JPH11181336A - Coating fluid for permselective membrane, permselective membrane, and multi layered permselective membrane - Google Patents

Coating fluid for permselective membrane, permselective membrane, and multi layered permselective membrane

Info

Publication number
JPH11181336A
JPH11181336A JP10261367A JP26136798A JPH11181336A JP H11181336 A JPH11181336 A JP H11181336A JP 10261367 A JP10261367 A JP 10261367A JP 26136798 A JP26136798 A JP 26136798A JP H11181336 A JPH11181336 A JP H11181336A
Authority
JP
Japan
Prior art keywords
fine particles
solution
film
permselective membrane
permselective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10261367A
Other languages
Japanese (ja)
Other versions
JP4058822B2 (en
Inventor
Hiromitsu Takeda
広充 武田
Kenji Adachi
健治 足立
Hiroko Kuno
裕子 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP26136798A priority Critical patent/JP4058822B2/en
Publication of JPH11181336A publication Critical patent/JPH11181336A/en
Application granted granted Critical
Publication of JP4058822B2 publication Critical patent/JP4058822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating fluid for permselective membranes, which can intercept ultraviolet rays in a broad wavelength region of about 400 nm or below, can sustain a stabilizing effect for a long term, and is capable of in-situ application to glass which has already been set in position by using a simple and inexpensive coating method and to provide a permselective membrane and a multi layered permselective membrane. SOLUTION: In a coating fluid, at least one member selected from among ruthenium oxide microparticles, titanium nitride microparticles and the like, having a means particle diameter of 100 nm or below is dispersed and contains at least one member selected from among silicon, zirconium and the like, and polymers of partial hydrolyzates of alkoxides of these metals or contains a synthetic resin are contained as a binder. The permselective membrane is obtained by applying the coating fluid to a substrate and curing the wet film, and the multi layered permselective membrane is prepared by adhering a film containing at least one member selected from among silicon, zirconium and the like, or the synthetic resins to the permselective film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガラス、プラスチッ
クスその他の各種透明基材に応用可能な選択透過膜用塗
布液に関し、より詳しくは紫外線、熱線、可視光線、赤
外線をそれぞれ目的に合わせて選択的に透過、反射、吸
収させるための選択透過膜用塗布液、選択透過膜および
選択透過多層膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating solution for a permselective membrane applicable to glass, plastics and other various transparent substrates, and more particularly, to selecting an ultraviolet ray, a heat ray, a visible ray, and an infrared ray according to each purpose. The present invention relates to a selectively permeable film coating solution for selectively transmitting, reflecting and absorbing, a selectively permeable film, and a selectively permeable multilayer film.

【0002】[0002]

【従来の技術】オゾンホールの発生や拡大により、地表
面に到達する紫外線量が著しく増加し、日焼けや、皮膚
癌などの人体への悪影響が問題となっている。また住
宅、ビル、自動車、ショーウィンドゥなどの窓から紫外
線が入り込み、カーテンや、絨毯、ソファーなどの家具
や、絵画、書類などの退色、変色、劣化も問題となって
いる。
2. Description of the Related Art The generation and expansion of an ozone hole significantly increases the amount of ultraviolet rays that reach the ground surface, causing problems such as sunburn and skin cancer on the human body. Also, ultraviolet rays enter through windows of houses, buildings, automobiles, show windows and the like, and fading, discoloration, and deterioration of furniture such as curtains, carpets, sofas, paintings, documents, and the like have become problems.

【0003】従来使用されている紫外線遮蔽剤には、酸
化チタン、酸化セリウム、酸化亜鉛などが挙げられる
が、これらは長波長側(400nm付近)の紫外線吸収
率が低くこれらを単独で使用した場含、400nm付近
の光を効率よく、かつ十分に遮蔽するための紫外線遮蔽
材料とはいえなかった。
[0003] Conventionally used ultraviolet shielding agents include titanium oxide, cerium oxide, zinc oxide and the like, but these have low ultraviolet absorptivity on the long wavelength side (around 400 nm) and are not suitable for use alone. It could not be said to be an ultraviolet shielding material for efficiently and sufficiently shielding light near 400 nm.

【0004】またベンゾフェノンなどの有機物を使用し
た紫外線遮蔽剤は、400nm付近の紫外線吸収率は高
いが、紫外線を吸収することでそれ自身が分解してしま
い、長期間安定した紫外線遮蔽能を維持することは困難
であった。
[0004] Further, an ultraviolet ray shielding agent using an organic substance such as benzophenone has a high ultraviolet ray absorption rate near 400 nm, but itself is decomposed by absorbing ultraviolet ray, and maintains a stable ultraviolet ray shielding ability for a long time. It was difficult.

【0005】さらに省エネルギーの観点から、太陽光線
の熱エネルギーの窓からの流入を遮蔽し、夏場の冷房負
荷を軽減させるための熱線遮蔽ガラスや、また可視光領
域の透過率を制御したプライバシー保護ガラスが近年注
目されている。これらのガラスは使用部位や、各種の色
調や、明るさ、熱線遮蔽率が好みによって要求されるも
のであるが、従来このような機能性膜は大部分がスパッ
タ法や、蒸着法などによる乾式法で作製されているため
に、上記のような要求に対する少量多品種生産には向い
ておらず、需要に対する細かい要求に対応しているとは
いえず、かつ大掛かりな装置と複雑な工程が必要とさ
れ、製品としてのコストも非常に高価なものとなってい
た。
Further, from the viewpoint of energy saving, a heat ray shielding glass for shielding the heat energy of the sunlight from the window to reduce the cooling load in summer, and a privacy protection glass having a controlled transmittance in the visible light region. Has attracted attention in recent years. These glasses are required depending on the use site, various colors, brightness, and heat ray shielding rate, but conventionally, such functional films are mostly dry type by sputtering, evaporation, etc. Since it is manufactured by the method, it is not suitable for small-quantity multi-product production in response to the above demands, it can not be said that it responds to detailed demands, and requires large equipment and complicated processes The cost as a product was also very expensive.

【0006】しかもこれらのガラスには紫外線遮蔽機能
(特に400nm付近の遮蔽機能)を付与したものは少
なく、さらに紫外線、熱線(日射)、可視光線を同時に
制御するガラスはほとんど無いという状態であった。ま
た有機染料を用いた着色フィルムも市販されているが、
紫外線などによる有機染料の劣化が大きく、十分な効果
を発揮するものとはいえなかった。
[0006] Furthermore, few of these glasses are provided with an ultraviolet shielding function (particularly a shielding function at around 400 nm), and there is almost no glass that simultaneously controls ultraviolet rays, heat rays (solar rays) and visible rays. . Colored films using organic dyes are also commercially available,
The organic dye was greatly deteriorated by ultraviolet rays and the like, and could not be said to exhibit a sufficient effect.

【0007】なお上記した機能性膜の作製に用いられて
いる乾式法では、大掛かりな真空装置などが必要とさ
れ、すでに住宅、ビル、自動車などに設置されているガ
ラスへの現場での加工作業は実施不能であった。
[0007] The dry method used for the production of the above-mentioned functional film requires a large-scale vacuum device and the like, and the on-site processing work for glass already installed in houses, buildings, automobiles and the like. Was not feasible.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記従来の問
題点を解決するためになされたものであり、その目的と
するところは、400nm付近からそれ以下の波長の広
範囲の紫外線を効率よく遮蔽し、従来の有機紫外線遮蔽
剤および有機着色染料に比べて長期間安定してその効果
を維持し、熱線遮蔽の機能も兼備し、可視光領域の透過
率を制御し、しかも各種無機微粒子を混合することで目
的に応じた色調が得られ、簡便で安価な塗布法を用いバ
インダーを選択することで、すでに設置されたガラスへ
の現場での施工も可能な選択透過膜用塗布液、選択透過
膜および選択透過多層膜を提供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to efficiently block a wide range of ultraviolet light having a wavelength of about 400 nm to less than 400 nm. Compared to conventional organic ultraviolet shielding agents and organic coloring dyes, it maintains its effect more stably for a long time, has the function of shielding heat rays, controls the transmittance in the visible light range, and mixes various inorganic fine particles. By selecting a binder using a simple and inexpensive coating method, it is possible to apply it to the already installed glass at the site by selecting a binder using a simple and inexpensive coating method. It is to provide a membrane and a permselective multilayer.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記従来の
問題点を解決するため、耐候性に優れた特定平均粒径の
無機微粒子に着目し、これを分散することにより所期の
目的を達成できることを見出し本発明を完成するに至っ
た。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present inventors have focused on inorganic fine particles having a specific average particle size excellent in weather resistance, and dispersed the fine particles. Have been achieved, and the present invention has been completed.

【0010】すなわち本発明の第1の実施態様は、平均
粒径が100nm以下の酸化ルテニウム微粒子、窒化チ
タン微粒子、窒化タンタル微粒子、珪化チタン微粒子、
珪化モリブテン微粒子、ホウ化ランタン微粒子、酸化鉄
微粒子、酸化水酸化鉄(III微粒子のうち少なくとも1
種を分散したことを特徴とし、またケイ素、ジルコニウ
ム、チタン、アルミニウムの各金属アルコキシド、もし
くは各金属アルコキシドの部分加水分解重合物のうち少
なくとも1種をさらに含有して、さらにバインダーとし
て合成樹脂をさらに含有する選択透過膜用塗布液を特徴
とするものである。
That is, in a first embodiment of the present invention, there are provided ruthenium oxide fine particles, titanium nitride fine particles, tantalum nitride fine particles, titanium silicide fine particles having an average particle diameter of 100 nm or less;
Molybdenum silicide fine particles, lanthanum boride fine particles, iron oxide fine particles, iron oxide hydroxide (at least one of III fine particles
Characterized in that the seeds are dispersed, and further contains at least one of silicon, zirconium, titanium, and each metal alkoxide of aluminum, or a partially hydrolyzed polymer of each metal alkoxide, and further contains a synthetic resin as a binder. It is characterized by a coating solution for a selectively permeable membrane contained therein.

