JPH1117265A - Single mode high power hene laser device with simple constitution - Google Patents

Single mode high power hene laser device with simple constitution

Info

Publication number
JPH1117265A
JPH1117265A JP20371897A JP20371897A JPH1117265A JP H1117265 A JPH1117265 A JP H1117265A JP 20371897 A JP20371897 A JP 20371897A JP 20371897 A JP20371897 A JP 20371897A JP H1117265 A JPH1117265 A JP H1117265A
Authority
JP
Japan
Prior art keywords
frequency
laser
mhz
single mode
square wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20371897A
Other languages
Japanese (ja)
Inventor
Shiyuuko Yokoyama
修子 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20371897A priority Critical patent/JPH1117265A/en
Publication of JPH1117265A publication Critical patent/JPH1117265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To output a single mode laser beam by taking out frequency components of less than specified frequency from an output current of an avalanche photodiode and controlling the length of a laser oscillator so that the frequency of an a-c electric signal is const. SOLUTION: Utilizing nonlinear characteristics of both avalanche photodiode 3 and detection system enhanced by an impedance 5 added to a reverse bias power source 4, a secondary beat is taken out and converted to a square wave signal through a comparator 9 after being amplified by an amplifier 6 having a response of 1 MHz or less, a frequency divider circuit 8 divides the frequency of a crystal oscillator 7 to generate a reference pulse signal, a frequency different measuring circuit 10 measures the difference from the square wave signal to thereby control the current of a heater 13 wound round a laser tube through a frequency-voltage converter circuit 11 and current amplifier 12 so that the square wave frequency is equal to the reference frequency and a polarizer 14 allowing only a polarized wave at a center mode to pass is used to take out a single mode light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は安価に製作できる周波数
引き寄せ現象を用いた単一モード光出力HeNeレーザ
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single mode light output HeNe laser device using a frequency pulling phenomenon which can be manufactured at a low cost.

【0002】[0002]

【従来の技術】従来の周波数引き寄せ現象を用いた単一
モードHeNeレーザにおいては複数の発振光のモード
間ビートの間で生じる2次ビートを電圧制御発振器(以
下VCOと記す)を局部発振器として用い電気的なヘテ
ロダイン方式を用いて求めていた。このヘテロダイン法
は高い信号−雑音比で2次ビートが得られるという点で
すぐれ、したがってこの法を用いた周波数安定化レーザ
は高い安定度を有している。(Rev.Sci.Ins
trum.66 2788 (1995))が高価で入
手が困難な特定の周波数範囲で発振するVCOを必要と
するという難点を有していた。
2. Description of the Related Art In a conventional single mode HeNe laser using a frequency pulling phenomenon, a secondary beat generated between beats between modes of a plurality of oscillation lights uses a voltage controlled oscillator (hereinafter referred to as VCO) as a local oscillator. It was determined using an electric heterodyne system. This heterodyne method is excellent in that a second beat can be obtained with a high signal-to-noise ratio, and therefore, a frequency-stabilized laser using this method has high stability. (Rev. Sci. Ins
trum. 66 2788 (1995)) has had a drawback of requiring VCO which oscillates at a specific frequency range is difficult to obtain and expensive.

【0003】非線形性が小さいPINホトダイオードを
用いて2次ビートを求める法も報告されているが、2次
ビートの大きさは検知システムの非線形性の大きさによ
って決まるので信号−雑音比は低く従って安定度は低
い。
A method of obtaining a secondary beat using a PIN photodiode having a small nonlinearity has also been reported. However, since the magnitude of the secondary beat is determined by the magnitude of the nonlinearity of the detection system, the signal-to-noise ratio is low, and thus the signal-to-noise ratio is low. Stability is low.

【0004】[0004]

【発明が解決しようとする課題】本発明は高価なVCO
を用いることなしに、またPINホトダイオードを用い
た場合のごとく制御のための信号が低い信号−雑音比に
ならない条件のもとに2次ビートを求め、適当な安定度
を有する単一モード安定化レーザを得ることを課題とす
る。
SUMMARY OF THE INVENTION The present invention provides an expensive VCO
And a single-mode stabilization having an appropriate stability without obtaining a second beat under the condition that a signal for control does not have a low signal-to-noise ratio as in the case of using a PIN photodiode. The task is to obtain a laser.

【0005】[0005]

【課題を解決するための手段】発振光のモード間ビート
はどのような光検知器においても存在する「光の電場の
2乗が光電流となる」という2乗特性によって得られる
もので、電気信号の形で取り出せるものである。これに
対し、複数のモード間ビートが存在する場合、周波数引
き寄せ現象によって生ずるモード間ビートの差異を周波
数とする包絡線波形として現れるが、これを信号として
取り出すには整流検波その他の手段を必要とする。
The beat between modes of oscillating light is obtained by the square characteristic that "the square of the electric field of light becomes a photocurrent" which is present in any photodetector. It can be extracted in the form of a signal. On the other hand, when there are a plurality of inter-mode beats, they appear as an envelope waveform whose frequency is the difference between the inter-mode beats caused by the frequency pulling phenomenon. I do.

