solid line in FIG. Here, the predetermined pressure range is set so that the pressure on the suction side of the compressor 1 is substantially equal to the predetermined pressure (second predetermined pressure) even when the operation of the CO 2 cycle is stable. This is because the variation in the center is considered.

【0015】すなわち、圧縮機1で圧縮(A−B)され
て高温高圧となったCO2 は、放熱器2にて冷却される
(B−C)。このとき、高圧側の圧力(放熱器2出口側
のCO2 圧力)は、圧力制御弁3の開度を調節すること
により最適制御線ηmax に沿って変化するように制御さ
れている。そして、圧力制御弁3および加熱度制御弁5
により減圧(C−D)されて気液2相状態となったCO
2 のうち、液相CO2 が蒸発器6にて蒸発して空気を冷
却する。このとき、第2温度センサ8および第2圧力セ
ンサ10の検出値より加熱度が演算されて、加熱度が0
℃となるように加熱度制御弁5の開度が制御される。
That is, the CO 2 that has been compressed (AB) by the compressor 1 and has become high temperature and high pressure is cooled by the radiator 2 (BC). At this time, the pressure on the high pressure side (the CO 2 pressure on the outlet side of the radiator 2) is controlled so as to change along the optimum control line ηmax by adjusting the opening of the pressure control valve 3. Then, the pressure control valve 3 and the heating degree control valve 5
Is decompressed (CD) by gas and becomes a gas-liquid two-phase state
Of the two , the liquid phase CO 2 evaporates in the evaporator 6 to cool the air. At this time, the heating degree is calculated from the detection values of the second temperature sensor 8 and the second pressure sensor 10, and the heating degree becomes 0
The degree of opening of the heating degree control valve 5 is controlled so that the temperature becomes ° C.

【0016】なお、定各運転時とは、エンジン回転数が
例えばアイドリング回転数より高い状態であって、車両
が走行状態(例えば時速30Km/h以上の状態)をい
う。 2.非定各運転時 蒸発器6での熱負荷が低下することなく、エンジン回転
数(圧縮機1の回転数)が低下すると、蒸発器6内(低
圧側)の圧力および加熱度が上昇するので、加熱度制御
弁5は加熱度を0℃に維持すべく、その開度を拡大させ
て蒸発器6内を流通するCO2 の質量流量を増大させ
る。
[0016] The constant operation refers to a state in which the engine speed is higher than, for example, the idling speed, and the vehicle is running (for example, at a speed of 30 km / h or more). 2. When each operation is not fixed When the engine speed (the number of revolutions of the compressor 1) decreases without decreasing the heat load in the evaporator 6, the pressure and the heating degree in the evaporator 6 (low pressure side) increase. In order to maintain the heating degree at 0 ° C., the degree of opening of the heating degree control valve 5 is increased to increase the mass flow rate of CO 2 flowing through the evaporator 6.

【0017】一方、低圧側の圧力上昇にと共に圧縮機1
に吸入されるCO2 温度が上昇するので、圧縮機1の吐
出側(高圧側)のCO2 温度が上昇する。このため、圧
力制御弁3は、高圧側(放熱器2出口側)のCO2 温度
の上昇に応じて最適制御線ηmax に沿って高圧側の圧力
を上昇させる(図2に2点鎖線)。しかし、このままで
は、冷凍能力が(蒸発器6の入口側と出口側との比エン
タルピ差)が小さくなる。
On the other hand, as the pressure on the low pressure side rises, the compressor 1
The temperature of CO 2 sucked into the compressor 1 rises, so that the temperature of CO 2 on the discharge side (high pressure side) of the compressor 1 rises. For this reason, the pressure control valve 3 raises the pressure on the high pressure side along the optimum control line ηmax according to the rise in the CO 2 temperature on the high pressure side (the exit side of the radiator 2) (two-dot chain line in FIG. 2). However, in this state, the refrigerating capacity (the specific enthalpy difference between the inlet side and the outlet side of the evaporator 6) becomes small.

