JPH11163363A - Semiconductor device and its forming method - Google Patents

Semiconductor device and its forming method

Info

Publication number
JPH11163363A
JPH11163363A JP33767097A JP33767097A JPH11163363A JP H11163363 A JPH11163363 A JP H11163363A JP 33767097 A JP33767097 A JP 33767097A JP 33767097 A JP33767097 A JP 33767097A JP H11163363 A JPH11163363 A JP H11163363A
Authority
JP
Japan
Prior art keywords
film
substrate
glass substrate
thin film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33767097A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP33767097A priority Critical patent/JPH11163363A/en
Publication of JPH11163363A publication Critical patent/JPH11163363A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a semiconductor device of low manufacturing cost by the use of a glass substrate the distortion spot of which is at least a specified temperature, protecting on outer peripheral surface of the high heat resistant glass substrate by using an insulating silicon film, and forming a single-crystal silicon thin film on the high heat resistant glass substrate wrapped with the insulating silicon film. SOLUTION: A glass substrate (glass substrate the distortion spot of which is at least 750 deg.C or higher), having heat resistance capable of enduring a temperature of at least 750 deg.C, is used as a substrate. An amorphous silicon film 102 is formed to crystallized glass 101. When the film 2 is formed through a low- pressure heat CVD method, the amorphous silicon film 102 can be formed on the surface, the back and the side surface of the substrate 101, which is wrapped with the film 102. By thermally oxidizing the amorphous silicon film 102, a thermal oxide film 103 is formed. A single-crystal silicon thin film 107 is formed on the crystallized glass 101 whose outer peripheral part is protected by the thermal oxide film 103.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本明細書で開示する発明は、
絶縁表面を有する基板上に形成された単結晶半導体薄膜
を利用した半導体装置に関する。特に、基板として安価
で耐熱性の高い結晶化ガラス(セラミックスガラスとも
呼ばれる)を用いる。
TECHNICAL FIELD [0001] The invention disclosed in the present specification is:
The present invention relates to a semiconductor device using a single crystal semiconductor thin film formed over a substrate having an insulating surface. In particular, inexpensive and highly heat-resistant crystallized glass (also called ceramic glass) is used as the substrate.

【0002】なお、本明細書中では薄膜トランジスタ
(以下、TFT)、半導体回路、電気光学装置および電
子機器を全て「半導体装置」に範疇に含めて扱う。即
ち、半導体特性を利用して機能しうる装置全てを半導体
装置と呼ぶ。
[0002] In this specification, a thin film transistor (hereinafter, referred to as a TFT), a semiconductor circuit, an electro-optical device, and an electronic device are all included in the category of a “semiconductor device”. That is, all devices that can function by utilizing semiconductor characteristics are called semiconductor devices.

【0003】従って、上記特許請求の範囲に記載された
半導体装置は、TFT等の単体素子だけでなく、それを
集積化した半導体回路や電気光学装置およびそれらを部
品として搭載した電子機器をも包含する。
Accordingly, the semiconductor device described in the claims includes not only a single element such as a TFT but also a semiconductor circuit or an electro-optical device in which the device is integrated, and an electronic device in which these are mounted as components. I do.

【0004】[0004]

【従来の技術】近年、絶縁表面を有する基板上に形成さ
れた半導体薄膜(厚さ数十〜数百nm程度)を用いて薄膜
トランジスタ(TFT)を構成する技術が注目されてい
る。薄膜トランジスタは特に画像表示装置(例えば液晶
表示装置:LCD)のスイッチング素子としての開発が
急がれている。
2. Description of the Related Art In recent years, a technique of forming a thin film transistor (TFT) using a semiconductor thin film (thickness of about several tens to several hundreds of nm) formed on a substrate having an insulating surface has attracted attention. In particular, the development of a thin film transistor as a switching element of an image display device (for example, a liquid crystal display device: LCD) has been rushed.

【0005】また、液晶表示装置においてはマトリクス
状に配列された画素を個々に制御する画素マトリクス回
路、画素マトリクス回路を制御するドライバー回路、さ
らに外部からのデータ信号を処理するロジック回路(演
算回路、メモリ回路、クロックジェネレータなど)等を
同一基板上に作り込む試みがなされている。
In the liquid crystal display device, a pixel matrix circuit for individually controlling pixels arranged in a matrix, a driver circuit for controlling the pixel matrix circuit, and a logic circuit (an arithmetic circuit, Attempts have been made to form memory circuits, clock generators, and the like) on the same substrate.

【0006】その様なモノリシック型LCDを実現する
ために、さらに動作速度の速いTFT回路が必要とさ
れ、そのために極めてキャリア移動度の高い半導体層が
必要となってきている。
In order to realize such a monolithic LCD, a TFT circuit having a higher operation speed is required, and a semiconductor layer having extremely high carrier mobility is required.

【0007】その様な流れの中で、SOI技術が注目さ
れている。特に、単結晶シリコン薄膜を合成石英などの
基板上に形成する技術としてスマートカット法と呼ばれ
る技術が注目されている。
[0007] In such a flow, SOI technology is receiving attention. In particular, a technique called a smart cut method has attracted attention as a technique for forming a single crystal silicon thin film on a substrate such as synthetic quartz.

【0008】スマートカット法(1996年、フランスのSO
ITEC社が発表)とは貼り合わせSOI技術の一つであ
り、水素脆化を積極的に利用するものである。ここでス
マートカット法の簡単な手順を図2に説明する。
[0008] Smart cut method (1996, SO in France
(Published by ITEC) is one of the bonding SOI technologies, which actively uses hydrogen embrittlement. Here, a simple procedure of the smart cut method will be described with reference to FIG.

【0009】まず、ボンドウェハ201を熱酸化するこ
とで熱酸化膜202を形成し、その後、イオンインプラ
ンテーション法により水素イオン(H+ )を添加する。
水素イオンの添加工程によってボンドウェハ201内に
は、水素で終端された微小な空洞(micro cavity)20
3が形成される。本明細書では、この微小な空洞203
を水素打ち込み層と呼ぶことにする。(図2(A))
First, a thermal oxide film 202 is formed by thermally oxidizing the bond wafer 201, and thereafter, hydrogen ions (H + ) are added by an ion implantation method.
A microcavity 20 terminated with hydrogen is formed in the bond wafer 201 by the process of adding hydrogen ions.
3 is formed. In this specification, this minute cavity 203
Is referred to as a hydrogen implanted layer. (Fig. 2 (A))

【0010】次に、上記処理を終えたボンドウェハ20
1と、後に薄膜の支持基板となるベースウェハ204と
を室温で貼り合わせ、500 ℃程度の加熱処理を施す。こ
の加熱処理によって上述の水素打ち込み層では水素脆化
が生じ、水素脆化による破断層205が形成される。
(図2(B))
Next, the bond wafer 20 having been subjected to the above processing is
1 and a base wafer 204, which will later become a thin film support substrate, are bonded at room temperature and subjected to a heat treatment at about 500 ° C. By this heat treatment, hydrogen embrittlement occurs in the above-described hydrogen implanted layer, and a fracture layer 205 due to hydrogen embrittlement is formed.
(FIG. 2 (B))

【0011】こうして水素脆化によ破断層205が形成
されると単結晶シリコン薄膜206のみを残して容易に
ボンドウェハ201が剥がれる。(図2(C))
When the fracture layer 205 is formed by hydrogen embrittlement, the bond wafer 201 is easily peeled off, leaving only the single crystal silicon thin film 206. (Fig. 2 (C))

【0012】従って、ベースウェハ204上には下地と
なる熱酸化膜202と単結晶シリコン薄膜206が形成
される。なお、この時の単結晶シリコン薄膜206の膜
厚は図2(A)における熱酸化膜202の膜厚と水素イ
オン注入の打ち込み深さによって決定される。
Accordingly, a thermal oxide film 202 and a single crystal silicon thin film 206 serving as bases are formed on the base wafer 204. Note that the thickness of the single-crystal silicon thin film 206 at this time is determined by the thickness of the thermal oxide film 202 and the implantation depth of hydrogen ion implantation in FIG.

