JPH11195784A - Insulated-gate semiconductor element - Google Patents

Insulated-gate semiconductor element

Info

Publication number
JPH11195784A
JPH11195784A JP36809597A JP36809597A JPH11195784A JP H11195784 A JPH11195784 A JP H11195784A JP 36809597 A JP36809597 A JP 36809597A JP 36809597 A JP36809597 A JP 36809597A JP H11195784 A JPH11195784 A JP H11195784A
Authority
JP
Japan
Prior art keywords
region
base region
conductivity type
type
type base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36809597A
Other languages
Japanese (ja)
Inventor
Toshio Murata
年生 村田
Masayasu Ishiko
雅康 石子
Tsutomu Uesugi
勉 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP36809597A priority Critical patent/JPH11195784A/en
Publication of JPH11195784A publication Critical patent/JPH11195784A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Thyristors (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase latch-up resistance of a semiconductor element, and at the same time, to lower the on-state voltage of the element. SOLUTION: Gate electrodes 13a and 13b associated with insulating films 14a and 14b are arranged in a base region 12 where carriers are diffused so as to narrow a carrier diffusing flow passage. In addition, emitter regions 15a and 15b are provided at the upper end sections of the insulating films 14a and 14b, in such shapes and arrangements that holes which passed through the carrier diffusing flow passage are apt to collect on an emitter electrode 18 nor on the emitter regions 15a and 15b of a parasitic transistor, and the resistance of a base region 16 becomes smaller. When an insulated-gate semiconductor element is constructed in such a structure, the hole concentration near the narrowed flow passage is increased and the on-state voltage of the element can be reduced by a conductivity modulating effect. In addition, the parasitic transistor does not operate and an increase in latch-up resistance and a decrease in on-state voltage can be realized at the same time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゲート電極に電圧
を与える事によって他の両極間を流れる電流を制御する
半導体素子であって、特に高ラッチアップ耐量化および
低オン電圧化を目的とした絶縁ゲ−ト形半導体素子の構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device for controlling a current flowing between the other electrodes by applying a voltage to a gate electrode, and more particularly to a high latch-up withstand voltage and a low on-voltage. The present invention relates to a structure of an insulated gate semiconductor device.

【0002】[0002]

【従来の技術】絶縁ゲ−ト形トランジスタは、ゲ−ト電
圧による電界効果によって、半導体の電気伝導度を変化
させ、ゲ−ト領域の両端に設けられた他の領域間を流れ
る電流を制御するものであり、特に電力用トランジスタ
として使用されるIGBT(Insulated Gate Bipolar
Transistor)の場合は、高ラッチアップ耐量と低オン電
圧が要求されている。従来、高ラッチアップ耐量化およ
び低オン電圧化を考慮した半導体素子としては、図8に
示す小型化、高密度化を可能とする縦形のIGBT、あ
るいはほぼ同等の構造を持ちトレンチ構造のゲ−ト電極
を特徴とした半導体装置(特開平1−198076)が
知られている。
2. Description of the Related Art An insulated gate transistor changes electric conductivity of a semiconductor by an electric field effect of a gate voltage and controls a current flowing between other regions provided at both ends of a gate region. IGBT (Insulated Gate Bipolar) used especially as a power transistor
Transistor) requires high latch-up capability and low on-state voltage. Conventionally, as a semiconductor element in consideration of a high latch-up resistance and a low on-voltage, a vertical IGBT shown in FIG. 8 which enables miniaturization and high density, or a gate structure having a trench structure having substantially the same structure. 2. Description of the Related Art A semiconductor device characterized by a gate electrode (Japanese Patent Laid-Open No. 1-198076) is known.

【0003】図8及び図9に示した従来の縦型IGBT
の構造およびその等価回路を示す。縦型IGBTは、p
+ 形不純物がド−プされたシリコン基板をコレクタ領域
70とし、その上にエピタキシャル成長技術、リソグラ
フィ技術、イオン注入技術、拡散技術、エッチング技術
等の所謂プレ−ナ−技術によって、順次n+ 形バッファ
領域71、n- 形ベ−ス領域72、p形ベース領域7
3、n+ 形エミッタ領域74、p+ 形エミッタ領域8
0、絶縁ゲ−ト膜76が形成され、最後にCVD(Chem
ical Vapor Deposition )等によってゲ−ト電極75、
エミッタ電極77、コレクタ電極78がそれぞれ形成さ
れる。尚、n形バッファ領域71は形成しなくても良い
場合もある。
The conventional vertical IGBT shown in FIGS. 8 and 9
And its equivalent circuit. The vertical IGBT is p
A silicon substrate doped with + -type impurities is used as a collector region 70, on which an n + -type buffer is sequentially formed by a so-called planar technology such as an epitaxial growth technology, a lithography technology, an ion implantation technology, a diffusion technology, and an etching technology. Region 71, n - type base region 72, p-type base region 7
3, n + type emitter region 74, p + type emitter region 8
0, an insulating gate film 76 is formed, and finally CVD (Chem)
ical Vapor Deposition), etc.
An emitter electrode 77 and a collector electrode 78 are respectively formed. In some cases, the n-type buffer region 71 may not be formed.

【0004】この素子においては、n+ 形エミッタ領域
74,p形ベース領域73,n- 形ベ−ス領域72で電
界効果形トランジスタ(Tr1)が、p形ベース領域7
3,n- 形ベ−ス領域72,p+ 形コレクタ領域70で
バイポ−ラトランジスタ(Tr2)が構成されると同時
に、n+ 形エミッタ領域74,p形ベース領域73,n
- 形ベ−ス領域72とで構成されるバイポ−ラトタンジ
スタ(Tr3)が寄生している。
In this device, a field-effect transistor (Tr1) is formed by an n + -type emitter region 74, a p-type base region 73, and an n -- type base region 72, and a p-type base region 7 is formed.
The bipolar transistor (Tr2) is constituted by the 3, n --type base region 72 and the p + -type collector region 70, and at the same time, the n + -type emitter region 74, the p-type base region 73, n
A bipolar transistor (Tr3) composed of a-shaped base region 72 is parasitic.

