JPH11173989A - Measuring method for calorific value, gasification apparatus and its operating method - Google Patents

Measuring method for calorific value, gasification apparatus and its operating method

Info

Publication number
JPH11173989A
JPH11173989A JP34602597A JP34602597A JPH11173989A JP H11173989 A JPH11173989 A JP H11173989A JP 34602597 A JP34602597 A JP 34602597A JP 34602597 A JP34602597 A JP 34602597A JP H11173989 A JPH11173989 A JP H11173989A
Authority
JP
Japan
Prior art keywords
gas
calorific value
concentration
generated gas
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34602597A
Other languages
Japanese (ja)
Inventor
Masahiro Kuroda
雅博 黒田
Yoshihiro Deguchi
祥啓 出口
Yoshitaka Koga
義孝 古閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP34602597A priority Critical patent/JPH11173989A/en
Publication of JPH11173989A publication Critical patent/JPH11173989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method for a calorific value, in which the responsiveness of a measurement is largely excellent and in which the pretreatment of a generated gas is simplified sharply when the calorific value of a high-temperature and high-pressure gas applied to the generated gas or the like of a coal gasification furnace is measured. SOLUTION: The measuring method for a calorific value is featured in that a gasified generated gas 2 is irradiated with laser light 16, scattered light 22 from the generated gas 2 is analyzed so as to analyze its spectrum, and the concentration of a flammable gas in the generated gas 2 is measured so as to compute the calorific value on the basis of the concentration. The gasification apparatus and its operating method are featured in that the supply amount of a fuel and air which are charged into a gasification furnace 1 is adjusted by using the method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石炭ガス化炉の生
成ガス等に適用される発熱量計測方法、並びに、該計測
方法を用いたガス化装置及びその運転方法に関する。さ
らに詳しくは、計測の応答性が飛躍的に向上し、生成ガ
スの前処理も大幅に簡素化された高温・高圧生成ガスの
発熱量計測方法、並びに、該計測方法を用いたガス化装
置及びその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a calorific value applied to a gas produced in a coal gasifier, a gasification apparatus using the measurement method, and a method for operating the same. More specifically, the measurement response is dramatically improved, and the pre-treatment of the generated gas is greatly simplified, and the calorific value measurement method for the high-temperature and high-pressure generated gas, and a gasifier and a gasifier using the measurement method It relates to the driving method.

【0002】[0002]

【従来の技術】石炭ガスによる発電においては、ガス化
炉から送られてくる生成ガスをガスタービン等の発電設
備に導き、それを燃料として使用する。この場合、目標
とする発電量に応じて生成ガスの発熱量を制御するこ
と、及び、生成ガス発熱量が燃料として許容され得る範
囲内に入るように常に制御することが非常に重要であ
る。従来の生成ガス発熱量の測定においては、図4に示
すように高温・高圧(例えば、約400℃,30気圧)
ガスの一部をサンプリングし、降圧,冷却,除塵,除湿
等の前処理を行い、常温・常圧で乾燥し、かつ塵を含ま
ない状態にする。その後、ガスクラマトグラフで組成を
分析し、その中の可燃ガスの濃度を算出し、可燃ガスの
理論発熱量から計算により生成ガスの発熱量を算出して
いた。
2. Description of the Related Art In power generation using coal gas, generated gas sent from a gasification furnace is guided to a power generation facility such as a gas turbine and used as fuel. In this case, it is very important to control the calorific value of the generated gas in accordance with the target power generation amount, and to always control the calorific value of the generated gas so as to fall within a range allowable as fuel. In the conventional measurement of the generated gas calorific value, as shown in FIG. 4, high temperature and high pressure (for example, about 400 ° C., 30 atm)
A part of the gas is sampled, subjected to pretreatment such as pressure reduction, cooling, dust removal, and dehumidification, dried at normal temperature and normal pressure, and made into a state free of dust. Thereafter, the composition was analyzed by a gas chromatograph, the concentration of the combustible gas therein was calculated, and the calorific value of the generated gas was calculated from the theoretical calorific value of the combustible gas.