【0013】こうして図2(C)の状態が得られたら、
10nmオーダーの浅い研摩(タッチポリッシュ)を行い、
さらに1000〜1100℃程度の温度で2時間ぐらいの加熱処
理を行って結合力の強い単結晶シリコン薄膜207を得
る。(図2(D))
When the state shown in FIG. 2C is obtained,
Perform shallow polishing (touch polish) on the order of 10 nm,
Further, a heat treatment is performed at a temperature of about 1000 to 1100 ° C. for about 2 hours to obtain a single crystal silicon thin film 207 having a strong bonding force. (FIG. 2 (D))

【0014】以上の様に、スマートカット法は非常に簡
易な手段で単結晶シリコン薄膜を得られるという利点を
有している。また、これまでの貼り合わせSOI基板ほ
ど単結晶シリコン層の膜厚が研摩精度に影響されないの
で、非常に膜厚の均一性が高い。
As described above, the smart cut method has an advantage that a single crystal silicon thin film can be obtained by a very simple means. Further, since the thickness of the single crystal silicon layer is not affected by the polishing accuracy as compared with the past bonded SOI substrate, the uniformity of the thickness is extremely high.

【0015】また、最近ではこのスマートカット法を利
用して合成石英の上に単結晶シリコン薄膜を形成する試
みもなされている。(阿部孝夫:第24回アモルファス物
質の物性と応用セミナーテキスト,p.25-32,1997)
Recently, attempts have been made to form a single-crystal silicon thin film on synthetic quartz using the smart cut method. (Takao Abe: 24th Seminar on Physical Properties and Application of Amorphous Materials, p.25-32,1997)

【0016】しかしながら、この報告によると合成石英
とシリコンウェハ(ボンドウェハ)とを貼り合わせると
熱膨張係数の差が大きいため300 ℃程度の加熱で破壊が
起こる。従って、同報告ではボンドウェハを200 ℃前後
で貼り合わせた後、50μmまで平面研摩(またはエッチ
ング)して、その後で500 ℃の加熱処理を施して貼り合
わせを完了している。
However, according to this report, when synthetic quartz and a silicon wafer (bond wafer) are bonded to each other, destruction occurs when heated at about 300 ° C. due to a large difference in thermal expansion coefficient. Therefore, according to the report, after bonding the bond wafers at about 200 ° C., the wafers are polished (or etched) to 50 μm, and then subjected to a heat treatment at 500 ° C. to complete the bonding.

【0017】[0017]

【発明が解決しようとする課題】以上の様に、合成石英
上にスマートカット法を利用して単結晶シリコン層を形
成するには、熱膨張係数の差という問題があって貼り合
わせ工程が煩雑になるという欠点がある。
As described above, forming a single-crystal silicon layer on a synthetic quartz by using the smart cut method has a problem of a difference in thermal expansion coefficient, and the bonding step is complicated. Disadvantage.

【0018】また、単結晶シリコン層を利用してTFT
を形成し、モノリシック型LCDを実現するという目的
を考えると、高価な石英基板を用いることは全体のコス
トを増加させるため、好ましいものではない。
Further, a TFT using a single crystal silicon layer is used.
In view of the object of forming a monolithic type LCD by using a quartz substrate, it is not preferable to use an expensive quartz substrate because the total cost is increased.

【0019】本願発明は上記問題点を鑑みてなされたも
のであり、スマートカット法で得られる単結晶シリコン
薄膜を用いた半導体装置を、安価な製造コストで実現す
るための技術を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a technique for realizing a semiconductor device using a single crystal silicon thin film obtained by a smart cut method at a low manufacturing cost. Make it an issue.

【0020】[0020]

【課題を解決するための手段】本明細書で開示する発明
の構成は、歪点が750℃以上であるガラス基板と、前
記ガラス基板の少なくとも表面及び裏面に対して形成さ
れた絶縁性シリコン膜と、前記絶縁性シリコン膜上に形
成された単結晶シリコン薄膜をチャネル形成領域とする
TFTと、を構成に含むことを特徴とする。
Means for Solving the Problems The invention disclosed in the present specification comprises a glass substrate having a strain point of 750 ° C. or more, and an insulating silicon film formed on at least the front and back surfaces of the glass substrate. And a TFT having a single crystal silicon thin film formed on the insulating silicon film as a channel formation region.

【0021】また、他の発明の構成は、歪点が750℃
以上であるガラス基板と、前記ガラス基板の外周囲を覆
って形成された絶縁性シリコン膜と、前記絶縁性シリコ
ン膜上に形成された単結晶シリコン薄膜をチャネル形成
領域とするTFTと、を構成に含むことを特徴とする。
In another embodiment of the invention, the strain point is 750 ° C.
A glass substrate as described above, an insulating silicon film formed so as to cover the outer periphery of the glass substrate, and a TFT having a single crystal silicon thin film formed on the insulating silicon film as a channel formation region. Is included.

【0022】また、他の発明の構成は、歪点が750℃
以上であるガラス基板の全面に対して非晶質半導体薄膜
を形成する工程と、第1の加熱処理により前記非晶質半
導体薄膜を酸化し、完全に熱酸化膜に変成させる工程
と、スマートカット法により前記ガラス基板の主表面側
に単結晶シリコン薄膜を形成する工程と、を含むことを
特徴とする。
In another embodiment of the invention, the strain point is 750 ° C.
A step of forming an amorphous semiconductor thin film over the entire surface of the glass substrate, a step of oxidizing the amorphous semiconductor thin film by a first heat treatment, and completely transforming the amorphous semiconductor thin film into a thermal oxide film, Forming a single-crystal silicon thin film on the main surface side of the glass substrate by a method.

【0023】また、他の発明の構成は、歪点が750℃
以上であるガラス基板の全面に対して減圧熱CVD法に
より絶縁性シリコン膜を形成する工程と、スマートカッ
ト法により前記ガラス基板の主表面側に単結晶シリコン
薄膜を形成する工程と、を含むことを特徴とする。
In another embodiment of the invention, the strain point is 750 ° C.
A step of forming an insulating silicon film on the entire surface of the glass substrate by a low-pressure thermal CVD method, and a step of forming a single-crystal silicon thin film on the main surface side of the glass substrate by a smart cut method It is characterized by.

【0024】本願発明の重要な構成要件としては、 (1)基板として 750℃以上の温度に耐えうる耐熱性を
有するガラス基板(歪点が 750℃以上であるガラス基
板)を用いる。 (2)上記高耐熱性ガラス基板の外周面(少なくとも表
面及び裏面、好ましくは全面)を絶縁性シリコン膜で保
護する。 (3)絶縁性シリコン膜で包まれた上記高耐熱性ガラス
基板上に、スマートカット法を用いて単結晶シリコン薄
膜を形成する。 という3点が挙げられる。
Important constituent elements of the present invention are as follows: (1) A glass substrate having a heat resistance capable of withstanding a temperature of 750 ° C. or more (a glass substrate having a strain point of 750 ° C. or more) is used. (2) The outer peripheral surface (at least the front and back surfaces, preferably the entire surface) of the high heat-resistant glass substrate is protected by an insulating silicon film. (3) A single-crystal silicon thin film is formed on the high heat-resistant glass substrate wrapped with the insulating silicon film by using a smart cut method. There are three points.

【0025】スマートカット法により基板上に貼り合わ
された単結晶シリコン薄膜は 800〜1200℃(好ましくは
900〜1100℃)の加熱処理を施すことで完全な結合力が
得られる。そのため、ベース基板としては歪点が少なく
とも 750℃以上である基板を用いる必要がある。
The single-crystal silicon thin film bonded on the substrate by the smart cut method is 800 to 1200 ° C. (preferably,
A complete bonding force can be obtained by performing a heat treatment at 900 to 1100 ° C. Therefore, it is necessary to use a substrate with a strain point of at least 750 ° C as a base substrate.