【0005】エミッタ電極77を接地とし、コレクタ電
極78に例えば数百Vの正電圧を、ゲ−ト電極75に数
V〜十数Vの正電圧を印可すると、まず図9に示す電界
効果形トランジスタ(Tr1)がONし、n- 形ベ−ス
領域72に電子が流れ込む。これにより、p+ 形コレク
タ領域70からn- 形ベ−ス領域72へホールが注入さ
れ、高比抵抗のn- 形ベ−ス領域72の電子濃度とホー
ル濃度を等しく増大させる伝導度変調効果が発生する。
IGBTは、この伝導度変調効果により、オン電圧の低
減を可能とした素子であり、そのスイッチング速度は、
パワートランジスタよりも1桁速く、その電流容量は、
MOSトランジスタよりも1桁〜2桁大きいことを特徴
としている。そして、そのスイッチング速度が速いこと
から、近年ますますその電流の大容量化が求められてい
る。
When the emitter electrode 77 is grounded and a positive voltage of, for example, several hundred volts is applied to the collector electrode 78 and a positive voltage of several volts to tens of volts is applied to the gate electrode 75, a field effect type shown in FIG. The transistor (Tr1) is turned on, and electrons flow into the n -type base region 72. Thus, the p + -type collector region 70 n - Katachibe - Hall to the source region 72 are injected, the high resistivity n - Katachibe - source region 72 electron concentration and conductivity modulation effect of increasing equal hole concentration of Occurs.
The IGBT is an element capable of reducing the on-state voltage by this conductivity modulation effect.
One order of magnitude faster than a power transistor, its current capacity is
It is characterized by being one to two orders of magnitude larger than a MOS transistor. Since the switching speed is high, it is increasingly required in recent years to increase the current capacity.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、一般に
IGBTには上述したように、例えばn+ 形エミッタ領
域74,p形ベ−ス領域73,n- 形ベ−ス領域72か
らなるnpn形寄生トランジスタTr3が存在し、大電
流Iを流すと、p+ 形エミッタ領域80に抵抗Rpがあ
るため、エミッタ電極77とp形ベ−ス領域73にΔV
(=I・Rp)の電位差が発生することになる。このΔ
Vが閾値電圧(約0.7V)を越えるとTr3がON状
態となり、ひいては図9で示すTr2とTr3からなる
寄生サイリスタがON状態(ラッチアップ状態)とな
り、ゲ−ト電圧では、このIGBTが制御できなくなる
という問題があった。
However, generally, as described above, an IGBT generally has an npn-type parasitic transistor including an n + -type emitter region 74, a p-type base region 73, and an n -type base region 72. When Tr3 is present and a large current I flows, the resistance Rp is present in the p + -type emitter region 80, so that ΔV is applied to the emitter electrode 77 and the p-type base region 73.
(= I · Rp). This Δ
When V exceeds the threshold voltage (approximately 0.7 V), Tr3 is turned on, and the parasitic thyristor composed of Tr2 and Tr3 shown in FIG. 9 is turned on (latch-up state). There was a problem that control was lost.

【0007】そこで従来例では、不純物濃度をさらに高
くしたp+ 形エミッタ領域80を設け、抵抗値Rpを下
げたり、場合によってはp+ 形エミッタ領域80を取り
除き、代わりにトレンチ構造の電極とし(例えば、特開
平1−198076)、直接p形ベ−ス領域73に電極
を接合させて、ラッチアップを回避する工夫がなされて
いた。しかしながら、従来例では、確かにラッチアップ
耐量は向上するものの、p形ベ−ス領域73とn+ 形エ
ミッタ領域74によるpn接合面にホ−ル電流が注入さ
れやすい構造をとっている以上、より大きい電流が流れ
ると、以前と同様に寄生サイリスタがON状態となり、
必ずしも近年要求されている高ラッチアップ耐量化と低
オン電圧化が同時に満足されるものではなく、さらなる
高性能化が必要とされている。
Therefore, in the conventional example, a p + -type emitter region 80 with an even higher impurity concentration is provided to lower the resistance value Rp, and in some cases, the p + -type emitter region 80 is removed, and instead, an electrode having a trench structure is formed ( For example, Japanese Unexamined Patent Publication (Kokai) No. 1-198076) has proposed a technique in which an electrode is directly joined to the p-type base region 73 to avoid latch-up. However, in the conventional example, although the latch-up withstand capability is certainly improved, a structure in which a hole current is easily injected into the pn junction surface by the p-type base region 73 and the n + -type emitter region 74 is adopted. When a larger current flows, the parasitic thyristor is turned on as before,
The high latch-up withstand capability and the low on-voltage required in recent years are not always satisfied at the same time, and further higher performance is required.

【0008】本発明は、上記の課題を解決するためにな
されたものであり、絶縁ゲ−ト形半導体素子とくにIG
BTの高ラッチアップ耐量化およびオン電圧低減化に対
して、n+ 形エミッタ領域とゲ−ト電極およびp形ベ−
ス領域の位置関係によるホ−ル電流の流れ方に着目し、
ラッチアップ耐量が大きくかつオン電圧の小さい絶縁ゲ
−ト形半導体素子を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has been made in consideration of an insulated gate type semiconductor device, particularly an IG device.
In order to achieve high latch-up resistance and low on-voltage of the BT, an n + -type emitter region, a gate electrode and a p-type base are required.
Focusing on how the hole current flows due to the positional relationship of the source region,
An object of the present invention is to provide an insulated gate semiconductor device having a large latch-up resistance and a low on-voltage.

【0009】[0009]

【課題を解決するための手段および作用】この目的を達
成するために、請求項1に記載の絶縁ゲ−ト形半導体素
子は、エミッタ電極に接合し第1伝導形の少数キャリア
によるチャネルが形成される第2伝導形ベース領域とこ
の第2伝導形ベース領域に接合する第1伝導形ベース領
域から成るベース領域内のエミッタ電極に近い領域にお
いて、チャネルを形成する電気的絶縁膜を伴ったゲ−ト
電極を、所定の形状および所定の深さに形成し、第2伝
導形コレクタ領域から第1伝導形ベース領域へ注入され
た第2伝導形のキャリアが第2伝導形ベース領域を拡散
する第2伝導形キャリアのエミッタ領域への到達を困難
としエミッタ電極へ容易に到達するように、エミッタ電
極と対面する電気的絶縁膜上にエミッタ電極と第2伝導
形ベース領域に接合する第1伝導形エミッタ領域を形成
したことを特徴とする。
In order to achieve this object, an insulated gate type semiconductor device according to the first aspect of the present invention has a channel formed by a first conductivity type minority carrier which is joined to an emitter electrode. In the region near the emitter electrode in the base region including the second conductivity type base region to be formed and the first conductivity type base region joined to the second conductivity type base region, a gate with an electrically insulating film forming a channel. A second conductivity type carrier injected into the first conductivity type base region from the second conductivity type collector region diffuses through the second conductivity type base region; In order to make it difficult for the second conductivity type carrier to reach the emitter region and to easily reach the emitter electrode, the carrier is in contact with the emitter electrode and the second conductivity type base region on the electrical insulating film facing the emitter electrode. Characterized in that the formation of the first conductive type emitter region.