【0006】前述の4本と3本の縦モードを有するHe
Neレーザの場合、2次ビートを包絡線とする搬送波の
周波数は縦モードビート周波数の平均周波数であり43
0MHz程度となる。
The above-mentioned He having four and three longitudinal modes
In the case of the Ne laser, the frequency of the carrier wave whose envelope is the secondary beat is the average frequency of the longitudinal mode beat frequency.
It is about 0 MHz.

【0007】電気回路によって、この430MHzの整
流検波を行うのも一案ではあるが、高周波回路素子の面
から、前記のヘテロダイン法に比して大幅に安価になる
と言うことはない。
Although the rectification detection of 430 MHz is performed by an electric circuit, it is not much lower than the heterodyne method in view of the high-frequency circuit element.

【0008】従って本発明においては検知器としてAP
Dを用いることにより、該APDの持つ非線形特性、さ
らには該非線形特性より大きくする回路素子を付加する
ことによる強調されたAPDの非線形特性にもとづく2
乗特性分(非線形関数を展開した場合における2次の
項)を利用して2次ビートつまり前記の包絡線の取り出
しを行っている。この2次ビートつまり包絡線の周波数
は1メガヘルツ以下であり、共振器長が単調に変化すれ
ば周波数引き寄せ現象により周期的に変化する。
Accordingly, in the present invention, AP is used as a detector.
By using D, the non-linear characteristic of the APD, and the enhanced non-linear characteristic of the APD by adding a circuit element that is larger than the non-linear characteristic, can be used.
The secondary beat, that is, the above-mentioned envelope is extracted by using the power characteristic (second-order term in the case where the nonlinear function is expanded). The frequency of the secondary beat, that is, the frequency of the envelope is 1 MHz or less, and if the length of the resonator monotonously changes, it periodically changes due to the frequency pulling phenomenon.

【0009】従って、2次ビートの周波数が一定になる
よう共振器長を制御すればレーザ光の周波数を一定にす
ることができる。また、レーザの利得曲線の中心に1つ
のモードが位置するごとく制御すれば、発振のモードは
3本となり、隣り合ったモードの偏光方位は直交してい
るので偏光子を用いて前記の中心のモードを取り出せば
単一周波数のレーザ光が得られる。
Therefore, if the length of the resonator is controlled so that the frequency of the secondary beat becomes constant, the frequency of the laser beam can be made constant. Further, if control is performed so that one mode is located at the center of the gain curve of the laser, the number of oscillation modes becomes three, and the polarization directions of adjacent modes are orthogonal. By taking out the mode, laser light of a single frequency can be obtained.

【0010】[0010]

【実施例】実施例の説明に必要な事項ならびに実施例を
図面を用いて説明する。図1は3本と4の縦モードの説
明図である。Lを共振器長とするとC/2L[Hz]の
値は利得曲線の幅の1/3よりわずかに小さい場合、L
の値によって図1のように縦モードは3本(a)になっ
たり4本(b)になったりする。今、3本になったとき
を考えると、モード間のビートの周波数はfb1とfb
2の2つがあるが、周波数引き寄せ現象のため周波数は
互いに異なった値となり、かつLの単調な変化に対しλ
/2を周期として周期的に変化する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The matters necessary for the description of the embodiments and the embodiments will be described with reference to the drawings. FIG. 1 is an explanatory diagram of three and four vertical modes. If L is the length of the resonator, the value of C / 2L [Hz] is slightly smaller than 1/3 of the width of the gain curve.
Depending on the value of, the vertical mode becomes three (a) or four (b) as shown in FIG. Now, when the number of beats becomes three, the frequency of beats between modes is fb1 and fb1.
2, the frequencies are different from each other due to the frequency pulling phenomenon, and λ
/ 2 periodically.

【0011】このモード間ビートの周波数は430MH
z程度であるが、このモード間ビートの周波数の差は1
MHz以下であり、十分高い周波数応答性を持った計測
系で観測すれば図2のような430MHzの搬送波で1
MHz以下の周波数(fb1−fb2)の包絡線を持っ
た波形が見られる筈である。
The beat frequency between the modes is 430 MH
z, but the difference in beat frequency between modes is 1
MHz or lower, and when observed with a measurement system having a sufficiently high frequency response, a carrier wave of 430 MHz as shown in FIG.
You should see a waveform with an envelope of frequency (fb1-fb2) below MHz.