【0026】その様な基板としては石英基板がまず考え
られるが、前述の様に石英基板は高価であるため全体的
なコストを上げてしまう。また、石英の熱膨張係数は0.
48×10-6-1であり、シリコンの熱膨張係数(約4.15×
10-6-1)の1/10程度と小さい。即ち、シリコンとの間
に応力を発生しやすく、加熱処理の際にシリコンのピー
リング(膜剥がれ)などを引き起こしやすい。
As such a substrate, a quartz substrate is first conceivable, but as described above, the quartz substrate is expensive, so that the overall cost is increased. The thermal expansion coefficient of quartz is 0.
48 × 10 -6-1 and the coefficient of thermal expansion of silicon (about 4.15 ×
It is as small as about 1/10 of 10 -6-1 ). That is, a stress is easily generated between the silicon and the silicon, and the silicon tends to peel (film peeling) during the heat treatment.

【0027】そこで、本願発明では歪点が 750℃以上
(代表的には 800〜1200℃、好ましくは 900〜1100℃)
である耐熱性の高い結晶化ガラスを基板として用いる。
結晶化ガラスは石英よりも薄くできるため、LCDの製
造コストを安く抑えられる。また、ガラス基板であるた
め大版化が可能であり、多面取りによるコストダウンも
図れる。
Therefore, in the present invention, the strain point is 750 ° C. or more (typically 800 to 1200 ° C., preferably 900 to 1100 ° C.).
Is used as the substrate.
Since crystallized glass can be made thinner than quartz, the manufacturing cost of LCD can be reduced. In addition, since it is a glass substrate, it is possible to increase the size of the plate, and it is possible to reduce the cost by obtaining multiple substrates.

【0028】さらに、熱膨張係数は結晶化ガラスを構成
する成分組成を適切なものとすることで容易に変えるこ
とができるため、単結晶シリコン薄膜の熱膨張係数に近
いものを選択することができる。即ち、熱膨張係数の差
を極めて小さくすることができるので従来の様な膜剥が
れなどがなくなり、従来例で述べた様な煩雑な工程を行
う必要がない。
Further, the coefficient of thermal expansion can be easily changed by appropriately setting the component composition of the crystallized glass, so that a coefficient close to the coefficient of thermal expansion of the single crystal silicon thin film can be selected. . That is, since the difference between the coefficients of thermal expansion can be made extremely small, film peeling and the like as in the prior art can be eliminated, and there is no need to perform complicated steps as described in the conventional example.

【0029】ただし、結晶化ガラスは様々な成分組成を
持つため、半導体装置の製造過程における成分物質の流
出が懸念される。そのため、結晶化ガラスを絶縁膜(単
結晶シリコン薄膜との相性を考慮すると絶縁性シリコン
膜が好ましい)で保護することが重要となる。そのため
には、全プロセス過程において結晶化ガラスの少なくと
も表面(素子が形成される側)及び裏面を絶縁膜で保護
する必要がある。
However, since crystallized glass has various component compositions, there is a concern that component materials may flow out during the manufacturing process of a semiconductor device. Therefore, it is important to protect the crystallized glass with an insulating film (an insulating silicon film is preferable in consideration of compatibility with a single crystal silicon thin film). For that purpose, it is necessary to protect at least the front surface (the side on which the element is formed) and the back surface of the crystallized glass in all process steps with an insulating film.

【0030】なお、結晶化ガラスの側面は全体から見る
と非常に小さい面積であるので露出していてもさほど問
題とはならない。しかし、表面、側面及び裏面を絶縁膜
で完全に包み込んでしまい、成分物質の流出を完全に防
ぐことが最も好ましいことは言うまでもない。
Incidentally, since the side surface of the crystallized glass has a very small area when viewed as a whole, it does not matter much even if it is exposed. However, it is needless to say that it is most preferable to completely cover the front surface, the side surface, and the back surface with the insulating film and completely prevent the outflow of the component material.

【0031】ただし、絶縁膜を成膜する際の基板支持部
(プッシャーピン等)の部分には成膜されない部分がで
きる。しかしながら、全体の面積と比較すると非常に微
小な領域なので問題とはならない。
However, there is a portion where the film is not formed in the portion of the substrate supporting portion (such as a pusher pin) when the insulating film is formed. However, this is not a problem because the area is very small compared to the entire area.

【0032】以上の点を考慮して、本願発明者らは絶縁
性シリコン膜で外周面(好ましくは全面)を保護された
高耐熱性ガラス基板上に、スマートカット法により形成
された単結晶シリコン薄膜を設ける、という本願発明の
構成に至ったのである。
In view of the above, the inventors of the present invention have made a single-crystal silicon formed by a smart cut method on a high heat-resistant glass substrate whose outer peripheral surface (preferably the entire surface) is protected by an insulating silicon film. This has led to the configuration of the present invention in which a thin film is provided.

【0033】[0033]

【発明の実施の形態】本願発明の実施形態について、以
下に示す実施例でもって詳細な説明を行うこととする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the following examples.

【0034】[0034]

【実施例】〔実施例1〕本実施例では、スマートカット
法を利用して結晶化ガラス上に単結晶シリコン薄膜を形
成する所までの工程について図1を用いて説明する。
[Embodiment 1] In this embodiment, steps up to forming a single-crystal silicon thin film on crystallized glass using a smart cut method will be described with reference to FIG.

【0035】まず、基板として 0.5〜1.1mm 厚(代表的
には 0.7mm厚)の結晶化ガラス基板101を用意する。
結晶化ガラスはガラスセラミックスとも呼ばれ、ガラス
生成の段階で微小な結晶を均一に成長させて得られたガ
ラス基板と定義される。この様な結晶化ガラスは耐熱性
が高く、熱膨張係数が小さいという特徴がある。
First, a crystallized glass substrate 101 having a thickness of 0.5 to 1.1 mm (typically 0.7 mm) is prepared as a substrate.
Crystallized glass is also called glass ceramics, and is defined as a glass substrate obtained by uniformly growing fine crystals at the stage of glass formation. Such crystallized glass is characterized by high heat resistance and a small coefficient of thermal expansion.

【0036】本願発明で用いるガラス基板には 750℃以
上、好ましくは 900〜1100の歪点温度を有する高い耐熱
性が要求される。現状ではその様な耐熱性を実現するガ
ラス材料は結晶化ガラスしかないが、結晶化ガラスの定
義に入らないガラス基板(例えば非晶質状態の高耐熱性
ガラス基板等)であっても上記耐熱性を有する基板であ
れば本願発明に利用することができる。
The glass substrate used in the present invention is required to have high heat resistance having a strain point temperature of 750 ° C. or higher, preferably 900 to 1100. At present, the only glass material that achieves such heat resistance is crystallized glass. However, even if the glass substrate does not fall within the definition of crystallized glass (for example, a highly heat-resistant glass substrate in an amorphous state, etc.) Any substrate having properties can be used in the present invention.

【0037】なお、結晶化ガラスに関する詳細は「ガラ
スハンドブック;作花済夫 他,pp.197〜217 ,朝倉書
店,1975」を参考にすると良い。
The details of crystallized glass may be referred to "Glass Handbook: Saio Sakuhana et al., Pp. 197-217, Asakura Shoten, 1975".