【0011】また本発明の第2の実施態様は、上記した
選択透過膜用塗布液を基材に塗布後、硬化させて得られ
た選択透過膜を特徴とするものである。
A second embodiment of the present invention is characterized by a permselective membrane obtained by applying the above-mentioned coating solution for a permselective membrane to a base material and curing the coated base material.

【0012】さらに本発明の第3の実施態様は、上記し
た選択透過膜上にさらに、ケイ素、ジルコニウム、チタ
ン、アルミニウムの各金属アルコキシド、もしくは各金
属アルコキシドの部分加水分解重合物、もしくは合成樹
脂のうち少なくとも1種を含有する皮膜が被着されてな
る選択透過多層膜を特徴とするものである。
In a third embodiment of the present invention, the metal alkoxide of silicon, zirconium, titanium and aluminum, the partially hydrolyzed polymer of each metal alkoxide, or the synthetic resin is further provided on the above-mentioned permselective membrane. It is characterized by a permselective multilayer film on which a film containing at least one of them is applied.

【0013】[0013]

【発明の実施の形態】本発明者らは、長波長側(400
nm付近)の紫外線を効率よく吸収する無機微粒子材料
について鋭意研究した結果、まず酸化鉄、および酸化水
酸化鉄(IIIに着目した。そして酸化鉄微粒子および酸
化水酸化鉄(III )微粒子を平均粒径100nm以下と
して分散した塗布液を用いて基材に塗布すると、可視光
領域の光を透過し、紫外線領域の光を吸収する特性を持
つようになることが分かった。
BEST MODE FOR CARRYING OUT THE INVENTION
As a result of intensive research on inorganic fine particle materials that efficiently absorb ultraviolet light (around nm), we first focused on iron oxide and iron oxide hydroxide (III). It was found that when a substrate was coated using a coating liquid dispersed to have a diameter of 100 nm or less, light having a visible light range was transmitted and light having a UV range was absorbed.

【0014】つぎに無機微粒子として酸化ルテニウム微
粒子、窒化チタン微粒子、窒化タンタル微粒子、珪化チ
タン微粒子、珪化モリブテン微粒子、ホウ化ランタン微
粒子についても研究した結果、これらの無機微粒子はそ
れぞれ可視光領域に吸収を持つ粉末であり、平均粒径1
00nm以下の微粒子として分散した薄膜状態において
は、可視光領域の光を透過し、近赤外領域の光を遮蔽す
る特性を持つようになることも分かった。
Next, as inorganic fine particles, ruthenium oxide fine particles, titanium nitride fine particles, tantalum nitride fine particles, titanium silicide fine particles, molybdenum silicide fine particles, and lanthanum boride fine particles were studied. As a result, each of these inorganic fine particles absorbed in the visible light region. Powder with an average particle size of 1
It was also found that, in the state of a thin film dispersed as fine particles having a size of not more than 00 nm, light having a characteristic of transmitting light in the visible light region and shielding light in the near infrared region was obtained.

【0015】また色調については、上記無機微粒子を平
均粒径100nm以下の微粒子として分散した薄膜状態
にしたとき、それぞれ酸化鉄は赤色系を示し、酸化水酸
化鉄(III )は黄色系、酸化ルテニウムは緑系、窒化チ
タン微粒子は青色系、窒化タンタル微粒子は茶色系、珪
化チタン微粒子は灰色系、珪化モリブデン微粒子はブロ
ンズ系、ホウ化ランタン微粒子は緑色系の色調を示す膜
となるものである。
As for the color tone, when the inorganic fine particles are dispersed in the form of fine particles having an average particle diameter of 100 nm or less, iron oxide shows a reddish color, iron (III) hydroxide shows a yellowish color, ruthenium oxide shows a ruthenium oxide. Are green, titanium nitride particles are blue, tantalum nitride particles are brown, titanium silicide particles are gray, molybdenum silicide particles are bronze, and lanthanum boride particles are green.

【0016】上記無機材料以外にもそれと同等の上記諸
特性を示すものは、以下に挙げることができる。酸化ル
テニウム微粒子の代わりにPbRu6.5微粒子
やBiRu7−x微粒子を使用することが可能で
あり、また窒化チタン微粒子、窒化タンタル微粒子、珪
化チタン微粒子、珪化モリブデン微粒子の代わりに、窒
化ジルコニウム微粒子や窒化ハフニウム微粒子を使用す
ることも可能であり、さらにホウ化ランタン微粒子の代
わりに、ホウ化チタンなどを使用することも可能であ
り、さらにまた酸化水酸化鉄(III )微粒子の代わり
に、窒素酸化鉄や窒化鉄を使用することも可能である。
In addition to the above-mentioned inorganic materials, those exhibiting the above-mentioned various properties equivalent thereto can be given as follows. Pb 2 Ru 2 O 6.5 particles or Bi 2 Ru 2 O 7-x particles can be used instead of ruthenium oxide particles, and titanium nitride particles, tantalum nitride particles, titanium silicide particles, molybdenum silicide particles. Instead of zirconium nitride fine particles or hafnium nitride fine particles, it is also possible to use titanium boride or the like instead of lanthanum boride fine particles. ) Instead of fine particles, it is also possible to use nitrogen iron oxide or iron nitride.

【0017】本発明において塗布液中の上記無機微粒子
の平均粒径は100nm以下とする必要がある。平均粒
子径が100nmよりも大きくなると分散液中の微粒子
同士の凝集による塗布液中の凝集微粒子の沈降原因とな
る。また平均粒径が100nmを超える微粒子もしくは
それらの凝集した粗大粒子は、それによる光散乱により
膜のへイズ上昇および可視光透過率低下の原因となるの
で好ましくない。そして上記無機微粒子の平均粒径は上
記した理由により100nm以下とする必要があるが、
現状の技術で経済的に入手可能な最低の平均粒径は2n
m程度であるために、これが下限となる。
In the present invention, the average particle size of the inorganic fine particles in the coating solution must be 100 nm or less. If the average particle diameter is larger than 100 nm, the aggregation of the fine particles in the dispersion liquid causes sedimentation of the aggregated fine particles in the coating solution. Fine particles having an average particle diameter exceeding 100 nm or their aggregated coarse particles are not preferred because they cause light haze of the film and decrease of visible light transmittance due to light scattering. The average particle diameter of the inorganic fine particles needs to be 100 nm or less for the above-described reason.
The lowest average particle size economically available with current technology is 2n
This is the lower limit because it is about m.

【0018】塗布液中の微粒子の分散媒は特に限定され
るものではなく、塗布条件や、塗布環境、塗布液中のア
ルコキシド、合成樹脂バインダーなどに合わせて選択可
能であり、たとえば水や、アルコールなどの有機溶媒な
どの各種が使用可能で、また必要に応じて酸やアルカリ
を添加してpHを調整してもよい。さらにインク中微粒
子の分散安定性を一層向上させるために、各種のカップ
リング剤、界面活性剤などを添加することも可能であ
る。その時のそれぞれの添加量は、無機微粒子に対して
30重量%以下、好ましくは5重量%以下である。また
上記微粒子の分散方法は微粒子が均一に溶液中に分散す
る方法であれば任意に選択できるが、例としてはボール
ミル、サンドミル、超音波分散などの方法を挙げること
ができる。
The dispersion medium of the fine particles in the coating solution is not particularly limited, and can be selected according to the coating conditions, coating environment, alkoxide in the coating solution, synthetic resin binder, and the like. Various kinds of organic solvents such as the above can be used, and the pH may be adjusted by adding an acid or an alkali as needed. Further, in order to further improve the dispersion stability of the fine particles in the ink, it is possible to add various coupling agents, surfactants and the like. The amount of each addition at that time is 30% by weight or less, preferably 5% by weight or less based on the inorganic fine particles. The method of dispersing the fine particles can be arbitrarily selected as long as the fine particles are uniformly dispersed in the solution. Examples of the method include a ball mill, a sand mill, and an ultrasonic dispersion method.

【0019】本発明における選択透過膜は、基体上に上
記微粒子が高密度に堆積し膜を形成するものであり、塗
布液中に含まれるケイ素、ジルコニウム、チタン、アル
ミニウムの各金属アルコキシドもしくはこれら金属のア
ルコキシドの部分加水分解重合物、または合成樹脂バイ
ンダーは塗布、硬化後、微粒子の基体への結着性を向上
させ、さらに膜の硬度を向上させる効果がある。またこ
のようにして得られた膜上に、さらにケイ素、ジルコニ
ウム、チタン、アルミニウムなどの各金属アルコキシ酸
化物もしくはこれら金属アルコキシドの部分加水分解重
合物または合成樹脂を含有する皮膜を第2層として被着
することで微粒子を主成分とする膜の基体への結着力
や、膜の硬度および耐候性を一層向上させることも可能
となる。
The permselective membrane in the present invention is a membrane in which the above-mentioned fine particles are deposited at high density on a substrate to form a membrane, and each of metal alkoxides of silicon, zirconium, titanium and aluminum contained in the coating solution or these metals The alkoxide partially hydrolyzed polymer or the synthetic resin binder has an effect of improving the binding property of the fine particles to the substrate after coating and curing, and further improving the film hardness. Further, on the film thus obtained, a film containing a metal alkoxy oxide such as silicon, zirconium, titanium or aluminum, a partially hydrolyzed polymer of these metal alkoxides, or a synthetic resin is further coated as a second layer. By adhering, it becomes possible to further improve the binding force of the film containing fine particles as a main component to the substrate, and the hardness and weather resistance of the film.