【0010】絶縁ゲ−ト形半導体素子のゲ−トに電圧を
印加すると、まずこの素子を構成している電界効果形ト
ランジスタがONし、それに伴ってこの素子の第2伝導
形コレクタ領域から第1伝導形ベース領域に第2伝導形
キャリアが注入され、この第2伝導形ベ−ス領域内では
少数キャリアとして拡散する。拡散した第2伝導形キャ
リアは、電気的絶縁膜を伴ったゲ−ト電極によって狭め
られた流路を通過し、拡散の位置および方向が制限され
る。一方、寄生トランジスタのエミッタともなる第1伝
導形エミッタ領域は、この拡散流から離れた箇所、すな
わちエミッタ電極側のゲ−ト電極の絶縁膜上に形成され
ている。従って、この制限を受けた第2伝導形キャリヤ
は、第1伝導形エミッタ領域にはほとんど流れず、大多
数は直接エミッタ電極へ流入する。(多数キャリアと再
結合する。)
When a voltage is applied to the gate of the insulated gate type semiconductor device, first, the field effect transistor constituting the device is turned on, and accordingly, the second conductivity type collector region of the device is turned on. A second conductivity type carrier is injected into the one conductivity type base region, and diffuses as a minority carrier in the second conductivity type base region. The diffused second conductivity type carrier passes through the flow path narrowed by the gate electrode with the electrically insulating film, and the position and direction of diffusion are restricted. On the other hand, the first conductivity type emitter region also serving as the emitter of the parasitic transistor is formed at a location away from the diffusion flow, that is, on the insulating film of the gate electrode on the emitter electrode side. Therefore, the carrier of the second conductivity type subjected to this limitation hardly flows into the emitter region of the first conductivity type, and the majority flows directly into the emitter electrode. (Recombines with majority carriers.)

【0011】すなわち、所定の最大電流値内では寄生ト
ランジスタは、ONすることがなく、高ラッチアップ耐
量化が実現される。また、電気的絶縁膜を伴ったゲ−ト
電極により流路を狭められることにより、第1伝導形ベ
ース領域におけるこの流路内の第2伝導形キャリアの密
度が高まるので、第1伝導形ベース領域内のエミッタ電
極に近い領域の伝導度変調効果も高まり、実質的にオン
電圧を低減することができる。
That is, the parasitic transistor does not turn on within a predetermined maximum current value, and a high latch-up tolerance is realized. Further, since the flow path is narrowed by the gate electrode with the electric insulating film, the density of the second conductivity type carrier in the flow path in the first conductivity type base region is increased. The conductivity modulation effect in the region near the emitter electrode in the region is also enhanced, and the ON voltage can be substantially reduced.

【0012】又、請求項2の発明は、第1伝導形ベース
領域の第2伝導形ベース領域との接合付近に、コレクタ
領域から注入された第2伝導形キャリアが第2伝導形ベ
ース領域へ至る経路を狭くする電気的絶縁領域を形成し
たことを特徴とする。電気的絶縁領域が、ゲ−ト電極に
よって狭められた第1伝導形ベース領域の第2伝導形キ
ャリアの流路内に形成されているので、コレクタ領域か
ら注入された少数キャリアである第2伝導形キャリアは
第1伝導形ベース領域である高抵抗ベ−ス領域内に蓄積
され、その濃度が向上する。エミッタ領域に近い領域の
高抵抗ベ−ス領域において、少数キャリアの濃度が向上
する結果、伝導度変調度が高くなり、結果的にオン電圧
が低下する。従って、請求項1記載の絶縁ゲ−ト形半導
体素子と同様、ラッチアップ耐量の高度化が保持される
とともに、さらなる低オン電圧化が実現できる。尚、上
記の説明において、第1伝導形をn形とすれば、第1伝
導形キャリアは電子、第2伝導形はp形、第2伝導形キ
ャリアはホールである。逆に、第1伝導形をp形とすれ
ば、第1伝導形キャリアはホール、第2伝導形はn形、
第2伝導形キャリアは電子である。
Further, according to the present invention, the second conduction type carrier injected from the collector region is supplied to the second conduction type base region near the junction of the first conduction type base region with the second conduction type base region. It is characterized in that an electrically insulating region for narrowing a route to be reached is formed. Since the electrically insulating region is formed in the flow path of the second conductivity type carrier of the first conductivity type base region narrowed by the gate electrode, the second conduction type that is the minority carrier injected from the collector region is formed. The carrier is accumulated in the high resistance base region, which is the first conductivity type base region, and its concentration is improved. In the high-resistance base region close to the emitter region, the concentration of minority carriers is improved, so that the conductivity modulation is increased, and as a result, the on-voltage is reduced. Therefore, as in the case of the insulated gate semiconductor device according to the first aspect, the high latch-up withstand capability is maintained, and further lowering of the on-state voltage can be realized. In the above description, if the first conductivity type is n-type, the first conductivity type carrier is an electron, the second conductivity type is a p-type, and the second conductivity type carrier is a hole. Conversely, if the first conductivity type is p-type, the first conductivity type carrier is a hole, the second conductivity type is n-type,
The second conductivity type carrier is an electron.

【0013】[0013]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。尚、本発明は下記実施に限定される
ものではない。 第1実施例 以下の説明では、第1伝導形はn形、第1伝導形キャリ
アは電子、第2伝導形はp形、第2伝導形キャリアはホ
ールである。図1、図2は、本発明の具体的な一実施例
にかかるIGBTの1つのセル構成を示した断面図およ
びその等価回路である。p+ 形コレクタ領域10の上に
+ 形バッファ領域11が形成され、そのn+ 形バッフ
ァ領域11の上に高抵抗領域であるn- 形ベ−ス領域1
2が形成されている。n- 形ベ−ス領域12のエミッタ
電極18側の両角部には、電気的絶縁膜14a,14b
を伴ったゲ−ト電極13a,13bがキャリアの流路を
狭めるように電極距離Lを伴って形成されている。ま
た、p形ベ−ス領域16が電気的絶縁膜14a、14b
の一部とn- 形ベ−ス領域12上に密着してキャリア流
路中央部12A上に形成され、その両側の電気的絶縁膜
14a,14b上にn+ 形エミッタ領域15a、15b
が形成されている。さらに、そのn+ 形エミッタ領域1
5a、15bおよび隣接したp形ベ−ス領域16上に
は、キャリアを与えるエミッタ電極18が形成され、同
様にコレクタ領域10にもコレクタ電極19が形成され
ている。尚、上記構造もリソグラフィ技術、固層エピタ
キシャル技術を中心としたプレ−ナ−技術によって作製
される。又、n+ 形バッファ領域11を形成しない構造
においても、同様な効果がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. The present invention is not limited to the following embodiments. First Embodiment In the following description, the first conductivity type is an n-type, the first conductivity type carrier is an electron, the second conductivity type is a p-type, and the second conductivity type carrier is a hole. 1 and 2 are a cross-sectional view showing one cell configuration of an IGBT according to a specific embodiment of the present invention and an equivalent circuit thereof. An n + -type buffer region 11 is formed on the p + -type collector region 10, and an n -type base region 1, which is a high resistance region, is formed on the n + -type buffer region 11.
2 are formed. Electrically insulating films 14a and 14b are provided at both corners of the n -type base region 12 on the emitter electrode 18 side.
The gate electrodes 13a and 13b are formed with an electrode distance L so as to narrow the flow path of the carrier. Further, the p-type base region 16 is formed of the electrically insulating films 14a, 14b.
A portion n of - Katachibe - formed in the source region 12 on and close contact with the carrier channel central on 12A, electrically insulating film 14a on both sides thereof, n + -type emitter region 15a on the 14b, 15b
Are formed. Further, the n + type emitter region 1
An emitter electrode 18 for providing carriers is formed on 5a, 15b and the adjacent p-type base region 16, and a collector electrode 19 is similarly formed on the collector region 10. Note that the above structure is also manufactured by a planar technique centering on a lithography technique and a solid layer epitaxial technique. The same effect is obtained even in a structure in which the n + -type buffer region 11 is not formed.

