JPH11191417A - Nonaqueous electrolytic secondary battery and manufacture thereof - Google Patents

Nonaqueous electrolytic secondary battery and manufacture thereof

Info

Publication number
JPH11191417A
JPH11191417A JP10147260A JP14726098A JPH11191417A JP H11191417 A JPH11191417 A JP H11191417A JP 10147260 A JP10147260 A JP 10147260A JP 14726098 A JP14726098 A JP 14726098A JP H11191417 A JPH11191417 A JP H11191417A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
hydroxide
electrolyte secondary
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10147260A
Other languages
Japanese (ja)
Inventor
Toshihide Murata
年秀 村田
Yasuhiko Mifuji
靖彦 美藤
Shuji Ito
修二 伊藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Toshitada Sato
俊忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10147260A priority Critical patent/JPH11191417A/en
Publication of JPH11191417A publication Critical patent/JPH11191417A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To prevent characteristic degradation form being generated afterwards, even when temperature becomes temporarily high by including material produc ing water or carbon dioxide through temperature rise inside a battery. SOLUTION: Interface reaction between electrode active material and an electrolyte caused by temperature rise at the time of charging is impeded by water produced from contained material, so as to suppress degradation of active material. Carbon dioxide produced in temperature rise hinders contact between the active material and electrolyte for suppressing the progress of reaction at an interface. It is preferable that material producing water be one or more kinds of a hydroxide of Zn or the like, a hydroxide oxide of Fe or the like, or a compound containing boric acid or crystal water, contained at a specified ratio in a positive electrode, a negative electrode or the electrolyte so as to produce water at 60-300 deg.C, and it is preferable that material producing carbon dioxide at the time of temperature rise be a carbonate of Rb or the like, or a hydrogen carbonate salt of Na or the like contained at a specified ratio in the positive electrode, the negative electrode, a nonaqueous electrolyte or a separator to produce carbon dioxide at 80-300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池性能を低下さ
せず、高温保存特性を高めた高エネルギ−密度の非水電
解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-energy-density nonaqueous electrolyte secondary battery having improved high-temperature storage characteristics without deteriorating battery performance.

【0002】[0002]

【従来の技術】リチウムやナトリウムなどのアルカリ金
属を負極とする非水電解質二次電池は、起電力が高く、
従来のニッケル・カドミウム蓄電池や鉛蓄電池に較べ高
エネルギー密度が期待できるため、盛んに研究がなされ
ている。とくに、Liを負極とする非水電解質二次電池
については、すでに情報・通信機器やAV機器等の小型
民生用コードレス機器の電源用として実用化されてお
り、量産が始まっている。現在実用化している非水電解
質二次電池では、負極に炭素材料、正極にLiCoO2
が用いられている。そして、より低コスト、高エネルギ
ー密度を目指して、正極材料、負極材料共に盛んに研究
されている。材料開発が進み、低コストで高性能の材料
が開発されることにより、非水電解質二次電池の用途
は、現在の小型ポータブル機器だけでなく広範囲に広が
っていくと考えられる。その一例として電気自動車への
応用などがあげられる。現在市販されている非水電解質
二次電池の使用温度範囲は−20℃〜60℃である。そ
して、通常の用途では、使用される温度は室温付近であ
るため、温度に対してはそれほど大きな問題はない。し
かし、今後用途が広がることにより、過酷な条件下での
使用が求められる可能性がある。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using an alkali metal such as lithium or sodium as a negative electrode has a high electromotive force,
Since high energy density can be expected compared to conventional nickel-cadmium storage batteries and lead storage batteries, research has been actively conducted. In particular, a nonaqueous electrolyte secondary battery using Li as a negative electrode has already been put to practical use as a power source for small consumer cordless devices such as information / communication devices and AV devices, and mass production has begun. In a non-aqueous electrolyte secondary battery currently in practical use, a carbon material is used for a negative electrode, and LiCoO 2 is used for a positive electrode.
Is used. Also, positive electrode materials and negative electrode materials have been actively studied for lower cost and higher energy density. As materials are developed and low-cost, high-performance materials are developed, applications of nonaqueous electrolyte secondary batteries are expected to be widespread, not only in current small portable devices. One example is application to electric vehicles. The operating temperature range of currently commercially available nonaqueous electrolyte secondary batteries is -20C to 60C. In a normal use, since the temperature used is around room temperature, there is no significant problem with respect to the temperature. However, there is a possibility that use under severe conditions will be required as the applications expand in the future.

【0003】[0003]

【発明が解決しようとする課題】現在使用されている非
水電解質二次電池であるリチウム二次電池は、放電時に
内部で発熱が生じる。小型電池では発熱量は小さく、電
池表面からの放熱も良いので、大きな問題ではない。し
かし、電気自動車用などの大型の電池では、大きな電流
を取り出した場合、発熱に放熱が追いつかず、電池内部
が一時的に高温になる可能性がある。また、発熱を伴う
機器への使用を考えた場合にも、電池が高温に曝される
ことが考えられる。リチウム二次電池は、充電状態で高
温に曝されると、充電状態の活物質と非水電解質等が関
係すると考えられる反応により、その後の特性が大きく
劣化する。このように高温により劣化した電池は、回復
せず、電池は使用不能となる。
A lithium secondary battery, which is a non-aqueous electrolyte secondary battery currently used, generates heat internally during discharge. This is not a big problem because a small battery generates a small amount of heat and has good heat radiation from the battery surface. However, in the case of a large battery for an electric vehicle or the like, when a large current is taken out, heat dissipation cannot catch up with heat generation, and the inside of the battery may temporarily become hot. Also, when the battery is considered to be used for a device that generates heat, the battery may be exposed to high temperatures. When a lithium secondary battery is exposed to a high temperature in a charged state, its characteristics are greatly deteriorated by a reaction that is considered to involve the active material in the charged state and a non-aqueous electrolyte. The battery deteriorated due to the high temperature does not recover, and the battery becomes unusable.

【0004】従って、非水電解質二次電池を高温に曝さ
れる可能性のある用途に使用するためには、この熱によ
る特性劣化を抑える必要がある。本発明は、電池が一時
的に高温に曝された場合にも、その後の特性劣化を起こ
さない非水電解質二次電池を提供することを目的とす
る。
Therefore, in order to use the non-aqueous electrolyte secondary battery in an application that may be exposed to a high temperature, it is necessary to suppress the characteristic deterioration due to the heat. An object of the present invention is to provide a non-aqueous electrolyte secondary battery that does not cause subsequent deterioration in characteristics even when the battery is temporarily exposed to a high temperature.

【0005】[0005]

【課題を解決するための手段】本発明の非水電解質二次
電池は、電池内部、すなわち正極、負極、非水電解質な
どの発電要素中、電池内の空隙部、その他の電池内部に
配される部材中に、温度上昇により水または炭酸ガスを
生成する物質を含むことを特徴とする。ここで、水を生
成する物質とは、化学反応により水を生じる化合物をは
じめ、化合物として水を含有する物質、吸着により水を
含有する物質、カプセルや袋状の構造体の内部に水を含
むものなど、結果的に水を生じるものであればよい。炭
酸ガスを生成する物質としては、炭酸塩または炭酸水素
塩を使用することができる。本発明は、また充放電可能
な正極、充放電可能な負極、および非水電解質を具備
し、正極、負極、または非水電解質が、アルミニウム化
合物、ニッケル化合物、およびコバルト化合物からなる
群より選ばれた少なくとも1種を含む非水電解質二次電
池を提供する。本発明によれば、電池が一時的に高温に
曝された場合にも、その後の特性劣化の少ない非水電解
質二次電池を得ることができる。
The non-aqueous electrolyte secondary battery of the present invention is arranged inside a battery, that is, in a power generating element such as a positive electrode, a negative electrode, and a non-aqueous electrolyte, in a void portion in the battery, and inside the other battery. A member that generates water or carbon dioxide gas when the temperature rises. Here, the substance that generates water includes a compound that generates water by a chemical reaction, a substance that contains water as a compound, a substance that contains water by adsorption, and water that is contained inside a capsule or a bag-shaped structure. Any material that results in water, such as water, may be used. Carbonate or hydrogen carbonate can be used as the substance that generates carbon dioxide. The present invention also includes a chargeable / dischargeable positive electrode, a chargeable / dischargeable negative electrode, and a nonaqueous electrolyte, wherein the positive electrode, the negative electrode, or the nonaqueous electrolyte is selected from the group consisting of an aluminum compound, a nickel compound, and a cobalt compound. And a non-aqueous electrolyte secondary battery comprising at least one of the foregoing. According to the present invention, even when the battery is temporarily exposed to a high temperature, it is possible to obtain a nonaqueous electrolyte secondary battery with little subsequent characteristic deterioration.

【0006】[0006]

【発明の実施の形態】本発明は、上記のように、電池内
に、温度上昇により水または炭酸ガスを生成する物質を
含ませるものである。充電状態の電池の温度が上昇する
と、充電状態の電極活物質と電解液とがその界面で反応
し、活物質が劣化するので、その後の電池の容量が低下
する。この反応は、発熱が伴うため、反応が生じ始める
とその部分の温度が上昇し、反応がさらに起こりやすく
なって連鎖的に反応が進行する。電池内部に、温度上昇
により水を生成する物質を含んでいると、前記の反応、
すなわち活物質が劣化する反応、が生じた部分付近でわ
ずかな水が生じ、この水が前記反応を阻害する。これに
よって、活物質の劣化する反応が連鎖的に進行するのを
抑える。こうして温度上昇により水を生成する物質を電
池内部に含ませることにより、電池の温度が一時的に上
昇した後の電池の特性劣化を抑制することができる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, in the present invention, a substance that generates water or carbon dioxide gas when a temperature rises is included in a battery. When the temperature of the battery in the charged state increases, the electrode active material in the charged state reacts with the electrolyte at the interface, and the active material deteriorates, so that the capacity of the subsequent battery decreases. Since this reaction is accompanied by heat generation, when the reaction starts to occur, the temperature of that portion increases, and the reaction is more likely to occur, and the reaction proceeds in a chain. If the battery contains a substance that generates water due to a rise in temperature, the above-described reaction occurs.
That is, a small amount of water is generated in the vicinity of the portion where the reaction in which the active material is degraded occurs, and this water inhibits the reaction. This suppresses the chain reaction of the degradation of the active material. By including a substance that generates water by a rise in temperature inside the battery in this manner, it is possible to suppress deterioration in battery characteristics after the battery temperature temporarily rises.

【0007】温度上昇により不活性な気体である炭酸ガ
スを生成する物質を電池内に含む場合は、温度上昇によ
り充電状態の活物質と電解液が反応し始めると、その反
応により生じる温度上昇により、その付近に存在する炭
酸ガスを生成する物質から炭酸ガスが生成する。この炭
酸ガスが活物質と電解液の接触を妨げるため、それ以上
の反応が起こりにくくなり、電池の特性劣化を抑制する
ことができる。水を生成する物質の、水を生成する温度
は、60℃以上が良い。60℃未満の低温で水を生成す
る物質は、電極作製時の乾燥工程で水が生成してしま
い、実際に電池が加熱されたときには水を生成しないの
で適さない。また、電池作製持の乾燥工程の温度を低く
しても、通常の使用温度範囲で水の生成反応が起こるの
で、電池の特性にかえって悪影響を与えるおそれがあり
好ましくない。また、300℃を越える場合は、効果が
現れる前に電池の劣化が起こってしまい、十分な効果は
得られない。水を生成する物質の、水を生成する温度の
上限は、250℃以下、特に150℃以下が好ましい。
When a battery contains a substance that generates carbon dioxide gas, which is an inert gas due to a rise in temperature, when the active material in a charged state and the electrolyte begin to react due to the rise in temperature, the temperature rises due to the reaction. The carbon dioxide gas is generated from a carbon dioxide gas-producing substance present in the vicinity. Since the carbon dioxide gas prevents contact between the active material and the electrolytic solution, further reaction hardly occurs, and deterioration of battery characteristics can be suppressed. The temperature at which water is generated from the substance that generates water is preferably 60 ° C. or higher. A substance that generates water at a low temperature of less than 60 ° C. is not suitable because water is generated in a drying step at the time of manufacturing an electrode and does not generate water when the battery is actually heated. Further, even if the temperature of the drying step for producing the battery is lowered, the water production reaction occurs in a normal use temperature range, and thus the battery characteristics may be adversely affected, which is not preferable. On the other hand, when the temperature exceeds 300 ° C., the battery is deteriorated before the effect appears, and a sufficient effect cannot be obtained. The upper limit of the water-forming temperature of the water-forming substance is preferably 250 ° C. or lower, particularly preferably 150 ° C. or lower.

