JPH11183385A - Fluorescence analyzer meter - Google Patents

Fluorescence analyzer meter

Info

Publication number
JPH11183385A
JPH11183385A JP35793097A JP35793097A JPH11183385A JP H11183385 A JPH11183385 A JP H11183385A JP 35793097 A JP35793097 A JP 35793097A JP 35793097 A JP35793097 A JP 35793097A JP H11183385 A JPH11183385 A JP H11183385A
Authority
JP
Japan
Prior art keywords
fluorescence
light
wavelength
gas
sulfur dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35793097A
Other languages
Japanese (ja)
Inventor
Akimasa Mega
章正 目賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP35793097A priority Critical patent/JPH11183385A/en
Publication of JPH11183385A publication Critical patent/JPH11183385A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluorescence analyzer water capable of measuring the content of sulfur dioxide without interfering with nitrogen monoxide even if nitrogen monoxide is contained in the measured gas. SOLUTION: The light from an exciting light source 2 in a light source chamber 1 passes through the gas filter 4 of an exciting wavelength selection section 3, the light near the wavelengths 214 nm and 226 nm is selectively absorbed j the nitrogen monoxide gas sealed in a gas filter 4, and the light of the wavelength 250 nm or above is absorbed by an optical filter 5. The sulfur dioxide in the sample gas is excited by this light and emits fluorescence, however the nitrogen monoxide emits no fluorescence because the light of the wavelengths 214 nm and 226 nm for excitation is lacking, only the fluorescence by the sulfur dioxide reaches a detector 10 in a detection section 9 as the light of the wavelength 300-400 nm through the optical filter 8 of a fluorescence wavelength selection section 7, and the fluorescence intensity of the sulfur dioxide is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば大気や石炭
・石油などの硫黄化合物を含む燃料の燃焼による工場排
気中の二酸化硫黄などの濃度を測定するために用いられ
る蛍光分析計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescence spectrometer used for measuring the concentration of sulfur dioxide and the like in factory exhaust gas resulting from combustion of fuel containing sulfur compounds such as air and coal and petroleum.

【0002】[0002]

【従来の技術】大気や工場排気中の二酸化硫黄ガスの分
析手法の内、光を用いた分析としては光吸収分析、蛍光
分析などがあるが、蛍光分析法は試料ガスに紫外線など
の励起光を照射し、試料ガス中に含まれる二酸化硫黄分
子が励起状態から基底状態に戻る際に発光する蛍光の強
度を測定して二酸化硫黄濃度を計測する。
2. Description of the Related Art Among the methods for analyzing sulfur dioxide gas in the atmosphere and factory exhaust, there are light absorption analysis and fluorescence analysis as analysis using light. In the fluorescence analysis method, excitation light such as ultraviolet light is applied to a sample gas. And the intensity of fluorescence emitted when the sulfur dioxide molecules contained in the sample gas return from the excited state to the ground state is measured to measure the sulfur dioxide concentration.

【0003】一般に分子が励起状態にあげられるのは光
の吸収によるものであり、従って照射する励起光の波長
はその物質の光吸収波長と一致する。この蛍光を発する
ための励起光波長分布を励起スペクトルといい、分子の
電子状態の変化に起因する吸収は通常紫外域に強く現れ
るから励起波長は紫外域から選ばれる。励起スペクトル
の最高強度を示す波長が最も効率的ではあるが他にいろ
いろな条件も考慮する必要がある。一方、励起状態にあ
る分子は短時間のうちにエネルギを失い基底状態に戻る
がこの失われるエネルギが光(蛍光)として放出され
る。この蛍光も或波長領域に分布しており、これを蛍光
スペクトルというが失われるエネルギは光の放出(蛍
光)以外にも使われるから蛍光スペクトルは励起波長よ
りも長い波長(エネルギの小さい)である。
[0003] Generally, molecules are brought into an excited state by absorption of light, and therefore, the wavelength of the exciting light to be irradiated coincides with the light absorption wavelength of the substance. The excitation light wavelength distribution for emitting this fluorescence is called an excitation spectrum, and the absorption wavelength due to the change in the electronic state of the molecule usually appears strongly in the ultraviolet region, so the excitation wavelength is selected from the ultraviolet region. Although the wavelength exhibiting the highest intensity of the excitation spectrum is the most efficient, various other conditions also need to be considered. On the other hand, the molecules in the excited state lose energy in a short time and return to the ground state, but this lost energy is emitted as light (fluorescence). This fluorescence is also distributed in a certain wavelength region, and the energy lost as a fluorescence spectrum is used for other than light emission (fluorescence), so the fluorescence spectrum has a wavelength longer than the excitation wavelength (small energy). .