【0003】具体的には、図4に示すようにガス化炉1
からの生成ガス2をサンプリング管3により一部をサン
プリングし、前処理装置4には降圧,冷却,除塵,除湿
したガスをガスクロマトグラフ5へ送る。ガスクロマト
グラフ5では、生成ガスが分析され、それぞれのガスの
濃度が測定される。ここで通常、石炭ガス化生成ガスの
場合には、一酸化炭素(CO)10〜30%,水素(H
2 )4〜10%,メタン(CH4 )0.1〜1%,二酸化
炭素(CO2 )5〜10%,窒素(N2 )55〜70%
の体積濃度を有する。上記成分ガスの内、可燃性ガスで
ある一酸化炭素,水素,メタンの濃度値が計算機6へ出
力され、下式により単位体積当たりの発熱量Q(Kcal/N
m3)が計算される。 Q=CCO×JCO+CH2×JH2+CCH4 ×JCH4 ・・・(1) 式(1)中、CCOは一酸化炭素濃度(vol%)、JCOは一
酸化炭素の理論発熱量(Kcal/Nm3)、CH2,JH2はそれ
ぞれ水素濃度及びその理論発熱量、CCH4 ,JCH4 はそ
れぞれメタン濃度及びその理論発熱量である。
[0003] Specifically, as shown in FIG.
A part of the generated gas 2 is sampled by a sampling pipe 3, and the gas whose pressure has been reduced, cooled, dedusted, and dehumidified is sent to a gas chromatograph 5 to a pretreatment device 4. In the gas chromatograph 5, the generated gas is analyzed, and the concentration of each gas is measured. Here, usually, in the case of a coal gasification product gas, 10 to 30% of carbon monoxide (CO) and hydrogen (H
2) 4% to 10%, methane (CH 4) 0.1 to 1% carbon dioxide (CO 2) 5 to 10% nitrogen (N 2) 55 to 70%
Having a volume concentration of Among the above component gases, the concentration values of flammable gases such as carbon monoxide, hydrogen and methane are output to the computer 6, and the calorific value per unit volume Q (Kcal / N
m 3 ) is calculated. Q = C CO × J CO + CH 2 × J H2 + C CH4 × J CH4 (1) In the formula (1), C CO is the concentration of carbon monoxide (vol%), and J CO is the theoretical heat generation of carbon monoxide. The amount (Kcal / Nm 3 ), C H2 and J H2 are the hydrogen concentration and its theoretical heating value, respectively, and C CH4 and J CH4 are the methane concentration and its theoretical heating value, respectively.

【0004】上記生成ガス発熱量Qの計算結果は制御装
置7へ伝達されて、この結果によりガス化炉1内へ投入
される石炭量,空気量がそれぞれ供給弁13,14にて
調節され、生成ガス発熱量が常に許容範囲内に入るよう
に制御されていた。このように従来の石炭ガス化による
発電においては、石炭ガス化炉による生成ガスの発熱量
をガスクロマトグラフで測定し、その値によってガス化
炉1を制御していたが、ガスクロマトグラフを用いた場
合、分析に要する時間が5分程度以上必要とされるため
に速やかな制御ができなかった。
The calculation result of the calorific value Q of the generated gas is transmitted to the control device 7, and the amount of coal and the amount of air charged into the gasifier 1 are adjusted by the supply valves 13 and 14 based on the result. The calorific value of the generated gas was controlled so as to always fall within the allowable range. As described above, in the conventional power generation by coal gasification, the calorific value of the gas generated by the coal gasifier is measured by a gas chromatograph, and the gasifier 1 is controlled by the measured value. In addition, quick control was not possible because the time required for analysis was about 5 minutes or more.