【0008】温度上昇により水を生成する物質として
は、水酸化物、水酸化物と同様化合物中にOHを含むホ
ウ酸、および結晶水を有する化合物が適している。水酸
化物としては、水酸化亜鉛、水酸化アルミニウム、水酸
化カドミウム、水酸化クロム、水酸化コバルト、水酸化
ニッケル、水酸化マンガン、水酸化カルシウム、水酸化
マグネシウム、水酸化ジルコニウム、酸化水酸化鉄、お
よび酸化水酸化ニッケルが好適に用いられる。また、結
晶水を有する化合物としては、酸化アルミニウム水和
物、硝酸バリウム水和物、硫酸カルシウム水和物、リン
酸コバルト水和物、酸化アンチモン水和物、酸化スズ水
和物、酸化チタン水和物、酸化ビスマス水和物、および
酸化タングステン水和物が好適に用いられる。温度上昇
により水を生成する物質が正極または負極に含まれる場
合、その含有割合は、当該電極の活物質100重量部当
たり0.5〜20重量部が好ましい。また、温度上昇に
より水を生成する物質が非水電解質に含まれる場合、そ
の含有割合は、非水電解質100重量部当たり0.5〜
30重量部が好ましい。
[0008] As a substance which produces water by a rise in temperature, hydroxide, boric acid containing OH in the compound as well as hydroxide, and a compound having water of crystallization are suitable. As the hydroxide, zinc hydroxide, aluminum hydroxide, cadmium hydroxide, chromium hydroxide, cobalt hydroxide, nickel hydroxide, manganese hydroxide, calcium hydroxide, magnesium hydroxide, zirconium hydroxide, iron hydroxide hydroxide And nickel oxyhydroxide are preferably used. Examples of the compound having water of crystallization include aluminum oxide hydrate, barium nitrate hydrate, calcium sulfate hydrate, cobalt phosphate hydrate, antimony oxide hydrate, tin oxide hydrate, and titanium oxide water. A hydrate, bismuth oxide hydrate, and tungsten oxide hydrate are preferably used. When a substance that generates water by a temperature rise is contained in the positive electrode or the negative electrode, the content ratio is preferably 0.5 to 20 parts by weight per 100 parts by weight of the active material of the electrode. Further, when the non-aqueous electrolyte contains a substance that generates water due to a temperature rise, its content is 0.5 to 100 parts by weight of the non-aqueous electrolyte.
30 parts by weight are preferred.

【0009】炭酸ガスを生成する物質の、炭酸ガスを生
成する温度は、80℃以上が好ましい。80℃未満で
は、温度が低すぎるため通常の使用条件で炭酸ガスが発
生するおそれがあるため好ましくない。300℃を越え
る場合は、効果が現れる前に電池の劣化が起こってしま
い、十分な効果は得られない。炭酸ガスを生成する物質
の、炭酸ガスを生成する温度の上限は、250℃以下、
特に150℃以下が好ましい。温度上昇により炭酸ガス
を生成する物質としては、炭酸塩や炭酸水素塩がある。
なかでも炭酸ルビジウム、炭酸バリウム、炭酸コバル
ト、炭酸鉄、炭酸ニッケル、炭酸亜鉛、炭酸水素ナトリ
ウム、炭酸水素カリウム、炭酸水素ルビジウム、および
炭酸水素セシウムなどが適している。温度上昇により炭
酸ガスを生成する物質が正極または負極に含まれる場
合、その含有割合は、当該電極の活物質100重量部当
たり0.5〜25重量部が好ましい。温度上昇により炭
酸ガスを生成する物質が非水電解質またはセパレータに
含まれる場合、その含有割合は、非水電解質100重量
部当たり0.5〜30重量部が好ましい。
The temperature at which the carbon dioxide-generating substance generates carbon dioxide is preferably 80 ° C. or higher. If the temperature is lower than 80 ° C., the temperature is too low, and carbon dioxide gas may be generated under normal use conditions, which is not preferable. When the temperature exceeds 300 ° C., the battery is deteriorated before the effect appears, and a sufficient effect cannot be obtained. The upper limit of the temperature at which the carbon dioxide is generated is 250 ° C. or less,
Particularly, the temperature is preferably 150 ° C. or lower. Substances that generate carbon dioxide gas when the temperature rises include carbonates and bicarbonates.
Among them, rubidium carbonate, barium carbonate, cobalt carbonate, iron carbonate, nickel carbonate, zinc carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, cesium hydrogen carbonate, and the like are suitable. When the positive electrode or the negative electrode contains a substance that generates carbon dioxide gas due to a rise in temperature, the content is preferably 0.5 to 25 parts by weight per 100 parts by weight of the active material of the electrode. When a substance that generates carbon dioxide gas due to a temperature rise is contained in the nonaqueous electrolyte or the separator, the content ratio is preferably 0.5 to 30 parts by weight per 100 parts by weight of the nonaqueous electrolyte.

【0010】また、本発明者らは、水や炭酸ガスを生成
するものではないが、アルミニウム、ニッケル、または
コバルトの化合物は、充電状態の活物質と電解液の反応
を抑制する効果を有することを見いだした。アルミニウ
ムの化合物としては、酸化アルミニウム、硫酸アルミニ
ウム、リン酸アルミニウム、および塩化アルミニウムが
好ましい。ニッケルの化合物としては、酸化ニッケル、
硫酸ニッケル、リン酸ニッケル、および炭酸ニッケルが
好ましい。さらに、コバルト化合物としては、酸化コバ
ルト、硫酸コバルト、リン酸コバルト、炭酸コバルト、
およびシュウ酸コバルトが好ましい。上記のアルミニウ
ム化合物、ニッケル化合物、およびコバルト化合物は、
正極または負極に添加するのに適している。前記化合物
が正極または負極に含まれる場合、その含有割合は、当
該電極の活物質100重量部当たり0.5〜20重量部
が好ましい。電解質に添加する場合は、上記の化合物の
他に、酢酸アルミニウム、シュウ酸アルミニウム、過塩
素酸ニッケル、硝酸ニッケル、酢酸ニッケル、酢酸コバ
ルト、および過塩素酸コバルトが用いられる。前記化合
物が非水電解質中に含まれる場合、その含有割合は、非
水電解質100重量部当たり0.5〜30重量部が好ま
しい。
Further, the present inventors do not produce water or carbon dioxide gas, but a compound of aluminum, nickel or cobalt has an effect of suppressing a reaction between a charged active material and an electrolytic solution. Was found. As the aluminum compound, aluminum oxide, aluminum sulfate, aluminum phosphate, and aluminum chloride are preferable. Nickel compounds include nickel oxide,
Nickel sulfate, nickel phosphate, and nickel carbonate are preferred. Further, as the cobalt compound, cobalt oxide, cobalt sulfate, cobalt phosphate, cobalt carbonate,
And cobalt oxalate are preferred. The above aluminum compound, nickel compound, and cobalt compound,
Suitable for adding to the positive or negative electrode. When the compound is contained in the positive electrode or the negative electrode, the content ratio is preferably 0.5 to 20 parts by weight per 100 parts by weight of the active material of the electrode. When added to the electrolyte, aluminum acetate, aluminum oxalate, nickel perchlorate, nickel nitrate, nickel acetate, cobalt acetate, and cobalt perchlorate are used in addition to the above compounds. When the compound is contained in the non-aqueous electrolyte, the content is preferably 0.5 to 30 parts by weight per 100 parts by weight of the non-aqueous electrolyte.

【0011】[0011]

【実施例】以下、本発明を実施例により詳細に説明す
る。本発明は、これら実施例に限定されるものではない
ことはいうまでのない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. It goes without saying that the present invention is not limited to these examples.

【0012】《実施例1》本実施例では、温度上昇によ
り水を生成する物質として水酸化物およびホウ酸を用
い、これらを正極合剤中に加えた例を説明する。評価は
図1に示す円筒型電池を用いて行った。電池の作製方法
を以下に示す。正極活物質には、LiNO3とNi(O
H)2とを所定のモル比で混合し、酸素雰囲気中650
℃で加熱することにより合成したLiNiO2を用い
た。この活物質は、45μm以下に分級した。上記の正
極活物質100gに、導電剤の炭素粉末を10g、結着
剤のポリ4フッ化エチレン8g、および石油系溶剤を加
えて、ペースト状にし、さらに表1に示す化合物を5g
加え混合した。得られたペーストをチタンの芯材に塗布
し、95℃で乾燥し、圧延した後、所定の大きさに切り
出して正極板とした。電極中の正極活物質の重量は3g
とした。また、水酸化物等を加えないで同様に作製した
正極板を比較例とした。
Embodiment 1 In this embodiment, an example will be described in which a hydroxide and boric acid are used as substances that generate water by increasing the temperature, and these are added to a positive electrode mixture. The evaluation was performed using the cylindrical battery shown in FIG. The method for manufacturing the battery is described below. The positive electrode active materials include LiNO 3 and Ni (O
H) 2 and 650 in an oxygen atmosphere.
LiNiO 2 synthesized by heating at ° C. was used. This active material was classified to 45 μm or less. To 100 g of the positive electrode active material, 10 g of carbon powder as a conductive agent, 8 g of polytetrafluoroethylene as a binder, and a petroleum-based solvent were added to form a paste, and 5 g of the compound shown in Table 1 was further added.
Added and mixed. The obtained paste was applied to a titanium core material, dried at 95 ° C., rolled, and then cut into a predetermined size to obtain a positive electrode plate. The weight of the positive electrode active material in the electrode is 3 g
And In addition, a positive electrode plate manufactured similarly without adding a hydroxide or the like was used as a comparative example.

【0013】負極活物質には、1g当たり300mAh
の放電容量を有する炭素材料を用いた。この炭素粉末1
00gにスチレンブタジエンゴムを結着剤として混合
し、さらに石油系溶剤を加え、十分撹拌し、ペ−スト状
の混合物を得た。炭素粉末と結着剤の混合比は固形分の
重量比で100:5とした。このペ−ストを銅の芯材に
塗布し、95℃で乾燥した後、圧延し、切断して負極板
とした。電極中の炭素の重量は2gとした。非水電解質
には、1モル/lの過塩素酸リチウムを溶解したエチレ
ンカーボネートとジメトキシエタンの等比体積混合溶液
を用いた。セパレ−タには、微孔性のポリプロピレンフ
ィルムを用いた。電池の組み立ては次のように行った。
スポット溶接にて取り付けた、それぞれ芯材と同材質の
正極リード4および負極リードを有する正極板1および
負極板2を、間に両極板より幅の広い帯状の多孔性ポリ
プロピレン製セパレータ3を介在させて、全体を渦巻状
に捲回して電極群を構成した。次に、電極群の上下それ
ぞれにポリプロピレン製の絶縁板6、7を配して電槽8
に挿入し、電槽8の上部に段部を形成させた後、非水電
解液を注入した。電解液の注入量は2.6mlとした。
電槽の開口部は、正極端子10を有する封口板9で密閉
して電池とした。
The negative electrode active material is 300 mAh / g.
Was used. This carbon powder 1
Then, styrene-butadiene rubber was mixed as a binder with 00 g, a petroleum-based solvent was further added, and the mixture was sufficiently stirred to obtain a paste-like mixture. The mixing ratio of the carbon powder and the binder was 100: 5 by weight of the solids. The paste was applied to a copper core material, dried at 95 ° C., rolled, and cut to obtain a negative electrode plate. The weight of carbon in the electrode was 2 g. As the non-aqueous electrolyte, an equivolume mixed solution of ethylene carbonate and dimethoxyethane in which 1 mol / l of lithium perchlorate was dissolved was used. A microporous polypropylene film was used as a separator. The battery was assembled as follows.
A positive electrode plate 1 and a negative electrode plate 2 each having a positive electrode lead 4 and a negative electrode lead made of the same material as the core material, respectively, are attached by spot welding, and a band-shaped porous polypropylene separator 3 wider than the both electrode plates is interposed therebetween. The whole was spirally wound to form an electrode group. Next, polypropylene insulating plates 6 and 7 are arranged on the upper and lower sides of the electrode group, respectively.
To form a step at the top of the battery case 8, and then a non-aqueous electrolyte was injected. The injection amount of the electrolyte was 2.6 ml.
The opening of the battery case was sealed with a sealing plate 9 having a positive electrode terminal 10 to obtain a battery.

【0014】上記のようにして組み立てた電池について
高温耐久試験を行った。すなわち、20℃において0.
5mAの定電流で4.2ボルトまで充電し、次いで3ボ
ルトまで放電する充放電を10サイクル繰り返し、11
サイクル目の充電終了後、150℃中に2分間保持し
た。その後20℃に戻し、同じ条件で放電した。ここ
で、容量維持率を次のように定義した。 容量維持率=100×(11サイクル目の放電電気量/
10サイクル目の放電電気量) また、上記の11サイクル目の放電終了後に充電を行
い、その後の放電容量を評価した。ここで、容量回復率
を次のように定義した。 容量回復率=100×(12サイクル目の放電電気量/
10サイクル目の放電電気量) 表1に、各電池の高温耐久試験後の容量維持率、および
容量回復率を示す。
A high-temperature durability test was performed on the battery assembled as described above. That is, at 20.degree.
The battery was charged to 4.2 volts at a constant current of 5 mA and then discharged to 3 volts.
After the completion of the charge in the cycle, the temperature was kept at 150 ° C. for 2 minutes. Thereafter, the temperature was returned to 20 ° C., and discharge was performed under the same conditions. Here, the capacity retention rate was defined as follows. Capacity retention rate = 100 × (discharged electricity amount at eleventh cycle /
(Electricity Discharge at 10th Cycle) After completion of the discharge at the 11th cycle, charging was performed, and the discharge capacity after that was evaluated. Here, the capacity recovery rate was defined as follows. Capacity recovery rate = 100 × (discharged electricity amount at 12th cycle /
Table 1 shows the capacity retention rate and the capacity recovery rate after the high-temperature durability test of each battery.