【0014】本素子は、耐圧600V、カットオフ電圧
4Vに設計されており、各領域の厚さは次の通りであ
る。n- 形ベース領域12の厚さは約50μm,濃度は
1×1014/cm3 ,n+ 形エミッタ領域15a、15
bの不純物表面濃度は1×1020/cm3 であり、厚さ
は約0.3μmである。また、ゲ−ト電極13a、13
bの厚さと深さはそれぞれ約1μm,約1.3μmであ
り、ゲ−ト電極13a、13bを絶縁する電気的絶縁膜
14の厚さは、約0.1μmである。さらに、セルピッ
チは4μmである。
This device is designed to have a withstand voltage of 600 V and a cutoff voltage of 4 V. The thickness of each region is as follows. The thickness of the n -type base region 12 is about 50 μm, the concentration is 1 × 10 14 / cm 3 , and the n + -type emitter regions 15a, 15
The impurity surface concentration of b is 1 × 10 20 / cm 3 and the thickness is about 0.3 μm. Further, the gate electrodes 13a, 13
The thickness and depth of b are about 1 μm and about 1.3 μm, respectively, and the thickness of the electrically insulating film 14 for insulating the gate electrodes 13a and 13b is about 0.1 μm. Further, the cell pitch is 4 μm.

【0015】次に、上記構成の素子の作動について説明
する。エミッタ電極18を接地とし、コレクタ電極19
に例えば数百Vの正電圧を、ゲ−ト電極13a,13b
にカットオフ電圧よりも十分に高い数V〜十数Vの正電
圧を印加すると、まずp形ベ−ス領域16と電気的絶縁
膜14a,14bの境界面に、電界効果により反転層1
7a,17bができ、電子はその反転層17a、17b
を通してそれぞれn+形エミッタ領域15a,15bか
らn- 形ベ−ス領域12へ流れ込み(即ち図2に示す等
価回路のTr1がONし)、強い電界によってコレクタ
領域10方向へ拡散される。
Next, the operation of the above-structured device will be described. The emitter electrode 18 is grounded, and the collector electrode 19
A positive voltage of, for example, several hundred volts is applied to the gate electrodes 13a and 13b.
When a positive voltage of several volts to tens of volts, which is sufficiently higher than the cutoff voltage, is applied to the p-type base region 16 and the electrical insulating films 14a and 14b, the inversion layer 1
7a and 17b are formed, and the electrons are transferred to the inversion layers 17a and 17b.
Flows from the n + -type emitter regions 15a and 15b into the n -type base region 12 (i.e., Tr1 of the equivalent circuit shown in FIG. 2 turns ON), and is diffused toward the collector region 10 by a strong electric field.

【0016】一方、電子の拡散が十分進むと、n- 形ベ
−ス領域12の電位が低下し、pn接合は順方向にバイ
アスされるため、p+ 形のコレクタ領域10からホ−ル
がn- 形ベ−ス領域12に注入される。注入されたホ−
ルは、n- 形ベ−ス領域12をエミッタ電極18方向へ
拡散される。拡散されたホ−ルは、ゲ−ト電極13a,
13bで狭められた流路12Aに集められる結果、濃度
が高くなり、伝導度変調によりベ−ス領域12の抵抗値
を下げることになるので、大電流がエミッタ領域15
a、15bに流れ込む。又、n- 形ベ−ス領域12のホ
ールはp形ベ−ス領域16へ流れ込む。
On the other hand, when the diffusion of electrons proceeds sufficiently, the potential of the n --type base region 12 decreases, and the pn junction is biased in the forward direction, so that a hole is formed from the p + -type collector region 10. The n -type base region 12 is implanted. Injected ho
The metal is diffused through the n -type base region 12 toward the emitter electrode 18. The diffused holes are used as gate electrodes 13a,
As a result, the concentration increases and the resistance value of the base region 12 decreases due to conductivity modulation.
a, 15b. The holes in the n -type base region 12 flow into the p-type base region 16.

【0017】この際、p形ベ−ス領域16には、抵抗R
pが存在するので、大電流が流れると寄生Tr3をON
状態にさせる電位差が発生する。大電流を確保しつつ、
この電位差を発生させないようにするためには、このR
pをできる限り小さくする必要がある。そこで、本発明
では、抵抗値Rpを極力小さくするため、p形べ−ス領
域16の厚さを耐圧限界又は加工限界まで薄く(約0.
3μm)し、n+ 形エミッタ領域15a,15bをゲ−
ト電極の絶縁膜上の両端に設け、ホールの流路より遠ざ
ける構造とすると共に、p形ベース領域16とエミッタ
電極18との接合面積を従来の縦型ゲート構造に比較し
て3倍以上とする構造とした。
At this time, the resistance R is provided in the p-type base region 16.
Because of the existence of p, the parasitic Tr3 is turned on when a large current flows.
A potential difference is generated to cause the state. While securing a large current,
In order not to generate this potential difference, this R
p must be as small as possible. Therefore, in the present invention, in order to minimize the resistance value Rp, the thickness of the p-type base region 16 is reduced to the withstand voltage limit or the processing limit (about 0.3 mm).
3 μm), and the n + -type emitter regions 15a and 15b are gated.
The structure is provided at both ends of the gate electrode on the insulating film and is spaced apart from the hole flow path, and the junction area between the p-type base region 16 and the emitter electrode 18 is three times or more as compared with the conventional vertical gate structure. Structure.

【0018】この結果、コレクタ電流密度200A/c
2 ,フォ−ルタイム300nsecで、ラッチアップ耐
量が従来と比較して10%向上することができた。ま
た、本実施例におけるホールの流路を狭める両ゲ−ト電
極13a,13b間の電極間距離Lとオン電圧の関係を
示す図7から分かるように、電極間距離Lが約0.2μ
mの時オン電圧は1.15Vとなり、上記のようにラッ
チアップ耐量を向上しつつ、従来より20%近くオン電
圧が低減できた。
As a result, the collector current density is 200 A / c
With m 2 and a fall time of 300 nsec, the latch-up resistance was improved by 10% as compared with the prior art. Further, as can be seen from FIG. 7 showing the relationship between the distance L between the gate electrodes 13a and 13b for narrowing the flow path of the hole and the on-voltage in this embodiment, the distance L between the electrodes is about 0.2 μm.
At m, the on-state voltage was 1.15 V. As described above, the on-state voltage was able to be reduced by nearly 20% compared to the related art while improving the latch-up resistance.