【0018】そこで、本実施形態では、蒸発器6の出口
側の圧力が所定の圧力範囲を超えて上昇したときには、
電子制御装置11は、エンジン回転数が所定回転数(ア
イドリング回転数)以下であるとみなして、圧力制御弁
3の開度をさらに縮小させて放熱器2の出口側CO2
力を最適制御線ηmax (第1所定圧力)を超えて高くす
るとともに、加熱度制御弁5の開度を縮小させて加熱度
を0℃より大きくする(図2の1点鎖線)。
Therefore, in the present embodiment, when the pressure on the outlet side of the evaporator 6 rises beyond a predetermined pressure range,
The electronic control unit 11 considers that the engine speed is equal to or lower than a predetermined speed (idling speed) and further reduces the opening of the pressure control valve 3 to reduce the outlet side CO 2 pressure of the radiator 2 to an optimal control line. ηmax (first predetermined pressure), and the degree of heating is made greater than 0 ° C. by reducing the degree of opening of the heating degree control valve 5 (the dashed line in FIG. 2).

【0019】これにより、蒸発器6の入口側と出口側と
の比エンタルピ差を大きくすることができるので、圧縮
機1の回転数が低下したときであっても、冷凍能力が大
きく低下することを防止できる。因みに、冷凍能力は、
厳密には、蒸発器6での比エンタルピ差と蒸発器6を流
通するCO2 の質量流量の積で示されるものであるが、
CO2 サイクルは、作動圧力が高くCO2 密度も高いの
で、冷凍能力は比エンタルピ差の増減に連動して変化す
るとみなしてよい。
As a result, the specific enthalpy difference between the inlet side and the outlet side of the evaporator 6 can be increased, so that the refrigerating capacity is greatly reduced even when the rotational speed of the compressor 1 is reduced. Can be prevented. By the way, the refrigerating capacity is
Strictly speaking, it is indicated by the product of the specific enthalpy difference in the evaporator 6 and the mass flow rate of CO 2 flowing through the evaporator 6.
In the CO 2 cycle, since the operating pressure is high and the CO 2 density is high, the refrigerating capacity may be considered to change in conjunction with the increase or decrease in the specific enthalpy difference.

【0020】また、エンジン回転数がアイドリング回転
数以下のときには、最適制御線ηmax で示されるCO2
温度に対応するCO2 圧力を超えて放熱器2出口側の圧
力を高くするので、圧縮機1の圧縮仕事が増大して成績
係数が悪化するものの、加熱度も大きくしているので、
成績係数の悪化を最小限に抑ええることができる(図3
参照)。したがって、成績係数の悪化を抑制しつつ、圧
縮機1の回転数が低下したときであっても、冷凍能力が
大きく低下することを防止できる。
When the engine speed is equal to or lower than the idling speed, CO 2 indicated by the optimum control line ηmax
Since the pressure at the outlet of the radiator 2 is increased beyond the CO 2 pressure corresponding to the temperature, the compression work of the compressor 1 is increased and the coefficient of performance is deteriorated, but the degree of heating is also increased.
Deterioration of the coefficient of performance can be minimized (Fig. 3
reference). Therefore, it is possible to prevent the refrigerating capacity from being significantly reduced even when the rotational speed of the compressor 1 is reduced, while suppressing the deterioration of the coefficient of performance.

【0021】(第2実施形態)本実施形態は第2圧力セ
ンサ10に代えて、図4に示すように、蒸発器6入口側
のCO2 温度を検出する第3温度センサ12としたもの
である。すなわち、気液2相状態では、液相CO2 は、
温度および圧力が一定に変化するとともに、CO2 温度
からCO2 圧力が一義的に決定することから、間接的に
蒸発器6出口側(蒸発器6内)の圧力を検出するもので
ある。因みに、本実施形態では、第2温度センサ8と第
3温度センサ12との温度差から加熱度を演算してい
る。
(Second Embodiment) In this embodiment, as shown in FIG. 4, a third temperature sensor 12 for detecting the CO 2 temperature at the inlet side of the evaporator 6 is used instead of the second pressure sensor 10. is there. That is, in the gas-liquid two-phase state, the liquid phase CO 2 is
Since the temperature and the pressure are constantly changed and the CO 2 pressure is uniquely determined from the CO 2 temperature, the pressure at the outlet side of the evaporator 6 (in the evaporator 6) is indirectly detected. In the present embodiment, the heating degree is calculated from the temperature difference between the second temperature sensor 8 and the third temperature sensor 12.