【0020】塗布液中にケイ素、ジルコニウム、チタ
ン、アルミニウムの各金属アルコキシドもしくはこれら
金属アルコキシドの部分加水分解重合物または合成樹脂
を含まない場合、この塗布液を基体に塗布後に得られる
膜は、基体上に上記微粒子のみが堆積した膜構造とな
る。このままでも光の選択透過性を示すが、この膜に上
記と同様にさらにケイ素、ジルコニウム、チタン、アル
ミニウムの各金属アルコキシドもしくはこれら金属アル
コキシドの部分加水分解重合物もしくは合成樹脂を含む
塗布液を塗布して皮膜を形成し多層膜とすることによ
り、塗布液成分が第1層の微粒子の堆積した間隙を埋め
て成膜されるため、膜のへイズが低減し可視光領域の光
透過率を向上させ、微粒子の基体への結着性を向上させ
る。
When the coating liquid does not contain metal alkoxides of silicon, zirconium, titanium and aluminum or partially hydrolyzed polymers of these metal alkoxides or synthetic resins, the film obtained after applying the coating liquid to a substrate is A film structure in which only the fine particles are deposited thereon is obtained. Even as it is, it shows selective transmittance of light, but this film is coated with a coating liquid containing a metal alkoxide of silicon, zirconium, titanium, aluminum or a partially hydrolyzed polymer of these metal alkoxides or a synthetic resin as described above. By forming a coating to form a multilayer film, the coating liquid components are formed to fill the gaps where the fine particles of the first layer are deposited, thereby reducing the haze of the film and improving the light transmittance in the visible light region. This improves the binding of the fine particles to the substrate.

【0021】上記微粒子を主成分とする膜を、ケイ素、
ジルコニウム、チタン、アルミニウムなどの各金属アル
コキシドもしくはこれら金属アルコキシドの部分加水分
解重合物からなる皮膜で被着する方法としては、スパッ
タ法や、蒸着法も可能であるが、成膜工程の容易さや、
成膜コストが低いなどの利点から、塗布法が有効であ
る。この皮膜用塗布液は水やアルコール中にケイ素、ジ
ルコニウム、チタン、アルミニウムなどのアルコキシド
およびその部分加水分解重含物を1種もしくは2種以上
含むものであり、その含有量は加熱後に得られる酸化物
換算で全溶液中の40重量%以下が好ましい。また必要
に応じて酸やアルカリを添加してpHを調整することも
可能である。このような液を上記微粒子を主成分とする
膜上にさらに第2層として塗布し加熱することでケイ
素、ジルコニウム、チタン、アルミニウムなどの酸化物
皮膜を容易に作製することが可能である。
The film containing the fine particles as a main component is made of silicon,
Zirconium, titanium, and a method of applying a film made of each metal alkoxide such as aluminum or a partially hydrolyzed polymer of these metal alkoxides, a sputtering method or a vapor deposition method is also possible, but the easiness of a film forming process,
The coating method is effective due to advantages such as low film formation cost. This coating solution for a film contains one or more kinds of alkoxides such as silicon, zirconium, titanium and aluminum and partially hydrolyzed polycondensates thereof in water or alcohol, and the content thereof is determined by the oxidation obtained after heating. It is preferably 40% by weight or less in the total solution in terms of a substance. If necessary, the pH can be adjusted by adding an acid or an alkali. An oxide film of silicon, zirconium, titanium, aluminum, or the like can be easily formed by applying such a liquid as a second layer on a film containing the above fine particles as a main component and heating.

【0022】塗布液および皮膜用の塗布液の塗布方法と
しては、特に限定されるものではなくスピンコート法、
スプレーコート法、ディップコート法、スクリーン印刷
法、流し塗りなど、処理液を平坦にかつ薄く均一に塗布
できる方法であればいかなる方法でも適宜採用すること
ができる。
The method of applying the coating solution and the coating solution for the film is not particularly limited, and a spin coating method,
Any method, such as a spray coating method, a dip coating method, a screen printing method, and a flow coating method, can be appropriately adopted as long as it is a method that can apply the treatment liquid flatly, thinly and uniformly.

【0023】上記各金属アルコキシドおよびその部分加
水分解重合物を含む塗布液の塗布後の基体加熱温度は、
100℃未満では塗膜中に含まれるアルコキシドおよび
その部分加水分解重合物の重合反応が未完結で残る場合
が多く、また水や有機溶媒が膜中に残留し、加熱後の膜
の可視光透過率の低減の原因となるので、100℃以上
が好ましく、さらに好ましくは塗布液中の溶媒の沸点温
度以上で加熱を実施する。
The substrate heating temperature after application of the coating solution containing each of the above metal alkoxides and the partially hydrolyzed polymer is as follows:
If the temperature is lower than 100 ° C., the polymerization reaction of the alkoxide and its partially hydrolyzed polymer contained in the coating film often remains uncompleted, and water and an organic solvent remain in the film, causing visible light transmission of the film after heating. The heating is preferably performed at 100 ° C. or higher, more preferably at a temperature equal to or higher than the boiling point of the solvent in the coating liquid, since this causes a reduction in the rate.

【0024】また合成樹脂バインダーを使用した場合
は、それぞれの硬化方法にしたがって硬化させればよ
く、たとえば紫外線硬化樹脂であれば紫外線を適量照射
すればよく、また常温硬化樹脂であれば塗布後そのまま
放置しておけばよいため、既存の窓ガラスなどへの現場
での塗布が可能であり、汎用性が広がる。
When a synthetic resin binder is used, it may be cured according to each curing method. For example, an ultraviolet curable resin may be irradiated with an appropriate amount of ultraviolet light, and a room temperature curable resin may be used after application. Since it may be left alone, it can be applied to existing window glass and the like on site, and the versatility is expanded.

【0025】本発明による塗布液は上記微粒子を分散し
たものであり、焼成時の熱による塗布液の成分の分解あ
るいは化学反応を利用して目的の日射遮蔽膜を形成する
ものではないため、特性の安定した均一な膜厚の薄膜の
透過膜を形成することができる。
The coating liquid according to the present invention is a dispersion of the above-mentioned fine particles, and does not form a target solar radiation shielding film by utilizing decomposition or chemical reaction of components of the coating liquid due to heat during baking. It is possible to form a thin, permeable film having a stable and uniform film thickness.

【0026】本発明における微粒子分散膜は、基体上に
微粒子が高密度に堆積し膜を形成するものであり、塗布
液中に含まれるケイ素、ジルコニウム、チタン、アルミ
ニウムの各金属アルコキシドもしくはこれらの部分加水
分解重合物、もしくは合成樹脂バインダーは塗膜の硬化
後、微粒子の基体への結着性を向上させ、さらに膜の強
度を向上させる効果がある。
The fine particle-dispersed film of the present invention is a film in which fine particles are deposited at a high density on a substrate to form a film, and each metal alkoxide of silicon, zirconium, titanium, and aluminum contained in a coating solution or a portion thereof. The hydrolyzed polymer or the synthetic resin binder has an effect of improving the binding property of the fine particles to the substrate after the coating film is cured, and further improving the strength of the film.

【0027】このように本発明によれば上記無機微粒子
の材料を適当に混合することで、紫外線、可視光線、赤
外線の日射透過率、色調を調節して目的に合わせたイン
クの作製が可能となる。またこれら微粒子材料は、無機
材料であるので有機材料と比較して耐候性は非常に高
く、たとえば太陽光線(紫外線)の当たる部位に使用し
ても色や、諸特性の劣化は殆ど生じない。
As described above, according to the present invention, by appropriately mixing the materials of the inorganic fine particles, it is possible to adjust the ultraviolet ray, visible light ray, and infrared ray sunlight transmittance and color tone to produce an ink suitable for the purpose. Become. In addition, since these fine particle materials are inorganic materials, they have extremely high weather resistance as compared with organic materials. For example, even when used in a portion exposed to sunlight (ultraviolet rays), color and various characteristics are hardly deteriorated.