【0004】このように物質の蛍光を測定するには紫外
線域の波長を選んで励起光として物質を照射し、励起光
とは異なる、より長波長域の蛍光スペクトル領域の波長
のみを検出してその物質の蛍光スペクトル強度が測定さ
れる。具体的には、図2のような蛍光分析計が用いら
れ、二酸化硫黄分子を励起させる励起波長として波長2
20nm付近の紫外光が選ばれるが、そのための励起光
源2としては例えば亜鉛ランプ、重水素ランプ、キセノ
ンランプ等が用いられる。そしてこれらの励起光源2か
ら波長220nmの光を取り出すために励起波長選択部
3を設け、輝線スペクトル光源を用いる場合には光学フ
ィルタ5として比較的半値幅の広いガラスフィルタや干
渉フィルタが用いられ、連続スペクトル光源の場合には
狭帯域の干渉フィルタを用いて励起波長の光のみを試料
に照射する。
As described above, in order to measure the fluorescence of a substance, a wavelength in the ultraviolet region is selected, the substance is irradiated as excitation light, and only the wavelength of a fluorescence spectrum region in a longer wavelength region different from the excitation light is detected. The fluorescence spectrum intensity of the substance is measured. Specifically, a fluorescence analyzer as shown in FIG. 2 is used, and a wavelength of 2 is used as an excitation wavelength for exciting sulfur dioxide molecules.
Ultraviolet light in the vicinity of 20 nm is selected, and as the excitation light source 2 therefor, for example, a zinc lamp, a deuterium lamp, a xenon lamp or the like is used. An excitation wavelength selector 3 is provided to extract light having a wavelength of 220 nm from these excitation light sources 2. When an emission line spectrum light source is used, a glass filter or an interference filter having a relatively large half width is used as the optical filter 5, In the case of a continuous spectrum light source, only a light of an excitation wavelength is irradiated on a sample using a narrow band interference filter.

【0005】二酸化硫黄分子の蛍光スペクトルは波長2
50nmから400nmの波長域であって、この領域の
光波長を検出するために蛍光波長選択部7を設け、光学
フィルタ8としてガラスフィルタ、干渉フィルタを用い
て特定の蛍光スペクトル領域のみを検出する。
The fluorescence spectrum of a sulfur dioxide molecule has a wavelength of 2
In the wavelength range of 50 nm to 400 nm, a fluorescence wavelength selector 7 is provided to detect the light wavelength in this region, and only a specific fluorescence spectrum region is detected using a glass filter and an interference filter as the optical filter 8.

【0006】[0006]

【発明が解決しようとする課題】従来の蛍光分析計は以
上のように構成されているが、蛍光測定を行う場合に最
も重要な問題は如何にして測定対象物質の蛍光スペクト
ルのみを検出するかにある。
The conventional fluorescence spectrometer is constructed as described above, but the most important problem in performing fluorescence measurement is how to detect only the fluorescence spectrum of the substance to be measured. It is in.