【0022】なお、加熱度制御弁5の出口におけるCO
2 の状態から飽和気線までのCO2の状態は、周知のご
とくCO2 温度が一定であるので、第3温度センサ12
は蒸発器6内にも配設可能である。 (第3実施形態)本実施形態は、図5に示すように、エ
ンジン回転数(本実施形態ではクランクプーリの回転
数)を回転数センサ13により検出し、エンジン回転数
が所定回転数以下となったときに非定各運転時とみなし
て、圧力制御弁3および加熱度制御弁5を第1実施形態
と同様に制御するものである。
The CO 2 at the outlet of the heating degree control valve 5
State of the CO 2 from the second state to the saturated vapor line, since known as CO 2 temperature is constant, the third temperature sensor 12
Can also be arranged in the evaporator 6. (Third Embodiment) In this embodiment, as shown in FIG. 5, the engine speed (the speed of the crank pulley in this embodiment) is detected by a speed sensor 13 and the engine speed is determined to be lower than a predetermined speed. In this case, the pressure control valve 3 and the heating degree control valve 5 are controlled in the same manner as in the first embodiment, assuming that the operation is undefined.

【0023】ところで、蒸発器6出口側の圧力変動は、
圧縮機1(エンジン)回転数変動に連動するものである
が、圧力変動は回転数変動に対して時間差をもって変動
するので、上述の実施形態では、一旦、冷凍能力が下が
った(図2の2点鎖線の状態)後に、加熱度および高圧
側圧力が上昇する(図2の1点鎖線状態)。これに対し
て、本実施形態では、エンジン(圧縮機1)の回転数を
直接検出して、圧力制御弁3および加熱度制御弁5を制
御するので、冷凍能力が低下することを未然に防止でき
る。
Incidentally, the pressure fluctuation at the outlet side of the evaporator 6 is as follows.
The compressor 1 (engine) is interlocked with the rotation speed fluctuation. However, since the pressure fluctuation fluctuates with a time lag with respect to the rotation speed fluctuation, in the above-described embodiment, the refrigerating capacity temporarily decreases (2 in FIG. 2). After that, the degree of heating and the high-pressure side pressure increase (the state shown by the one-dot chain line in FIG. 2). On the other hand, in the present embodiment, the number of revolutions of the engine (compressor 1) is directly detected to control the pressure control valve 3 and the heating degree control valve 5, so that the refrigerating capacity is prevented from being reduced. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係るCO2 サイクルの
模式図である。
FIG. 1 is a schematic diagram of a CO 2 cycle according to a first embodiment of the present invention.

【図2】CO2 のモリエル線図である。FIG. 2 is a Mollier diagram of CO 2 .

【図3】第1実施形態に係るCO2 サイクルの冷凍能力
Qおよび成績係数COPと圧力との関係を示すものであ
る。
FIG. 3 shows the relationship between the refrigeration capacity Q and the coefficient of performance COP of the CO 2 cycle and the pressure according to the first embodiment.

【図4】本発明の第2実施形態に係るCO2 サイクルの
模式図である。
FIG. 4 is a schematic diagram of a CO 2 cycle according to a second embodiment of the present invention.

【図5】本発明の第3実施形態に係るCO2 サイクルの
模式図である。
FIG. 5 is a schematic diagram of a CO 2 cycle according to a third embodiment of the present invention.

【図6】(a)はフロンのモリエル線図であり、(b)
はCO2 のモリエル線図である。
FIG. 6A is a Mollier diagram of Freon, and FIG.
Is a Mollier diagram of CO 2 .