【0028】また少量多品種の生産が可能で要求に沿っ
た選択透過膜ができるという面では、たとえば1つの建
物のガラス窓に塗布するときも西日の差し込む窓には、
その暑さを低減させるために日射遮蔽効果の高い調合、
1階の人目の多い窓にはプライバシー保護用に可視光透
過率の低い調合、日中の強い日差しが差し込み、家具
や、カーテンなどの色あせ、人の日焼けが気になる窓に
は紫外線遮蔽率の高い調合、部屋の色調に合わせた調合
など、各種の要求を簡易な方法で満たすことが可能とな
る。またこれらの要望は実際に利用し始めて気づくこと
が殆どであるので、常温で硬化するバインダーを使用し
た塗布液で窓などの使用状況に応じて塗布液を調合し、
現場で施工することも可能であり非常に有用である。
In addition, in terms of being able to produce a large number of varieties in small quantities and forming a permselective membrane in accordance with the requirements, for example, when applying to a glass window of a single building, the window into which the sunshine is inserted is
In order to reduce the heat, a combination with a high solar shading effect,
The first-floor windows on the first floor have low visible light transmittance for privacy protection, strong sunlight during the day, fading of furniture and curtains, and sun protection for people who are worried about sunburn. It is possible to satisfy various demands with a simple method, such as a high-quality preparation and a preparation according to the color of the room. In addition, since these requests are most likely to be noticed after actually starting to be used, a coating solution using a binder that cures at room temperature is prepared according to the use conditions of windows and the like,
It is also very useful because it can be constructed on site.

【0029】[0029]

【実施例】以下本発明の実施例を比較例とともに説明す
る。 実施例1 酸化鉄(Fe)微粒子(平均粒径30nm)20
g、エチルアルコール69.5g、ジアセトンアルコー
ル(DAA)10g、およびチタネート系カップリング
剤(味の素(株)製プレンアクトKR−44:商品名)
0.5gを混合し、直径4mmのジルコニアボールを用
いて80時間ボールミル混合して酸化鉄(Fe
の分散液100gを作製した(A液)。
EXAMPLES Examples of the present invention will be described below along with comparative examples. Example 1 Iron oxide (Fe 2 O 3 ) fine particles (average particle diameter 30 nm) 20
g, ethyl alcohol 69.5 g, diacetone alcohol (DAA) 10 g, and a titanate-based coupling agent (Ajinomoto Co., Inc., Plenact KR-44: trade name)
0.5 g and mixed with a ball mill using zirconia balls having a diameter of 4 mm for 80 hours to obtain iron oxide (Fe 2 O 3 ).
Was prepared (100 g).

【0030】つぎに平均重合度で4〜5量体であるエチ
ルシリケート40(多摩化学工業(株)製)を25g、
エタノール32g、5%塩酸水溶液8g、水5gで調整
したエチルシリケート溶液70gに、エタノール30g
を均一に混合してエチルシリケート混合液100gを調
製した(B液)。
Next, 25 g of ethyl silicate 40 (manufactured by Tama Chemical Industry Co., Ltd.) having an average degree of polymerization of 4 to 5 mer,
30 g of ethanol was added to 70 g of an ethyl silicate solution prepared with 32 g of ethanol, 8 g of a 5% hydrochloric acid aqueous solution and 5 g of water.
Was uniformly mixed to prepare 100 g of a mixed solution of ethyl silicate (Solution B).

【0031】A液とB液を表1の実施例1の組成になる
ように、エタノールで希釈して十分混合し、この溶液1
5gを200rpmで回転する200×200×3mm
のソーダライム系板硝子基板上にビーカーから滴下し、
そのまま5分間振り切った後回転を止めた。これを18
0℃の電気炉に入れて30分間加熱し目的とする膜を得
た。
The solution A and the solution B were diluted with ethanol and mixed well so as to have the composition of Example 1 in Table 1.
200x200x3mm that rotates 5g at 200rpm
From a beaker on a glass substrate of soda lime based glass
After shaking off for 5 minutes, the rotation was stopped. This is 18
The resultant was heated in an electric furnace at 0 ° C. for 30 minutes to obtain a target film.

【0032】形成された膜について、日立製作所製の分
光光度計を用いて200〜1800nmの透過率を測定
し、JIS R 3106に従って日射透過率(τ
e)、可視光透過率(τv)を、ISO 9050に従
って紫外線透過率(τuv)を算出した。また400n
mにおける透過率(400nmT%)を読み取った。こ
れらの結果を表2に示す。また、表2には下記する実施
例2〜12、比較例1、2で得られた膜の光学特性につ
いても併せて示した。
The transmittance of the formed film was measured at 200 to 1800 nm using a spectrophotometer manufactured by Hitachi, Ltd., and the solar transmittance (τ) was measured in accordance with JIS R 3106.
e) The visible light transmittance (τv) and the ultraviolet transmittance (τuv) were calculated according to ISO 9050. 400n
The transmittance at 400 m (400 nm T%) was read. Table 2 shows the results. Table 2 also shows the optical characteristics of the films obtained in Examples 2 to 12 and Comparative Examples 1 and 2 described below.

【0033】実施例2 A液の酸化鉄(Fe)濃度を3.0%までエタノ
ールで希釈し、この溶液15gを200rpmで回転す
る200×200×3mmのソーダライム系板硝子基板
上にビーカーから滴下し、そのまま5分間振り切った後
回転を止めた。この上にさらに、B液のSiO濃度を
3.0%までエタノールで希釈した溶液15gを、20
0rpmで回転する上記塗布基板上にビーカーから滴下
し、そのまま5分間振り切った後回転を止めた。これを
180℃の電気炉に入れて30分間加熱し目的とする膜
を得た。この膜の光学特性を表2に示す。
Example 2 The solution A was diluted with ethanol to a concentration of iron oxide (Fe 2 O 3 ) of 3.0%, and 15 g of this solution was placed on a 200 × 200 × 3 mm soda-lime glass substrate rotated at 200 rpm. The solution was dropped from a beaker, shaken for 5 minutes, and then stopped rotating. Further, 15 g of a solution obtained by diluting the SiO 2 concentration of the solution B with ethanol to 3.0% was further added to the solution.
The solution was dropped from a beaker onto the coated substrate rotating at 0 rpm, shaken off for 5 minutes, and then stopped. This was placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain a target film. Table 2 shows the optical characteristics of this film.

【0034】実施例3 酸化水酸化鉄(III )(FeO(OH))微粒子(平均
粒径30nm)20g、エチルアルコール69.5g、
ジアセトンアルコール(DAA)10g、およびチタネ
ート系カップリング剤(味の素(株)製プレンアクトK
R−44:商品名)0.5gを混合し、直径4mmのジ
ルコニアボールを用いて80時間ボールミル混合して酸
化水酸化鉄(III )(FeO(OH))の分散液100
gを調製した(C液)。また常温硬化樹脂(常温硬化型
シリコーン樹脂)をエタノールで希釈して、固形分20
%溶液とした(D液)。
Example 3 20 g of iron (III) oxide hydroxide (FeO (OH)) fine particles (average particle size: 30 nm), 69.5 g of ethyl alcohol,
10 g of diacetone alcohol (DAA) and a titanate-based coupling agent (Plenact K manufactured by Ajinomoto Co., Inc.)
R-44: trade name) was mixed with a zirconia ball having a diameter of 4 mm and mixed in a ball mill for 80 hours to obtain a dispersion 100 of iron (III) oxide hydroxide (III) (FeO (OH)).
g was prepared (Solution C). Further, a room temperature curing resin (room temperature curing type silicone resin) is diluted with ethanol to obtain a solid content of 20%.
% Solution (solution D).

【0035】C液とD液を表1の実施例3の組成になる
ようにエタノールで希釈して、実施例1と同様な手順に
より目的とする膜を得て、この膜の光学特性を測定し
た。この膜の光学特性を表2に示す。
The solution C and the solution D were diluted with ethanol so as to have the composition of Example 3 in Table 1, and a target film was obtained in the same procedure as in Example 1, and the optical characteristics of the film were measured. did. Table 2 shows the optical characteristics of this film.

【0036】実施例4 A液、C液、D液を表1の実施例4の組成になるように
エタノールで希釈して、実施例1と同様な手順により目
的とする膜を得た。この膜の光学特性を表2に示す。
Example 4 Solution A, Solution C and Solution D were diluted with ethanol so as to have the composition of Example 4 in Table 1, and a target film was obtained in the same procedure as in Example 1. Table 2 shows the optical characteristics of this film.

【0037】実施例5 酸化ルテニウム微粒子(RuO)(平均粒径40n
m)20g、エチルアルコール69.5g、N−メチル
−2−ピロリドン10g、およびチタネート系カップリ
ング剤(味の素(株)製プレンアクトKR−44:商品
名)0.5gを混合し、直径4mmのジルコニアボール
を用いて100時間ボールミル混合して酸化ルテニウム
(RuO)の分散液100gを作製した(E液)。
Example 5 Ruthenium oxide fine particles (RuO 2 ) (average particle diameter 40 n)
m) 20 g of ethyl alcohol, 69.5 g of ethyl alcohol, 10 g of N-methyl-2-pyrrolidone, and 0.5 g of a titanate-based coupling agent (Preneact KR-44, trade name, manufactured by Ajinomoto Co., Inc.), mixed with zirconia having a diameter of 4 mm Using a ball, the mixture was mixed in a ball mill for 100 hours to prepare 100 g of a dispersion of ruthenium oxide (RuO 2 ) (Solution E).

【0038】A液、E液、B液を表1の実施例5の組成
になるようにエタノールで希釈して、実施例1と同様な
手順により目的とする膜を得た。この膜の光学特性を表
2に示す。
The solution A, the solution E and the solution B were diluted with ethanol so as to have the composition of Example 5 in Table 1, and a target film was obtained in the same procedure as in Example 1. Table 2 shows the optical characteristics of this film.

【0039】実施例6 C液、E液、B液を表1の実施例6の組成になるように
エタノールで希釈して、実施例1と同様な手順により目
的とする膜を得た。この膜の光学特性を表2に示す。
Example 6 Solution C, Solution E, and Solution B were diluted with ethanol so as to have the composition of Example 6 in Table 1, and a target film was obtained in the same procedure as in Example 1. Table 2 shows the optical characteristics of this film.