【0038】結晶化ガラスの種類も様々であるが、基本
的には石英(SiO2)、アルミナ(Al 2O3 )を中心とした
アルミノケイ酸塩ガラス、ホウケイ酸塩ガラス(B2O3
含まれる)などが実用的と言える。しかしながら、半導
体装置用の基板として用いることを考慮すれば無アルカ
リガラスであることが望ましく、そういった意味で、Mg
O-Al2O3-SiO2系、PbO-ZnO-B2O3系、Al2O3-B2O3-SiO2
系、ZnO-B2O3-SiO2 系などが好ましい。
There are various types of crystallized glass.
Quartz (SiOTwo), Alumina (Al TwoOThree )
Aluminosilicate glass, borosilicate glass (BTwoOThreeBut
Included) is practical. However, semiconductive
Considering use as a substrate for body devices,
It is desirable to be re-glass, and in that sense, Mg
O-AlTwoOThree-SiOTwoSystem, PbO-ZnO-BTwoOThreeSystem, AlTwoOThree-BTwoOThree-SiOTwo 
System, ZnO-BTwoOThree-SiOTwo Systems and the like are preferred.

【0039】MgO-Al2O3-SiO2系の高絶縁結晶化ガラス
は、核形成剤として、TiO2、SnO2、ZrO2などを含み、コ
ージュライト(2MgO・2Al2O3・5SiO2 )を主結晶相とす
る結晶化ガラスである。このタイプの結晶化ガラスは耐
熱性が高く、電気絶縁性が高周波域でも優れている点に
特徴がある。コージュライト系結晶化ガラスの組成例及
び熱膨張係数を表1に示す。
The MgO—Al 2 O 3 —SiO 2 -based highly insulated crystallized glass contains nucleating agents such as TiO 2 , SnO 2 , ZrO 2, etc., and contains cordierite (2MgO.2Al 2 O 3 .5SiO 2 ) Is a crystallized glass having a main crystal phase. This type of crystallized glass is characterized by high heat resistance and excellent electrical insulation even in a high frequency range. Table 1 shows composition examples and thermal expansion coefficients of cordierite-based crystallized glass.

【0040】[0040]

【表1】 [Table 1]

【0041】熱膨張係数は小さいほど熱によるシュリン
ケージ(熱による縮み)の影響が小さくなるため、微細
パターン加工を行う半導体用基板としては好ましい。し
かし、半導体薄膜の熱膨張係数との差が大きいと膜剥が
れなどを起こしやすくなるため、なるべく半導体薄膜の
熱膨張係数に近いものを用いることが望ましい。この様
なことを考慮すると、SiO2が45〜57% 、Al2O3 が20〜27
% 、MgO が11〜18% 、TiO2が 9〜12% のコージュライト
系結晶化ガラスが好ましいと言える。
Since the influence of shrinkage (shrinkage due to heat) due to heat decreases as the coefficient of thermal expansion decreases, it is preferable as a semiconductor substrate on which a fine pattern is processed. However, if the difference from the coefficient of thermal expansion of the semiconductor thin film is large, film peeling or the like is likely to occur. Considering such things, SiO 2 is 45-57%, Al 2 O 3 is 20-27
%, It can be said that MgO is 11 to 18%, TiO 2 is the 9-12% of cordierite based crystallized glass preferably.

【0042】また、例えば透過型LCDを作製する場合
には結晶化ガラスには透光性が要求される。その様な場
合には無アルカリの透明結晶化ガラスを用いると良い。
例えば、結晶相が充填β−石英固溶体で、熱膨張係数が
1.1〜3.0 ×10-6℃の結晶化ガラスとして、表2に示す
様な結晶化ガラスがある。
For example, when a transmission type LCD is manufactured, the crystallized glass is required to have a light transmitting property. In such a case, an alkali-free transparent crystallized glass is preferably used.
For example, the crystal phase is a filled β-quartz solid solution and the thermal expansion coefficient is
As the crystallized glass at 1.1 to 3.0 × 10 −6 ° C., there is a crystallized glass as shown in Table 2.

【0043】[0043]

【表2】 [Table 2]

【0044】本願発明の構成要件の第1は、以上の様な
結晶化ガラスを基板として用いることである。勿論、適
切な工夫(本願発明の様に絶縁膜で完全に保護する等)
を施せばアルカリ系結晶化ガラス(Na2O-Al2O3-SiO2
系、Li2O-Al2O3-SiO2 系等)を用いることもできる。ま
た、熱膨張係数が非常に小さい(またはゼロに近い)結
晶化ガラスでも、 2.0〜3.0 ×10-6℃の熱膨張係数を有
するガラスをコーティングして、半導体薄膜との熱膨張
係数の差を緩和することも可能である。
The first of the constituent requirements of the present invention is to use the above crystallized glass as a substrate. Of course, appropriate measures (such as complete protection with an insulating film as in the present invention)
Is applied to alkali-crystallized glass (Na 2 O-Al 2 O 3 -SiO 2
System, Li 2 O—Al 2 O 3 —SiO 2 system) can also be used. In addition, even for crystallized glass having a very low thermal expansion coefficient (or close to zero), glass having a thermal expansion coefficient of 2.0 to 3.0 × 10 -6 ° C is coated to reduce the difference between the thermal expansion coefficient and the semiconductor thin film. Mitigation is also possible.

【0045】以上の様な構成の結晶化ガラス101を用
意したら、結晶化ガラス101に対して非晶質シリコン
膜102を成膜する。成膜は減圧熱CVD法で行い、成
膜ガスとしてはシラン(SiH4)又はジシラン(Si2H6
を用いる。なお、膜厚は50〜250 nm(代表的には 100〜
150 nm)とすれば良い。(図1(A))
After preparing the crystallized glass 101 having the above configuration, an amorphous silicon film 102 is formed on the crystallized glass 101. The film is formed by a low pressure thermal CVD method, and silane (SiH 4 ) or disilane (Si 2 H 6 ) is used as a film forming gas.
Is used. The film thickness is 50 to 250 nm (typically 100 to 250 nm).
150 nm). (Fig. 1 (A))

【0046】この様に減圧熱CVD法で成膜すると基板
101を包み込む様にして表面、裏面及び側面に対して
非晶質シリコン膜102を成膜することができる。な
お、厳密には基板を保持するためのプッシャーピンが接
する部分に非晶質シリコン膜102は成膜されない。し
かし、全体の面積から見れば微々たるものである。
As described above, when the film is formed by the low pressure thermal CVD method, the amorphous silicon film 102 can be formed on the front surface, the back surface, and the side surface so as to surround the substrate 101. Strictly speaking, the amorphous silicon film 102 is not formed in a portion where the pusher pin for holding the substrate is in contact. However, it is insignificant from the whole area.

【0047】次に、加熱処理を行い、非晶質シリコン膜
102を完全に熱酸化することで熱酸化膜103を形成
する。この場合、非晶質シリコン膜102は完全に熱酸
化して熱酸化膜103に変化するため、熱酸化膜103
の膜厚は 100〜500 nm(代表的には 200〜300 nm)とな
る。
Next, heat treatment is performed to completely oxidize the amorphous silicon film 102 to form a thermal oxide film 103. In this case, since the amorphous silicon film 102 is completely thermally oxidized and changes to the thermal oxide film 103, the thermal oxide film 103
Has a thickness of 100 to 500 nm (typically 200 to 300 nm).

【0048】また、加熱処理の条件は公知のドライO2
酸化、ウェットO2 酸化、スチーム酸化、パイロジェニ
ック酸化、酸素分圧酸化、塩酸(HCl)酸化のいずれ
の手段によっても構わない。処理温度及び処理時間はプ
ロセスを考慮した上で適切な条件を設定すれば良い。
The condition of the heat treatment is a known dry O 2
Oxidation, wet O 2 oxidation, steam oxidation, pyrogenic oxidation, oxygen partial pressure oxidation, or hydrochloric acid (HCl) oxidation may be used. Appropriate conditions may be set for the processing temperature and the processing time in consideration of the process.