【0005】これに対し、近年の火力発電では、昼間と
夜間との使用電力が大幅に違うため、従来に比べて負荷
(発電量)の時間的変動が大きくなっており、これに対
処するため最大負荷を100%とすると、少なくとも1
分間当たり3%程度の負荷を増減できる制御速度が要求
されている。したがって、これに組み合わせるガス化炉
では、リアルタイム(少なくとも30秒程度)でのガス
発熱量測定が要求されている。よって、ガスクロマトグ
ラフを用いた従来の発熱量計測方法では、火力発電等に
おけるガス化装置の効率的かつ信頼性の高い運転が困難
であるという問題点を有していた。また、従来のガス化
設備における別の問題としては、前処理装置でのトラブ
ルがある。特に冷却した際に、水滴あるいは析出したN
4 Cl(塩化アンモニウム)が管内に付着し、管の閉
塞が頻繁に起こり、前処理装置のメインテナンスに多大
の労力を要していた。
On the other hand, in thermal power generation in recent years, power consumption between daytime and nighttime is significantly different, so that the load (power generation amount) has a temporal variation larger than that of the conventional thermal power generation. If the maximum load is 100%, at least 1
A control speed capable of increasing or decreasing the load by about 3% per minute is required. Therefore, in the gasifier combined with this, it is required to measure the gas calorific value in real time (at least about 30 seconds). Therefore, the conventional calorific value measurement method using a gas chromatograph has a problem that it is difficult to operate a gasifier efficiently and highly reliably in thermal power generation or the like. Another problem in the conventional gasification equipment is a trouble in the pretreatment device. In particular, when cooled, water droplets or precipitated N
H 4 Cl (ammonium chloride) adhered to the inside of the tube, and frequently clogged the tube, requiring much labor for maintenance of the pretreatment device.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、上記問
題点に鑑み、ガス化炉の生成ガス等に適用される高温・
高圧ガスの発熱量計測において、計測の応答性に優れ、
リアルタイムでの計測が可能であり、かつ、生成ガスの
前処理も大幅に簡素化された発熱量計測方法、並びに、
ガス化炉へ投入する燃料及び空気の供給量を速やかに制
御,調整できるガス化装置及びその運転方法を開発すべ
く鋭意検討した。その結果、本発明者らは、従来のガス
クロマトグラフを用いる計測方法とは全く異なり、レー
ザー光を照射した際の散乱光のスペクトラム分析に基づ
き、生成ガス中の成分及び濃度を計測して、生成ガスの
発熱量を算出する方法により、かかる問題点が解決され
ることを見い出した。本発明は、かかる見地より完成さ
れたものである。
SUMMARY OF THE INVENTION In view of the above problems, the present inventors have developed a high-temperature,
Excellent measurement response in high pressure gas calorific value measurement,
A calorific value measurement method capable of real-time measurement and greatly simplifying pretreatment of generated gas, and
We have studied diligently to develop a gasifier that can quickly control and adjust the amounts of fuel and air supplied to the gasifier and its operating method. As a result, the present inventors are completely different from the conventional measurement method using a gas chromatograph, based on the spectrum analysis of scattered light when irradiating laser light, to measure the components and concentration in the generated gas, It has been found that such a problem can be solved by a method of calculating the calorific value of gas. The present invention has been completed from such a viewpoint.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、ガ
ス化生成ガスにレーザー光を照射(入射)し、該生成ガ
スからの散乱光をスペクトラム分析することにより、該
生成ガス中の可燃性ガスの濃度を計測して、該濃度から
発熱量を算出することを特徴とする発熱量計測方法を提
供するものである。また、本発明は、上記方法により計
測した生成ガスの発熱量の結果を用い、制御装置を通じ
て燃料供給弁及び空気供給弁を調節することにより、ガ
ス化炉へ投入する燃料及び空気の供給量を調整すること
を特徴とするガス化装置、並びに、該ガス化装置の運転
方法を提供するものである。
That is, the present invention irradiates (incidents) a laser beam to a gasification product gas and performs spectrum analysis of scattered light from the product gas, thereby obtaining a combustible gas in the product gas. It is an object of the present invention to provide a calorific value measuring method, which comprises measuring a gas concentration and calculating a calorific value from the concentration. Further, the present invention uses the result of the calorific value of the generated gas measured by the above method, and adjusts the fuel supply valve and the air supply valve through the control device, thereby controlling the supply amounts of the fuel and the air to be supplied to the gasification furnace. An object of the present invention is to provide a gasifier characterized by adjustment and a method of operating the gasifier.