【0007】基本的に励起スペクトルと蛍光スペクトル
を物質によって異にし得る蛍光分析法が他の分析法に比
べて選択性(目的とする物質のみを測定する能力)が高
いとは云うものの試料が測定対象物質単体でない場合、
通常の光学的手段(フイルタや分光器等)によって励起
波長および蛍光スペクトルを選択して測定している場
合、測定対象物質以外の物質による蛍光を検出してしま
う危険性が十分にある。前処理としてこれら異物質を排
除する装置を設置することも当然考えられるが、蛍光分
析計としての装置のコンパクト化、コストの問題を考え
れば採用し難い。大気や燃焼ガスを試料ガスとしてガス
中の二酸化硫黄分子を測定する場合、前述のように励起
光として220nm付近の波長が選択されるが、試料ガ
ス中には一酸化窒素を含有している場合がある。この一
酸化窒素は波長214nmおよび226nm付近にスポ
ット状の狭い吸収波長域をもち、二酸化硫黄に対する励
起光の波長220nmと極端に近接しており、通常利用
可能なフィルタでは狭帯域干渉フィルタを用いてもこれ
だけ近接している場合分離は困難であり、かつ蛍光スペ
クトルの分布はもともと広いものであるから両者の蛍光
スペクトルも重なってしまうため、結局一酸化窒素の蛍
光をも測定してしまうと云うことになり、目的成分であ
る二酸化硫黄の測定に対して干渉影響を示して測定誤差
となる問題があった。
[0007] Basically, although a fluorescence analysis method capable of making an excitation spectrum and a fluorescence spectrum different depending on a substance has higher selectivity (ability to measure only a target substance) than other analysis methods, a sample is measured. If the target substance is not a single substance,
When the excitation wavelength and the fluorescence spectrum are selected and measured by ordinary optical means (a filter, a spectroscope, or the like), there is a sufficient risk that fluorescence due to substances other than the substance to be measured is detected. It is naturally conceivable to install a device for removing these foreign substances as a pretreatment, but it is difficult to adopt it in view of the problems of compactness and cost of the device as a fluorescence analyzer. When measuring sulfur dioxide molecules in the gas using air or combustion gas as a sample gas, a wavelength around 220 nm is selected as the excitation light as described above, but when the sample gas contains nitric oxide, There is. This nitric oxide has a narrow spot-like absorption wavelength range around 214 nm and 226 nm, and is extremely close to the excitation light wavelength of 220 nm for sulfur dioxide. However, if they are so close together, it is difficult to separate them, and since the distribution of the fluorescence spectrum is originally broad, the fluorescence spectra of both overlap, so that the fluorescence of nitric oxide is also measured in the end. , And there is a problem that an interference effect is exerted on the measurement of sulfur dioxide as a target component, resulting in a measurement error.

【0008】本発明は、このような事情に鑑みてなされ
たものであって、試料ガス中に一酸化窒素が含まれてい
ても二酸化硫黄の測定を行うことができる蛍光分析計を
提供することを目的とする。
The present invention has been made in view of such circumstances, and provides a fluorescence spectrometer capable of measuring sulfur dioxide even when nitrogen monoxide is contained in a sample gas. With the goal.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の蛍光分析計は、光源室と試料室の間の光路
に励起波長選択部を設け、該選択部に一酸化窒素ガスを
封入したガスフィルタを備えるものである。
In order to achieve the above object, a fluorescence spectrometer according to the present invention is provided with an excitation wavelength selection section in an optical path between a light source chamber and a sample chamber, and the selection section includes a nitric oxide gas. Is provided with a gas filter in which is sealed.

【0010】[0010]

【発明の実施の形態】本発明の蛍光分析計の一実施例を
図1により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the fluorescence analyzer of the present invention will be described with reference to FIG.