【符号の説明】[Explanation of symbols]

1…圧縮機、2…放熱器、3…圧力制御弁、4…レシー
バ、5…加熱度制御弁 6…蒸発器。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Radiator, 3 ... Pressure control valve, 4 ... Receiver, 5 ... Heating degree control valve 6 ... Evaporator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮する圧縮機(1)と、 前記圧縮機(1)から吐出した冷媒を冷却するととも
に、内部の圧力温度が冷媒の臨界圧力を超える放熱器
(2)と、 前記放熱器(2)の出口側冷媒圧力が、前記放熱器
(2)の出口側冷媒温度に基づいて決定される第1所定
圧力となるように、開度が制御される圧力制御弁(3)
と、 前記圧力制御弁(3)から流出する冷媒を減圧するとと
もに、前記圧縮機(1)の入口側冷媒の加熱度が所定値
となるように、開度が制御される加熱度制御弁(5)
と、 前記加熱度制御弁(5)にて減圧された冷媒を蒸発させ
る蒸発器(6)とを有し、 前記圧縮機(1)の吸入側の冷媒圧力が第2所定圧力を
超えたときには、前記圧力制御弁(3)の開度を縮小さ
せて前記放熱器(2)の出口側冷媒圧力を前記第1所定
圧力より高くするとともに、前記加熱度制御弁(5)の
開度を縮小させて前記加熱度を前記所定値より大きくす
ることを特徴とする超臨界冷凍サイクル。
A compressor (1) for compressing a refrigerant; a radiator (2) for cooling the refrigerant discharged from the compressor (1) and having an internal pressure temperature exceeding a critical pressure of the refrigerant; A pressure control valve (3) whose opening is controlled such that the outlet-side refrigerant pressure of the radiator (2) becomes a first predetermined pressure determined based on the outlet-side refrigerant temperature of the radiator (2).
And a heating degree control valve (the opening degree of which is controlled such that the refrigerant flowing out of the pressure control valve (3) is reduced in pressure and the degree of heating of the refrigerant on the inlet side of the compressor (1) is a predetermined value. 5)
And an evaporator (6) for evaporating the refrigerant depressurized by the heating degree control valve (5), and when the refrigerant pressure on the suction side of the compressor (1) exceeds a second predetermined pressure. Reducing the opening of the pressure control valve (3) to make the outlet side refrigerant pressure of the radiator (2) higher than the first predetermined pressure and reducing the opening of the heating degree control valve (5). A supercritical refrigeration cycle, wherein the heating degree is made larger than the predetermined value.
【請求項2】 冷媒を圧縮する圧縮機(1)と、 前記圧縮機(1)から吐出した冷媒を冷却するととも
に、内部の圧力が冷媒の臨界圧力を超える放熱器(2)
と、 前記放熱器(2)の出口側冷媒圧力が、前記放熱器
(2)の出口側冷媒温度に基づいて決定される所定圧力
となるように、開度が制御される圧力制御弁(3)と、 前記圧力制御弁(3)から流出する冷媒を減圧するとと
もに、前記圧縮機(1)の入口側冷媒の加熱度が所定値
となるように、開度が制御される加熱度制御弁(5)
と、 前記加熱度制御弁(5)にて減圧された冷媒を蒸発させ
る蒸発器(6)とを有し、 前記圧縮機(1)の回転数が所定回転数以下のときに
は、前記圧力制御弁(3)の開度を縮小させて前記放熱
器(2)の出口側冷媒圧力を前記所定圧力より高くする
とともに、前記加熱度制御弁(5)の開度を縮小させて
前記加熱度を前記所定値より大きくすることを特徴とす
る超臨界冷凍サイクル。
2. A compressor (1) for compressing a refrigerant, and a radiator (2) for cooling the refrigerant discharged from the compressor (1) and having an internal pressure exceeding a critical pressure of the refrigerant.
A pressure control valve (3) whose opening is controlled such that the outlet-side refrigerant pressure of the radiator (2) becomes a predetermined pressure determined based on the outlet-side refrigerant temperature of the radiator (2). And a pressure control valve for controlling the degree of opening such that the refrigerant flowing out of the pressure control valve (3) is reduced in pressure and the degree of heating of the refrigerant on the inlet side of the compressor (1) becomes a predetermined value. (5)
And an evaporator (6) for evaporating the refrigerant depressurized by the heating degree control valve (5). When the rotation speed of the compressor (1) is equal to or lower than a predetermined rotation speed, the pressure control valve (3) The opening degree of the radiator (2) is reduced to be higher than the predetermined pressure by reducing the opening degree, and the opening degree of the heating degree control valve (5) is reduced to reduce the heating degree. A supercritical refrigeration cycle characterized by being larger than a predetermined value.
【請求項3】 前記圧縮機(1)を車両走行用エンジン
により駆動することを特徴とする請求項1または2に車
両用超臨界冷凍サイクル。
3. The supercritical refrigeration cycle for a vehicle according to claim 1, wherein said compressor (1) is driven by a vehicle driving engine.
JP257198A 1998-01-08 1998-01-08 Supercritical refrigerating cycle Pending JPH11201560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP257198A JPH11201560A (en) 1998-01-08 1998-01-08 Supercritical refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP257198A JPH11201560A (en) 1998-01-08 1998-01-08 Supercritical refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH11201560A true JPH11201560A (en) 1999-07-30