【0040】実施例7 C液、E液、B液を表1の実施例7の組成になるように
エタノールで希釈して、実施例1と同様な手順により目
的とする膜を得た。この膜の光学特性を表2に示す。
Example 7 Solution C, Solution E and Solution B were diluted with ethanol so as to have the composition of Example 7 in Table 1, and a target film was obtained in the same procedure as in Example 1. Table 2 shows the optical characteristics of this film.

【0041】実施例8 C液、E液、B液を表1の実施例8の組成になるように
エタノールで希釈して、実施例1と同様な手順により目
的とする膜を得た。この膜の光学特性を表2に示す。
Example 8 Solution C, Solution E, and Solution B were diluted with ethanol so as to have the composition of Example 8 in Table 1, and a target film was obtained in the same procedure as in Example 1. Table 2 shows the optical characteristics of this film.

【0042】実施例9 窒化チタン微粒子(TiN)(平均粒径30nm)20
g、ジアセトンアルコール69.5g、N−メチル−2
−ピロリドン10g、およびシラン系カップリング剤
0.5gを混合し、直径4mmのジルコニアボールを用
いて100時間ボールミル混合して窒化チタン(Ti
N)の分散液100gを作製した(F液)。
Example 9 Titanium nitride fine particles (TiN) (average particle size: 30 nm) 20
g, diacetone alcohol 69.5 g, N-methyl-2
-10 g of pyrrolidone and 0.5 g of a silane coupling agent are mixed, and ball milled using zirconia balls having a diameter of 4 mm for 100 hours to form titanium nitride (Ti).
100 g of a dispersion liquid of N) was prepared (F liquid).

【0043】C液、F液、B液を表1の実施例9の組成
になるようにエタノールで希釈して、実施例1と同様な
手順により目的とする膜を得た。この膜の光学特性を表
2に示す。
The solution C, the solution F, and the solution B were diluted with ethanol so as to have the composition of Example 9 in Table 1, and a target film was obtained in the same procedure as in Example 1. Table 2 shows the optical characteristics of this film.

【0044】実施例10 F液、B液を表1の実施例10の組成になるようにエタ
ノールで希釈して、実施例1と同様な手順により目的と
する膜を得た。この膜の光学特性を表2に示す。
Example 10 The solution F and the solution B were diluted with ethanol so as to have the composition of Example 10 in Table 1, and a target film was obtained in the same procedure as in Example 1. Table 2 shows the optical characteristics of this film.

【0045】実施例11 ホウ化ランタン微粒子(LaB)(平均粒径40n
m)20g、ジアセトンアルコール69.5g、N−メ
チル−2−ピロリドン10g、およびシラン系カップリ
ング剤0.5gを混合し、直径4mmのジルコニアボー
ルを用いて100時間ボールミル混合してホウ化ランタ
ン(LaB)の分散液100gを作製した(G液)。
Example 11 Lanthanum boride fine particles (LaB 6 ) (average particle diameter 40 n)
m) 20 g, 69.5 g of diacetone alcohol, 10 g of N-methyl-2-pyrrolidone, and 0.5 g of a silane-based coupling agent were mixed, and the mixture was ball-milled using a zirconia ball having a diameter of 4 mm for 100 hours to obtain lanthanum boride. 100 g of a dispersion liquid of (LaB 6 ) was prepared (Solution G).

【0046】A液、G液、B液を表1の実施例11の組
成になるようにエタノールで希釈して、実施例1と同様
な手順により目的とする膜を得た。この膜の光学特性を
表2に示す。
The solution A, the solution G and the solution B were diluted with ethanol so as to have the composition of Example 11 in Table 1, and a target film was obtained in the same procedure as in Example 1. Table 2 shows the optical characteristics of this film.

【0047】実施例12 E液、B液を表1の実施例12の組成になるようにエタ
ノールで希釈して、実施例1と同様な手順により目的と
する膜を得た。この膜の光学特性を表2に示す。
Example 12 The solutions E and B were diluted with ethanol so as to have the composition of Example 12 in Table 1, and a target film was obtained in the same procedure as in Example 1. Table 2 shows the optical characteristics of this film.

【0048】実施例13 窒化タンタル(TaN)微粒子(平均粒径40nm)2
0g、ジアセトンアルコール69.5g、N−メチル−
2−ピロリドン10gおよびシラン系カップリング剤
0.5gを混合し、直径4mmのジルコニアボールを用
いて100時間ボールミル混合して窒化タンタル(Ta
N)の分散液100gを作製した(H液)。
Example 13 Tantalum nitride (TaN) fine particles (average particle size: 40 nm) 2
0 g, diacetone alcohol 69.5 g, N-methyl-
10 g of 2-pyrrolidone and 0.5 g of a silane-based coupling agent are mixed, and ball-milled using zirconia balls having a diameter of 4 mm for 100 hours to form tantalum nitride (Ta).
100 g of a dispersion liquid of N) was prepared (H liquid).

【0049】C液、H液、B液を表1の実施例13の組
成になるようにエタノールで希釈して十分混合し、この
溶液15gを200rpmで回転する200×200×
3mmのソーダライム系板硝子基板上にビーカーから滴
下し、そのまま5分間振り切った後回転を止めた。これ
を180℃の電気炉に入れて15分間加熱し目的とする
膜を得た。この膜の光学特性を表1に示す。
Solution C, solution H, and solution B were diluted with ethanol so as to have the composition of Example 13 in Table 1 and mixed well, and 15 g of this solution was rotated at 200 rpm to 200 × 200 ×
The solution was dropped from a beaker onto a 3 mm soda lime glass substrate, shaken for 5 minutes, and then stopped rotating. This was placed in an electric furnace at 180 ° C. and heated for 15 minutes to obtain a target film. Table 1 shows the optical characteristics of this film.

【0050】実施例14 珪化チタン(TiSi)微粒子(平均粒径50nm)
20g、ジアセトンアルコール69.5g、N−メチル
−2−ピロリドン10gおよびシラン系カップリング剤
0.5gを混合し、直径4mmのジルコニアボールを用
いて100時間ボールミル混合して珪化チタン(TiS
)の分散液100gを作製した(I液)。
Example 14 Titanium silicide (TiSi 2 ) fine particles (average particle size: 50 nm)
20 g of diacetone alcohol, 69.5 g of diacetone alcohol, 10 g of N-methyl-2-pyrrolidone and 0.5 g of a silane coupling agent were mixed, and ball-mixed with a zirconia ball having a diameter of 4 mm for 100 hours to form titanium silicide (TiS).
100 g of a dispersion of i 2 ) was prepared (Solution I).

【0051】A液、I液、B液を表1の実施例14の組
成になるようにエタノールで希釈して十分混合し、この
溶液15gを200rpmで回転する200×200×
3mmのソーダライム系板硝子基板上にビーカーから滴
下し、そのまま5分間振り切った後回転を止めた。これ
を180℃の電気炉に入れて15分間加熱し目的とする
膜を得た。この膜の光学特性を表1に示す。
Solution A, Solution I, and Solution B were diluted with ethanol so as to have the composition of Example 14 in Table 1 and mixed well, and 15 g of this solution was rotated at 200 rpm to 200 × 200 ×
The solution was dropped from a beaker onto a 3 mm soda lime glass substrate, shaken for 5 minutes, and then stopped rotating. This was placed in an electric furnace at 180 ° C. and heated for 15 minutes to obtain a target film. Table 1 shows the optical characteristics of this film.

【0052】実施例15 珪化モリブデン(MoSi)微粒子(平均粒径45n
m)20g、ジアセトンアルコール69.5g、N−メ
チル−2−ピロリドン10gおよびシラン系カップリン
グ剤0.5gを混合し、直径4mmのジルコニアボール
を用いて100時間ボールミル混合して珪化モリブデン
(MoSi)の分散液100gを作製した(J液)。
Example 15 Molybdenum silicide (MoSi 2 ) fine particles (average particle size: 45 n)
m) 20 g of diacetone alcohol, 69.5 g of diacetone alcohol, 10 g of N-methyl-2-pyrrolidone and 0.5 g of a silane coupling agent were mixed, and the mixture was ball-milled using zirconia balls having a diameter of 4 mm for 100 hours, followed by mixing with molybdenum silicide (MoSi 100 g of the dispersion in 2 ) was prepared (Solution J).

【0053】C液、J液、B液を表1の実施例15の組
成になるようにエタノールで希釈して十分混合し、この
溶液15gを200rpmで回転する200×200×
3mmのソーダライム系板硝子基板上にビーカーから滴
下し、そのまま5分間振り切った後回転を止めた。これ
を180℃の電気炉に入れて15分間加熱し目的とする
膜を得た。この膜の光学特性を表1に示す。
The solution C, the solution J and the solution B were diluted with ethanol so as to have the composition of Example 15 in Table 1, mixed well, and 15 g of this solution was rotated at 200 rpm to 200 × 200 ×
The solution was dropped from a beaker onto a 3 mm soda lime glass substrate, shaken for 5 minutes, and then stopped rotating. This was placed in an electric furnace at 180 ° C. and heated for 15 minutes to obtain a target film. Table 1 shows the optical characteristics of this film.