【0015】[0015]

【表1】 [Table 1]

【0016】正極合剤中に水酸化物またはホウ酸を添加
しない比較例の電池では、試験後大きな容量低下がみら
れ、容量維持率は低い値となった。しかも、その後充放
電しても容量は低下したままで、容量回復率も低かっ
た。それに対して、正極に水酸化物を添加した本実施例
の電池は、容量維持率、容量回復率共に高い値を有して
いた。このことから、正極合剤中への、温度上昇により
水を生成する化合物、特に化合物中にOHを持つ水酸化
物等の添加は、電池が高温に曝されることによる容量低
下を抑制する効果があることがわかった。この効果は、
水が生じる反応により、充電状態の活物質と電解質等が
関与すると考えられる劣化反応が抑制されることによる
と考えられる。
In the battery of the comparative example in which no hydroxide or boric acid was added to the positive electrode mixture, a large capacity decrease was observed after the test, and the capacity retention ratio was low. In addition, the capacity remained low and the capacity recovery rate was low even after charging and discharging. On the other hand, the battery of this example in which hydroxide was added to the positive electrode had high values for both the capacity retention rate and the capacity recovery rate. From this, the addition of a compound that generates water by a rise in temperature, particularly a hydroxide having OH in the compound, to the positive electrode mixture suppresses a decrease in capacity due to exposure of the battery to high temperatures. I found that there was. This effect
It is considered that the reaction that generates water suppresses a degradation reaction that is considered to involve the active material in the charged state, the electrolyte, and the like.

【0017】《実施例2》本実施例では、負極合剤中
に、温度上昇により水を生成する物質として水酸化物ま
たはホウ酸を添加した例について示す。電池の作製方法
を以下に示す。正極活物質には、実施例1と同じく45
μm以下に分級したLiNiO2用いた。この正極活物
質100gに、炭素粉末を10g、ポリ4フッ化エチレ
ン8g、および石油系溶剤を加え、ペースト状にした。
得られたペーストをチタンの芯材に塗布し、95℃で乾
燥し、圧延したものを所定の大きさに切り出して正極板
とした。電極中の正極活物質の重量は3gとした。負極
には、実施例1と同じ炭素材料を用いた。この炭素粉末
100gに、スチレンブタジエンゴムを混合し、さらに
石油系溶剤を加えて、十分撹拌し、ペ−スト状の混合物
を得た。この混合物に、表2に示す化合物を5g加え混
合した。炭素粉末と結着剤の混合比は固形分の重量比で
100:5とした。このペ−ストを銅の芯材に塗布し、
95℃で乾燥し、圧延、切断して負極板とした。電極中
の炭素の重量は2gとした。上記の正・負極以外は実施
例1と同様にして電池を組み立て、高温耐久試験行っ
た。表2に、各電池の高温耐久試験後の容量維持率、お
よび容量回復率を示す。
Embodiment 2 In this embodiment, an example in which a hydroxide or boric acid is added to the negative electrode mixture as a substance that generates water by increasing the temperature will be described. The method for manufacturing the battery is described below. As the positive electrode active material, 45 as in Example 1 was used.
LiNiO 2 classified to μm or less was used. To 100 g of the positive electrode active material, 10 g of carbon powder, 8 g of polytetrafluoroethylene, and a petroleum-based solvent were added to form a paste.
The obtained paste was applied to a titanium core material, dried at 95 ° C., and rolled to a predetermined size to obtain a positive electrode plate. The weight of the positive electrode active material in the electrode was 3 g. The same carbon material as in Example 1 was used for the negative electrode. A styrene-butadiene rubber was mixed with 100 g of the carbon powder, a petroleum solvent was added, and the mixture was sufficiently stirred to obtain a paste-like mixture. To this mixture, 5 g of the compound shown in Table 2 was added and mixed. The mixing ratio of the carbon powder and the binder was 100: 5 by weight of the solids. This paste is applied to a copper core,
It was dried at 95 ° C., rolled and cut to obtain a negative electrode plate. The weight of carbon in the electrode was 2 g. A battery was assembled and subjected to a high-temperature durability test in the same manner as in Example 1 except for the positive and negative electrodes described above. Table 2 shows the capacity retention rate and capacity recovery rate of each battery after the high-temperature durability test.

【0018】[0018]

【表2】 [Table 2]

【0019】負極に水酸化物等を添加した本実施例の電
池では、容量維持率、容量回復率共に高い値が得られ
た。このことから、負極中への温度上昇により水を生成
する化合物、特に化合物中にOHを持つ水酸化物等の添
加は、電池が高温に曝されることによる容量低下を抑制
する効果があることがわかった。この効果は、水が生じ
る反応により、充電状態の活物質と電解質等が関与する
と考えられる劣化反応が抑制されることによると考えら
れる。
In the battery of this embodiment in which hydroxide or the like was added to the negative electrode, high values were obtained for both the capacity retention rate and the capacity recovery rate. This indicates that the addition of a compound that generates water by raising the temperature into the negative electrode, particularly a hydroxide having OH in the compound, has the effect of suppressing a decrease in capacity due to exposure of the battery to high temperatures. I understood. This effect is considered to be due to the fact that a reaction that generates water suppresses a deterioration reaction that is considered to involve the charged active material and the electrolyte.

【0020】《実施例3》本実施例では、正極合剤中
に、温度上昇により水を生成する物質として結晶水を有
する化合物を添加した例について示す。水酸化物の代わ
りに、表3に示す結晶水を有する化合物を用いて正極を
作製した他は、実施例1と同様にして電池を組み立て
た。表3に、各電池の高温耐久試験後の容量維持率、お
よび容量回復率を示す。本実施例の電池は、容量維持
率、容量回復率共に高い値を有している。この効果は、
水が生じる反応により、充電状態の活物質と電解質等が
関与すると考えられる劣化反応が抑制されることによる
と考えられる。
Embodiment 3 This embodiment shows an example in which a compound having water of crystallization is added to the positive electrode mixture as a substance that generates water by increasing the temperature. A battery was assembled in the same manner as in Example 1 except that a positive electrode was prepared using a compound having water of crystallization shown in Table 3 instead of the hydroxide. Table 3 shows the capacity retention rate and the capacity recovery rate after the high-temperature durability test of each battery. The battery of this example has a high value for both the capacity retention rate and the capacity recovery rate. This effect
It is considered that the reaction that generates water suppresses a degradation reaction that is considered to involve the active material in the charged state, the electrolyte, and the like.

【0021】[0021]

【表3】 [Table 3]

【0022】《実施例4》本実施例では、負極合剤中
に、結晶水を有する化合物を添加した例について示す。
水酸化物の代わりに表4に示す結晶水を有する化合物を
用いて負極を作製した他は、実施例2と同様にして電池
を組み立てた。表4に、各電池の高温耐久試験後の容量
維持率、および容量回復率を示す。本実施例の電池は、
容量維持率、容量回復率共に高い値を有している。
Embodiment 4 This embodiment shows an example in which a compound having water of crystallization is added to the negative electrode mixture.
A battery was assembled in the same manner as in Example 2, except that a negative electrode was produced using a compound having water of crystallization shown in Table 4 instead of the hydroxide. Table 4 shows the capacity retention rate and capacity recovery rate of each battery after the high-temperature durability test. The battery of this embodiment is
Both the capacity retention rate and the capacity recovery rate have high values.

【0023】[0023]

【表4】 [Table 4]

【0024】《実施例5》本実施例では、電解質中に、
温度上昇により水を生成する物質を添加した例について
示す。温度上昇により水を生成する化合物としては水酸
化物を用いた。電解質には、1モル/lの過塩素酸リチ
ウムを溶解したエチレンカーボネートとジメトキシエタ
ンの等比体積混合溶液を用いた。この電解質に、表5に
示す水酸化物を電解質100重量部当たり3重量部の割
合で加えたものを用いた。この場合、加える化合物は、
電解質に溶解する必要はない。正極および負極は、比較
例と同じものをそれぞれ用いて電池を組み立て、実施例
1と同様の条件で評価した。表5に、各電池の高温耐久
試験後の容量維持率、および容量回復率を示す。
Embodiment 5 In the present embodiment, in the electrolyte,
An example in which a substance that generates water by a rise in temperature is added will be described. A hydroxide was used as a compound that generates water by increasing the temperature. As an electrolyte, an equivolume mixed solution of ethylene carbonate and dimethoxyethane in which 1 mol / l of lithium perchlorate was dissolved was used. The electrolyte was prepared by adding a hydroxide shown in Table 5 at a ratio of 3 parts by weight per 100 parts by weight of the electrolyte. In this case, the compound to be added is
It does not need to be dissolved in the electrolyte. A battery was assembled using the same positive electrode and negative electrode as in the comparative example, and evaluated under the same conditions as in Example 1. Table 5 shows the capacity retention rate and capacity recovery rate after the high-temperature durability test of each battery.

【0025】[0025]

【表5】 [Table 5]

【0026】本実施例の電池は、容量維持率、容量回復
率共に高い値を有する。このことから、温度上昇により
水を生成する物質が電解質に添加された場合でも、電極
に添加された場合と同様の効果が得られることがわか
る。同様にして、温度上昇により水を生成する化合物と
して結晶水を含む化合物を用いた場合の結果を表6に示
す。結晶水を含む化合物の電解質への添加により、容量
維持率、および容量回復率共に高い値が得られた。
The battery of this embodiment has a high capacity retention rate and a high capacity recovery rate. From this, it can be seen that even when a substance that generates water due to a rise in temperature is added to the electrolyte, the same effect as when it is added to the electrode can be obtained. Similarly, Table 6 shows the results obtained when a compound containing water of crystallization was used as the compound that generates water by increasing the temperature. By adding the compound containing water of crystallization to the electrolyte, high values were obtained for both the capacity retention rate and the capacity recovery rate.

【0027】[0027]

【表6】 [Table 6]

【0028】《実施例6》本実施例では、温度上昇によ
り水を生成する物質の添加割合について検討した。ま
ず、正極について説明する。加熱により水を生成する物
質として水酸化コバルトを用い、正極活物質に加える割
合を変えて、実施例1と同様の電池を作製した。水酸化
コバルトの添加割合と電池の初期容量および容量維持率
の関係を図2に示す。添加割合が活物質100重量部当
たり20重量部を越えると、電池の初期容量は急激に減
少した。これは、電極中の活物質量が減少することに加
えて、活物質間の導電性が阻害されるためと考えられ
る。一方、加熱後の容量維持率は、添加割合が活物質1
00重量部当たり0.5重量部以上で良好な値を示し
た。これらの結果から、添加割合は活物質100重量部
当たり0.5〜20重量部が適していることがわかる。
ここでは水酸化コバルトを用いたが、他の水酸化物やホ
ウ酸、結晶水を有する化合物を用いた場合でも同様の結
果が得られた。
Example 6 In this example, the addition ratio of a substance that generates water due to a rise in temperature was examined. First, the positive electrode will be described. A battery similar to that of Example 1 was manufactured using cobalt hydroxide as a substance that generates water by heating and changing the ratio of addition to the positive electrode active material. FIG. 2 shows the relationship between the addition ratio of cobalt hydroxide and the initial capacity and capacity retention of the battery. When the addition ratio exceeded 20 parts by weight per 100 parts by weight of the active material, the initial capacity of the battery sharply decreased. This is considered to be due to the fact that, in addition to the decrease in the amount of the active material in the electrode, the conductivity between the active materials is inhibited. On the other hand, as for the capacity retention rate after heating, the addition rate was as follows.
Good values were shown at 0.5 parts by weight or more per 100 parts by weight. From these results, it is understood that the appropriate addition ratio is 0.5 to 20 parts by weight per 100 parts by weight of the active material.
Although cobalt hydroxide was used here, similar results were obtained when other hydroxides, boric acid, and compounds having water of crystallization were used.