【0049】なお、この加熱処理は結晶化ガラスの歪点
以上、徐冷点以下の温度で行い、その温度で保持した
後、徐冷するといった処理を行うことが好ましい。この
様な処理を行うと熱酸化膜の形成と同時にガラスのシュ
リンケージ対策を行うことができる。即ち、上述の処理
によって予め基板を十分に縮ませておくことでその後の
加熱処理による基板のシュリンケージ量を低減すること
ができる。これに関連した技術は特開平8-250744号公報
に記載されている。
It is preferable that the heat treatment is performed at a temperature not lower than the strain point of the crystallized glass and lower than the annealing point, and after the temperature is maintained, annealing is performed. By performing such processing, it is possible to take measures against glass shrinkage simultaneously with the formation of the thermal oxide film. That is, by shrinking the substrate sufficiently in advance by the above-described processing, the amount of shrinkage of the substrate due to the subsequent heat treatment can be reduced. A technique related to this is described in Japanese Patent Application Laid-Open No. 8-250744.

【0050】以上の様にして、熱酸化膜(酸化シリコン
膜)103が形成されるが、前述の様に非晶質シリコン
膜102は基板101を包み込む様にして形成されてい
るので、熱酸化膜103も基板101を包み込む様にし
て形成される。即ち、結晶化ガラス基板101は完全に
絶縁性シリコン膜で包まれるので、成分物質の流出を防
止することが可能となる。
The thermal oxide film (silicon oxide film) 103 is formed as described above. Since the amorphous silicon film 102 is formed so as to surround the substrate 101 as described above, The film 103 is also formed so as to surround the substrate 101. That is, since the crystallized glass substrate 101 is completely covered with the insulating silicon film, it is possible to prevent the outflow of the component substances.

【0051】なお、ここではSixOy で表される酸化シリ
コン膜を絶縁性シリコン膜として用いているが、他にも
SixNy で表される窒化シリコン膜やSiOxNyで表される酸
化窒化シリコン膜などの絶縁性シリコン膜を用いること
も可能である。
Although the silicon oxide film represented by SixOy is used here as the insulating silicon film,
It is also possible to use an insulating silicon film such as a silicon nitride film represented by SixNy or a silicon oxynitride film represented by SiOxNy.

【0052】こうして、本願発明の重要な構成のうちの
二つ、結晶化ガラスを用いる点と結晶化ガラスを絶縁性
シリコン膜で包み込む点とが達成される。
In this manner, two of the important constitutions of the present invention, namely, the point of using crystallized glass and the point of enclosing the crystallized glass with the insulating silicon film are achieved.

【0053】次に、ボンドウェハ104を用意する。ボ
ンドウェハ104はその表面が熱酸化膜105で覆わ
れ、イオンインプランテーション法による水素イオン
(H+ イオン)打ち込みによって水素打ち込み層106
が形成されている。
Next, a bond wafer 104 is prepared. The surface of the bond wafer 104 is covered with a thermal oxide film 105, and a hydrogen implanted layer 106 is implanted by implanting hydrogen ions (H + ions) by an ion implantation method.
Are formed.

【0054】なお、熱酸化膜105の膜厚は 200〜700
nm(代表的には 400〜500nm )とし、水素イオンのドー
ズ量は 5×1015〜 1×1017ions/cm2(好ましくは 1×10
16〜5×1016ions/cm2)とする。これ以下のドーズ量で
は破断層の形成が困難になり、これ以上の濃度ではイオ
ン注入と同時に破断してしまう恐れがある。
The thickness of the thermal oxide film 105 is 200 to 700.
nm (typically 400 to 500 nm), and the dose of hydrogen ions is 5 × 10 15 to 1 × 10 17 ions / cm 2 (preferably 1 × 10
16 to 5 × 10 16 ions / cm 2 ). If the dose is less than this, it is difficult to form a rupture layer.

【0055】そして、上述の結晶化ガラス101の主表
面側(TFTを形成する側)に対してボンドウェハ10
4を室温で貼り合わせ、その後、 400〜600 ℃(典型的
には500℃)の温度で加熱処理を施す。この時、結晶化
ガラス101とボンドウェハ104の熱膨張係数に差が
あまりないので、熱応力によるピーリング(膜剥がれ)
などの問題を防ぐことができる。
Then, the bond wafer 10 is placed on the main surface side (the side on which the TFT is formed) of the crystallized glass 101 described above.
4 is bonded at room temperature, and then heat-treated at a temperature of 400 to 600 ° C (typically 500 ° C). At this time, since there is not much difference in the thermal expansion coefficient between the crystallized glass 101 and the bond wafer 104, peeling (film peeling) due to thermal stress is performed.
Such problems can be prevented.

【0056】こうして、加熱処理工程が終了したら、ボ
ンドウェハ104を引き離し、結晶化ガラス101上に
ボンドウェハ104の一部であった熱酸化膜105と、
単結晶シリコン薄膜107を残存させる。(図2
(D))
When the heat treatment step is completed, the bond wafer 104 is separated, and the thermally oxidized film 105 which is a part of the bond wafer 104 is formed on the crystallized glass 101.
The single-crystal silicon thin film 107 is left. (Figure 2
(D))

【0057】この熱酸化膜105は図2(B)の工程で
形成された熱酸化膜103と一体化して下地膜として機
能する。
This thermal oxide film 105 is integrated with the thermal oxide film 103 formed in the step of FIG.

【0058】その後、10nm前後のタッチポリッシュ工程
を行い、 900〜1200℃(代表的には950〜1050℃)の加
熱処理を行って単結晶シリコン薄膜107の結合力を高
める。こうして、熱酸化膜103で外周囲を完全に保護
された結晶化ガラス101上に単結晶シリコン薄膜10
7を形成することができる。
Thereafter, a touch polishing step of about 10 nm is performed, and a heat treatment at 900 to 1200 ° C. (typically 950 to 1,050 ° C.) is performed to increase the bonding force of the single crystal silicon thin film 107. Thus, the single-crystal silicon thin film 10 is placed on the crystallized glass 101 whose outer periphery is completely protected by the thermal oxide film 103.
7 can be formed.

【0059】本実施例に従って作製された図1(D)に
示す結晶化ガラス基板は、従来の様に石英基板を用いる
よりも大幅に製造コストが安価である。また、基板外周
囲を完全に酸化シリコン膜で保護しているため、後工程
でガラス成分による汚染が発生することもない。
The crystallized glass substrate shown in FIG. 1D manufactured according to this embodiment is much lower in manufacturing cost than the conventional case using a quartz substrate. Further, since the outer periphery of the substrate is completely protected by the silicon oxide film, there is no occurrence of contamination by glass components in a later step.

【0060】〔実施例2〕本実施例では、本願発明の構
成を有する半導体装置の作製工程について図3を用いて
説明する。具体的にはNTFT(Nチャネル型TFT)
とPTFT(Pチャネル型TFT)とを相補的に組み合
わせたCMOS回路で構成される駆動回路及びロジック
回路と、NTFTで構成される画素マトリクス回路とを
同一基板上に一体形成する例を示す。
Embodiment 2 In this embodiment, a manufacturing process of a semiconductor device having the structure of the present invention will be described with reference to FIGS. Specifically, NTFT (N-channel TFT)
An example is shown in which a drive circuit and a logic circuit composed of a CMOS circuit in which a TFT and a PTFT (P-channel TFT) are complementarily combined, and a pixel matrix circuit composed of an NTFT are integrally formed on the same substrate.

【0061】なお、ロジック回路とは、シフトレジスタ
などに代表される駆動回路とは別の機能を有する信号処
理回路であり、D/Aコンバータ回路、メモリ回路、γ
補正回路、さらには演算処理回路など、従来外付けIC
で行っていた様な信号処理を行う回路の総称を意味す
る。
Note that a logic circuit is a signal processing circuit having a function different from that of a drive circuit represented by a shift register or the like, and includes a D / A converter circuit, a memory circuit, and a γ circuit.
Conventional external ICs such as correction circuits and arithmetic processing circuits
Means a circuit that performs signal processing as performed in the above.