【0012】入射光の強度Iに対し、出力電流iが図3
に示すような非線形性を持った検知を用いると、非線形
の持つ整流作用により前記の包絡線の波形つまり2次ビ
ートを取り出すことができる。この非線形の形はAPD
そのものにも依存するが、逆バイアスにインピーダンス
を挿入することによって変えることができる。図3のA
は該インピーダンスが小さいとき、Bは大きいときの形
である。
The output current i is shown in FIG.
When the detection having the non-linearity as shown in (1) is used, the waveform of the envelope, that is, the second beat can be extracted by the non-linear rectification. This non-linear form is APD
Although it depends on itself, it can be changed by inserting an impedance into the reverse bias. A in FIG.
Is the form when the impedance is small and B is large.

【0013】図4は本発明の実施例である。3本と4本
の縦モードを有する内部共振器型レーザ1の後方の光が
レーザの偏光方位に対しほぼ45°の方位を持つ偏光子
2を通過し・APD3で検知されると縦モード間ビート
が得られる。
FIG. 4 shows an embodiment of the present invention. The light behind the internal cavity laser 1 having three and four longitudinal modes passes through the polarizer 2 having an azimuth of approximately 45 ° to the polarization azimuth of the laser. You get the beat.

【0014】APD3の非線形特性ならびに逆バイアス
電源4に付加されたインピーダンス5により強調された
検知システムの非線形特性により2次ビートを取り出し
該2次ビートを1MHz以下の応答を持つ増幅器6で増
幅した後コンパレータ9で方形波信号に変換される。一
方水晶発振器7の周波数を分周回路9で分周して任意の
周波数の基準パルス信号をつくり、この周波数と前記の
方形波信号の周波数の差を周波数差測定回路10で求
め、周波数−電圧変換回路11および電流増幅器12を
通してレーザ管のまわりに巻かれたヒータ13の電流を
前記の方形波の周波数と基準周波数が等しくなるように
制御する。基準周波数は発振スペクトルが図1の(a)
のように中央の1本のスペクトルが利得曲線の中央に位
置するような値に設定する。
After the secondary beat is taken out by the nonlinear characteristic of the APD 3 and the nonlinear characteristic of the detection system emphasized by the impedance 5 added to the reverse bias power supply 4, the secondary beat is amplified by an amplifier 6 having a response of 1 MHz or less. The signal is converted by the comparator 9 into a square wave signal. On the other hand, the frequency of the crystal oscillator 7 is divided by the frequency dividing circuit 9 to produce a reference pulse signal of an arbitrary frequency, and the difference between this frequency and the frequency of the square wave signal is obtained by the frequency difference measuring circuit 10, and the frequency-voltage The current of the heater 13 wound around the laser tube through the conversion circuit 11 and the current amplifier 12 is controlled so that the frequency of the square wave becomes equal to the reference frequency. The oscillation frequency of the reference frequency is shown in FIG.
The value is set such that one central spectrum is located at the center of the gain curve as shown in FIG.

【0015】この種のレーザの隣り合った縦モードの偏
光方位は直交しているので、中央のモードの偏光方位の
みを通す偏光子14を用いることにより、単一モードの
光を取り出すことができる。
Since the polarization directions of adjacent longitudinal modes of this type of laser are orthogonal, single-mode light can be extracted by using the polarizer 14 that passes only the polarization direction of the central mode. .

【0016】[0016]

【発明の効果】3本と4本の縦モードを持つHeNeレ
ーザを3本のモードで周波数安定化を行い、中央のモー
ドを取り出すと実用的な地上で最高出力を有する単一モ
ードHeNeレーザが得られる。(複合共振器ではさら
に高出力が得られるが、これは実用的ではない)このよ
うな単一モードレーザを入手に若干の困難を伴いかつ効
果であるVOCを用いることなく実現することができ
る。
According to the present invention, a HeNe laser having three and four longitudinal modes is frequency-stabilized in three modes, and when a central mode is taken out, a practical single-mode HeNe laser having the highest output on the ground is obtained. can get. (Compound resonators provide even higher power, but this is not practical.) Such single-mode lasers can be realized without the use of VOCs, which are somewhat difficult to obtain and effective.

【0017】[0017]

【図面の簡単な説明】[Brief description of the drawings]

図1はHeNeレーザの縦モードとモード間ビートに関
する説明図である。図2は2次ビートに関する説明図で
ある。図3はAPDの非線形特性についての説明図であ
る。図4は本発明の実施例である。
FIG. 1 is an explanatory diagram relating to a longitudinal mode and a beat between modes of a HeNe laser. FIG. 2 is an explanatory diagram related to the secondary beat. FIG. 3 is a diagram illustrating the nonlinear characteristics of the APD. FIG. 4 shows an embodiment of the present invention.