【0054】比較例1 酸化チタン(TiO)微粒子(平均粒径50nm)3
0g、エチルアルコール59.5g、ジアセトンアルコ
ール(DAA)10g、およびチタネート系カップリン
グ剤(味の素(株)製プレンアクトKR−44:商品
名)0.5gを混合し、直径4mmのジルコニアボール
を用いて100時間ボールミル混合して酸化チタンの分
散液100gを作製した(H液)。
Comparative Example 1 Titanium oxide (TiO 2 ) fine particles (average particle diameter 50 nm) 3
0 g, 59.5 g of ethyl alcohol, 10 g of diacetone alcohol (DAA), and 0.5 g of a titanate coupling agent (Plenact KR-44, trade name, manufactured by Ajinomoto Co., Inc.), and using a zirconia ball having a diameter of 4 mm. And mixed with a ball mill for 100 hours to prepare 100 g of a dispersion of titanium oxide (H solution).

【0055】H液、B液を表1の比較例1の組成になる
ようにエタノールで希釈して十分混合し、この溶液15
gを100rpmで回転する200×200×3mmの
ソーダライム系板硝子基板上にビーカーから滴下し、そ
のまま2分間振り切った後回転を止めた。これを180
℃の電気炉に入れて15分間加熱し目的とする膜を得
た。この膜の光学特性を表2に示す。
The solution H and the solution B were diluted with ethanol to have the composition of Comparative Example 1 shown in Table 1 and mixed well.
g was dropped from a beaker onto a 200 × 200 × 3 mm glass soda lime glass substrate rotating at 100 rpm, shaken for 2 minutes, and then stopped. This is 180
C. in an electric furnace at 15 ° C. for 15 minutes to obtain a target film. Table 2 shows the optical characteristics of this film.

【0056】比較例2 酸化亜鉛(ΖnO)微粒子(平均粒径45nm)30
g、エチルアルコール59.5g、ジアセトンアルコー
ル(DAA)10g、およびチタネート系カップリング
剤(味の素(株)製プレンアクトKR−44:商品名)
0.5gを混合し、直径4mmのジルコニアボールを用
いて100時間ボールミル混含して酸化亜鉛の分散液1
00gを作製した(I液)。
Comparative Example 2 Zinc oxide (ΖnO) fine particles (average particle diameter: 45 nm) 30
g, ethyl alcohol 59.5 g, diacetone alcohol (DAA) 10 g, and a titanate-based coupling agent (Ajinomoto Co., Ltd., Plenact KR-44: trade name)
0.5 g of a zirconia ball having a diameter of 4 mm and a ball mill for 100 hours.
00 g was prepared (Solution I).

【0057】I液、B液を表1の比較例2の組成になる
ようにエタノールで希釈して、比較例1と同様な手順で
目的とする膜を得た。この膜の光学特性を表2に示す。
The solution I and the solution B were diluted with ethanol so as to have the composition of Comparative Example 2 in Table 1, and a target film was obtained in the same procedure as in Comparative Example 1. Table 2 shows the optical characteristics of this film.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】表2より本発明に係る実施例では、日射透
過率(τe)、可視光透過率(τv)、紫外線透過率
(τuv)および400nmにおける透過率(400n
mT%)の光学特性の全般に亘って比較例に比べ優れた
数値を示すとともに、所望の色調が得られることが分か
る。
As shown in Table 2, in the embodiment according to the present invention, the solar transmittance (τe), the visible light transmittance (τv), the ultraviolet transmittance (τuv), and the transmittance at 400 nm (400n)
It can be seen that, over the entire optical characteristics (mT%), a numerical value superior to that of the comparative example is shown, and a desired color tone is obtained.

【0061】[0061]

【発明の効果】以上述べた通り本発明によれば、400
nm付近からそれ以下の波長の広範囲の紫外線を効率よ
く遮蔽し、従来の有機紫外線遮蔽剤および有機着色染料
に比べて長期間安定してその効果を維持し、熱線遮蔽の
機能も兼備し、可視光領域の透過率を制御し、しかも各
種の無機微粒子を混合することで目的に応じた色調が得
られ、簡便で安価な塗布法を用いバインダーを選択する
ことで、すでに設置されたガラスへの現場での施工も可
能な選択透過膜用塗布液、選択透過膜および選択透過多
層膜を提供することができる。
As described above, according to the present invention, 400
Efficiently shields a wide range of ultraviolet rays from the wavelength of about nm to wavelengths shorter than that, maintains its effect more stably for a long time than conventional organic ultraviolet shielding agents and organic coloring dyes, and also has a function of shielding heat rays, By controlling the transmittance of the light region and mixing various inorganic fine particles, the desired color tone can be obtained.By selecting a binder using a simple and inexpensive coating method, it can be applied to the glass already installed. It is possible to provide a coating liquid for a permselective membrane, a permselective membrane, and a permselective multilayer film which can be applied on site.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G02B 5/28 G02B 1/10 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G02B 5/28 G02B 1/10 Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が100nm以下の酸化ルテニ
ウム微粒子、窒化チタン微粒子、窒化タンタル微粒子、
珪化チタン微粒子、珪化モリブテン微粒子、ホウ化ラン
タン微粒子、酸化鉄微粒子、酸化水酸化鉄(III )微粒
子のうち少なくとも1種を分散したことを特徴とする選
択透過膜用塗布液。
1. Fine particles of ruthenium oxide, fine particles of titanium nitride, fine particles of tantalum nitride having an average particle diameter of 100 nm or less,
A coating liquid for a permselective membrane, wherein at least one of titanium silicide fine particles, molybdenum silicide fine particles, lanthanum boride fine particles, iron oxide fine particles, and iron (III) oxide fine particles are dispersed.
【請求項2】 ケイ素、ジルコニウム、チタン、アルミ
ニウムの各金属アルコキシド、もしくは各金属アルコキ
シドの部分加水分解重合物のうち少なくとも1種をさら
に含有することを特徴とする請求項1記載の選択透過膜
用塗布液。
2. The permselective membrane according to claim 1, further comprising at least one of silicon, zirconium, titanium, and aluminum metal alkoxides or a partially hydrolyzed polymer of each metal alkoxide. Coating liquid.
【請求項3】 バインダーとして合成樹脂をさらに含有
することを特徴とする請求項1または2記載の選択透過
膜用塗布液。
3. The coating solution for a permselective membrane according to claim 1, further comprising a synthetic resin as a binder.
【請求項4】 請求項1〜3のいずれか1項記載の選択
透過膜用塗布液を基材に塗布後、硬化させて得られたこ
とを特徴とする選択透過膜。
4. A selective permeable membrane obtained by applying the coating liquid for a selective permeable membrane according to any one of claims 1 to 3 to a base material and curing the applied base material.
【請求項5】 請求項4記載の選択透過膜上にさらに、
ケイ素、ジルコニウム、チタン、アルミニウムの各金属
アルコキシド、もしくは各金属アルコキシドの部分加水
分解重合物、もしくは合成樹脂のうち少なくとも1種を
含有する皮膜が被着されてなることを特徴とする選択透
過多層膜。
5. The method according to claim 4, further comprising:
A permselective multilayer film comprising a film containing at least one of silicon, zirconium, titanium and aluminum metal alkoxides, or a partially hydrolyzed polymer of each metal alkoxide, or a synthetic resin. .
JP26136798A 1997-09-30 1998-09-16 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane Expired - Lifetime JP4058822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26136798A JP4058822B2 (en) 1997-09-30 1998-09-16 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP26475697 1997-09-30
JP29778197 1997-10-15
JP9-264756 1997-10-15
JP9-297781 1997-10-15
JP26136798A JP4058822B2 (en) 1997-09-30 1998-09-16 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006039239A Division JP4415953B2 (en) 1997-09-30 2006-02-16 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane

Publications (2)

Publication Number Publication Date
JPH11181336A true JPH11181336A (en) 1999-07-06
JP4058822B2 JP4058822B2 (en) 2008-03-12

Family

ID=27335034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26136798A Expired - Lifetime JP4058822B2 (en) 1997-09-30 1998-09-16 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane

Country Status (1)