【0029】次に、温度上昇により水を生成する物質の
負極への添加割合について検討した。加熱により水を生
成する物質としては水酸化ニッケルを用い、添加割合を
変えて実施例2と同様の電池を作製した。水酸化ニッケ
ルの負極活物質に対する添加割合と電池の初期容量およ
び容量維持率の関係を図3に示す。添加割合が活物質1
00重量部当たり20重量部を越えると、電池の初期容
量は急激に減少した。これは、電極中の活物質量が減少
することに加えて、活物質間の導電性が阻害されるため
と考えられる。一方、加熱後の容量維持率は、添加割合
が活物質100重量部当たり0.5重量部以上で良好な
値を示した。これらの結果から、添加割合は活物質10
0重量部当たり0.5〜20重量部が適していることが
わかる。ここでは水酸化コバルトを用いたが、他の水酸
化物やホウ酸、結晶水を有する化合物を用いた場合でも
同様の結果が得られた。
Next, the rate of addition of a substance that generates water due to a rise in temperature to the negative electrode was examined. A battery similar to that of Example 2 was manufactured by using nickel hydroxide as a substance that generates water by heating and changing the addition ratio. FIG. 3 shows the relationship between the proportion of nickel hydroxide added to the negative electrode active material and the initial capacity and capacity retention of the battery. Addition ratio of active material 1
Above 20 parts by weight per 00 parts by weight, the initial capacity of the battery sharply decreased. This is considered to be due to the fact that, in addition to the decrease in the amount of the active material in the electrode, the conductivity between the active materials is inhibited. On the other hand, the capacity retention ratio after heating showed a good value when the addition ratio was 0.5 parts by weight or more per 100 parts by weight of the active material. From these results, the addition ratio was 10
It is understood that 0.5 to 20 parts by weight per 0 parts by weight is suitable. Although cobalt hydroxide was used here, similar results were obtained when other hydroxides, boric acid, and compounds having water of crystallization were used.

【0030】次に、温度上昇により水を生成する物質の
電解質への添加割合について検討した。加熱により水を
生成する物質としては酸化アルミニウム水和物(Al2O3
3H2O)を用い、添加割合を変えて実施例5と同様の電池
を作製した。電解質に対する添加割合と電池の初期容量
および容量維持率の関係を図4に示す。酸化アルミニウ
ム水和物の添加割合が電解質100重量部当たり30重
量部を越えると、電池の初期容量は急激に減少した。こ
れは、添加物により電解質のイオン伝導性が低下したり
電極の反応が阻害されたりするによると考えられる。一
方、加熱後の容量維持率は、添加割合が活物質100重
量部当たり0.5重量部以上で良好な値を示した。これ
らの結果から、添加割合は電解質100重量部当たり
0.5〜30重量部が適していることがわかる。ここで
はAl2O3・3H2Oを用いたが、他の水酸化物やホウ酸、結晶
水を有する化合物を用いた場合でも同様の結果が得られ
た。
Next, the rate of addition of a substance that produces water by increasing the temperature to the electrolyte was examined. Aluminum oxide hydrate (Al 2 O 3.
A battery similar to that of Example 5 was produced using 3H 2 O) and changing the addition ratio. FIG. 4 shows the relationship between the ratio of addition to the electrolyte and the initial capacity and capacity retention of the battery. When the addition ratio of aluminum oxide hydrate exceeded 30 parts by weight per 100 parts by weight of the electrolyte, the initial capacity of the battery sharply decreased. This is considered to be due to the fact that the additive lowers the ionic conductivity of the electrolyte or inhibits the reaction of the electrode. On the other hand, the capacity retention ratio after heating showed a good value when the addition ratio was 0.5 parts by weight or more per 100 parts by weight of the active material. From these results, it is understood that the suitable addition ratio is 0.5 to 30 parts by weight per 100 parts by weight of the electrolyte. Although Al 2 O 3 .3H 2 O was used here, similar results were obtained when other hydroxides, boric acid, and compounds having water of crystallization were used.

【0031】《実施例7》ここでは、正極合剤、負極合
剤、および電解質以外の電池内の部位に、温度上昇によ
り水を生成する物質を配した場合について検討した。正
極、負極、および電解質については、実施例1で述べた
比較例と同様とした。そして、正・負極とセパレータを
渦巻き状に捲回して構成した電極群の中心部の空間部
分、電極群と電槽の間、および電極群の上部で封口板と
の間に、水酸化ニッケルを0.5g加えた電池を作製し
た。なにも加えず通常通り作製したものを比較例とし
た。実施例1と同様の評価を行った結果を表7に示す。
Example 7 Here, a case was examined in which a substance that generates water due to a rise in temperature was disposed in a part of the battery other than the positive electrode mixture, the negative electrode mixture, and the electrolyte. The positive electrode, the negative electrode, and the electrolyte were the same as in the comparative example described in Example 1. Then, nickel hydroxide is applied to the space in the center of the electrode group formed by spirally winding the positive / negative electrode and the separator, between the electrode group and the battery case, and between the sealing plate at the top of the electrode group. A battery to which 0.5 g was added was prepared. A comparative example was prepared as usual without any addition. Table 7 shows the results of the same evaluation as in Example 1.

【0032】[0032]

【表7】 [Table 7]

【0033】表7に示されるように、電極合剤や電解質
中以外の電池内部に、温度上昇により水を生成する物質
を含ませることにより、容量維持率、容量回復率共に高
い値が得られた。温度上昇により水を生成する物質が電
極合剤や電解質中以外でも電池内部にあれば、電池が一
時的に高温になった場合の特性劣化を抑えられることが
わかった。この効果は、水が生じることにより、充電状
態の活物質と電解質等が関与すると考えられる劣化反応
が抑制されることによると考えられる。ここでは、温度
上昇により水を生成する化合物として水酸化ニッケルを
用いたが、これ以外にも、水酸化亜鉛、水酸化アルミニ
ウム、水酸化カドミウム、水酸化クロム、水酸化コバル
ト、水酸化ニッケル、水酸化マンガン、水酸化カルシウ
ム、水酸化マグネシウム、水酸化ジルコニウム、酸化水
酸化鉄等の水酸化物やホウ酸といった化合物中にOHを
含む化合物、酸化アルミニウム水和物、硝酸バリウム水
和物、硫酸カルシウム水和物、リン酸コバルト水和物、
酸化アンチモン水和物、酸化スズ水和物、酸化チタン水
和物、酸化ビスマス水和物、酸化タングステン水和物等
の結晶水を有する化合物など種々の化合物で同様の試験
を行い、同様の結果が得られた。
As shown in Table 7, by including a substance that generates water by increasing the temperature inside the battery other than in the electrode mixture and the electrolyte, high values of both the capacity retention rate and the capacity recovery rate can be obtained. Was. It has been found that if the substance that generates water due to the temperature rise is inside the battery even in the electrode mixture or the electrolyte, deterioration of the characteristics when the battery temporarily becomes high temperature can be suppressed. This effect is considered to be due to the fact that the generation of water suppresses a deterioration reaction that is considered to involve the charged active material and the electrolyte. Here, nickel hydroxide was used as a compound that generates water by increasing the temperature, but other than this, zinc hydroxide, aluminum hydroxide, cadmium hydroxide, chromium hydroxide, cobalt hydroxide, nickel hydroxide, water Compounds containing OH in compounds such as hydroxides and boric acid such as manganese oxide, calcium hydroxide, magnesium hydroxide, zirconium hydroxide and iron oxide hydroxide, aluminum oxide hydrate, barium nitrate hydrate, calcium sulfate Hydrate, cobalt phosphate hydrate,
Performed similar tests with various compounds such as antimony oxide hydrate, tin oxide hydrate, titanium oxide hydrate, bismuth oxide hydrate, compounds having water of crystallization such as hydrated tungsten oxide, and similar results. was gotten.

【0034】実施例1〜7では、電池内部に、温度上昇
により水を生成する化合物を含むことで、電池が一時的
に高温に曝されたときの特性劣化を抑えることができる
ことを明らかにした。上述のように、この効果は水が生
じることにより、高温での電池の劣化反応が抑えられる
ことによる。このことから、これまでに示した水酸化物
や結晶水を有する化合物以外でも、温度上昇により結果
的に水を生じる物質であればよく、たとえば、吸着して
いる水を放出する物質や、水を含んだカプセル状やパッ
ク状の構造などでも同様の効果が得られることは言うま
でもない。また、水を生成する温度としては60℃以上
が良い。60℃未満の低温で水を生成する物質では、電
極作製時の乾燥で水が生成してしまい、実際に電池が加
熱されたときには反応できないことから適さない。仮
に、乾燥温度を低くしても通常の使用温度範囲で水の生
成反応が起こるので、電池の特性にかえって悪影響を与
えるおそれがあり好ましくない。
In Examples 1 to 7, it was clarified that the deterioration of characteristics when the battery was temporarily exposed to a high temperature could be suppressed by including a compound that generates water by increasing the temperature inside the battery. . As described above, this effect is due to the fact that the generation of water suppresses the degradation reaction of the battery at high temperatures. From this, other than the compounds having a hydroxide or water of crystallization shown so far, any substance that results in water due to a rise in temperature may be used, such as a substance that releases adsorbed water, It is needless to say that the same effect can be obtained even in a capsule-like or pack-like structure containing. The temperature at which water is generated is preferably 60 ° C. or higher. A substance that generates water at a low temperature of less than 60 ° C. is not suitable because water is generated by drying during electrode fabrication and cannot react when the battery is actually heated. Even if the drying temperature is lowered, a water-forming reaction occurs in a normal use temperature range, which may adversely affect the characteristics of the battery, which is not preferable.

【0035】《実施例8》本実施例では、正極合剤中
に、温度上昇時に炭酸ガスを生成する物質を添加した例
について示す。温度上昇時に炭酸ガスを生成する物質と
して、炭酸塩、および炭酸水素塩を用いた。水酸化物の
代わりに表8に示す化合物を用いた他は実施例1と同様
にして電池を組み立てた。表8に、各電池の高温耐久試
験後の容量維持率、および容量回復率を示す。
Embodiment 8 This embodiment shows an example in which a substance that generates carbon dioxide gas when the temperature rises is added to the positive electrode mixture. Carbonate and bicarbonate were used as substances that generate carbon dioxide when the temperature rises. A battery was assembled in the same manner as in Example 1 except that the compounds shown in Table 8 were used instead of the hydroxide. Table 8 shows the capacity retention rate and capacity recovery rate of each battery after the high-temperature durability test.

【0036】[0036]

【表8】 [Table 8]

【0037】正極に炭酸塩または炭酸水素塩を添加した
本実施例の電池は、容量維持率、容量回復率共に高い値
が得られた。このことから、正極合剤中への炭酸塩や炭
酸水素塩の添加は、電池が高温に曝されることによる容
量低下を抑制する効果があることがわかった。この効果
は、充電状態の活物質と電解質等が関与すると考えられ
る劣化反応がこれらの物質により抑制されることによる
と考えられる。
In the battery of the present example in which carbonate or bicarbonate was added to the positive electrode, high values were obtained for both the capacity retention rate and the capacity recovery rate. This indicates that the addition of carbonate or bicarbonate to the positive electrode mixture has an effect of suppressing a decrease in capacity due to exposure of the battery to high temperatures. It is considered that this effect is due to the fact that the degradation reaction considered to involve the charged active material and the electrolyte is suppressed by these materials.

【0038】《実施例9》本実施例では、負極合剤中
に、温度上昇時に炭酸ガスを生成する化合物を添加した
例について示す。温度上昇時に炭酸ガスを生成する化合
物としては、炭酸塩、および炭酸水素塩を用いた。水酸
化物の代わりに表9に示す化合物を用いた他は実施例2
同様にして電池を組み立てた。表9に、各電池の高温耐
久試験後の容量維持率、および容量回復率を示す。
Embodiment 9 This embodiment shows an example in which a compound that generates carbon dioxide gas when the temperature rises is added to the negative electrode mixture. Carbonates and bicarbonates were used as compounds that generate carbon dioxide gas when the temperature rises. Example 2 except that the compounds shown in Table 9 were used instead of the hydroxides
A battery was assembled in the same manner. Table 9 shows the capacity retention rate and the capacity recovery rate after the high-temperature durability test of each battery.

【0039】[0039]

【表9】 [Table 9]

【0040】負極に炭酸塩または炭酸水素塩を添加した
本実施例の電池は、実施例8の電池と同様に容量維持
率、容量回復率共に高い値が得られた。
In the battery of this example in which a carbonate or a hydrogen carbonate was added to the negative electrode, high values were obtained for both the capacity retention rate and the capacity recovery rate as in the battery of Example 8.

【0041】《実施例10》本実施例では、金属リチウ
ム負極に、温度上昇時に炭酸ガスを生成する化合物を添
加した例について示す。温度上昇時に炭酸ガスを生成す
る化合物としては、炭酸リチウムを除く炭酸塩、炭酸水
素塩を用いた。金属リチウム負極は、厚さ600μmの
リチウム箔を切断し、リード端子を取り付けたものを用
いた。表10に示す炭酸塩、または炭酸水素塩を石油系
溶剤に分散し、これを前記負極の表面に吹き付け、溶剤
を蒸発乾燥させた。この操作の前後の重量差から、負極
に付着した炭酸塩または炭酸水素塩の重量を求め、その
割合を金属リチウム100重量部に対して約10重量部
となるようにした。負極以外は実施例2と同様の電池を
組み立てた。電池の評価方法は、11サイクル目の充電
終了後の加熱温度を100℃とする他は実施例1と同様
とした。表10に、各電池の高温耐久試験後の容量維持
率、および容量回復率を示す。
Example 10 This example shows an example in which a compound that generates carbon dioxide gas when the temperature rises is added to a metal lithium anode. As compounds that generate carbon dioxide gas when the temperature rises, carbonates other than lithium carbonate and hydrogen carbonates were used. As the metal lithium negative electrode, one obtained by cutting a lithium foil having a thickness of 600 μm and attaching a lead terminal was used. Carbonates or bicarbonates shown in Table 10 were dispersed in a petroleum-based solvent, sprayed on the surface of the negative electrode, and the solvent was evaporated and dried. From the weight difference before and after this operation, the weight of the carbonate or bicarbonate attached to the negative electrode was determined, and the ratio was adjusted to about 10 parts by weight with respect to 100 parts by weight of metallic lithium. A battery similar to that of Example 2 was assembled except for the negative electrode. The battery was evaluated in the same manner as in Example 1 except that the heating temperature after the completion of the eleventh charge was set to 100 ° C. Table 10 shows the capacity retention rate and the capacity recovery rate after the high-temperature durability test of each battery.