【0017】[0017]

【符号の説明】[Explanation of symbols]

1、 内部共振器型HeNeレーザ管 2、14 偏光子 3、 APD 4、 バイアス高圧電源 5、 高周波インピーダンス 6、 1MHz以下の帯域を持つ増幅器 7、 水晶発振器 8、 分周回路 9、 コンパレータ 10、 周波数差測定回路 11、 周波数−電圧変換回路 12、 電流増幅器 13、 ヒータ 1, internal resonator type HeNe laser tube 2, 14 polarizer 3, APD 4, bias high voltage power supply 5, high frequency impedance 6, amplifier 7 having a bandwidth of 1 MHz or less 7, crystal oscillator 8, frequency divider 9, comparator 10, frequency Difference measurement circuit 11, frequency-voltage conversion circuit 12, current amplifier 13, heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非制御時において、4本と3本の縦モード
スペクトルを有する内部共振器型のHeNeレーザの発
振光を偏光素子を通過せしめた後400メガヘルツ以上
の周波数特性を有しかつ入力光強度と出力電流の間に非
線形特性を有するアバランシェホトダイオード(以下A
PDと記す)で受光し、該APDの出力電流の1メガヘ
ルツ以下の周波数成分を取り出し、取り出された1メガ
ヘルツ以下の交流電気信号の周波数が一定となるごとく
前記レーザの共振器長を制御することを特徴とする周波
数安定化HeNeレーザ装置。
In an uncontrolled mode, after passing oscillation light of an internal resonator type HeNe laser having four and three longitudinal mode spectra through a polarizing element, it has a frequency characteristic of 400 MHz or more and an input. Avalanche photodiode (hereinafter referred to as A) having a nonlinear characteristic between light intensity and output current.
PD), and extracts a frequency component of 1 MHz or less of the output current of the APD, and controls the resonator length of the laser so that the frequency of the extracted AC electric signal of 1 MHz or less becomes constant. A frequency stabilized HeNe laser device characterized by the above-mentioned.
JP20371897A 1997-06-24 1997-06-24 Single mode high power hene laser device with simple constitution Pending JPH1117265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20371897A JPH1117265A (en) 1997-06-24 1997-06-24 Single mode high power hene laser device with simple constitution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20371897A JPH1117265A (en) 1997-06-24 1997-06-24 Single mode high power hene laser device with simple constitution

Publications (1)

Publication Number Publication Date
JPH1117265A true JPH1117265A (en) 1999-01-22

Family

ID=16478705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20371897A Pending JPH1117265A (en) 1997-06-24 1997-06-24 Single mode high power hene laser device with simple constitution

Country Status (1)

Country Link
JP (1) JPH1117265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300753A (en) * 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology Distance measuring equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300753A (en) * 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology Distance measuring equipment

Similar Documents

Publication Publication Date Title
Yao et al. Multiloop optoelectronic oscillator
Jiang et al. Measuring timing jitter with optical cross correlations
US5636035A (en) Method and apparatus for dual modulation laser spectroscopy
CN113161863B (en) Microwave pulse generating device and method based on time domain mode locking photoelectric oscillator
Ye et al. Ultrastable optical frequency reference at 1.064/spl mu/m using a C/sub 2/HD molecular overtone transition
US20030016347A1 (en) Optical sampling waveform measuring apparatus
DiDomenico Characteristics of a single-frequency Michelson-type He-Ne gas laser
US7026594B2 (en) Method and device for producing radio frequency waves
Helkey et al. Millimeter‐wave signal generation using semiconductor diode lasers
JPH1117265A (en) Single mode high power hene laser device with simple constitution
JP2000223756A (en) 3-MODE OR SINGLE-MODE HIGH POWER HeNe LASER DEVICE WITH SIMPLE STRUCTURE
US6084893A (en) Apparatus and method of laser power and frequency stabilization of radio frequency excited laser using optogalvanic effect
Yokoyama et al. Frequency stabilization by frequency pulling for single‐mode oscillation of He–Ne laser at maximum intensity
Minamikawa et al. Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser
CN114204382B (en) Dual-frequency microwave signal generation method and device based on photoelectric oscillator
JPH09246631A (en) Single wavelength hene laser having maximum output
JPS61102081A (en) Frequency stabilization of semiconductor laser
Zhou et al. Study on the Mechanism of Coarse Mode Selection in Parity-Time-Symmetric Optoelectronic Oscillator
Wang et al. Dual-mode stabilization for laser to radio-frequency locking by using a single-sideband modulation and a Fabry–Pérot cavity
Li et al. Microwave Pulse Generation Based on Active Mode-Locking Coupled Optoelectronic Oscillator
Golovnin et al. Fluctuations in the radiation of Nd: YAG ring chip lasers
JPH03120774A (en) Light frequency control device
Barber et al. Diode laser atomic absorption using a new reference method
SU622377A1 (en) Frequency stabilizer laser
JPH02260480A (en) Semiconductor laser device