【0011】図1において、1は光源室で内に励起光源
2としてキセノンランプが設置されている。励起光源2
は分析対象ガスを励起できるものならば何でもよく、そ
の種類は連続光、パルス光、連続光をチョッパにてパル
ス化するなどその手法を問わない。例えば他に紫外線を
発するランプ(亜鉛や重水素等)あるいはレーザを使用
することができる。3は励起波長選択部で内部に一酸化
窒素ガスを封入したガスフィルタ4と光学フィルタ5が
設置されている。光学フィルタ5は励起波長のみを透過
させ、蛍光スペクトルを透過させないフィルタとして長
波長カットフィルタが用いられる。他に、例えば波長2
20nmを中心とする半値幅6nm程度の狭帯域バンド
パス干渉フィルタ等が用いられる。
In FIG. 1, reference numeral 1 denotes a light source chamber in which a xenon lamp is installed as an excitation light source 2. Excitation light source 2
Is not limited as long as it can excite the gas to be analyzed, and the type thereof is not limited, such as continuous light, pulsed light, or continuous light pulsed by a chopper. For example, a lamp (zinc, deuterium, or the like) that emits ultraviolet light or a laser can be used. Numeral 3 denotes an excitation wavelength selection unit, in which a gas filter 4 in which nitric oxide gas is sealed and an optical filter 5 are provided. As the optical filter 5, a long wavelength cut filter is used as a filter that transmits only the excitation wavelength and does not transmit the fluorescence spectrum. Alternatively, for example, wavelength 2
A narrow-band bandpass interference filter having a half width of about 6 nm centered at 20 nm is used.

【0012】6は試料室で、例えば中空の円筒体からな
り、励起波長選択部3と連結されるところには開口が設
けてあり必要に応じてその開口には励起用集光レンズ1
3が嵌入される。また試料室6にはサンプル導入部11
およびサンプル排出部12が設けてある。7は蛍光波長
選択部で内部に光学フィルタ8が設置されている。光学
フィルタ8は、例えば波長300〜400nmの領域の
みを透過させるフィルタであり、試料室6の蛍光波長選
択部7が連結されるところには開口が設けてあり、必要
に応じてその開口には蛍光用集光レンズ14が嵌入され
る。
Reference numeral 6 denotes a sample chamber, which is formed of, for example, a hollow cylindrical body, and has an opening provided at a place where it is connected to the excitation wavelength selecting section 3.
3 is inserted. The sample chamber 6 has a sample introduction section 11.
And a sample discharging unit 12. Reference numeral 7 denotes a fluorescence wavelength selection unit in which an optical filter 8 is installed. The optical filter 8 is, for example, a filter that transmits only the wavelength region of 300 to 400 nm. An opening is provided in the sample chamber 6 where the fluorescence wavelength selection unit 7 is connected. The fluorescent condenser lens 14 is fitted.

【0013】9は中空の円筒体からなる検出部で、内部
には検出器10として光電子増倍管が設置されている。
検出器10は蛍光スペクトルの波長を検出できるものな
ら何でもよく、例えば光電管、光伝導セル、フォトダイ
オード等が使用できる。
Reference numeral 9 denotes a detection unit formed of a hollow cylindrical body, and a photomultiplier tube as a detector 10 is installed therein.
The detector 10 may be anything that can detect the wavelength of the fluorescence spectrum, and for example, a phototube, a photoconductive cell, a photodiode, or the like can be used.

【0014】この装置において、蛍光の検出プロセスは
次のように行われる。試料ガスがサンプル導入部11よ
り試料室6に封入される。光源室1内の励起光源2とし
て用いられたキセノンランプの発光は波長200nm以
上の幅広い波長を含む白色光である。この光はまず励起
波長選択部3のガスフィルタ4を通過するが、ガスフィ
ルタ4に封入されている一酸化窒素ガスのために波長2
14nmおよび226nm付近の光が選択的に吸収さ
れ、さらに光学フィルタ5として用いられている長波長
カットフィルタで波長250nm以上の光が吸収され
る。従って、試料室6内の試料ガスに照射される光の波
長領域は200〜250nmの光で、かつ一酸化窒素ガ
スの吸収により波長214nmおよび226nmの光を
欠いた光となる。
In this apparatus, the process of detecting fluorescence is performed as follows. A sample gas is sealed in the sample chamber 6 from the sample introduction unit 11. The light emitted from the xenon lamp used as the excitation light source 2 in the light source chamber 1 is white light including a wide wavelength of 200 nm or more. This light first passes through the gas filter 4 of the excitation wavelength selection unit 3, but has a wavelength of 2 due to nitric oxide gas sealed in the gas filter 4.
Light near 14 nm and 226 nm is selectively absorbed, and light with a wavelength of 250 nm or more is absorbed by the long wavelength cut filter used as the optical filter 5. Therefore, the wavelength range of the light applied to the sample gas in the sample chamber 6 is light having a wavelength of 200 to 250 nm and light lacking the wavelengths of 214 nm and 226 nm due to absorption of the nitric oxide gas.