Country Link
JP (1) JP4058822B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202971A (en) * 2005-01-20 2006-08-03 New Japan Radio Co Ltd Semiconductor optical sensor
US7238418B2 (en) 2002-09-25 2007-07-03 Sumitomo Metal Mining Co., Ltd. Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion
US7244376B2 (en) 2004-01-26 2007-07-17 Sumitomo Metal Mining Co., Ltd. Hexaboride particles, hexaboride particle dispersion, and article making use of hexaboride particles or hexaboride particle dispersion
US7666930B2 (en) 2002-07-31 2010-02-23 Sumitomo Metal Mining Co., Ltd. Master batch containing heat radiation shielding component, and heat radiation shielding transparent resin form and heat radiation shielding transparent laminate for which the master batch has been used
JP2013512130A (en) * 2009-11-30 2013-04-11 アメリカ合衆国 RuO2 coating
US8900693B2 (en) 2005-07-13 2014-12-02 Sabic Global Technologies B.V. Polycarbonate compositions having infrared absorbance, method of manufacture, and articles prepared therefrom
US9074071B2 (en) 2002-05-13 2015-07-07 Sumitomo Metal Mining Co., Ltd. Heat ray shielding sheet material and liquid additive for use in producing the same
KR20170046774A (en) 2014-08-29 2017-05-02 스미토모 긴조쿠 고잔 가부시키가이샤 Aggregate of hexaboride microparticles, hexaboride microparticle dispersion, hexaboride microparticle-dispersed body, laminated transparent base material with hexaboride microparticle-dispersed body, infrared-absorptive film, and infrared-absorptive glass
WO2017094909A1 (en) 2015-12-02 2017-06-08 住友金属鉱山株式会社 Heat ray shielding microparticle, heat ray shielding microparticle dispersion solution, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent base material
KR20170064536A (en) 2014-10-30 2017-06-09 스미토모 긴조쿠 고잔 가부시키가이샤 Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles
WO2017104853A1 (en) 2015-12-18 2017-06-22 住友金属鉱山株式会社 Ultrafine particles of complex tungsten oxide, and fluid dispersion thereof
WO2017217459A1 (en) 2016-06-15 2017-12-21 住友金属鉱山株式会社 Heat-ray-shielding microparticle dispersion, heat-ray-shielding laminated transparent base, and production processes therefor
KR20180100123A (en) 2016-01-04 2018-09-07 스미토모 긴조쿠 고잔 가부시키가이샤 An infrared shielding transparent material, an infrared shielding optical material, an infrared shielding particle dispersion, a transparent substrate having infrared shielding, an infrared shielding particle dispersed powder, and a master batch
WO2019022003A1 (en) 2017-07-24 2019-01-31 住友金属鉱山株式会社 Infrared-absorbing-fine-particle-containing masterbatch pulverized product, dispersion containing infrared-absorbing-fine-particle-containing masterbatch pulverized product, infrared-absorbing-material-containing ink, anti-counterfeiting ink employing same, anti-counterfeiting print film, and method for manufacturing infrared-absorbing-fine-particle-containing masterbatch pulverized product
WO2019021992A1 (en) 2017-07-24 2019-01-31 住友金属鉱山株式会社 Infrared absorbing fine particle dispersion powder, dispersion liquid containing infrared absorbing fine particle dispersion powder, ink containing infrared absorbing fine particle dispersion powder, anti-counterfeit ink, and printed matter for anti-counterfeiting
US10604665B2 (en) 2015-01-27 2020-03-31 Sumitomo Metal Mining Co., Ltd. Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11021002B2 (en) 2015-01-27 2021-06-01 Sumitomo Metal Mining Co., Ltd. Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11091655B2 (en) 2015-12-18 2021-08-17 Sumitomo Metal Mining Co., Ltd. Infrared-shielding ultrafine particle dispersion body, interlayer for shielding solar radiation, infrared-shielding laminated structure, and method for producing near-infrared shielding ultrafine particle dispersion body
US11130315B2 (en) 2015-12-02 2021-09-28 Sumitomo Metal Mining Co., Ltd. Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent substrate
US11248133B2 (en) 2015-01-27 2022-02-15 Sumitomo Metal Mining Co., Ltd. Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11312116B2 (en) 2016-01-04 2022-04-26 Sumitomo Metal Mining Co., Ltd. Boride particles, boride particle dispersed liquid, infrared light shielding transparent base, infrared light shielding optical member, infrared light shielding particle dispersed body, infrared light shielding laminated transparent base, infrared light shielding particle dispersed powder, and master batch
US11345607B2 (en) 2016-07-26 2022-05-31 Sumitomo Metal Mining Co., Ltd. Near-infrared absorbing fine particle dispersion liquid, near-infrared absorbing fine particle dispersion body, near-infrared absorbing transparent substrate, near-infrared absorbing laminated transparent substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828514B2 (en) 2017-02-28 2021-02-10 住友金属鉱山株式会社 Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, coating liquid for heat ray shielding film, and heat ray shielding film using these, heat ray shielding resin film, heat ray shielding fine particle dispersion

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111250A (en) * 1984-06-27 1986-01-18 株式会社豊田中央研究所 Method of forming transparent conductive film
JPS6137426A (en) * 1984-07-31 1986-02-22 日本化学箔工業株式会社 Ultraviolet barriering laminated film
JPS62108751A (en) * 1985-11-06 1987-05-20 Hitachi Metals Ltd Heat ray reflecting coated glass
JPS62216943A (en) * 1986-03-10 1987-09-24 ロイ ジエラルド ゴ−ドン Protective coating for solar shielding film
JPS62283822A (en) * 1986-05-31 1987-12-09 Toda Kogyo Corp Production of fine beta-ferric oxide hydrate particles
JPH02271925A (en) * 1989-04-12 1990-11-06 Showa Denko Kk Production of transparent spheroidal fine iron oxide particles
JPH036015Y2 (en) * 1985-04-22 1991-02-15
JPH03503630A (en) * 1988-04-15 1991-08-15 ゴードン,ロイ・ジイ titanium silicide coated glass window
JPH04230703A (en) * 1990-04-23 1992-08-19 Hughes Aircraft Co Selective radiation film for lowering room temperature in closed space
JPH04243913A (en) * 1991-01-25 1992-09-01 Sumitomo Metal Mining Co Ltd Production of fine boride powder
JPH04364116A (en) * 1991-06-10 1992-12-16 Pola Chem Ind Inc Cosmetic
JPH0641723A (en) * 1992-07-27 1994-02-15 Tonen Corp Electric conductive transparent film
JPH06144874A (en) * 1992-10-30 1994-05-24 Asahi Glass Co Ltd Heat ray reflective film and its production
JPH06239728A (en) * 1993-02-17 1994-08-30 Sumitomo Cement Co Ltd Cosmetic
JPH06316439A (en) * 1993-04-30 1994-11-15 Sumitomo Cement Co Ltd Heat ray shielding glass plate and production thereof
JPH07235220A (en) * 1993-12-28 1995-09-05 Sumitomo Metal Mining Co Ltd Transparent conductive substrate and its manufacture
JPH0841441A (en) * 1994-05-25 1996-02-13 Sumitomo Metal Mining Co Ltd Indium-tin oxide powder for shielding ultraviolet and near infrared rays, ultraviolet and near-infrared ray-shielding glass and production thereof
JPH0859398A (en) * 1994-08-23 1996-03-05 Sakai Chem Ind Co Ltd Alpha-ferric oxide and its production
JPH08133792A (en) * 1994-10-31 1996-05-28 Central Glass Co Ltd Heat rays reflecting ultraviolet rays absorbing transparent body
JPH09156963A (en) * 1995-12-12 1997-06-17 Sumitomo Metal Mining Co Ltd Coating liquid for heat ray-screening film and heat ray-screening film using the liquid
JPH09302284A (en) * 1996-05-14 1997-11-25 Sumitomo Metal Mining Co Ltd Coating fluid for sunlight-screening film and sunlight-screening film made by using the same