【0019】第2実施例 請求項第2項による本発明の第2実施例にかかる素子の
断面構造を図3に示す。本構成は、第1実施例の複数の
ゲ−ト電極によって狭められたn- 形ベ−ス領域12の
キャリア流路内12Aに、電気的絶縁物20を埋設し、
さらにキャリア流路を狭めたものである。このような構
造にすると、コレクタ領域10から拡散されたホ−ル
が、さらに狭められた流路に蓄積されるため、伝導度変
調効果がさらに高まることになって、第1実施例よりオ
ン電圧を低減することができる。
Second Embodiment FIG. 3 shows a sectional structure of a device according to a second embodiment of the present invention. In this configuration, an electric insulator 20 is embedded in a carrier flow path 12A of an n -type base region 12 narrowed by a plurality of gate electrodes of the first embodiment,
Further, the carrier flow path is narrowed. With such a structure, the holes diffused from the collector region 10 are accumulated in the flow path which is further narrowed, so that the conductivity modulation effect is further enhanced. Can be reduced.

【0020】第3実施例 請求項第1項による本発明の第3実施例にかかる素子の
断面構造を図4に示す。本構成は、第1実施例の複数の
ゲ−ト電極13a,13bを一部半導体表面に露出さ
せ、図4のようにエミッタ領域15a,15bをそれぞ
れ電気的絶縁膜14a、14b上の両端部に形成したも
のである。このような構成にしても、エミッタ領域15
a,15bはホールの流路から離れた箇所に位置すると
共に、Rpを低減できることから、高ラッチアップ耐量
が得られる。また、実施例1と同様、狭められた流路1
2Aに少数キャリアのホールが蓄積されるため、伝導度
変調効果が高まり、オン電圧を低減することができる。
Third Embodiment FIG. 4 shows a sectional structure of an element according to a third embodiment of the present invention. In this configuration, the plurality of gate electrodes 13a and 13b of the first embodiment are partially exposed on the semiconductor surface, and the emitter regions 15a and 15b are formed on both ends of the electrically insulating films 14a and 14b as shown in FIG. It is formed in. Even with such a configuration, the emitter region 15
Since a and 15b are located at positions distant from the flow path of the hole and can reduce Rp, a high latch-up resistance can be obtained. Also, as in the first embodiment, the narrowed flow path 1
Since holes of minority carriers are accumulated in 2A, the conductivity modulation effect is enhanced, and the ON voltage can be reduced.

【0021】第4実施例 請求項第1項による本発明の第4実施例にかかる素子の
断面構造を図5に示す。本構成は、図のように、第1実
施例のpベ−ス領域16をゲ−ト電極13によって狭め
られた流路12Aまで拡張し、作動時には流路側の電気
的絶縁膜上に反転層17a,17bを形成させるように
したものである。また、n+ 形エミッタ領域15a、1
5bは、エミッタ側電極側の電気的絶縁膜14a、14
b上に形成されている。このような構成にしても、pベ
ース領域16のn+ エミッタ領域15a、15bと接し
ている部分の厚さを薄くできることから、Rpを小さい
することができ、同様に高ラッチアップ耐量が得られ
る。また、実施例1と同様狭められた流路12Aのn-
形ベ−ス領域12に少数キャリアのホールが蓄積される
ため、伝導度変調効果が高まり、オン電圧を低減するこ
とができる。
Fourth Embodiment FIG. 5 shows a sectional structure of an element according to a fourth embodiment of the present invention. In this configuration, as shown in the drawing, the p-base region 16 of the first embodiment is extended to the flow path 12A narrowed by the gate electrode 13, and the inversion layer is formed on the electric insulating film on the flow path side during operation. 17a and 17b are formed. Further, the n + -type emitter regions 15a, 1
5b denotes the electrical insulating films 14a, 14a on the emitter side electrode side.
b. Even with such a configuration, the thickness of the portion of the p base region 16 in contact with the n + emitter regions 15a and 15b can be reduced, so that Rp can be reduced, and a high latch-up resistance can be obtained. . Further, n − of the narrowed flow channel 12A as in the first embodiment.
Since holes of minority carriers are accumulated in the base region 12, the conductivity modulation effect is enhanced, and the on-voltage can be reduced.

【0022】第5実施例 請求項第1項による本発明の第5実施例にかかる素子の
断面構造を図6に示す。本構成は、図のように、第1実
施例のn+ バッファ領域11を取り除き、p+コレクタ
領域10の代わりにn+ 形ドレイン領域50を形成し、
- 形ベース層12をn- 形ドレイン領域51とし、エ
ミッタ電極18をソ−ス電極180に、コレクタ電極1
9をドレイン電極190とし、素子全体を電界効果トラ
ンジスタ(MOSFET)としたものである。MOSF
ETでは、インダクタンス負荷の駆動において、寄生バ
イポーラトランジスタの動作に伴って発生するアバラン
シェ破壊が大きな問題であり、これに対する耐量を向上
させることが非常に重要である。このアバランシェ耐量
向上のための一手法として、n+ 形ソース領域55a、
55bとp形ベース領域56とn- 形ドレイン領域51
とで構成される寄生のバイポーラnpnトランジスタを
オンさせ難くする方法が上げられる。本実施例でのMO
SFETでは、第1実施例のように、p形ベース領域5
6の抵抗Rpを非常に小さくできることから、従来に比
べて寄生のバイポーラnpnトランジスタがオンし難
く、素子破壊を防止することができる。よって、MOS
FETに比べて高アバランシェ耐量、かつ低オン電圧化
が実現できる。同様に、図2、図3、図4に示すソー
ス、ゲート、チャネル構造のMOSFETとしても良
い。
Fifth Embodiment FIG. 6 shows a sectional structure of an element according to a fifth embodiment of the present invention. In this configuration, as shown in the drawing, the n + buffer region 11 of the first embodiment is removed, and an n + drain region 50 is formed instead of the p + collector region 10.
the n - -type base layer 12 n - and form the drain region 51, an emitter electrode 18 source - the source electrode 180, a collector electrode 1
9 is a drain electrode 190, and the entire device is a field effect transistor (MOSFET). MOSF
In ET, when driving an inductance load, avalanche destruction caused by the operation of a parasitic bipolar transistor is a major problem, and it is very important to improve the resistance to this. As one method for improving the avalanche withstand capability, an n + -type source region 55a,
55b and the p-type base region 56 and the n - type drain region 51
There is a method of making it difficult to turn on a parasitic bipolar npn transistor constituted by MO in this embodiment
In the SFET, as in the first embodiment, the p-type base region 5 is formed.
Since the resistance Rp of No. 6 can be made very small, the parasitic bipolar npn transistor is hard to be turned on as compared with the related art, and element destruction can be prevented. Therefore, MOS
Higher avalanche withstand voltage and lower on-state voltage can be realized as compared with the FET. Similarly, MOSFETs having the source, gate, and channel structures shown in FIGS. 2, 3, and 4 may be used.