【0062】まず、図1を用いて説明した作製工程に従
って、単結晶シリコン薄膜の形成までを終了させる。そ
して、得られた単結晶シリコン薄膜をパターニングして
活性層303〜305を形成する。303はCMOS回
路のPTFTの活性層、304はCMOS回路のNTF
Tの活性層、305は画素マトリクス回路の活性層であ
り、それぞれの膜厚は30nmとなる様に調節してある。
First, the steps up to the formation of a single-crystal silicon thin film are completed according to the manufacturing process described with reference to FIG. Then, the obtained single crystal silicon thin film is patterned to form active layers 303 to 305. Reference numeral 303 denotes an active layer of a PTFT of a CMOS circuit, and reference numeral 304 denotes an NTF of a CMOS circuit.
The T active layer 305 is the active layer of the pixel matrix circuit, and each film is adjusted to have a thickness of 30 nm.

【0063】なお、本実施例では基板301としてSi
O2:65%、Al2O3:25% 、MgO:10% 、ZrO2:10%の組成を有す
る結晶化ガラスを用いる。この基板301は透明である
点に特徴がある。また、302は非晶質シリコン膜を熱
酸化させて得た酸化シリコン膜であり、膜厚は 400nmで
ある。
In this embodiment, the substrate 301 is made of Si
Crystallized glass having a composition of O 2 : 65%, Al 2 O 3 : 25%, MgO: 10%, and ZrO 2 : 10% is used. This substrate 301 is characterized in that it is transparent. Reference numeral 302 denotes a silicon oxide film obtained by thermally oxidizing an amorphous silicon film, and has a thickness of 400 nm.

【0064】こうして図3(A)の状態が得られる。次
に、酸化シリコン膜から構成されるゲイト絶縁膜306
を 120nmの膜厚に形成する。なお、他にも酸化窒化シリ
コン膜又は窒化シリコン膜を用いることができる。さら
に、これら絶縁性シリコン膜を自由に組み合わせて積層
構造としても良い。
Thus, the state shown in FIG. 3A is obtained. Next, a gate insulating film 306 made of a silicon oxide film
Is formed to a thickness of 120 nm. Note that a silicon oxynitride film or a silicon nitride film can also be used. Further, these insulating silicon films may be freely combined to form a laminated structure.

【0065】ゲイト絶縁膜306を形成したら、その状
態で 800〜1100℃(好ましくは1000〜1150℃)の温度範
囲で熱酸化工程を行う。この時、活性層とゲイト絶縁膜
との界面で熱酸化反応が進行するため、活性層は薄膜化
され、ゲイト絶縁膜の膜厚は増加する。この構成はエッ
ジシニング現象(活性層端部で熱酸化膜が極端に薄くな
る現象)によるゲイト絶縁膜の絶縁破壊を抑える上で効
果的である。
After the gate insulating film 306 is formed, a thermal oxidation step is performed in that state at a temperature in the range of 800 to 1100 ° C. (preferably 1000 to 1150 ° C.). At this time, since a thermal oxidation reaction proceeds at the interface between the active layer and the gate insulating film, the active layer is thinned, and the thickness of the gate insulating film increases. This configuration is effective in suppressing the dielectric breakdown of the gate insulating film due to the edge thinning phenomenon (phenomenon in which the thermal oxide film becomes extremely thin at the edge of the active layer).

【0066】また、この時、加熱処理の雰囲気は不活性
雰囲気でも酸化雰囲気でも良いが、ドライO2 雰囲気が
最も安定な界面特性を得る上で好ましい。また、高温で
加熱処理を行うことによりゲイト絶縁膜自体の膜質も向
上する。
At this time, the atmosphere for the heat treatment may be an inert atmosphere or an oxidizing atmosphere, but a dry O 2 atmosphere is preferable for obtaining the most stable interface characteristics. Further, by performing the heat treatment at a high temperature, the film quality of the gate insulating film itself is also improved.

【0067】次に、ゲイト絶縁膜306の上にN型導電
性を呈する結晶性シリコン膜からなるゲイト電極307
〜309を形成する。ゲイト電極307〜309の膜厚
は 200〜300 nmの範囲で選択すれば良い。(図3
(B))
Next, a gate electrode 307 made of a crystalline silicon film having N-type conductivity is formed on the gate insulating film 306.
To 309 are formed. The thickness of the gate electrodes 307 to 309 may be selected in the range of 200 to 300 nm. (FIG. 3
(B))

【0068】ゲイト電極307〜309を形成したら、
ゲイト電極307〜309をマスクとしてドライエッチ
ング法によりゲイト絶縁膜306をエッチングする。本
実施例では酸化シリコン膜をエッチングするためにCH
3 ガスを用いる。
After forming the gate electrodes 307 to 309,
The gate insulating film 306 is etched by a dry etching method using the gate electrodes 307 to 309 as a mask. In this embodiment, CH is used to etch the silicon oxide film.
F 3 gas is used.

【0069】この工程によりゲイト電極(及びゲイト配
線)の直下のみにゲイト絶縁膜が残存する状態となる。
勿論、ゲイト電極の下に残った部分が実際にゲイト絶縁
膜として機能する部分である。
According to this step, the gate insulating film remains only immediately below the gate electrode (and the gate wiring).
Of course, the portion left under the gate electrode is a portion that actually functions as a gate insulating film.

【0070】次に、PTFTとなる領域をレジストマス
ク310で隠し、N型を付与する不純物(本実施例では
リン)をイオンインプランテーション法またはプラズマ
ドーピング法により添加する。この時形成される低濃度
不純物領域311、312の一部は後にLDD(Lightl
y Doped Drain )領域となるので、 1×1017〜 5×1018
atoms/cm3 の濃度でリンを添加しておく。(図3
(C))
Next, a region to be a PTFT is hidden by a resist mask 310, and an impurity for imparting N-type (phosphorus in this embodiment) is added by an ion implantation method or a plasma doping method. Part of the low-concentration impurity regions 311 and 312 formed at this time will be LDD (Light
y Doped Drain) 1 × 10 17 to 5 × 10 18
Phosphorus is added at a concentration of atoms / cm 3 . (FIG. 3
(C))

【0071】次に、レジストマスク310を除去した
後、NTFTとなる領域をレジストマスク313で隠
し、P型を付与する不純物(本実施例ではボロン)をイ
オンインプランテーション法またはプラズマドーピング
法により添加する。この時も、リンの場合と同様に低濃
度不純物領域314を形成する。(図3(D))
Next, after removing the resist mask 310, the region to be NTFT is hidden by the resist mask 313, and an impurity (boron in this embodiment) for imparting a P-type is added by an ion implantation method or a plasma doping method. . Also at this time, the low concentration impurity region 314 is formed as in the case of phosphorus. (FIG. 3 (D))

【0072】こうして図3(D)の状態が得られたら、
レジストマスク313を除去した後、エッチバック法を
用いてサイドウォール315〜317を形成する。本実
施例ではサイドウォール315〜317を窒化シリコン
膜を用いて構成する。
When the state shown in FIG. 3D is obtained,
After removing the resist mask 313, sidewalls 315 to 317 are formed by using an etch-back method. In this embodiment, the sidewalls 315 to 317 are formed using a silicon nitride film.

【0073】なお、サイドウォールの材料として酸化シ
リコン膜を用いる場合、結晶化ガラス301の側面を保
護する酸化シリコン膜302の膜厚が薄いとエッチバッ
ク工程でなくなってしまう場合も起こりうる。ガラス側
面は全体の面積よりも十分に小さいためガラス成分の流
出はさほど問題とならないが、予め酸化シリコン膜30
2の膜厚を厚くしてエッチバック工程後も残る様にして
おいても良い。
When a silicon oxide film is used as a material for the sidewall, if the silicon oxide film 302 for protecting the side surface of the crystallized glass 301 is thin, the silicon oxide film may not be formed in the etch back step. Although the outflow of the glass component does not matter much because the glass side surface is sufficiently smaller than the entire area, the silicon oxide film 30
2 may be made thicker so that it remains after the etch-back step.