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111250A (en) * 1984-06-27 1986-01-18 株式会社豊田中央研究所 Method of forming transparent conductive film
JPS6137426A (en) * 1984-07-31 1986-02-22 日本化学箔工業株式会社 Ultraviolet barriering laminated film
JPH036015Y2 (en) * 1985-04-22 1991-02-15
JPS62108751A (en) * 1985-11-06 1987-05-20 Hitachi Metals Ltd Heat ray reflecting coated glass
JPS62216943A (en) * 1986-03-10 1987-09-24 ロイ ジエラルド ゴ−ドン Protective coating for solar shielding film
JPS62283822A (en) * 1986-05-31 1987-12-09 Toda Kogyo Corp Production of fine beta-ferric oxide hydrate particles
JPH03503630A (en) * 1988-04-15 1991-08-15 ゴードン,ロイ・ジイ titanium silicide coated glass window
JPH02271925A (en) * 1989-04-12 1990-11-06 Showa Denko Kk Production of transparent spheroidal fine iron oxide particles
JPH04230703A (en) * 1990-04-23 1992-08-19 Hughes Aircraft Co Selective radiation film for lowering room temperature in closed space
JPH04243913A (en) * 1991-01-25 1992-09-01 Sumitomo Metal Mining Co Ltd Production of fine boride powder
JPH04364116A (en) * 1991-06-10 1992-12-16 Pola Chem Ind Inc Cosmetic
JPH0641723A (en) * 1992-07-27 1994-02-15 Tonen Corp Electric conductive transparent film
JPH06144874A (en) * 1992-10-30 1994-05-24 Asahi Glass Co Ltd Heat ray reflective film and its production
JPH06239728A (en) * 1993-02-17 1994-08-30 Sumitomo Cement Co Ltd Cosmetic
JPH06316439A (en) * 1993-04-30 1994-11-15 Sumitomo Cement Co Ltd Heat ray shielding glass plate and production thereof
JPH07235220A (en) * 1993-12-28 1995-09-05 Sumitomo Metal Mining Co Ltd Transparent conductive substrate and its manufacture
JPH0841441A (en) * 1994-05-25 1996-02-13 Sumitomo Metal Mining Co Ltd Indium-tin oxide powder for shielding ultraviolet and near infrared rays, ultraviolet and near-infrared ray-shielding glass and production thereof
JPH0859398A (en) * 1994-08-23 1996-03-05 Sakai Chem Ind Co Ltd Alpha-ferric oxide and its production
JPH08133792A (en) * 1994-10-31 1996-05-28 Central Glass Co Ltd Heat rays reflecting ultraviolet rays absorbing transparent body
JPH09156963A (en) * 1995-12-12 1997-06-17 Sumitomo Metal Mining Co Ltd Coating liquid for heat ray-screening film and heat ray-screening film using the liquid
JPH09302284A (en) * 1996-05-14 1997-11-25 Sumitomo Metal Mining Co Ltd Coating fluid for sunlight-screening film and sunlight-screening film made by using the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074071B2 (en) 2002-05-13 2015-07-07 Sumitomo Metal Mining Co., Ltd. Heat ray shielding sheet material and liquid additive for use in producing the same
US7666930B2 (en) 2002-07-31 2010-02-23 Sumitomo Metal Mining Co., Ltd. Master batch containing heat radiation shielding component, and heat radiation shielding transparent resin form and heat radiation shielding transparent laminate for which the master batch has been used
US7238418B2 (en) 2002-09-25 2007-07-03 Sumitomo Metal Mining Co., Ltd. Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion
US7244376B2 (en) 2004-01-26 2007-07-17 Sumitomo Metal Mining Co., Ltd. Hexaboride particles, hexaboride particle dispersion, and article making use of hexaboride particles or hexaboride particle dispersion
JP2006202971A (en) * 2005-01-20 2006-08-03 New Japan Radio Co Ltd Semiconductor optical sensor
US8900693B2 (en) 2005-07-13 2014-12-02 Sabic Global Technologies B.V. Polycarbonate compositions having infrared absorbance, method of manufacture, and articles prepared therefrom
JP2013512130A (en) * 2009-11-30 2013-04-11 アメリカ合衆国 RuO2 coating
KR20170046774A (en) 2014-08-29 2017-05-02 스미토모 긴조쿠 고잔 가부시키가이샤 Aggregate of hexaboride microparticles, hexaboride microparticle dispersion, hexaboride microparticle-dispersed body, laminated transparent base material with hexaboride microparticle-dispersed body, infrared-absorptive film, and infrared-absorptive glass
EP3868710A1 (en) 2014-08-29 2021-08-25 Sumitomo Metal Mining Co., Ltd. Method to make an assembly of hexaboride particles
US10934207B2 (en) 2014-08-29 2021-03-02 Sumitomo Metal Mining Co., Ltd. Methods for producing an assembly of hexaboride fine particles
KR20170064536A (en) 2014-10-30 2017-06-09 스미토모 긴조쿠 고잔 가부시키가이샤 Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles
US10787581B2 (en) 2014-10-30 2020-09-29 Sumitomo Metal Mining Co., Ltd. Heat ray shielding particles, heat ray shielding particle dispersion liquid, heat ray shielding particle dispersion, heat ray shielding particle dispersion laminated transparent base material, infrared ray absorbing transparent base material, and method of producing heat ray shielding particles
US10604665B2 (en) 2015-01-27 2020-03-31 Sumitomo Metal Mining Co., Ltd. Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11248133B2 (en) 2015-01-27 2022-02-15 Sumitomo Metal Mining Co., Ltd. Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11084949B2 (en) 2015-01-27 2021-08-10 Sumitomo Metal Mining Co., Ltd. Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11021002B2 (en) 2015-01-27 2021-06-01 Sumitomo Metal Mining Co., Ltd. Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
WO2017094909A1 (en) 2015-12-02 2017-06-08 住友金属鉱山株式会社 Heat ray shielding microparticle, heat ray shielding microparticle dispersion solution, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent base material
US11130315B2 (en) 2015-12-02 2021-09-28 Sumitomo Metal Mining Co., Ltd. Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent substrate
WO2017104853A1 (en) 2015-12-18 2017-06-22 住友金属鉱山株式会社 Ultrafine particles of complex tungsten oxide, and fluid dispersion thereof
KR20180095875A (en) 2015-12-18 2018-08-28 스미토모 긴조쿠 고잔 가부시키가이샤 Composite tungsten oxide ultrafine particles and dispersions thereof
US10752512B2 (en) 2015-12-18 2020-08-25 Sumitomo Metal Mining Co., Ltd. Composite tungsten oxide ultrafine particles and dispersion liquid of the same
US11091655B2 (en) 2015-12-18 2021-08-17 Sumitomo Metal Mining Co., Ltd. Infrared-shielding ultrafine particle dispersion body, interlayer for shielding solar radiation, infrared-shielding laminated structure, and method for producing near-infrared shielding ultrafine particle dispersion body
US11312116B2 (en) 2016-01-04 2022-04-26 Sumitomo Metal Mining Co., Ltd. Boride particles, boride particle dispersed liquid, infrared light shielding transparent base, infrared light shielding optical member, infrared light shielding particle dispersed body, infrared light shielding laminated transparent base, infrared light shielding particle dispersed powder, and master batch
KR20180100123A (en) 2016-01-04 2018-09-07 스미토모 긴조쿠 고잔 가부시키가이샤 An infrared shielding transparent material, an infrared shielding optical material, an infrared shielding particle dispersion, a transparent substrate having infrared shielding, an infrared shielding particle dispersed powder, and a master batch
US11180378B2 (en) 2016-06-15 2021-11-23 Sumitomo Metal Mining Co., Ltd. Heat ray shielding fine particle dispersion body, heat ray shielding laminated transparent substrate, and method for producing the same
WO2017217459A1 (en) 2016-06-15 2017-12-21 住友金属鉱山株式会社 Heat-ray-shielding microparticle dispersion, heat-ray-shielding laminated transparent base, and production processes therefor
KR20190017970A (en) 2016-06-15 2019-02-20 스미토모 긴조쿠 고잔 가부시키가이샤 Heat ray shielding fine particle dispersion, heat ray shielding laminated transparent substrate, and manufacturing method thereof
US11345607B2 (en) 2016-07-26 2022-05-31 Sumitomo Metal Mining Co., Ltd. Near-infrared absorbing fine particle dispersion liquid, near-infrared absorbing fine particle dispersion body, near-infrared absorbing transparent substrate, near-infrared absorbing laminated transparent substrate
KR20200033862A (en) 2017-07-24 2020-03-30 스미토모 긴조쿠 고잔 가부시키가이샤 Infrared absorbing fine particle-containing masterbatch pulverized material, infrared absorbing fine particle-containing masterbatch pulverizing liquid containing liquid, infrared absorbing material-containing ink, anti-counterfeiting ink, anti-counterfeiting printing film, and infrared absorbing fine particle-containing masterbatch pulverizing method
WO2019022003A1 (en) 2017-07-24 2019-01-31 住友金属鉱山株式会社 Infrared-absorbing-fine-particle-containing masterbatch pulverized product, dispersion containing infrared-absorbing-fine-particle-containing masterbatch pulverized product, infrared-absorbing-material-containing ink, anti-counterfeiting ink employing same, anti-counterfeiting print film, and method for manufacturing infrared-absorbing-fine-particle-containing masterbatch pulverized product
KR20200030549A (en) 2017-07-24 2020-03-20 스미토모 긴조쿠 고잔 가부시키가이샤 Infrared absorption fine particle dispersion, dispersion containing infrared absorption fine particle dispersion, ink containing infrared absorption fine particle dispersion and anti-counterfeiting ink, and anti-counterfeiting prints
WO2019021992A1 (en) 2017-07-24 2019-01-31 住友金属鉱山株式会社 Infrared absorbing fine particle dispersion powder, dispersion liquid containing infrared absorbing fine particle dispersion powder, ink containing infrared absorbing fine particle dispersion powder, anti-counterfeit ink, and printed matter for anti-counterfeiting
US11787949B2 (en) 2017-07-24 2023-10-17 Sumitomo Metal Mining Co., Ltd. Infrared absorbing fine particle dispersed powder, dispersion liquid containing infrared absorbing fine particle dispersed powder, ink containing infrared absorbing fine particle dispersed powder, and anti-counterfeit ink, and anti-counterfeit printed matter

Also Published As

Publication number Publication date
JP4058822B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JPH11181336A (en) Coating fluid for permselective membrane, permselective membrane, and multi layered permselective membrane
US6060154A (en) Coating liquid for selective permeable membrane, selective permeable membrane and selective permeable multilayered membrane
AU736327B2 (en) Film for cutting off heat rays and a coating liquid for forming the same
US6319613B1 (en) Coating solution for forming a film for cutting off solar radiation and the film formed therefrom
KR101507186B1 (en) Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
TWI342870B (en)
JP5050470B2 (en) Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
CN103080254A (en) Inorganic oxide coating
JPH11228183A (en) Hydrophilic base material and its production
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP2007269523A (en) Heat ray shielding glass and its manufacturing method
EP0779343B1 (en) Coating solution for a heat-ray shielding film and a process for forming a heat-ray shielding film by employing the same
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
CN108531076A (en) Sun screening film formation coating fluid and relevant adhesive, sun screening film and base material
JP4058850B2 (en) Coating solution for solar filter film formation
JP4415953B2 (en) Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane
JP2006299087A (en) Coating liquid for forming sunlight-shielding film and sunlight-shielding film and substrate having sunlight-shielding function
JP2002194290A (en) Method for preparing coating fluid for forming deep colored film
JP4058878B2 (en) Coating liquid for forming room temperature curable solar radiation shielding film, solar radiation shielding film using the same, and substrate having solar radiation shielding function
JP4194121B2 (en) Coating liquid for heat ray reflective film and heat ray reflective film using the same
JP2002201027A (en) Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same
JPH10101340A (en) Solar radiation shielding coating solution and solar radiation shielding film using the same
JPH1036774A (en) Coating liquid for sun light-shading film and sun light-shading film using the same
JPH11258418A (en) Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film
JPH09310037A (en) Coating liquid for solar radiation-blocking film and solar radiation-blocking film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

EXPY Cancellation because of completion of term