【0023】また、本発明は、その他いろいろな変形が
可能である。例えば、実施例1ないし実施例5までは、
複数のゲ−ト電極と複数のエミッタ領域を形成し、左右
対称の構造としたが、大電流を得る必要がない場合、片
側だけの構造としてもよい。また、本実施例では、n形
電界効果トランジスタTr1およびpnp形バイポ−ラ
トランジスタTr2からなるIGBTおよびMOSFE
Tを例にとって説明したが、これらの極性を逆にし、p
形電界効果トランジスタTr1およびnpn形バイポ−
ラトランジスタTr2からなるIGBTおよびMOSF
ETとしてもよい。また、本実施例では、縦型のIGB
Tについて説明したが、本発明の主張する特徴的な動作
原理が同じであれば、縦型に限定するものではなく、横
形IGBTなど、その他様々な形態を持つ絶縁ゲ−ト形
半導体素子に適用できる。
Further, the present invention can be variously modified. For example, in Examples 1 to 5,
Although a plurality of gate electrodes and a plurality of emitter regions are formed to have a symmetrical structure, a structure having only one side may be used when it is not necessary to obtain a large current. In this embodiment, the IGBT and the MOSFE comprising the n-type field-effect transistor Tr1 and the pnp-type bipolar transistor Tr2 are used.
T has been described as an example, but these polarities are reversed, and p
Field effect transistor Tr1 and npn type bipolar transistor
IGBT and MOSF composed of a transistor Tr2
It may be ET. In this embodiment, the vertical IGB
Although T has been described, the invention is not limited to the vertical type but may be applied to various other types of insulated gate type semiconductor devices such as a horizontal IGBT as long as the characteristic operation principle claimed by the present invention is the same. it can.

【0024】[0024]

【発明の効果】以上説明したことから明かなように、本
発明の請求項第1項の絶縁ゲ−ト形半導体素子によれ
ば、第2伝導形ベ−ス領域内において第2伝導形キャリ
アの流路途中に、電気的絶縁膜を伴ったゲ−ト電極が、
この流路を狭めるよう形成されている。さらに、流路を
通過した第2伝導形キャリアが第1伝導形エミッタ領域
へ到達するのを困難にするため、第1伝導形エミッタ領
域は、ゲ−ト電極を絶縁する電気的絶縁膜上の両端部に
形成されている。従って、電界効果形トランジスタがO
Nすることに伴って、第2伝導形コレクタ領域から拡散
された第2伝導形キャリアは、第1伝導形ベース領域で
の濃度が高められるので、伝導度変調度が高まり、低オ
ン電圧化が実現できる。
As is apparent from the above description, according to the insulated gate semiconductor device of the first aspect of the present invention, the second conductivity type carrier is provided in the second conductivity type base region. In the middle of the flow path, a gate electrode with an electric insulating film is
It is formed so as to narrow this flow path. Further, in order to make it difficult for the second conduction type carrier that has passed through the flow path to reach the first conduction type emitter region, the first conduction type emitter region is formed on an electrically insulating film that insulates the gate electrode. It is formed at both ends. Therefore, the field effect transistor is
With N, the concentration of the second conductivity type carrier diffused from the second conductivity type collector region in the first conductivity type base region is increased, so that the conductivity modulation degree is increased and the on-state voltage is reduced. realizable.

【0025】また上記構造により、ゲ−ト電極によって
狭められた流路を通過した第2伝導形キャリアは、大部
分エミッタ電極に集められ、寄生トランジスタのエミッ
タともなるエミッタ領域近くには、到達し難く、又、第
2伝導形ベース領域の抵抗を小さく小さくできることか
ら、所定の最大電流値内では寄生トランジスタは、ON
することがなく、高ラッチアップ化が実現される。従っ
て、本発明の絶縁ゲ−ト形半導体素子の構造をとれば、
要求されている高ラッチアップ耐量化と低オン電圧化の
両方が同時に実現できる。
Further, with the above structure, the second conductivity type carriers that have passed through the flow path narrowed by the gate electrode are mostly collected at the emitter electrode, and reach near the emitter region which also serves as the emitter of the parasitic transistor. It is difficult to reduce the resistance of the second conductivity type base region, and the parasitic transistor is turned on within a predetermined maximum current value.
And a higher latch-up is realized. Therefore, according to the structure of the insulated gate semiconductor device of the present invention,
Both the required high latch-up withstand voltage and the low on-voltage can be simultaneously realized.

【0026】また、請求項2に記載の絶縁ゲ−ト形半導
体素子は、請求項第1項に記載の絶縁ゲート形半導体素
子において、ゲ−ト電極により狭められた流路内近傍
に、さらに反転層と重ならないように、電気的絶縁領域
を形成している。従って、コレクタから注入された少数
キャリアの流路はさらに狭くなり、エミッタに近い領域
の高抵抗ベ−ス領域において、少数キャリアの濃度が向
上し、さらに伝導度変調度が高くなり、オン電圧が低下
する。従って、請求項1記載の絶縁ゲ−ト形半導体素子
と同様、ラッチアップ耐量の高度化は保持されととも
に、さらなる低オン電圧化が実現できる。
According to a second aspect of the present invention, there is provided an insulated gate type semiconductor device according to the first aspect, wherein the insulated gate type semiconductor device is further provided near the inside of the flow path narrowed by the gate electrode. An electrically insulating region is formed so as not to overlap with the inversion layer. Accordingly, the flow path of the minority carriers injected from the collector is further narrowed, and the concentration of the minority carriers is improved in the high-resistance base region near the emitter, the conductivity modulation is further increased, and the ON voltage is reduced. descend. Therefore, as in the case of the insulated gate semiconductor device according to the first aspect, the enhancement of the latch-up withstand capability is maintained, and further lowering of the on-state voltage can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す絶縁ゲ−ト形半導体
素子の断面図。
FIG. 1 is a sectional view of an insulated gate semiconductor device according to a first embodiment of the present invention.

【図2】第1実施例の絶縁ゲート形半導体素子の等価回
路図。
FIG. 2 is an equivalent circuit diagram of the insulated gate semiconductor device of the first embodiment.

【図3】本発明の第2実施例を示す絶縁ゲ−ト形半導体
素子の断面図。
FIG. 3 is a cross-sectional view of an insulated gate semiconductor device according to a second embodiment of the present invention.

【図4】本発明の第3実施例を示す絶縁ゲ−ト形半導体
素子の断面図。
FIG. 4 is a sectional view of an insulated gate semiconductor device according to a third embodiment of the present invention.