【0008】本発明では上記のような特徴を有すること
によって、ガスクロマトグラフを用いた場合には困難で
あった速やかな制御が可能となり、リアルタイム(少な
くとも30秒程度)での生成ガス発熱量計測が可能であ
る。また、上記発熱量計測方法を用いて、投入する燃料
及び空気の供給量を調整するガス化装置の運転方法で
は、要求される負荷の増減が可能であり、火力発電等の
設備の一部に採用すれば、設備の効率的な運転が可能で
ある。更に、本発明では、ガス化設備の前処理装置等に
おいて、冷却した際の水滴等の管内に付着、さらには管
の閉塞の問題が解消され、前処理装置のメインテナンス
の労力軽減を図ることができる。以下、本発明につい
て、詳細に説明する。
According to the present invention, the above-mentioned features enable quick control, which was difficult when using a gas chromatograph, and make it possible to measure the generated gas calorific value in real time (at least about 30 seconds). It is possible. In addition, in the operation method of the gasifier that adjusts the supply amounts of the supplied fuel and air by using the above-described calorific value measurement method, the required load can be increased or decreased, and it is necessary to use a part of equipment such as thermal power generation. If adopted, the equipment can be operated efficiently. Further, in the present invention, in a pretreatment device or the like of a gasification facility, it is possible to eliminate the problem of water droplets or the like adhering to the inside of a tube when cooled, and further to solve the problem of blockage of the tube, thereby reducing the labor for maintenance of the pretreatment device. it can. Hereinafter, the present invention will be described in detail.

【0009】[0009]

【発明の実施の形態】添付図面(図1〜3)を参照しな
がら、本発明の実施の形態を説明する。実施の形態 図1は、本発明に係る発熱量計測方法により、生成ガス
の発熱量を計測して、投入する燃料及び空気の供給量を
調整するガス化装置の実施の形態の1つを示す構造図で
ある。図1において、ガス化炉1では石炭等の燃料をガ
ス化する。ガス化された生成ガス2は、ガスタービン1
1に連結された配管12に誘導されるが、その一部は途
中に設けられたサンプリング管3を通って、前処理装置
4に導かれる。前処理装置4では、生成ガス2を脱塵処
理する。
Embodiments of the present invention will be described with reference to the accompanying drawings (FIGS. 1 to 3). Embodiment FIG. 1 shows one embodiment of a gasification apparatus that measures the calorific value of a generated gas by the calorific value measuring method according to the present invention and adjusts the supply amounts of the supplied fuel and air. FIG. In FIG. 1, a gasifier 1 gasifies fuel such as coal. The gasified product gas 2 is supplied to the gas turbine 1
While being guided to a pipe 12 connected to 1, a part thereof is guided to a pretreatment device 4 through a sampling pipe 3 provided on the way. In the pretreatment device 4, the generated gas 2 is subjected to dust removal.

【0010】一方、本発明の発熱量計測方法を用いたガ
ス化装置は、前処理装置から燃料及び空気供給弁に至る
までの計測,制御部において、生成ガスにレーザー光を
照射(入射)し、該生成ガスからの散乱光をスペクトラ
ム分析することにより、該生成ガス中の可燃性ガスの濃
度を計測して、該濃度から発熱量を算出する。図1によ
り具体的に説明すれば、以下のようになる。すなわち、
レーザー15より発射されたレーザービーム16は、レ
ンズ17にて集光され、ビームスプリッタ18を経由し
て、生成ガス管の計測部19に取り付けた計測用窓20
を通して管内部で焦点を結ぶ。レーザービーム焦点域2
1より散乱されたラマン光(散乱光)22は、ビームス
プリッタ18を経由して、レンズ23で集光され分光器
24に入射される。
On the other hand, in a gasifier using the calorific value measuring method of the present invention, a measurement and control section from a pretreatment device to a fuel and air supply valve irradiates (incidents) a generated gas with laser light. By measuring the scattered light from the generated gas by spectrum analysis, the concentration of the combustible gas in the generated gas is measured, and the calorific value is calculated from the concentration. This will be described more specifically with reference to FIG. That is,
A laser beam 16 emitted from a laser 15 is condensed by a lens 17 and passes through a beam splitter 18 to a measurement window 20 attached to a measurement unit 19 of a generated gas pipe.
Focus inside the tube through. Laser beam focal area 2
Raman light (scattered light) 22 scattered from 1 is condensed by a lens 23 via a beam splitter 18 and is incident on a spectroscope 24.