【0015】この光によって、試料ガス中の二酸化硫黄
は励起され蛍光を発するが、一酸化窒素の方は励起し得
る波長214nmおよび226nmの光が欠けているた
め蛍光を発せず、二酸化硫黄による蛍光のみが蛍光波長
選択部7の光学フィルタ8によって波長300〜400
nmの光として検出部9内の検出器10に到達し、二酸
化硫黄の蛍光強度が測定される。
This light excites sulfur dioxide in the sample gas and emits fluorescence, but nitric oxide does not emit fluorescence due to lack of excitable wavelengths of 214 nm and 226 nm, and emits fluorescence due to sulfur dioxide. Only the wavelengths of 300 to 400 are determined by the optical filter 8 of the fluorescence wavelength selection unit 7.
The light reaches the detector 10 in the detection unit 9 as light of nm, and the fluorescence intensity of sulfur dioxide is measured.

【0016】なお上記実施例では、ガスフィルタ4と光
学フィルタ5は分離されているが、ガスフィルタ4の窓
材を光学フィルタ5の材質で構成させたり、また光学フ
ィルタ5が干渉フィルタの場合はガスフィルタ4の窓板
に薄膜処理を施すなどして、光学フィルタ5の役割を付
与すればガスフィルタ4と光学フィルタ5は一体化させ
ることが可能である。
In the above embodiment, the gas filter 4 and the optical filter 5 are separated from each other. However, when the window material of the gas filter 4 is made of the material of the optical filter 5, or when the optical filter 5 is an interference filter, The gas filter 4 and the optical filter 5 can be integrated by giving the role of the optical filter 5 by performing a thin film treatment on the window plate of the gas filter 4 or the like.

【0017】また図1において集光レンズ13および1
4は試料室6の開口に嵌入されるとしたが、これらのレ
ンズは励起光源2と試料室6の間および試料室6と検出
器10との間の光路中の光学的結像関係を満足させる任
意の位置に配置することができる。
In FIG. 1, the condenser lenses 13 and 1
Although the lens 4 is fitted into the opening of the sample chamber 6, these lenses satisfy the optical imaging relationship in the optical path between the excitation light source 2 and the sample chamber 6 and between the sample chamber 6 and the detector 10. Can be arranged at any position.

【0018】[0018]

【発明の効果】本発明の蛍光分析計は上記のように構成
されており、励起波長を選択する励起波長選択部に一酸
化窒素ガスを封入したガスフィルタを設置したので試料
ガス中に一酸化窒素が含まれていても一酸化窒素を励起
させることなく、従って二酸化硫黄の蛍光のみを測定す
ることができる。
The fluorescence spectrometer of the present invention is constructed as described above, and a gas filter containing nitrogen monoxide gas is installed in an excitation wavelength selection section for selecting an excitation wavelength, so that the monoxide is contained in the sample gas. Even if nitrogen is contained, it does not excite nitric oxide, so that only the fluorescence of sulfur dioxide can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蛍光分析計の一実施例を示す図であ
る。
FIG. 1 is a diagram showing one embodiment of a fluorescence analyzer of the present invention.

【図2】従来の蛍光分析計を示す図である。FIG. 2 is a diagram showing a conventional fluorescence analyzer.