【図5】本発明の第4実施例を示す絶縁ゲ−ト形半導体
素子の断面図。
FIG. 5 is a sectional view of an insulated gate semiconductor device according to a fourth embodiment of the present invention.

【図6】本発明の第5実施例を示す絶縁ゲ−ト形半導体
素子の断面図。
FIG. 6 is a sectional view of an insulated gate semiconductor device according to a fifth embodiment of the present invention.

【図7】第1実施例の絶縁ゲ−ト形半導体素子におけ
る、寸法パラメータとオン電圧の関係を表す特性図。
FIG. 7 is a characteristic diagram showing a relationship between a dimensional parameter and an on-voltage in the insulated gate semiconductor device of the first embodiment.

【図8】従来の高耐圧、低オン電圧を示す絶縁ゲ−ト形
半導体素子の断面図。
FIG. 8 is a cross-sectional view of a conventional insulated gate semiconductor device exhibiting a high withstand voltage and a low on-voltage.

【図9】従来の絶縁ゲート形半導体素子の等価回路図で
ある。
FIG. 9 is an equivalent circuit diagram of a conventional insulated gate semiconductor device.

【符号の説明】[Explanation of symbols]

10 p+ 形コレクタ領域 11 n+ 形バッファ領域 12 n- 形ベース領域 12A キャリア蓄積領域 13a ゲ−ト電極 13b ゲ−ト電極 14a 電気的絶縁膜 14b 電気的絶縁膜 15a n+ エミッタ領域 15b n+ エミッタ領域 16 p形ベ−ス領域 17a 反転層 17b 反転層 18 エミッタ電極 19 コレクタ電極 20 電気的絶縁物Reference Signs List 10 p + -type collector region 11 n + -type buffer region 12 n --type base region 12A Carrier accumulation region 13a Gate electrode 13b Gate electrode 14a Electrical insulating film 14b Electrical insulating film 15an + Emitter region 15b n + Emitter region 16 P-type base region 17a Inversion layer 17b Inversion layer 18 Emitter electrode 19 Collector electrode 20 Electrical insulator

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年3月11日[Submission date] March 11, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Correction target item name] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】従来の縦型IGBTの構造を図8に示す。
その等価回路は図2と同一である。縦型IGBTは、p
+ 形不純物がド−プされたシリコン基板をコレクタ領域
70とし、その上にエピタキシャル成長技術、リソグラ
フィ技術、イオン注入技術、拡散技術、エッチング技術
等の所謂プレ−ナ−技術によって、順次n+ 形バッファ
領域71、n- 形ベ−ス領域72、p形ベース領域7
3、n+ 形エミッタ領域74、p+ 形エミッタ領域8
0、絶縁ゲ−ト膜76が形成され、最後にCVD(Chem
ical Vapor Deposition )等によってゲ−ト電極75、
エミッタ電極77、コレクタ電極78がそれぞれ形成さ
れる。尚、n形バッファ領域71は形成しなくても良い
場合もある。
FIG. 8 shows a structure of a conventional vertical IGBT.
Its equivalent circuit is the same as FIG. The vertical IGBT is p
A silicon substrate doped with + -type impurities is used as a collector region 70, on which an n + -type buffer is sequentially formed by a so-called planar technology such as an epitaxial growth technology, a lithography technology, an ion implantation technology, a diffusion technology, and an etching technology. Region 71, n - type base region 72, p-type base region 7
3, n + type emitter region 74, p + type emitter region 8
0, an insulating gate film 76 is formed, and finally CVD (Chem)
ical Vapor Deposition), etc.
An emitter electrode 77 and a collector electrode 78 are respectively formed. In some cases, the n-type buffer region 71 may not be formed.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】エミッタ電極77を接地とし、コレクタ電
極78に例えば数百Vの正電圧を、ゲ−ト電極75に数
V〜十数Vの正電圧を印可すると、まず図2に示す電界
効果形トランジスタ(Tr1)がONし、n- 形ベ−ス
領域72に電子が流れ込む。これにより、p+ 形コレク
タ領域70からn- 形ベ−ス領域72へホールが注入さ
れ、高比抵抗のn- 形ベ−ス領域72の電子濃度とホー
ル濃度を等しく増大させる伝導度変調効果が発生する。
IGBTは、この伝導度変調効果により、オン電圧の低
減を可能とした素子であり、そのスイッチング速度は、
パワートランジスタよりも1桁速く、その電流容量は、
MOSトランジスタよりも1桁〜2桁大きいことを特徴
としている。そして、そのスイッチング速度が速いこと
から、近年ますますその電流の大容量化が求められてい
る。
When the emitter electrode 77 is grounded and a positive voltage of, for example, several hundred volts is applied to the collector electrode 78 and a positive voltage of several volts to tens of volts is applied to the gate electrode 75, a field effect type shown in FIG. The transistor (Tr1) is turned on, and electrons flow into the n -type base region 72. Thus, the p + -type collector region 70 n - Katachibe - Hall to the source region 72 are injected, the high resistivity n - Katachibe - source region 72 electron concentration and conductivity modulation effect of increasing equal hole concentration of Occurs.
The IGBT is an element capable of reducing the on-state voltage by this conductivity modulation effect.
One order of magnitude faster than a power transistor, its current capacity is
It is characterized by being one to two orders of magnitude larger than a MOS transistor. Since the switching speed is high, it is increasingly required in recent years to increase the current capacity.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【発明が解決しようとする課題】しかしながら、一般に
IGBTには上述したように、例えばn+ 形エミッタ領
域74,p形ベ−ス領域73,n- 形ベ−ス領域72か
らなるnpn形寄生トランジスタTr3が存在し、大電
流Iを流すと、p+ 形エミッタ領域80に抵抗Rpがあ
るため、エミッタ電極77とp形ベ−ス領域73にΔV
(=I・Rp)の電位差が発生することになる。このΔ
Vが閾値電圧(約0.7V)を越えるとTr3がON状
態となり、ひいては図2で示すTr2とTr3からなる
寄生サイリスタがON状態(ラッチアップ状態)とな
り、ゲ−ト電圧では、このIGBTが制御できなくなる
という問題があった。
However, generally, as described above, an IGBT generally has an npn-type parasitic transistor including an n + -type emitter region 74, a p-type base region 73, and an n -type base region 72. When Tr3 is present and a large current I flows, the resistance Rp is present in the p + -type emitter region 80, so that ΔV is applied to the emitter electrode 77 and the p-type base region 73.
(= I · Rp). This Δ
When V exceeds the threshold voltage (approximately 0.7 V), Tr3 is turned on, and the parasitic thyristor composed of Tr2 and Tr3 shown in FIG. 2 is turned on (latch-up state). There was a problem that control was lost.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図9[Correction target item name] Fig. 9