【0011】分光器24では、散乱光のスペクトラム
(波長及び強度)が計測され、計測データが計算機6に
伝達される。計算機6では散乱光のスペクトラムより、
生成ガス中の各成分及びその濃度が解析される。生成ガ
スの内、可燃性ガスである一酸化炭素,水素,メタンの
濃度値が計算機6へ出力され、下式により単位体積当た
りの発熱量Q(Kcal/Nm3)が計算される。 Q=CCO×JCO+CH2×JH2+CCH4 ×JCH4 ・・・(1) 式(1)中、CCOは一酸化炭素濃度(vol%)、JCOは一
酸化炭素の理論発熱量(Kcal/Nm3)、CH2,JH2はそれ
ぞれ水素濃度及びその理論発熱量、CCH4 ,JCH4 はそ
れぞれメタン濃度及びその理論発熱量である。
In the spectroscope 24, the spectrum (wavelength and intensity) of the scattered light is measured, and the measurement data is transmitted to the computer 6. In the computer 6, from the spectrum of the scattered light,
Each component in the product gas and its concentration are analyzed. Among the produced gases, the concentration values of combustible gases such as carbon monoxide, hydrogen, and methane are output to the computer 6, and the calorific value per unit volume Q (Kcal / Nm 3 ) is calculated by the following equation. Q = C CO × J CO + CH 2 × J H2 + C CH4 × J CH4 (1) In the formula (1), C CO is the concentration of carbon monoxide (vol%), and J CO is the theoretical heat generation of carbon monoxide. The amount (Kcal / Nm 3 ), C H2 and J H2 are the hydrogen concentration and its theoretical heating value, respectively, and C CH4 and J CH4 are the methane concentration and its theoretical heating value, respectively.

【0012】次いで、上記方法により計測した生成ガス
の発熱量を用い、制御装置を通じて燃料及び空気供給弁
を調節することにより、ガス化炉へ投入する燃料及び空
気の供給量を調整する。すなわち、生成ガス発熱量Qの
計算結果が制御装置7へ伝達されて、ガス化炉運転制御
用信号に変換される。この信号により、ガス化炉1内へ
投入される石炭等の燃料量,空気量がそれぞれ燃料供給
弁13,空気供給弁14にて調節され、生成ガス発熱量
が常に許容範囲内に入るように制御される。
Next, by using the calorific value of the generated gas measured by the above method, the fuel and air supply valves are adjusted through the control device to adjust the supply amounts of the fuel and air to be supplied to the gasification furnace. That is, the calculation result of the generated gas calorific value Q is transmitted to the control device 7 and converted into a gasification furnace operation control signal. With this signal, the amount of fuel such as coal and the amount of air supplied into the gasifier 1 are adjusted by the fuel supply valve 13 and the air supply valve 14, respectively, so that the calorific value of the generated gas always falls within the allowable range. Controlled.

【0013】ここで、散乱光のスペクトラムからガス成
分濃度を求める原理は、ラマン散乱分光分析法に基づい
ており、図2で説明する。計測対象のガス分子に周波数
ω1 (波長λ=光速c/周波数ω)のレーザービームを
入射すると、ラマン効果により基本光ω1 より周波数が
低いほうにΔωシフトした周波数ω2 のストークス光、
及び周波数が高い方にΔωシフトした周波数ω3 のアン
チストークス光がラマン光として発生する。そして、こ
のシフト量Δωは成分に固有な量であるため、この値に
より生成ガス中の各成分を特定できる。また、ストーク
ス光の強度I2 及びアンチストークス光の強度I3 は、
各成分の分子数すなわち濃度に比例する。したがって、
ラマン散乱光のスペクトラム(波長及び強度)を計測す
ることにより、ガスの成分濃度を計測できることにな
る。
Here, the principle of obtaining the gas component concentration from the spectrum of the scattered light is based on Raman scattering spectroscopy and will be described with reference to FIG. When a laser beam having a frequency ω 1 (wavelength λ = light speed c / frequency ω) is incident on a gas molecule to be measured, Stokes light having a frequency ω 2 shifted by Δω to a lower frequency than the fundamental light ω 1 due to the Raman effect,
And anti-Stokes light of a frequency omega 3 that Δω shift occurs as the Raman light in the higher frequencies. Since this shift amount Δω is an amount unique to the component, each component in the generated gas can be specified by this value. The intensity I 2 of the Stokes light and the intensity I 3 of the anti-Stokes light are
It is proportional to the number of molecules of each component, that is, the concentration. Therefore,
By measuring the spectrum (wavelength and intensity) of the Raman scattered light, the concentration of the gas component can be measured.