【0042】[0042]

【表10】 [Table 10]

【0043】本実施例の電池は、容量維持率、容量回復
率共に高い値が得られた。このことから、負極が金属リ
チウムの場合でも、炭酸塩や炭酸水素塩の添加は、電池
が高温に曝されることによる容量低下を抑制する効果が
あることがわかった。
In the battery of this example, high values were obtained for both the capacity retention rate and the capacity recovery rate. This indicates that, even when the negative electrode is metallic lithium, the addition of carbonate or bicarbonate has an effect of suppressing a decrease in capacity due to exposure of the battery to high temperatures.

【0044】《実施例11》本実施例では、非水電解質
中に、温度上昇により炭酸ガスを生成する化合物を添加
した例について示す。温度上昇時に炭酸ガスを生成する
化合物としては、炭酸塩、炭酸水素塩を用いた。電解質
への添加物として表11に示す化合物を用いた他は、実
施例5と同様にして電池を組み立て、実施例1と同様の
条件で評価した。表11に、各電池の高温耐久試験後の
容量維持率、および容量回復率を示す。本実施例による
電池は、容量維持率、容量回復率共に高い値を有してい
る。
Embodiment 11 This embodiment shows an example in which a compound that generates carbon dioxide gas by a rise in temperature is added to a nonaqueous electrolyte. Carbonates and bicarbonates were used as compounds that generate carbon dioxide when the temperature rises. A battery was assembled in the same manner as in Example 5 except that the compounds shown in Table 11 were used as additives to the electrolyte, and evaluated under the same conditions as in Example 1. Table 11 shows the capacity retention rate and capacity recovery rate of each battery after the high-temperature durability test. The battery according to the present embodiment has high values for both the capacity retention rate and the capacity recovery rate.

【0045】[0045]

【表11】 [Table 11]

【0046】《実施例12》本実施例では、セパレータ
に、温度上昇時に炭酸ガスを生成する化合物を添加した
例について示す。温度上昇時に炭酸ガスを生成する化合
物として、炭酸塩、および炭酸水素塩を用いた。表12
に示す化合物をジメトキシエタンに分散させ、これを微
孔性のポリプロピレンフィルムからなるセパレータに塗
布し、乾燥させることにより、前記化合物をセパレータ
表面に付着させた。このセパレータを用いた他は、実施
例1で述べた比較例と同様にして電池を組み立てた。表
12に、各電池の高温耐久試験後の容量維持率、および
容量回復率を示す。本実施例による電池は、容量維持
率、容量回復率共に高い値を有している。温度上昇時に
炭酸ガスを生成する化合物をセパレータに添加した例で
も、電極に添加した例と同様の効果が得られることがわ
かる。
Embodiment 12 In this embodiment, an example will be described in which a compound that generates carbon dioxide gas when the temperature rises is added to the separator. Carbonate and bicarbonate were used as compounds that generate carbon dioxide when the temperature rises. Table 12
Was dispersed in dimethoxyethane, applied to a separator made of a microporous polypropylene film, and dried to adhere the compound to the surface of the separator. A battery was assembled in the same manner as in the comparative example described in Example 1, except that this separator was used. Table 12 shows the capacity retention rate and capacity recovery rate of each battery after the high-temperature durability test. The battery according to the present embodiment has high values for both the capacity retention rate and the capacity recovery rate. It can be seen that the same effect as in the example in which the compound that generates carbon dioxide gas at the time of temperature rise is added to the separator can be obtained.

【0047】[0047]

【表12】 [Table 12]

【0048】《実施例13》本実施例では、温度上昇に
より炭酸ガスを生成する物質の添加割合について検討し
た。加熱により炭酸ガスを生成する物質として炭酸コバ
ルトを用い、正極活物質に加える割合を変えて、実施例
1と同様の電池を作製した。炭酸コバルトの添加割合と
電池の初期容量および容量維持率の関係を図5に示す。
添加割合が活物質100重量部当たり25重量部を越え
ると初期容量が急激に減少した。これは、電極中の活物
質量が減少することに加えて、活物質間の導電性が阻害
されるためと考えられる。一方、加熱後の容量維持率
は、活物質100重量部当たり0.5重量部以上の添加
割合で良好な値を示した。これらの結果から、添加割合
は、活物質100重量部当たり0.5〜25重量部が適
していることがわかる。ここでは、炭酸コバルトを用い
たが、実施例8で用いた他の炭酸塩や炭酸水素塩を用い
た場合でも同様の結果が得られる。
Example 13 In this example, the addition ratio of a substance that generates carbon dioxide gas by a rise in temperature was examined. A battery similar to that of Example 1 was manufactured using cobalt carbonate as a substance that generates carbon dioxide gas by heating, and changing the ratio of addition to the positive electrode active material. FIG. 5 shows the relationship between the addition ratio of cobalt carbonate and the initial capacity and capacity retention of the battery.
When the addition ratio exceeded 25 parts by weight per 100 parts by weight of the active material, the initial capacity decreased sharply. This is considered to be due to the fact that, in addition to the decrease in the amount of the active material in the electrode, the conductivity between the active materials is inhibited. On the other hand, the capacity retention ratio after heating showed a good value at an addition ratio of 0.5 part by weight or more per 100 parts by weight of the active material. From these results, it is understood that the appropriate addition ratio is 0.5 to 25 parts by weight per 100 parts by weight of the active material. Here, cobalt carbonate was used, but similar results are obtained when other carbonates or bicarbonates used in Example 8 are used.

【0049】次に、温度上昇により炭酸ガスを生成する
物質の負極への添加割合について検討した。加熱により
水を生成する物質としては炭酸水素ナトリウムを用い、
添加割合を変えて実施例2と同様の電池を作製した。炭
酸水素ナトリウムの負極活物質に対する添加割合と電池
の初期容量および容量維持率の関係を図6に示す。添加
割合が活物質100重量部当たり25重量部を越える
と、電池の初期容量は急激に減少した。これは、電極中
の活物質量が減少することに加えて、活物質間の導電性
が阻害されるためと考えられる。一方、加熱後の容量維
持率は、添加割合が活物質100重量部当たり0.5重
量部以上で良好な値を示した。これらの結果から、添加
割合は活物質100重量部当たり0.5〜25重量部が
適していることがわかる。ここでは炭酸水素ナトリウム
を用いたが、実施例9で用いた他の炭酸塩や炭酸水素塩
を用いた場合でも同様の結果が得られる。
Next, the rate of addition of a substance that generates carbon dioxide gas due to an increase in temperature to the negative electrode was examined. Sodium bicarbonate is used as a substance that generates water by heating,
A battery similar to that of Example 2 was produced by changing the addition ratio. FIG. 6 shows the relationship between the ratio of sodium hydrogen carbonate added to the negative electrode active material and the initial capacity and capacity retention of the battery. When the addition ratio exceeded 25 parts by weight per 100 parts by weight of the active material, the initial capacity of the battery sharply decreased. This is considered to be due to the fact that, in addition to the decrease in the amount of the active material in the electrode, the conductivity between the active materials is inhibited. On the other hand, the capacity retention ratio after heating showed a good value when the addition ratio was 0.5 parts by weight or more per 100 parts by weight of the active material. From these results, it is understood that the appropriate addition ratio is 0.5 to 25 parts by weight per 100 parts by weight of the active material. Although sodium bicarbonate was used here, similar results can be obtained when other carbonates or bicarbonates used in Example 9 were used.

【0050】次に、温度上昇により水を生成する物質の
電解質への添加割合について検討した。加熱により水を
生成する物質としては炭酸亜鉛を用い、添加割合を変え
て実施例5と同様の電池を作製した。電解質に対する添
加割合と電池の初期容量および容量維持率の関係を図7
に示す。炭酸亜鉛の添加割合が電解質100重量部当た
り30重量部を越えると、電池の初期容量は急激に減少
した。これは、添加物により電解質のイオン伝導性が低
下したり電極の反応が阻害されたりするによると考えら
れる。一方、加熱後の容量維持率は、添加割合が活物質
100重量部当たり0.5重量部以上で良好な値を示し
た。これらの結果から、添加割合は電解質100重量部
当たり0.5〜30重量部が適していることがわかる。
ここでは炭酸亜鉛を用いたが、実施例11で用いた他の
炭酸塩や炭酸水素塩を用いた場合でも同様の結果が得ら
れる。
Next, the rate of addition of a substance that produces water by increasing the temperature to the electrolyte was examined. A battery similar to that of Example 5 was manufactured by using zinc carbonate as a substance that generates water by heating and changing the addition ratio. FIG. 7 shows the relationship between the ratio of addition to the electrolyte and the initial capacity and capacity retention of the battery.
Shown in When the addition ratio of zinc carbonate exceeded 30 parts by weight per 100 parts by weight of the electrolyte, the initial capacity of the battery sharply decreased. This is considered to be due to the fact that the additive lowers the ionic conductivity of the electrolyte or inhibits the reaction of the electrode. On the other hand, the capacity retention ratio after heating showed a good value when the addition ratio was 0.5 parts by weight or more per 100 parts by weight of the active material. From these results, it is understood that the suitable addition ratio is 0.5 to 30 parts by weight per 100 parts by weight of the electrolyte.
Here, zinc carbonate was used, but similar results can be obtained when other carbonates or bicarbonates used in Example 11 are used.

【0051】《実施例14》本実施例では、正極合剤、
負極合剤、および電解質以外の電池内の部位に、温度上
昇時に炭酸ガスを生成する化合物を配した例について検
討した。正極、負極、および電解質については、実施例
1で述べた比較例と同様とした。そして、正・負極とセ
パレータを渦巻き状に捲回して構成した電極群の中心部
の空間部分、電極群と電槽の間、および電極群の上部で
封口板との間に、炭酸バリウムを0.5g加えた電池を
作製した。実施例1と同様の条件で評価した結果を表1
3に示す。
Embodiment 14 In this embodiment, a positive electrode mixture,
An example in which a compound that generates carbon dioxide gas when the temperature rises was disposed in a part of the battery other than the negative electrode mixture and the electrolyte was examined. The positive electrode, the negative electrode, and the electrolyte were the same as in the comparative example described in Example 1. Then, barium carbonate was added to the space at the center of the electrode group formed by spirally winding the positive / negative electrode and the separator, between the electrode group and the battery container, and between the sealing plate above the electrode group. A battery to which 0.5 g was added was produced. Table 1 shows the results of the evaluation under the same conditions as in Example 1.
3 is shown.

【0052】[0052]

【表13】 [Table 13]

【0053】表13に示されるように、合剤や電解質中
以外の電池内部に、温度上昇により炭酸ガスを生成する
物質を配することにより、容量維持率、容量回復率共に
高い値が得られた。温度上昇により炭酸ガスを生成する
物質が合剤や電解質中以外でも電池内部にあれば、電池
が一時的に高温になった場合の特性劣化を抑えられるこ
とがわかった。ここでは温度上昇時に炭酸ガスを生成す
る化合物として炭酸バリウムを用いたが、温度上昇時に
炭酸ガスを生成する化合物として先に挙げた化合物でも
同様の同様の効果が得られる。
As shown in Table 13, by arranging a substance that generates carbon dioxide gas due to a temperature rise inside the battery other than in the mixture or the electrolyte, a high capacity retention rate and a high capacity recovery rate can be obtained. Was. It was found that if the substance that generates carbon dioxide gas due to the temperature rise is inside the battery other than in the mixture or the electrolyte, it is possible to suppress the characteristic deterioration when the battery temporarily becomes high temperature. Here, barium carbonate is used as a compound that generates carbon dioxide gas when the temperature rises. However, the same effects can be obtained with the compounds listed above as compounds that generate carbon dioxide gas when the temperature rises.