Family

ID=11533067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP257198A Pending JPH11201560A (en) 1998-01-08 1998-01-08 Supercritical refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH11201560A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445551A1 (en) * 2001-11-13 2004-08-11 Daikin Industries, Ltd. Freezer
WO2006011789A1 (en) * 2004-07-26 2006-02-02 Antonie Bonte Improvements in transcritical cooling systems
EP1662212A2 (en) * 2004-11-23 2006-05-31 LG Electronics Inc. Air conditioning system and method for controlling the same
US7096679B2 (en) * 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445551A1 (en) * 2001-11-13 2004-08-11 Daikin Industries, Ltd. Freezer
EP1445551A4 (en) * 2001-11-13 2005-04-13 Daikin Ind Ltd Freezer
US7481067B2 (en) 2001-11-13 2009-01-27 Daikin Industries, Ltd. Freezer
US7096679B2 (en) * 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
WO2006011789A1 (en) * 2004-07-26 2006-02-02 Antonie Bonte Improvements in transcritical cooling systems
EP1662212A2 (en) * 2004-11-23 2006-05-31 LG Electronics Inc. Air conditioning system and method for controlling the same
EP1662212A3 (en) * 2004-11-23 2006-09-06 LG Electronics Inc. Air conditioning system and method for controlling the same

Similar Documents

Publication Publication Date Title
JP3861451B2 (en) Supercritical refrigeration cycle
US8047018B2 (en) Ejector cycle system
EP1202004B1 (en) Cooling cycle and control method thereof
JP2000234814A (en) Vapor compressed refrigerating device
JPH09264622A (en) Pressure control valve and vapor-compression refrigeration cycle
JP2001010332A (en) Electrically driven type compression cooling system having supercritical process
JPH09196478A (en) Refrigerating cycle
JP2004101053A (en) Air conditioner
JP2003120544A (en) Compressor control device
US20070084596A1 (en) Vehicle air conditioner with variable displacement compressor
JP2009192090A (en) Refrigerating cycle device
JP2001063348A (en) Refrigerating cycle system
JPH10205898A (en) Freezing device
JP4063023B2 (en) Vapor compression refrigerator
JP2000283577A (en) Refrigeration cycle for refrigerating plant
JP4631721B2 (en) Vapor compression refrigeration cycle
JP2001001754A (en) Air conditioner for vehicle
JP2000088364A (en) Supercritical refrigerating cycle
JPH11201560A (en) Supercritical refrigerating cycle
JP3992046B2 (en) Refrigeration equipment
JP6116810B2 (en) Refrigeration cycle equipment
JP2002071228A (en) Control device for refrigerating cycle
JPH11201563A (en) Cooling device
JP2008121913A (en) Vapor compression type refrigerating cycle
JP2002061968A (en) Controller of freezing cycle