【0014】図3に、石炭ガス化生成ガスを計測対象と
した場合のスペクトラム計測例を示すが、このように各
成分の濃度が同時に計測できる。計測に要する時間につ
いては、原理的に散乱光の測定なので高速であること、
及び計測信号を全て電気信号として取り扱えるので数秒
以内である。また、前処理については、必要な処理は除
塵のみである。原理的にガスが高温高圧であっても制約
を受けないし、水分が含まれていてもよく、スペクトラ
ム分析により水分濃度も計測可能である。したがって、
ガスを冷却した際に、水滴あるいは析出したNH4 Cl
(塩化アンモニウム)が管内に付着し、管の閉塞を起こ
すことがなくなり、従来多大の労力(手間)を要してい
た前処理装置のメインテナンスが大幅に軽減される。こ
のように、ラマン散乱法をガス化生成ガスの発熱量計測
に応用すると、計測の応答性が飛躍的に向上し、前処理
も大幅に簡素化され、従来法の課題が解決される。
FIG. 3 shows an example of spectrum measurement in the case where the coal gasification product gas is to be measured. In this way, the concentrations of the components can be measured simultaneously. Regarding the time required for measurement, it is high-speed because it is a measurement of scattered light in principle,
In addition, all the measurement signals can be handled as electric signals, which is within a few seconds. As for the pretreatment, the only necessary treatment is dust removal. In principle, there is no restriction even if the gas is at high temperature and high pressure, and the gas may contain moisture, and the moisture concentration can be measured by spectrum analysis. Therefore,
When the gas is cooled, water droplets or precipitated NH 4 Cl
(Ammonium chloride) does not adhere to the inside of the tube and does not cause blockage of the tube, so that maintenance of the pretreatment device, which conventionally required a great deal of labor (labor), is greatly reduced. As described above, when the Raman scattering method is applied to the measurement of the calorific value of the gasification product gas, the responsiveness of the measurement is drastically improved, the preprocessing is greatly simplified, and the problems of the conventional method are solved.

【0015】一方、ラマン散乱法は通常、ガスの成分濃
度計測にはあまり利用されていない。これは、ラマン散
乱光の強度は非常に微弱であるため、ノイズ信号に埋も
れやすく、良好なS/N比で計測することが容易でない
からである。他方、石炭等のガス化生成ガスは前記した
ように非常に高圧である。高圧場のガスは、単位体積当
たりの分子数が圧力に比例して増加する。ラマン散乱光
強度は分子数に比例するので、例えば石炭ガス化生成ガ
スを計測対象とした場合、常圧のガスに比べてS/N比
が大幅に向上する。かかる観点とともに、前記した応答
性及び前処理の容易な点により、ラマン散乱法をガス化
生成ガスの発熱量計測に応用すると、特有な効果を発揮
できるのである。
On the other hand, the Raman scattering method is not generally used for measuring the component concentration of a gas. This is because the intensity of the Raman scattered light is very weak, so it is easily buried in a noise signal, and it is not easy to measure with a good S / N ratio. On the other hand, the gasification product gas such as coal has a very high pressure as described above. The gas in the high-pressure field increases the number of molecules per unit volume in proportion to the pressure. Since the Raman scattered light intensity is proportional to the number of molecules, for example, when a coal gasification product gas is to be measured, the S / N ratio is significantly improved as compared with a gas at normal pressure. In addition to this point of view, due to the above-mentioned responsiveness and easy pretreatment, when the Raman scattering method is applied to the measurement of the calorific value of the gasification product gas, a special effect can be exhibited.

【0016】本発明に係る発熱量計測方法及びガス化装
置は、上記実施の形態に限らず、本発明の技術的思想の
範囲において種々変形が可能であり、上記した具体的な
形態に何ら限定されるものではない。
The calorific value measuring method and the gasifier according to the present invention are not limited to the above-described embodiment, but can be variously modified within the scope of the technical idea of the present invention. It is not something to be done.

【0017】[0017]