【0054】《実施例15》実施例8、および9では、
温度上昇時に炭酸ガスを生成する化合物をそれぞれ正極
合剤中、および負極合剤中に混合した例について述べた
が、本実施例では正極または負極の表面に付着させた場
合について述べる。実施例1で述べた比較例と同様にし
て正極板および負極板を作製した。水または石油系溶剤
に、温度上昇時に炭酸ガスを生成する化合物を混合し、
これを前記の電極表面に塗布し、媒体の水または石油系
溶剤を蒸発乾燥させた。このとき化合物は媒体に溶解し
ても、溶解せずに懸濁状態であってもよい。なお、電極
表面に前記の化合物を付着する方法としては、次のよう
な方法もある。すなわち、合剤ペーストの調製に用いた
ものと同様の石油系溶剤に、前記の炭酸ガスを生成する
化合物を混合する。そして、合剤ペーストを芯材に塗布
し、乾燥する前に、前記の混合液を、合剤ペーストの塗
着部に噴霧し、その後95℃で乾燥し、圧延する方法で
ある。この方法によると、添加する化合物と電極合剤と
の密着がよく、電池作製中に添加した化合物が脱落する
ことがない。上記の正極を用いる他は比較例と同様にし
て電池を作製し、実施例1と同様にして評価した。その
結果を表14に示す。また、上記の負極を用いる他は比
較例と同様にして作製した電池の評価結果を表15に示
す。表14及び15から明らかなように、電極表面に前
記化合物を添加した例でも、合剤中に混合した場合と同
様の結果が得られる。
<< Embodiment 15 >> In Embodiments 8 and 9,
Although an example in which a compound that generates carbon dioxide gas when the temperature rises is mixed in the positive electrode mixture and the negative electrode mixture has been described, this embodiment describes a case where the compound is attached to the surface of the positive electrode or the negative electrode. A positive electrode plate and a negative electrode plate were manufactured in the same manner as in the comparative example described in Example 1. Mix water or petroleum solvent with a compound that generates carbon dioxide when the temperature rises,
This was applied to the electrode surface, and the water or petroleum solvent of the medium was evaporated and dried. At this time, the compound may be dissolved in a medium or may be in a suspended state without being dissolved. In addition, as a method of attaching the compound to the electrode surface, the following method is also available. That is, the above-mentioned compound generating carbon dioxide is mixed with the same petroleum solvent used in the preparation of the mixture paste. Then, before applying the mixture paste to the core material and drying the mixture, the mixture is sprayed onto a portion where the mixture paste is applied, and then dried at 95 ° C. and rolled. According to this method, the compound to be added and the electrode mixture have good adhesion, and the compound added during battery fabrication does not fall off. A battery was prepared in the same manner as in the comparative example except that the above positive electrode was used, and evaluated in the same manner as in Example 1. Table 14 shows the results. Table 15 shows the evaluation results of the batteries manufactured in the same manner as the comparative example except that the above-described negative electrode was used. As is clear from Tables 14 and 15, the same results as in the case where the compound was added to the mixture were obtained in the example where the compound was added to the electrode surface.

【0055】[0055]

【表14】 [Table 14]

【0056】[0056]

【表15】 [Table 15]

【0057】《実施例16》本実施例では、正極合剤中
に、アルミニウム、ニッケル、またはコバルトの化合物
を含む例について示す。水酸化物5gの代わりに表16
に示す化合物7gを用いた他は実施例1と同様にして電
池を作製し、実施例1と同様の条件で評価した。各電池
の高温耐久試験後の容量維持率、および容量回復率を表
16に示す。
Embodiment 16 This embodiment shows an example in which a positive electrode mixture contains a compound of aluminum, nickel, or cobalt. Table 16 instead of 5 g of hydroxide
A battery was prepared in the same manner as in Example 1 except that 7 g of the compound shown in Table 1 was used, and evaluated under the same conditions as in Example 1. Table 16 shows the capacity retention rate and capacity recovery rate of each battery after the high-temperature durability test.

【0058】[0058]

【表16】 [Table 16]

【0059】本実施例の電池は、容量維持率、容量回復
率共に高い値を有している。このことから、ここに用い
た化合物は、電池が高温に曝されることによる容量低下
を抑制する効果があることがわかった。この効果は、ア
ルミニウム、ニッケル、またはコバルトの元素の存在に
より、高温下での充電状態の活物質と電解質等が関与す
ると考えられる劣化反応が抑制されることによると考え
られる。
The battery of this example has a high capacity retention rate and a high capacity recovery rate. From this, it was found that the compound used here had an effect of suppressing a decrease in capacity due to exposure of the battery to high temperatures. This effect is considered to be due to the presence of the element of aluminum, nickel, or cobalt, which suppresses a deterioration reaction considered to involve the active material and the electrolyte in a charged state at a high temperature.

【0060】《実施例17》本実施例では、負極合剤中
に、アルミニウム、ニッケル、またはコバルトの化合物
を含む例について示す。水酸化物の代わりに表17に示
す化合物を用いた他は実施例2と同様にして電池を作製
し、評価した。表17に、各電池の高温耐久試験後の容
量維持率、および容量回復率を示す。
Example 17 This example shows an example in which a negative electrode mixture contains a compound of aluminum, nickel, or cobalt. A battery was prepared and evaluated in the same manner as in Example 2 except that the compounds shown in Table 17 were used instead of the hydroxide. Table 17 shows the capacity retention rate and capacity recovery rate of each battery after the high-temperature durability test.

【0061】[0061]

【表17】 [Table 17]

【0062】アルミニウム、ニッケル、またはコバルト
の化合物を負極に添加した場合にも、電池が高温に曝さ
れることによる容量低下を抑制する効果があることがわ
かった。
It has been found that even when a compound of aluminum, nickel or cobalt is added to the negative electrode, there is an effect of suppressing a decrease in capacity due to exposure of the battery to high temperatures.

【0063】《実施例18》本実施例では、電解質中
に、アルミニウム、ニッケル、またはコバルトの化合物
を添加した例について検討した。電解質には、1モル/
lの過塩素酸リチウムを溶解したエチレンカーボネート
とジメトキシエタンの等比体積混合溶液を用いた。この
電解質に、表18に示す化合物を電解質100重量部当
たり2重量部添加えたものを用いた。添加する化合物は
電解質に溶解しても溶解しなくても良い。電解質の他は
前記の比較例と同様にして電池を作製し、評価した。表
18に、各電池の高温耐久試験後の容量維持率、および
容量回復率を示す。
Example 18 In this example, an example in which a compound of aluminum, nickel, or cobalt was added to the electrolyte was examined. 1 mol /
An equi-specific volume mixed solution of ethylene carbonate and dimethoxyethane in which 1 liter of lithium perchlorate was dissolved was used. This electrolyte was prepared by adding a compound shown in Table 18 to the electrolyte by 2 parts by weight per 100 parts by weight of the electrolyte. The compound to be added may or may not be dissolved in the electrolyte. A battery was prepared and evaluated in the same manner as in the comparative example except for the electrolyte. Table 18 shows the capacity retention rate and capacity recovery rate of each battery after the high-temperature durability test.

【0064】[0064]

【表18】 [Table 18]

【0065】アルミニウム、ニッケル、またはコバルト
の化合物を電解質に添加した場合にも、電池が高温に曝
されることによる容量低下を抑制する効果があることが
わかった。
It has been found that when a compound of aluminum, nickel or cobalt is added to the electrolyte, there is also an effect of suppressing a decrease in capacity due to exposure of the battery to high temperatures.

【0066】《実施例19》本実施例では、アルミニウ
ム、ニッケル、またはコバルトの化合物の添加割合につ
いて検討した。正極に添加する化合物には酸化アルミニ
ウムを用いた。酸化アルミニウムの正極活物質に対する
添加割合を変えた他は、実施例16と同様にして電池を
作製した。酸化アルミニウムの添加割合と電池の初期容
量および容量維持率の関係を図8に示す。酸化アルミニ
ウムの添加割合が活物質100重量部当たり20重量部
を越えると、電池の初期容量が急激に減少した。これ
は、電極中の活物質量が減少することに加えて、活物質
間の導電性が阻害されるためと考えられる。一方、加熱
後の容量維持率は、活物質100重量部当たり0.5重
量部以上の添加で良好な値を示した。これらの結果か
ら、添加割合は活物質100重量部当たり0.5〜20
重量部が適していることがわかる。ここでは酸化アルミ
ニウムを用いたが、実施例16で用いたその他の化合物
を用いた場合でも同様の結果が得られる。
Example 19 In this example, the addition ratio of a compound of aluminum, nickel or cobalt was examined. Aluminum oxide was used as a compound to be added to the positive electrode. A battery was fabricated in the same manner as in Example 16, except that the addition ratio of aluminum oxide to the positive electrode active material was changed. FIG. 8 shows the relationship between the addition ratio of aluminum oxide and the initial capacity and capacity retention of the battery. When the addition ratio of aluminum oxide exceeded 20 parts by weight per 100 parts by weight of the active material, the initial capacity of the battery sharply decreased. This is considered to be due to the fact that, in addition to the decrease in the amount of the active material in the electrode, the conductivity between the active materials is inhibited. On the other hand, the capacity retention rate after heating showed a good value by adding 0.5 parts by weight or more per 100 parts by weight of the active material. From these results, the addition ratio was 0.5 to 20 per 100 parts by weight of the active material.
It turns out that the weight part is suitable. Although aluminum oxide was used here, similar results can be obtained when other compounds used in Example 16 were used.

【0067】次に、負極への添加割合について検討し
た。添加する化合物には硫酸ニッケルを用いた。硫酸ニ
ッケルの負極活物質に対する添加割合を変えた他は実施
例17と同様にして電池を作製した。硫酸ニッケルの添
加割合と電池の初期容量および容量維持率の関係を図9
に示す。硫酸ニッッケルの添加割合が活物質100重量
部当たり20重量部を越えると電池の初期容量が急激に
減少した。これは、電極中の活物質量が減少することに
加えて、活物質間の導電性が阻害されるためと考えられ
る。一方、加熱後の容量維持率は、活物質100重量部
当たり0.5重量部以上の添加で良好な値を示した。こ
れらの結果から、添加割合は活物質100重量部当たり
0.5〜20重量部が適していることがわかる。ここで
は硫酸ニッケルを用いたが、実施例17で用いたその他
の化合物を用いた場合でも同様の結果が得られる。
Next, the ratio of addition to the negative electrode was examined. Nickel sulfate was used as the compound to be added. A battery was fabricated in the same manner as in Example 17, except that the addition ratio of nickel sulfate to the negative electrode active material was changed. Fig. 9 shows the relationship between the addition ratio of nickel sulfate and the initial capacity and capacity retention rate of the battery.
Shown in When the addition ratio of nickel sulfate exceeded 20 parts by weight per 100 parts by weight of the active material, the initial capacity of the battery sharply decreased. This is considered to be due to the fact that, in addition to the decrease in the amount of the active material in the electrode, the conductivity between the active materials is inhibited. On the other hand, the capacity retention rate after heating showed a good value by adding 0.5 parts by weight or more per 100 parts by weight of the active material. From these results, it is understood that the appropriate addition ratio is 0.5 to 20 parts by weight per 100 parts by weight of the active material. Here, nickel sulfate was used, but similar results can be obtained when other compounds used in Example 17 were used.

【0068】次に、電解質への添加割合について検討し
た。添加する化合物には酢酸コバルトを用いた。酢酸コ
バルトの電解質に対する添加割合を変えた他は実施例1
8と同様にして電池を作製した。酢酸コバルトの添加割
合と電池の初期容量および容量維持率の関係を図10に
示す。酢酸コバルトの添加割合が電解質100重量部当
たり30重量部を越えると初期容量が急激に減少した。
一方、加熱後の容量維持率は、電解質100重量部当た
り0.5重量部以上の添加で良好な値を示した。これら
の結果から、添加割合は電解質100重量部当たり0.
5〜30重量部が適していることがわかる。ここでは酢
酸コバルトを用いたが、実施例18で用いたその他の化
合物を用いても同様の結果が得られる。
Next, the ratio of addition to the electrolyte was examined. Cobalt acetate was used as a compound to be added. Example 1 except that the addition ratio of cobalt acetate to the electrolyte was changed.
A battery was prepared in the same manner as in No. 8. FIG. 10 shows the relationship between the addition ratio of cobalt acetate and the initial capacity and capacity retention of the battery. When the addition ratio of cobalt acetate exceeded 30 parts by weight per 100 parts by weight of the electrolyte, the initial capacity sharply decreased.
On the other hand, the capacity retention rate after heating showed a good value by adding 0.5 parts by weight or more per 100 parts by weight of the electrolyte. From these results, the addition ratio was 0.1% per 100 parts by weight of the electrolyte.
It turns out that 5 to 30 parts by weight are suitable. Here, cobalt acetate was used, but similar results can be obtained by using other compounds used in Example 18.