【0074】こうしてサイドウォール315〜317を
形成したら、再びPTFTとなる領域をレジストマスク
318で隠し、リンを添加する。この時は先程の添加工
程よりもドーズ量を高くする。
After the sidewalls 315 to 317 are formed in this way, the region to be the PTFT is hidden again by the resist mask 318, and phosphorus is added. At this time, the dose is set higher than in the previous addition step.

【0075】このリンの添加工程によりCMOS回路を
構成するNTFTのソース領域319、ドレイン領域3
20、低濃度不純物領域(LDD領域)321、チャネ
ル形成領域322が画定する。また、画素マトリクス回
路を構成するNTFTのソース領域323、ドレイン領
域324、低濃度不純物領域(LDD領域)325、チ
ャネル形成領域326が画定する。(図4(A))
The source region 319 and the drain region 3 of the NTFT constituting the CMOS circuit by the phosphorus doping process.
20, a low concentration impurity region (LDD region) 321 and a channel forming region 322 are defined. Further, a source region 323, a drain region 324, a low-concentration impurity region (LDD region) 325, and a channel formation region 326 of the NTFT constituting the pixel matrix circuit are defined. (FIG. 4 (A))

【0076】次に、レジストマスク315を除去した
後、レジストマスク327でNTFTとなる領域を隠
し、ボロンを先程よりも高いドーズ量で添加する。この
ボロンの添加工程によりCMOS回路を構成するPTF
Tのソース領域328、ドレイン領域329、低濃度不
純物領域(LDD領域)330、チャネル形成領域33
1が画定する。(図4(B))
Next, after removing the resist mask 315, the region to be an NTFT is hidden by the resist mask 327, and boron is added at a higher dose than before. PTF forming a CMOS circuit by the boron addition process
T source region 328, drain region 329, low concentration impurity region (LDD region) 330, channel formation region 33
1 defines. (FIG. 4 (B))

【0077】以上の様にして、活性層への不純物の添加
工程が終了したら、ファーネスアニール、レーザーアニ
ールまたはランプアニールによって熱処理を行い、添加
した不純物の活性化を行う。また、この時、不純物の添
加時に活性層が受けた損傷も回復される。
As described above, after the step of adding impurities to the active layer is completed, heat treatment is performed by furnace annealing, laser annealing, or lamp annealing to activate the added impurities. At this time, damage to the active layer caused by the addition of the impurity is also recovered.

【0078】なお、チャネル形成領域322、326、
331は全く不純物元素が添加されず、真性または実質
的に真性な領域である。ここで実質的に真性であると
は、N型又はP型を付与する不純物濃度がチャネル形成
領域のスピン密度以下であること、或いは同不純物濃度
が 1×1014〜 1×1017atoms/cm3 の範囲に収まっている
ことを指す。
The channel forming regions 322, 326,
331 is an intrinsic or substantially intrinsic region to which no impurity element is added. Here, the term “substantially intrinsic” means that the impurity concentration imparting N-type or P-type is equal to or lower than the spin density of the channel formation region, or the impurity concentration is 1 × 10 14 to 1 × 10 17 atoms / cm 2. Indicates that it is within the range of 3 .

【0079】次に、25nm厚の窒化シリコン膜と 900nm厚
の酸化シリコン膜との積層膜からなる第1の層間絶縁膜
332を形成する。そして、Ti/Al/Ti(膜厚は順に100/
500/100 nm)からなる積層膜で構成されるソース電極3
33〜335、ドレイン電極336、337を形成す
る。
Next, a first interlayer insulating film 332 made of a laminated film of a silicon nitride film having a thickness of 25 nm and a silicon oxide film having a thickness of 900 nm is formed. And Ti / Al / Ti (film thickness is 100 /
Source electrode 3 composed of a laminated film consisting of 500/100 nm)
33 to 335 and drain electrodes 336 and 337 are formed.

【0080】次に、50nm厚の窒化シリコン膜338、20
nm厚の酸化シリコン膜(図示せず)、1μm厚のポリイ
ミド膜339の積層構造からなる第2の層間絶縁膜を形
成する。なお、ポリイミド以外にもアクリル、ポリアミ
ド等の他の有機性樹脂膜を用いることができる。また、
この場合の20nm厚の酸化シリコン膜はポリイミド膜33
9をドライエッチングする際のエッチングストッパーと
して機能する。
Next, a 50 nm thick silicon nitride film 338, 20
A second interlayer insulating film having a stacked structure of a silicon oxide film (not shown) having a thickness of nm and a polyimide film 339 having a thickness of 1 μm is formed. Note that other organic resin films such as acrylic and polyamide can be used in addition to polyimide. Also,
In this case, the 20 nm thick silicon oxide film is a polyimide film 33.
9 functions as an etching stopper when dry-etching.

【0081】第2の層間絶縁膜を形成したら、後に補助
容量を形成する領域においてポリイミド膜339をエッ
チングして開口部を設ける。この時、開口部の底部には
窒化シリコン膜338のみ残すか、窒化シリコン膜33
8と酸化シリコン膜(図示せず)を残すかのいずれかの
状態とする。
After the second interlayer insulating film is formed, an opening is provided by etching the polyimide film 339 in a region where an auxiliary capacitance will be formed later. At this time, only the silicon nitride film 338 is left at the bottom of the opening or the silicon nitride film 33
8 and the silicon oxide film (not shown) are left.

【0082】そして、300 nm厚のチタン膜を成膜し、パ
ターニングによりブラックマスク340を形成する。こ
のブラックマスク340は画素マトリクス回路上におい
て、TFTや配線部など遮光を要する部分に配置され
る。
Then, a titanium film having a thickness of 300 nm is formed, and a black mask 340 is formed by patterning. The black mask 340 is arranged on a portion requiring light shielding, such as a TFT and a wiring portion, on the pixel matrix circuit.

【0083】この時、前述の開口部では画素マトリクス
回路のドレイン電極337とブラックマスク340とが
窒化シリコン膜338(又は窒化シリコン膜と酸化シリ
コン膜との積層膜)を挟んで近接した状態となる。本実
施例ではブラックマスク340を固定電位に保持して、
ドレイン電極337を下部電極、ブラックマスク340
を上部電極とする補助容量341を構成する。この場
合、誘電体が非常に薄く比誘電率が高いため、大きな容
量を確保することが可能である。
At this time, in the above-described opening, the drain electrode 337 of the pixel matrix circuit and the black mask 340 are in proximity to each other with the silicon nitride film 338 (or a stacked film of the silicon nitride film and the silicon oxide film) interposed therebetween. . In this embodiment, the black mask 340 is held at a fixed potential,
Drain electrode 337 is used as a lower electrode, black mask 340
Constitutes an auxiliary capacitor 341 having the upper electrode as an upper electrode. In this case, since the dielectric is very thin and has a high relative permittivity, a large capacitance can be secured.

【0084】こうしてブラックマスク340及び補助容
量341を形成したら、1μm厚のポリイミド膜を形成
して第3の層間絶縁膜342とする。そして、コンタク
トホールを形成して透明導電膜(代表的にはITO)で
構成される画素電極343を120nmの厚さに形成する。
After the black mask 340 and the auxiliary capacitance 341 are formed, a polyimide film having a thickness of 1 μm is formed to form a third interlayer insulating film 342. Then, a contact hole is formed, and a pixel electrode 343 made of a transparent conductive film (typically, ITO) is formed to a thickness of 120 nm.

【0085】最後に、水素雰囲気中で 350℃2時間程度
の加熱処理を行い、素子全体の水素化を行う。こうして
図4(C)に示す様なアクティブマトリクス基板が完成
する。本実施例で形成されたTFTは活性層として単結
晶シリコン薄膜を用いているため、非常に高い性能を有
する。
Finally, a heat treatment is performed at 350 ° C. for about 2 hours in a hydrogen atmosphere to hydrogenate the entire device. Thus, an active matrix substrate as shown in FIG. 4C is completed. Since the TFT formed in this embodiment uses a single crystal silicon thin film as an active layer, it has very high performance.