【発明の効果】本発明の発熱量計測方法は、石炭ガス化
炉の生成ガス等に適用される高温・高圧ガスの発熱量測
定において、リアルタイムでの計測が可能であり、ガス
化装置の計測部,制御部に用いれば、投入する燃料及び
空気の供給量を速やかに制御,調整することができる。
また、本発明のガス化装置及びその運転方法によれば、
ガス化炉へ投入する燃料及び空気の供給量を迅速かつ効
果的に調整できるので、火力発電で一般に要求される負
荷の増減速度での運転が可能である。更に、本発明によ
れば、例えば冷却した際に管の閉塞が起こり、前処理装
置のメインテナンスに多大の労力を要する等の不都合が
解消されて、優れた信頼性・安定性を有するガス化装置
を提供できる。したがって、本発明はガス化設備の信頼
性向上及び補修工事数の低減等に対する寄与も大きく、
その産業上の意義は極めて大きい。
The calorific value measuring method of the present invention enables real-time measurement of the calorific value of a high-temperature and high-pressure gas applied to a gas produced in a coal gasifier, and the measurement of a gasifier. If it is used for the control unit and the control unit, the supply amounts of the supplied fuel and air can be quickly controlled and adjusted.
According to the gasifier of the present invention and the operating method thereof,
Since the supply amounts of fuel and air to be supplied to the gasifier can be adjusted quickly and effectively, it is possible to operate at a load increasing / decreasing speed generally required for thermal power generation. Further, according to the present invention, for example, a gasification device having excellent reliability and stability can be solved by eliminating inconveniences such as clogging of a pipe upon cooling and requiring much labor for maintenance of the pretreatment device. Can be provided. Therefore, the present invention greatly contributes to improving the reliability of gasification equipment and reducing the number of repair works, and the like.
Its industrial significance is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る発熱量計測方法を用いたガス化装
置の実施の形態を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a gasification apparatus using a calorific value measurement method according to the present invention.

【図2】ラマン散乱の原理を示す図である。FIG. 2 is a diagram illustrating the principle of Raman scattering.

【図3】石炭ガス化生成ガスのラマン散乱を計測した場
合のスペクトラム(波長及び強度)の概略を示す図であ
る。
FIG. 3 is a diagram schematically illustrating a spectrum (wavelength and intensity) when Raman scattering of coal gasification product gas is measured.

【図4】従来のガスクラマトグラフを用いた発熱量計測
方法によるガス化装置の構成図である。
FIG. 4 is a configuration diagram of a gasifier according to a conventional calorific value measurement method using a gas chromatograph.

【符号の説明】[Explanation of symbols]

1 ガス化炉 2 生成ガス 3 サンプリング管 4 前処理装置 5 ガスクロマトグラフ 6 計算機 7 制御装置 11 ガスタービン 12 生成ガス配管 13 燃料供給弁 14 空気供給弁 15 レーザー装置 16 レーザービーム 17,23 集光レンズ 18 ビームスリッター 19 ガス管計測部 20 計測用窓 21 レーザービーム焦点域 22 ラマン散乱光 24 スペクトラム分析分光器 DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Produced gas 3 Sampling pipe 4 Pretreatment device 5 Gas chromatograph 6 Computer 7 Control device 11 Gas turbine 12 Produced gas piping 13 Fuel supply valve 14 Air supply valve 15 Laser device 16 Laser beam 17, 23 Condensing lens 18 Beam slitter 19 Gas tube measuring unit 20 Measurement window 21 Laser beam focal area 22 Raman scattered light 24 Spectrum analysis spectroscope

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガス化生成ガスにレーザー光を照射し、
該生成ガスからの散乱光をスペクトラム分析することに
より、該生成ガス中の可燃性ガスの濃度を計測して、該
濃度から生成ガスの発熱量を算出することを特徴とする
発熱量計測方法。
Claims: 1. A gasification product gas is irradiated with a laser beam,
A calorific value measuring method comprising: measuring the concentration of a combustible gas in the produced gas by spectrum analysis of scattered light from the produced gas; and calculating the calorific value of the produced gas from the concentration.
【請求項2】 請求項1記載の発熱量計測方法により計
測した生成ガスの発熱量により、ガス化炉へ投入する燃
料及び空気の供給量を調整することを特徴とするガス化
装置。
2. A gasification apparatus wherein the supply amounts of fuel and air to be supplied to a gasification furnace are adjusted based on the heat generation amount of the generated gas measured by the heat generation amount measurement method according to claim 1.
【請求項3】 請求項1記載の発熱量計測方法により計
測した生成ガスの発熱量により、ガス化炉へ投入する燃
料及び空気の供給量を調整することを特徴とするガス化
装置の運転方法。
3. A method for operating a gasification apparatus, comprising: adjusting supply amounts of fuel and air to be supplied to a gasification furnace according to a heat generation amount of a generated gas measured by the heat generation amount measurement method according to claim 1. .
JP34602597A 1997-12-16 1997-12-16 Measuring method for calorific value, gasification apparatus and its operating method Pending JPH11173989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34602597A JPH11173989A (en) 1997-12-16 1997-12-16 Measuring method for calorific value, gasification apparatus and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34602597A JPH11173989A (en) 1997-12-16 1997-12-16 Measuring method for calorific value, gasification apparatus and its operating method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004155046A Division JP2004325458A (en) 2004-05-25 2004-05-25 Calorific value measuring method, gasifier and its operating method