【0069】以上の実施例では、正極活物質、負極活物
質および電解質に特定の材料を用いた。しかし、本発明
は、これらに限定されるものではなく、この種非水電解
質二次電池に用いるものとして知られている材料を用い
ることができる。例えば、負極活物質には、黒鉛類縁化
合物、アルミニウム、アルミニウム合金等、正極活物質
には、LiCoO2、LiMn24、LiMnO2、Li
FeO2、MnO2、V25など、リチウムを吸蔵・放出
することのできる材料を用いても同様の効果が得られ
る。また、電解質についても、溶媒にエチレンカーボネ
ート、ジエチルカーボネート、メチルエチルカーボネー
ト、ジメトキシエタン、テトラヒドロフラン、メチルテ
トラヒドロフラン、γ-ブチロラクトン、ジオキソラ
ン、ジメチルスルホキシド等の有機溶媒を、溶質には六
フッ化リン酸リチウム、4フッ化ホウ酸リチウム、トリ
フルオロメタンスルホン酸リチウム等のリチウム塩を用
いることができる。さらに、電池の形態についても円筒
型に限らず、コイン型、角型の電池においても同様に効
果が得られる。
In the above examples, specific materials were used for the positive electrode active material, the negative electrode active material, and the electrolyte. However, the present invention is not limited to these, and materials known to be used for this type of non-aqueous electrolyte secondary battery can be used. For example, negative electrode active materials include graphite analogs, aluminum and aluminum alloys, and positive electrode active materials include LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , and LiMnO 2 .
Similar effects can be obtained by using a material capable of inserting and extracting lithium, such as FeO 2 , MnO 2 , and V 2 O 5 . Also, as for the electrolyte, an organic solvent such as ethylene carbonate, diethyl carbonate, methyl ethyl carbonate, dimethoxyethane, tetrahydrofuran, methyltetrahydrofuran, γ-butyrolactone, dioxolane, dimethyl sulfoxide as a solvent, a lithium hexafluorophosphate as a solute, Lithium salts such as lithium tetrafluoroborate and lithium trifluoromethanesulfonate can be used. Further, the form of the battery is not limited to the cylindrical type, and the same effects can be obtained in coin type and square type batteries.

【0070】[0070]

【発明の効果】以上のように本発明によれば、電池が一
時的に高温に曝された場合にも、その後の特性劣化の少
ない非水電解質二次電池を得ることができる。
As described above, according to the present invention, even when the battery is temporarily exposed to a high temperature, it is possible to obtain a nonaqueous electrolyte secondary battery with little subsequent characteristic deterioration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の非水電解質二次電池の縦断面
略図である。
FIG. 1 is a schematic longitudinal sectional view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】正極への水酸化コバルト添加割合と電池の初期
容量および容量維持率の関係を示す図である。
FIG. 2 is a graph showing the relationship between the proportion of cobalt hydroxide added to a positive electrode and the initial capacity and capacity retention of the battery.

【図3】負極への水酸化ニッケル添加割合と電池の初期
容量および容量維持率の関係を示す図である。
FIG. 3 is a graph showing the relationship between the ratio of nickel hydroxide added to the negative electrode and the initial capacity and capacity retention of the battery.

【図4】電解質への酸化アルミニウム水和物の添加割合
と電池の初期容量および容量維持率の関係を示すずであ
る。
FIG. 4 is a graph showing the relationship between the proportion of aluminum oxide hydrate added to the electrolyte and the initial capacity and capacity retention of the battery.

【図5】正極への炭酸コバルトの添加割合と電池の初期
容量および容量維持率の関係を示す図である。
FIG. 5 is a graph showing the relationship between the proportion of cobalt carbonate added to the positive electrode and the initial capacity and capacity retention of the battery.

【図6】負極への炭酸水素ナトリウムの添加割合と電池
の初期容量および容量維持率の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the ratio of sodium hydrogen carbonate added to a negative electrode and the initial capacity and capacity retention of the battery.

【図7】電解質への炭酸亜鉛の添加割合と電池の初期容
量および容量維持率の関係を示す図である。
FIG. 7 is a graph showing the relationship between the ratio of zinc carbonate added to the electrolyte and the initial capacity and capacity retention of the battery.

【図8】正極への酸化アルミニウムの添加割合と電池の
初期容量および容量維持率の関係を示す図である。
FIG. 8 is a graph showing the relationship between the ratio of aluminum oxide added to the positive electrode and the initial capacity and capacity retention of the battery.

【図9】負極への硫酸ニッケルの添加割合と電池の初期
容量および容量維持率の関係を示す図である。
FIG. 9 is a diagram showing the relationship between the proportion of nickel sulfate added to the negative electrode and the initial capacity and capacity retention of the battery.

【図10】電解質への酢酸コバルトの添加割合と電池の
初期容量および容量維持率の関係を示す図である。
FIG. 10 is a graph showing the relationship between the proportion of cobalt acetate added to the electrolyte and the initial capacity and capacity retention of the battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 佐藤 俊忠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Toyoguchi ▲ Yoshitoku 1006 Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In company

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な正極、充放電可能な負極、
および非水電解質を具備し、電池の内部に、温度上昇に
より水または炭酸ガスを生成する物質を含むことを特徴
とする非水電解質二次電池。
A chargeable / dischargeable positive electrode, a chargeable / dischargeable negative electrode,
And a non-aqueous electrolyte, wherein the inside of the battery contains a substance that generates water or carbon dioxide gas when the temperature rises.
【請求項2】 温度上昇により水を生成する物質が正極
または負極に含まれ、その含有割合が、当該電極の活物
質100重量部当たり0.5〜20重量部である請求項
1に記載の非水電解質二次電池。
2. The method according to claim 1, wherein a substance that generates water by increasing the temperature is contained in the positive electrode or the negative electrode, and the content thereof is 0.5 to 20 parts by weight per 100 parts by weight of the active material of the electrode. Non-aqueous electrolyte secondary battery.
【請求項3】 温度上昇により水を生成する物質が非水
電解質に含まれ、その含有割合が、非水電解質100重
量部当たり0.5〜30重量部である請求項1に記載の
非水電解質二次電池。
3. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte contains a substance that generates water when the temperature rises, and the content thereof is 0.5 to 30 parts by weight per 100 parts by weight of the non-aqueous electrolyte. Electrolyte secondary battery.
【請求項4】 温度上昇により水を生成する物質の、水
を生成する温度が60℃〜300℃である請求項1に記
載の非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the temperature at which water is generated from the substance that generates water by increasing the temperature is 60 ° C. to 300 ° C.
【請求項5】 温度上昇により水を生成する物質が水酸
化物である請求項1に記載の非水電解質二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the substance that generates water when the temperature rises is a hydroxide.
【請求項6】 前記水酸化物が、水酸化亜鉛、水酸化ア
ルミニウム、水酸化カドミウム、水酸化クロム、水酸化
コバルト、水酸化ニッケル、水酸化マンガン、水酸化カ
ルシウム、水酸化マグネシウム、水酸化ジルコニウム、
酸化水酸化鉄、および酸化水酸化ニッケルからなる群よ
り選ばれる少なくとも1種である請求項5に記載の非水
電解質二次電池。
6. The hydroxide is zinc hydroxide, aluminum hydroxide, cadmium hydroxide, chromium hydroxide, cobalt hydroxide, nickel hydroxide, manganese hydroxide, calcium hydroxide, magnesium hydroxide, zirconium hydroxide. ,
The nonaqueous electrolyte secondary battery according to claim 5, wherein the secondary battery is at least one selected from the group consisting of iron oxide hydroxide and nickel oxide hydroxide.
【請求項7】 温度上昇により水を生成する物質がホウ
酸である請求項1に記載の非水電解質二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 1, wherein the substance that generates water when the temperature rises is boric acid.
【請求項8】 温度上昇により水を生成する物質が結晶
水を有する化合物である請求項1に記載の非水電解質二
次電池。
8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the substance that generates water when the temperature rises is a compound having water of crystallization.
【請求項9】 前記結晶水を有する化合物が、酸化アル
ミニウム水和物、硝酸バリウム水和物、硫酸カルシウム
水和物、リン酸コバルト水和物、酸化アンチモン水和
物、酸化スズ水和物、酸化チタン水和物、酸化ビスマス
水和物、および酸化タングステン水和物からなる群より
選ばれる少なくとも1種である請求項8に記載の非水電
解質二次電池。
9. The compound having water of crystallization includes aluminum oxide hydrate, barium nitrate hydrate, calcium sulfate hydrate, cobalt phosphate hydrate, antimony oxide hydrate, tin oxide hydrate, The nonaqueous electrolyte secondary battery according to claim 8, wherein the nonaqueous electrolyte secondary battery is at least one selected from the group consisting of titanium oxide hydrate, bismuth oxide hydrate, and tungsten oxide hydrate.
【請求項10】 温度上昇により水を生成する物質の、
水を生成する温度が60℃〜150℃である請求項4に
記載の非水電解質二次電池。
10. A substance which produces water when its temperature rises,
The non-aqueous electrolyte secondary battery according to claim 4, wherein a temperature at which water is generated is 60C to 150C.
【請求項11】 温度上昇により炭酸ガスを生成する物
質が正極または負極に含まれ、その含有割合が、当該電
極の活物質100重量部当たり0.5〜25重量部であ
る請求項1に記載の非水電解質二次電池。
11. The material according to claim 1, wherein the positive electrode or the negative electrode contains a substance that generates carbon dioxide gas due to a rise in temperature, and the content thereof is 0.5 to 25 parts by weight per 100 parts by weight of the active material of the electrode. Non-aqueous electrolyte secondary battery.
【請求項12】 温度上昇により炭酸ガスを生成する物
質が非水電解質またはセパレータに含まれ、その含有割
合が、非水電解質100重量部当たり0.5〜30重量
部である請求項1に記載の非水電解質二次電池。
12. The non-aqueous electrolyte or the separator contains a substance that generates carbon dioxide gas when the temperature rises, and the content thereof is 0.5 to 30 parts by weight per 100 parts by weight of the non-aqueous electrolyte. Non-aqueous electrolyte secondary battery.
【請求項13】 前記炭酸ガスを生成する物質の、炭酸
ガスを生成する温度が80℃〜300℃である請求項1
に記載の非水電解質二次電池。
13. The substance for producing carbon dioxide gas, wherein the temperature for producing carbon dioxide gas is from 80 ° C. to 300 ° C.
The non-aqueous electrolyte secondary battery according to 1.
【請求項14】 温度上昇により炭酸ガスを生成する物
質が、炭酸塩および炭酸水素塩からなる群より選ばれる
少なくとも1種である請求項1に記載の非水電解質二次
電池。
14. The non-aqueous electrolyte secondary battery according to claim 1, wherein the substance that generates carbon dioxide gas when the temperature rises is at least one selected from the group consisting of carbonates and hydrogen carbonates.
【請求項15】 炭酸塩または炭酸水素塩が、炭酸ルビ
ジウム、炭酸バリウム、炭酸コバルト、炭酸鉄、炭酸ニ
ッケル、炭酸亜鉛、炭酸水素ナトリウム、炭酸水素カリ
ウム、炭酸水素ルビジウム、および炭酸水素セシウムか
らなる群より選ばれる請求項14に記載の非水電解質二
次電池。
15. The group consisting of rubidium carbonate, barium carbonate, cobalt carbonate, iron carbonate, nickel carbonate, zinc carbonate, sodium bicarbonate, potassium bicarbonate, rubidium bicarbonate, and cesium bicarbonate. The non-aqueous electrolyte secondary battery according to claim 14, which is selected from the group consisting of:
【請求項16】 前記炭酸ガスを生成する物質の、炭酸
ガスを生成する温度が80℃〜150℃である請求項1
3に記載の非水電解質二次電池。
16. The carbon dioxide-generating substance has a carbon dioxide-generating temperature of 80 ° C. to 150 ° C.
4. The non-aqueous electrolyte secondary battery according to 3.
【請求項17】 充放電可能な正極、充放電可能な負
極、および非水電解質を具備し、正極、負極、または非
水電解質が、アルミニウム化合物、ニッケル化合物、お
よびコバルト化合物からなる群より選ばれた少なくとも
1種の化合物を含むことを特徴とする非水電解質二次電
池。
17. A chargeable and dischargeable positive electrode, a chargeable and dischargeable negative electrode, and a nonaqueous electrolyte, wherein the positive electrode, the negative electrode, or the nonaqueous electrolyte is selected from the group consisting of an aluminum compound, a nickel compound, and a cobalt compound. A non-aqueous electrolyte secondary battery comprising at least one compound.
【請求項18】 前記化合物が正極または負極に含ま
れ、かつ酸化アルミニウム、硫酸アルミニウム、リン酸
アルミニウム、塩化アルミニウム、酸化ニッケル、硫酸
ニッケル、リン酸ニッケル、炭酸ニッケル酸化コバル
ト、硫酸コバルト、リン酸コバルト、炭酸コバルト、お
よびシュウ酸コバルトからなる群より選ばれる請求項1
7に記載の非水電解質二次電池。
18. The method according to claim 18, wherein the compound is contained in a positive electrode or a negative electrode, and aluminum oxide, aluminum sulfate, aluminum phosphate, aluminum chloride, nickel oxide, nickel sulfate, nickel phosphate, nickel carbonate cobalt oxide, cobalt sulfate, cobalt phosphate 2. The composition of claim 1, wherein the compound is selected from the group consisting of, cobalt carbonate, and cobalt oxalate.
8. The non-aqueous electrolyte secondary battery according to 7.
【請求項19】 前記化合物の正極または負極に含まれ
る割合が、当該電極の活物質100重量部当たり0.5
〜20重量部である請求項18に記載の非水電解質二次
電池。
19. The ratio of the compound contained in the positive electrode or the negative electrode is 0.5 to 100 parts by weight of the active material of the electrode.
The non-aqueous electrolyte secondary battery according to claim 18, wherein the amount is from 20 to 20 parts by weight.
【請求項20】 前記化合物が非水電解質中に含まれ、
かつ酸化アルミニウム、硫酸アルミニウム、リン酸アル
ミニウム、塩化アルミニウム、酢酸アルミニウム、シュ
ウ酸アルミニウム、酸化ニッケル、硫酸ニッケル、リン
酸ニッケル、炭酸ニッケル、過塩素酸ニッケル、硝酸ニ
ッケル、酢酸ニッケル、酸化コバルト、硫酸コバルト、
リン酸コバルト、炭酸コバルト、シュウ酸コバルト、酢
酸コバルト、および過塩素酸コバルトからなる群より選
ばれる請求項17に記載の非水電解質二次電池。
20. The compound is contained in a non-aqueous electrolyte,
And aluminum oxide, aluminum sulfate, aluminum phosphate, aluminum chloride, aluminum acetate, aluminum oxalate, nickel oxide, nickel sulfate, nickel phosphate, nickel carbonate, nickel perchlorate, nickel nitrate, nickel acetate, cobalt oxide, cobalt sulfate ,
The non-aqueous electrolyte secondary battery according to claim 17, which is selected from the group consisting of cobalt phosphate, cobalt carbonate, cobalt oxalate, cobalt acetate, and cobalt perchlorate.
【請求項21】 前記化合物に記載の非水電解質中に含
まれる割合が、前記電解質100重量部当たり0.5〜
30重量部である請求項20に記載の非水電解質二次電
池。
21. The content of the compound in the non-aqueous electrolyte is 0.5 to 100 parts by weight of the electrolyte.
The non-aqueous electrolyte secondary battery according to claim 20, which is 30 parts by weight.
【請求項22】 充放電可能な正極、充放電可能な負
極、非水電解質及びセパレータを具備する非水電解質二
次電池の製造方法において、正極および負極の少なくと
も一方の表面に、温度上昇時に炭酸ガスを生じる化合物
を溶解もしくは分散した液を塗布または噴霧することに
より前記化合物を付着させる工程を有することを特徴と
する非水電解質二次電池の製造方法。
22. A method for manufacturing a non-aqueous electrolyte secondary battery comprising a chargeable / dischargeable positive electrode, a chargeable / dischargeable negative electrode, a nonaqueous electrolyte, and a separator, wherein at least one surface of the positive electrode and the negative electrode has carbonic acid when the temperature rises. A method for producing a non-aqueous electrolyte secondary battery, comprising a step of applying or spraying a liquid in which a compound generating a gas is dissolved or dispersed to apply the compound.
JP10147260A 1997-06-06 1998-05-28 Nonaqueous electrolytic secondary battery and manufacture thereof Pending JPH11191417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10147260A JPH11191417A (en) 1997-06-06 1998-05-28 Nonaqueous electrolytic secondary battery and manufacture thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP14912197 1997-06-06
JP9-149121 1997-06-06
JP28942697 1997-10-22
JP9-289426 1997-10-22
JP10147260A JPH11191417A (en) 1997-06-06 1998-05-28 Nonaqueous electrolytic secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11191417A true JPH11191417A (en) 1999-07-13