【符号の説明】[Explanation of symbols]

2 励起光源 3 励起波長選択部 4 ガスフィルタ 5 光学フィルタ 6 試料室 7 蛍光波長選択部 8 光学フィルタ 10 検出器 2 Excitation light source 3 Excitation wavelength selector 4 Gas filter 5 Optical filter 6 Sample chamber 7 Fluorescence wavelength selector 8 Optical filter 10 Detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料ガスが導入される試料室と、該試料
室に励起光を照射する励起光源を設置した光源室と、該
試料室から放射される蛍光を検出する検出部とを備えた
蛍光分析計において、光源室と試料室の間の光路に励起
波長選択部を設け、該選択部に一酸化窒素ガスを封入し
たガスフィルタを備えたことを特徴とする蛍光分析計。
A sample chamber into which a sample gas is introduced, a light source chamber in which an excitation light source for irradiating the sample chamber with excitation light is provided, and a detection unit for detecting fluorescence emitted from the sample chamber. 1. A fluorescence spectrometer, comprising: an excitation wavelength selector provided in an optical path between a light source chamber and a sample chamber; and a gas filter filled with nitric oxide gas in the selector.
JP35793097A 1997-12-25 1997-12-25 Fluorescence analyzer meter Pending JPH11183385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35793097A JPH11183385A (en) 1997-12-25 1997-12-25 Fluorescence analyzer meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35793097A JPH11183385A (en) 1997-12-25 1997-12-25 Fluorescence analyzer meter

Publications (1)

Publication Number Publication Date
JPH11183385A true JPH11183385A (en) 1999-07-09

Family

ID=18456672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35793097A Pending JPH11183385A (en) 1997-12-25 1997-12-25 Fluorescence analyzer meter

Country Status (1)

Country Link
JP (1) JPH11183385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427378B2 (en) 2003-08-13 2008-09-23 Horiba, Ltd. Analysis method and apparatus for sulfur component using ultraviolet fluorescence
KR20160071001A (en) * 2014-12-11 2016-06-21 엘지이노텍 주식회사 Gas sensor and gas detecting apparatus including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427378B2 (en) 2003-08-13 2008-09-23 Horiba, Ltd. Analysis method and apparatus for sulfur component using ultraviolet fluorescence
EP2182344A1 (en) 2003-08-13 2010-05-05 HORIBA, Ltd. Analysis method and apparatus for measuring concentrations of sulfur components using ultraviolet fluorescence
KR20160071001A (en) * 2014-12-11 2016-06-21 엘지이노텍 주식회사 Gas sensor and gas detecting apparatus including the same

Similar Documents

Publication Publication Date Title
EP2315004B1 (en) Spectrometer, spectrometry, and spectrometry program for use with an integrating sphere
US7154595B2 (en) Cavity enhanced optical detector
US5621522A (en) Fiber optic probe for determination of trace levels of organic pollutants using Raman spectroscopy
EP0486504B1 (en) Optical read head for immunoassay instrument
US20040011965A1 (en) Method and apparatus for detecting chemical contamination
US20040155202A1 (en) Methods and apparatus for molecular species detection, inspection and classification using ultraviolet fluorescence
JPH0915156A (en) Spectroscopic measuring method and measuring device
US20120043477A1 (en) Method for Detecting Drag Reducer Additives in Gasoline
JPH0523617B2 (en)
Kricka et al. 9 Optical Techniques
KR20150115036A (en) NO/NO2 multi-gases analyzer using non-dispersive ultraviolet method and NO/NO2 multi-gases analyzing method
JPH11183385A (en) Fluorescence analyzer meter
WO2022202723A1 (en) Fluorescence measuring device
Fujiwara et al. Thermal lensing colorimetry of nitrite ion with single-laser system
JP2000146839A (en) Gas component concentration measuring device and method therefor
JP4146761B2 (en) Fluorescence measuring device
Petrucci et al. Analytical and spectroscopic characterization of double-resonance laser-induced fluorescence of gold atoms in a graphite furnace and in a flame
JP3448135B2 (en) Optical axis moving type fluorescence photometer and measurement method
JP2004527767A (en) Optical detection of chemical species in enriched media
JP2606921Y2 (en) SO2 analyzer using ultraviolet absorption method
JPH10115584A (en) Fluorescent flow cell
JPS58103646A (en) Method and device for calibrating measurement of radiation
JPH0798274A (en) Fluorometric analyzer
SU1165952A1 (en) Atomic fluorescence analyzer
JPH0452551A (en) Component analyzing method and apparatus