Publications (1)

Publication Number Publication Date
JPH11173989A true JPH11173989A (en) 1999-07-02

Family

ID=18380632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34602597A Pending JPH11173989A (en) 1997-12-16 1997-12-16 Measuring method for calorific value, gasification apparatus and its operating method

Country Status (1)

Country Link
JP (1) JPH11173989A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085374A (en) * 2008-10-02 2010-04-15 Mitsubishi Heavy Ind Ltd Apparatus for measuring gas component and method for adjusting optical axis thereof
CN102401794A (en) * 2010-09-14 2012-04-04 精工爱普生株式会社 Optical device unit and detection apparatus
WO2013091399A1 (en) * 2011-12-22 2013-06-27 武汉四方光电科技有限公司 Coal gas component and calorific value measurement method
CN105527255A (en) * 2016-01-20 2016-04-27 华南理工大学 On-line monitoring system of coal characteristics of as-fired coal
CN109870430A (en) * 2017-12-04 2019-06-11 西派特(北京)科技有限公司 Coal quality on-line analysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085374A (en) * 2008-10-02 2010-04-15 Mitsubishi Heavy Ind Ltd Apparatus for measuring gas component and method for adjusting optical axis thereof
CN102401794A (en) * 2010-09-14 2012-04-04 精工爱普生株式会社 Optical device unit and detection apparatus
WO2013091399A1 (en) * 2011-12-22 2013-06-27 武汉四方光电科技有限公司 Coal gas component and calorific value measurement method
CN105527255A (en) * 2016-01-20 2016-04-27 华南理工大学 On-line monitoring system of coal characteristics of as-fired coal
CN109870430A (en) * 2017-12-04 2019-06-11 西派特(北京)科技有限公司 Coal quality on-line analysis

Similar Documents

Publication Publication Date Title
Sur et al. TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier
Sur et al. Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier
Sun et al. TDL absorption sensors for gas temperature and concentrations in a high-pressure entrained-flow coal gasifier
US7787123B2 (en) Two line gas spectroscopy calibration
JP2009098148A (en) System and method for sensing fuel humidification
JP4131682B2 (en) Gasifier monitoring system
Dang et al. An open-path sensor for simultaneous atmospheric pressure detection of CO and CH4 around 2.33 μm
Simonsson et al. Soot concentrations in an atmospheric entrained flow gasifier with variations in fuel and burner configuration studied using diode-laser extinction measurements
Karellas et al. Analysis of the product gas from biomass gasification by means of laser spectroscopy
US20030132389A1 (en) Method for monitoring and controlling the high temperature reducing combustion atmosphere
JP2021152555A (en) Raman scattered light acquisition device, composition analysis device including the same, gas turbine
CN107632107B (en) A kind of Burning Behavior For Pulverized Coal rapid detection method
JPH11173989A (en) Measuring method for calorific value, gasification apparatus and its operating method
RU2717678C2 (en) Method for rapid quantitative stream analysis in an industrial urea synthesis plant
JP3842982B2 (en) Gas calorific value measuring device, gasifier, gas calorific value measuring method and gasifying method
JP2004325458A (en) Calorific value measuring method, gasifier and its operating method
JP4160866B2 (en) Optical measuring device
JP2005024249A (en) Laser measuring apparatus
Mitra et al. Development of steam quality measurement and monitoring technique using absorption spectroscopy with diode lasers
CN113466207B (en) Gasification tar monitoring system, monitoring method and device
Mathews et al. High-bandwidth laser-absorption measurements of temperature, pressure, CO, and H2O in the annulus of a rotating detonation rocket engine
JPH10169413A (en) Composite power generating plant
Thompson et al. Design, characterization, and applications of a photoacoustic cell for temperature and atmosphere control
Buric et al. Field testing the Raman gas composition sensor for gas turbine operation
Azimirad et al. Design of an electronic system for laser methane gas detectors using the tunable diode laser absorption spectroscopy method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041029