Family

ID=27319329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10147260A Pending JPH11191417A (en) 1997-06-06 1998-05-28 Nonaqueous electrolytic secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11191417A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
JP2002117843A (en) * 2000-10-05 2002-04-19 Sony Corp Nonaqueous electrolyte secondary battery
JP2002319436A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Nonaqueous electrolyte cell
JP2005268017A (en) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006278185A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Lithium secondary battery and its producing method
JP2006526878A (en) * 2003-07-30 2006-11-24 エルジー・ケム・リミテッド Lithium ion battery with improved high-temperature storage characteristics
JP2008053220A (en) * 2006-07-25 2008-03-06 Gs Yuasa Corporation:Kk Non-aqueous electrolyte battery and its manufacturing method
JP2008059980A (en) * 2006-09-01 2008-03-13 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008226807A (en) * 2007-02-14 2008-09-25 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2009245829A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing nonaqueous electrolyte
US7622222B2 (en) 2004-10-29 2009-11-24 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2009301798A (en) * 2008-06-11 2009-12-24 Mitsubishi Heavy Ind Ltd Secondary battery
JP2011124125A (en) * 2009-12-11 2011-06-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011175810A (en) * 2010-02-24 2011-09-08 Hitachi Ltd Lithium secondary battery
WO2012172587A1 (en) * 2011-06-13 2012-12-20 株式会社 日立製作所 Lithium secondary battery
JP5144837B1 (en) * 2012-03-13 2013-02-13 株式会社日立製作所 Nonaqueous electrolyte secondary battery
JP2013122889A (en) * 2011-12-12 2013-06-20 Toyota Industries Corp Nonaqueous electrolyte secondary battery, vehicle, and power storage device
JP2013175456A (en) * 2012-01-27 2013-09-05 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
US20140170448A1 (en) * 2011-06-13 2014-06-19 Norio Iwayasu Lithium-ion secondary battery
WO2014115195A1 (en) * 2013-01-28 2014-07-31 株式会社Gsユアサ Nonaqueous electrolyte rechargeable battery
JP2014160552A (en) * 2013-02-19 2014-09-04 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014164831A (en) * 2013-02-22 2014-09-08 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2014156110A1 (en) * 2013-03-27 2014-10-02 株式会社Gsユアサ Non-aqueous electrolyte secondary cell
JP2014191957A (en) * 2013-03-27 2014-10-06 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014192077A (en) * 2013-03-28 2014-10-06 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014207094A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2014207092A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2014207093A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2014216127A (en) * 2013-04-24 2014-11-17 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2014222653A (en) * 2013-05-14 2014-11-27 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2015022900A (en) * 2013-07-19 2015-02-02 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2015022901A (en) * 2013-07-19 2015-02-02 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2015219999A (en) * 2014-05-15 2015-12-07 株式会社豊田自動織機 Positive electrode, power storage device and method for manufacturing positive electrode
JP2016039128A (en) * 2014-08-08 2016-03-22 トヨタ自動車株式会社 All-solid battery
JP2017037765A (en) * 2015-08-07 2017-02-16 トヨタ自動車株式会社 Positive electrode material for nonaqueous electrolyte secondary battery and method for producing the same
JP2017142892A (en) * 2016-02-08 2017-08-17 日立オートモティブシステムズ株式会社 Lithium ion secondary battery and power storage device
JP2018060692A (en) * 2016-10-05 2018-04-12 旭化成株式会社 Nonaqueous secondary battery
US10971712B2 (en) 2017-10-18 2021-04-06 Toyota Jidosha Kabushiki Kaisha Separator including thermoplastic resin and metal hydroxide particles, non-aqueous electrolyte secondary battery, and method of manufacturing separator
EP4040522A1 (en) 2021-02-03 2022-08-10 Samsung SDI Co., Ltd. All-solid-state rechargeable battery

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
JP2002117843A (en) * 2000-10-05 2002-04-19 Sony Corp Nonaqueous electrolyte secondary battery
JP2002319436A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Nonaqueous electrolyte cell
JP2006526878A (en) * 2003-07-30 2006-11-24 エルジー・ケム・リミテッド Lithium ion battery with improved high-temperature storage characteristics
US7846584B2 (en) 2003-07-30 2010-12-07 Lg Chem, Ltd. Lithium ion battery having an improved conserved property at a high temperature
JP2005268017A (en) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4679064B2 (en) * 2004-03-18 2011-04-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery
US7378190B2 (en) 2004-03-18 2008-05-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US7622222B2 (en) 2004-10-29 2009-11-24 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2006278185A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Lithium secondary battery and its producing method
JP4739788B2 (en) * 2005-03-30 2011-08-03 三洋電機株式会社 Method for manufacturing lithium secondary battery
JP2008053220A (en) * 2006-07-25 2008-03-06 Gs Yuasa Corporation:Kk Non-aqueous electrolyte battery and its manufacturing method
JP2008059980A (en) * 2006-09-01 2008-03-13 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008226807A (en) * 2007-02-14 2008-09-25 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2009245829A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing nonaqueous electrolyte
JP2009301798A (en) * 2008-06-11 2009-12-24 Mitsubishi Heavy Ind Ltd Secondary battery
JP2011124125A (en) * 2009-12-11 2011-06-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011175810A (en) * 2010-02-24 2011-09-08 Hitachi Ltd Lithium secondary battery
WO2012172587A1 (en) * 2011-06-13 2012-12-20 株式会社 日立製作所 Lithium secondary battery
JPWO2012172587A1 (en) * 2011-06-13 2015-02-23 株式会社日立製作所 Lithium secondary battery
US20140170448A1 (en) * 2011-06-13 2014-06-19 Norio Iwayasu Lithium-ion secondary battery
JP2013122889A (en) * 2011-12-12 2013-06-20 Toyota Industries Corp Nonaqueous electrolyte secondary battery, vehicle, and power storage device
JP2013175456A (en) * 2012-01-27 2013-09-05 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2013175457A (en) * 2012-01-27 2013-09-05 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2013175458A (en) * 2012-01-27 2013-09-05 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2013136441A1 (en) * 2012-03-13 2013-09-19 株式会社日立製作所 Non-aqueous electrolyte secondary battery
JP5144837B1 (en) * 2012-03-13 2013-02-13 株式会社日立製作所 Nonaqueous electrolyte secondary battery
WO2014115195A1 (en) * 2013-01-28 2014-07-31 株式会社Gsユアサ Nonaqueous electrolyte rechargeable battery
JP2014160552A (en) * 2013-02-19 2014-09-04 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014164831A (en) * 2013-02-22 2014-09-08 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2014156110A1 (en) * 2013-03-27 2014-10-02 株式会社Gsユアサ Non-aqueous electrolyte secondary cell
JP2014191957A (en) * 2013-03-27 2014-10-06 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014192077A (en) * 2013-03-28 2014-10-06 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014207094A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2014207092A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2014207093A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2014216127A (en) * 2013-04-24 2014-11-17 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2014222653A (en) * 2013-05-14 2014-11-27 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2015022901A (en) * 2013-07-19 2015-02-02 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2015022900A (en) * 2013-07-19 2015-02-02 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2015219999A (en) * 2014-05-15 2015-12-07 株式会社豊田自動織機 Positive electrode, power storage device and method for manufacturing positive electrode
JP2016039128A (en) * 2014-08-08 2016-03-22 トヨタ自動車株式会社 All-solid battery
JP2017037765A (en) * 2015-08-07 2017-02-16 トヨタ自動車株式会社 Positive electrode material for nonaqueous electrolyte secondary battery and method for producing the same
US10720639B2 (en) 2015-08-07 2020-07-21 Toyota Jidosha Kabushiki Kaisha Positive electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2017142892A (en) * 2016-02-08 2017-08-17 日立オートモティブシステムズ株式会社 Lithium ion secondary battery and power storage device
WO2017138410A1 (en) * 2016-02-08 2017-08-17 日立オートモティブシステムズ株式会社 Lithium ion secondary cell and storage device
JP2018060692A (en) * 2016-10-05 2018-04-12 旭化成株式会社 Nonaqueous secondary battery
US10971712B2 (en) 2017-10-18 2021-04-06 Toyota Jidosha Kabushiki Kaisha Separator including thermoplastic resin and metal hydroxide particles, non-aqueous electrolyte secondary battery, and method of manufacturing separator
EP4040522A1 (en) 2021-02-03 2022-08-10 Samsung SDI Co., Ltd. All-solid-state rechargeable battery

Similar Documents

Publication Publication Date Title
JPH11191417A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JP4325112B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP4022889B2 (en) Electrolyte and battery
JP5084802B2 (en) Lithium ion secondary battery
US6150053A (en) Non-aqueous electrolyte secondary battery
JPH06325765A (en) Nonaqueous electrolytic secondary battery and its manufacture
CN102214818B (en) Battery
JP3480190B2 (en) Non-aqueous electrolyte secondary battery
JP4710099B2 (en) Nonaqueous electrolyte secondary battery
JPH05315006A (en) Noaqueous electrolyte cell and manufacture thereof
JP2005317266A (en) Method of manufacturing nonaqueous electrolyte battery
JP2005285545A (en) Lithium secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JP2008171589A (en) Negative electrode and battery
JP2003017058A (en) Non-aqueous electrolyte battery
JP2002083631A (en) Organic electrolytic solution secondary battery
JP2003157896A (en) Nonaqueous electrolyte secondary battery
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JPH1140159A (en) Nonaqueous electrolyte secondary battery
JP2006216450A (en) Battery
JP2002298862A (en) Aluminum battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPH11312540A (en) Nonaqueous electrolyte secondary battery