【補正方法】削除[Correction method] Deleted

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁ゲ−ト形半導体素子において、エミ
ッタ電極に接合し第1伝導形の少数キャリアによるチャ
ネルが形成される第2伝導形ベース領域とこの第2伝導
形ベース領域に接合する第1伝導形ベース領域から成る
ベース領域内の前記エミッタ電極に近い領域において、
前記チャネルを形成する電気的絶縁膜を伴ったゲ−ト電
極を、所定の形状および所定の深さに形成し、第2伝導
形コレクタ領域から前記第1伝導形ベース領域へ注入さ
れた第2伝導形のキャリアが前記第2伝導形ベース領域
を拡散する第2伝導形キャリアのエミッタ領域への到達
を困難としエミッタ電極へ容易に到達するように、前記
エミッタ電極と対面する前記電気的絶縁膜上に前記エミ
ッタ電極と前記第2伝導形ベース領域に接合する第1伝
導形エミッタ領域を形成したことを特徴とする絶縁ゲ−
ト形半導体素子。
1. An insulated gate semiconductor device, comprising: a second conductivity type base region joined to an emitter electrode and a channel formed by a first conductivity type minority carrier; and a second conductivity type base region joined to the second conductivity type base region. In a region near the emitter electrode in a base region composed of one conductivity type base region,
A gate electrode with an electrical insulating film forming the channel is formed in a predetermined shape and a predetermined depth, and the second electrode implanted from the second conductivity type collector region into the first conductivity type base region. The electrical insulating film facing the emitter electrode so that the conductive type carriers diffuse in the second conductive type base region, making it difficult for the second conductive type carriers to reach the emitter region and easily reaching the emitter electrode. An insulating gate, wherein a first conductivity type emitter region is formed on said emitter electrode and said second conductivity type base region.
G semiconductor element.
【請求項2】前記第1伝導形ベース領域の前記第2伝導
形ベース領域との接合付近に、前記コレクタ領域から注
入された第2伝導形キャリアが前記第2伝導形ベース領
域へ至る経路を狭くする電気的絶縁領域を形成したこと
を特徴とする請求項第1項記載の絶縁ゲ−ト形半導体素
子。
2. A path for a second conductivity type carrier injected from the collector region to reach the second conductivity type base region near a junction of the first conductivity type base region with the second conductivity type base region. 2. The insulated gate semiconductor device according to claim 1, wherein an electrically insulating region to be narrowed is formed.
JP36809597A 1997-12-26 1997-12-26 Insulated-gate semiconductor element Pending JPH11195784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36809597A JPH11195784A (en) 1997-12-26 1997-12-26 Insulated-gate semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36809597A JPH11195784A (en) 1997-12-26 1997-12-26 Insulated-gate semiconductor element

Publications (1)

Publication Number Publication Date
JPH11195784A true JPH11195784A (en) 1999-07-21

Family

ID=18490966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36809597A Pending JPH11195784A (en) 1997-12-26 1997-12-26 Insulated-gate semiconductor element

Country Status (1)

Country Link
JP (1) JPH11195784A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158356A (en) * 2000-11-21 2002-05-31 Fuji Electric Co Ltd Mis semiconductor device and its manufacturing method
JP2008060138A (en) * 2006-08-29 2008-03-13 Mitsubishi Electric Corp Power semiconductor device, and manufacturing method thereof
JP2012124518A (en) * 2012-02-15 2012-06-28 Mitsubishi Electric Corp Power semiconductor device
JP2012134376A (en) * 2010-12-22 2012-07-12 Denso Corp Silicon carbide semiconductor device and method of manufacturing the same
CN102694009A (en) * 2011-03-23 2012-09-26 株式会社东芝 Semiconductor device and method for manufacturing same
JP2013214696A (en) * 2012-03-05 2013-10-17 Denso Corp Semiconductor device and manufacturing method of the same
US8741699B2 (en) 2011-05-27 2014-06-03 Renesas Electronics Corporation Method of manufacturing semiconductor device and semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158356A (en) * 2000-11-21 2002-05-31 Fuji Electric Co Ltd Mis semiconductor device and its manufacturing method
JP2008060138A (en) * 2006-08-29 2008-03-13 Mitsubishi Electric Corp Power semiconductor device, and manufacturing method thereof
JP2012134376A (en) * 2010-12-22 2012-07-12 Denso Corp Silicon carbide semiconductor device and method of manufacturing the same
CN102694009A (en) * 2011-03-23 2012-09-26 株式会社东芝 Semiconductor device and method for manufacturing same
JP2012204395A (en) * 2011-03-23 2012-10-22 Toshiba Corp Semiconductor device and manufacturing method of the same
US8723253B2 (en) 2011-03-23 2014-05-13 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing same
US8741699B2 (en) 2011-05-27 2014-06-03 Renesas Electronics Corporation Method of manufacturing semiconductor device and semiconductor device
US9166017B2 (en) 2011-05-27 2015-10-20 Renesas Electronics Corporation Method of manufacturing semiconductor device and semiconductor device
JP2012124518A (en) * 2012-02-15 2012-06-28 Mitsubishi Electric Corp Power semiconductor device
JP2013214696A (en) * 2012-03-05 2013-10-17 Denso Corp Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US6303410B1 (en) Methods of forming power semiconductor devices having T-shaped gate electrodes
US6066863A (en) Lateral semiconductor arrangement for power IGS
US6713794B2 (en) Lateral semiconductor device
US7968940B2 (en) Insulated gate bipolar transistor device comprising a depletion-mode MOSFET
US6091086A (en) Reverse blocking IGBT
KR100275756B1 (en) Trench insulated gate bipolar transistor
JP2663679B2 (en) Conductivity modulation type MOSFET
JPH05259443A (en) Insulation gate type semiconductor device
US5879967A (en) Methods forming power semiconductor devices having latch-up inhibiting regions
JP2000228519A (en) Trench insulated gate bipolar transistor
JPH10178176A (en) Trench gate type insulated-gate bipolar transistor having trench gate structure
US7250639B1 (en) Insulated gate bipolar transistor
JP2983110B2 (en) Semiconductor device and manufacturing method thereof
SE513284C3 (en) Semiconductor component with linear current-to-voltage characteristics
SE513284C2 (en) Semiconductor component with linear current-to-voltage characteristics
US6448588B2 (en) Insulated gate bipolar transistor having high breakdown voltage in reverse blocking mode
JP2633145B2 (en) Semiconductor laterally insulated gate bipolar transistor device
JPH10294461A (en) Insulation gate type semiconductor element
JPH04261065A (en) Semiconductor device
JPH11195784A (en) Insulated-gate semiconductor element
CN113130650A (en) Power semiconductor device and preparation process thereof
JP4761011B2 (en) Semiconductor device having thyristor and method for manufacturing the same
JP3371836B2 (en) Semiconductor device
CN111668212A (en) Semiconductor device with a plurality of semiconductor chips
US7329566B2 (en) Semiconductor device and method of manufacture