【0086】例えば、サブスレッショルド係数(S値)
はNTFT、PTFT共に60〜80mV/decade であり、N
TFTの電界効果移動度(モビリティ)は 300〜700cm2
/Vs、PTFTのモビリティは 200〜400cm2/Vs を実現
する。
For example, a subthreshold coefficient (S value)
Is 60 to 80 mV / decade for both NTFT and PTFT.
TFT field-effect mobility (mobility) is 300-700cm 2
/ Vs, PTFT mobility of 200-400cm 2 / Vs.

【0087】また、単結晶シリコン薄膜をスマートカッ
ト法で形成しているので基板上における活性層の膜厚の
均一性を高めることができる。特に、高い均一性を要求
される画素TFT(画素マトリクス回路を構成するTF
T)の特性バラツキを抑える上で本願発明は非常に有効
である。
Further, since the single crystal silicon thin film is formed by the smart cut method, the uniformity of the thickness of the active layer on the substrate can be improved. In particular, pixel TFTs that require high uniformity (TFs forming pixel matrix circuits)
The present invention is very effective in suppressing the variation in the characteristic of T).

【0088】また、アクティブマトリクス基板が完成し
たら、公知のセル組み工程によって対向基板との間に液
晶層を挟持すればアクティブマトリクス型の液晶表示装
置(透過型)が完成する。
When the active matrix substrate is completed, an active matrix type liquid crystal display device (transmission type) is completed by sandwiching a liquid crystal layer between the active matrix substrate and a counter substrate by a known cell assembly process.

【0089】なお、アクティブマトリクス基板の構造は
本実施例に限定されず、あらゆる構造とすることができ
る。即ち、本願発明の構成要件を満たしうる構造であれ
ば、TFT構造や回路配置等は実施者が自由に設計する
ことができる。
The structure of the active matrix substrate is not limited to this embodiment, but may be any structure. That is, the TFT structure, circuit arrangement, and the like can be freely designed by the practitioner as long as the structure can satisfy the constituent requirements of the present invention.

【0090】例えば、本実施例では画素電極として透明
導電膜を用いているが、これをアルミニウム合金膜など
反射性の高い材料に変えれば容易に反射型のアクティブ
マトリクス型液晶表示装置を実現することができる。ま
た、この場合、アクティブマトリクス基板の母体となる
結晶化ガラスは透明である必要はなく、遮光性の基板を
用いても構わない。
For example, in this embodiment, a transparent conductive film is used as the pixel electrode. However, if this is changed to a highly reflective material such as an aluminum alloy film, a reflection type active matrix type liquid crystal display device can be easily realized. Can be. In this case, the crystallized glass serving as the base of the active matrix substrate does not need to be transparent, and a light-shielding substrate may be used.

【0091】また、本実施例ではアクティブマトリクス
基板として結晶化ガラスを用いているので対向基板とし
てガラス基板を用いる場合に相性がいい。仮にアクティ
ブマトリクス基板をとして石英を用いると、石英とガラ
スの熱膨張係数の違いからアクティブマトリクス基板と
対向基板との間で反りが生じる場合がある。
In this embodiment, since crystallized glass is used as the active matrix substrate, the compatibility is good when a glass substrate is used as the counter substrate. If quartz is used as the active matrix substrate, warpage may occur between the active matrix substrate and the counter substrate due to the difference in thermal expansion coefficient between quartz and glass.

【0092】〔実施例3〕本実施例では実施例1、2の
構成において結晶化ガラスを保護するための絶縁性シリ
コン膜を減圧熱CVD法により形成する場合の例につい
て説明する。
[Embodiment 3] In this embodiment, an example in which an insulating silicon film for protecting crystallized glass in the structure of Embodiments 1 and 2 is formed by a low pressure thermal CVD method will be described.

【0093】まず、基板としてSiO2: 52.5、Al2O3:26.
5、MgO:11.9、TiO2:11.4 を組成成分とする結晶化ガラ
スを用意する。これは核形成剤としてTiO2を利用した無
アルカリのコージュライト系結晶化ガラスである。
First, SiO 2 : 52.5, Al 2 O 3 : 26.
5, MgO: 11.9, TiO 2 : 11.4 to prepare a crystallized glass the composition components. This is an alkali-free cordierite crystallized glass using TiO 2 as a nucleating agent.

【0094】次に、結晶化ガラスの表面、裏面及び側面
に対して酸化窒化シリコン膜を形成する。本実施例では
成膜ガスとしてシラン(SiH4) と亜酸化窒素(N2O)を用
いた減圧熱CVD法により酸化窒化シリコン膜を形成す
る。
Next, a silicon oxynitride film is formed on the front, back, and side surfaces of the crystallized glass. In this embodiment, a silicon oxynitride film is formed by a low-pressure thermal CVD method using silane (SiH 4 ) and nitrous oxide (N 2 O) as a deposition gas.

【0095】この場合、成膜温度は 800〜850 ℃(本実
施例では850 ℃)で行い、それぞれの成膜ガスの流量は
SiH4:10〜30sccm、N2O : 300〜900sccm とする。ま
た、反応圧力は 0.5〜1.0torr とすれば良い。
In this case, the film forming temperature is set at 800 to 850 ° C. (850 ° C. in this embodiment), and the flow rate of each film forming gas is
SiH 4: 10~30sccm, N 2 O : the 300~900sccm. The reaction pressure may be set to 0.5 to 1.0 torr.

【0096】また、成膜ガスとしてシランと二酸化窒素
(N2O)又は一酸化窒素(NO)を用いれば 600〜650 ℃の温
度で酸化窒化シリコン膜を形成することもできる。その
場合、反応圧力は 0.1〜1.0torr とし、それぞれのガス
流量はSiH4:10〜30sccm、NO2 又はNO: 300〜900sccm
とすれば良い。
When silane and nitrogen dioxide (N 2 O) or nitrogen monoxide (NO) are used as a film forming gas, a silicon oxynitride film can be formed at a temperature of 600 to 650 ° C. In that case, the reaction pressure was 0.1~1.0Torr, the gas flow rate is SiH 4: 10~30sccm, NO 2 or NO: 300~900sccm
It is good.

【0097】本実施例の場合、減圧熱CVD法により酸
化窒化シリコン膜を形成するため、結晶化ガラスの全面
が絶縁膜で包まれる形となる。また、成膜ガスを異なる
ものとすることで結晶化ガラスの保護膜として窒化シリ
コン膜を形成することもできる。
In this embodiment, since the silicon oxynitride film is formed by the low pressure thermal CVD method, the whole surface of the crystallized glass is covered with the insulating film. Further, by using different deposition gases, a silicon nitride film can be formed as a protective film of crystallized glass.

【0098】その場合、成膜ガスとして40〜50sccmのジ
クロールシラン(SiH2Cl2)と 200〜250sccm のアンモニ
ア(NH3)とを用い、成膜温度を 750〜800 ℃、反応圧力
を 0.1〜0.5torr とすれば良い。
In this case, 40-50 sccm of dichlorsilane (SiH 2 Cl 2 ) and 200-250 sccm of ammonia (NH 3 ) are used as the film forming gas, the film forming temperature is 750-800 ° C., and the reaction pressure is 0.1. It should be ~ 0.5torr.

【0099】窒化シリコン膜はガラス成分の流出を阻止
するには最適な絶縁膜であるが応力が強いのでTFTの
下地膜としては不向きであった。しかしながら、本願発
明では結晶化ガラスの少なくとも表面及び裏面に窒化シ
リコン膜が形成されるので窒化シリコン膜の応力が基板
の裏表で相殺され、基板の反り等は発生しない。
The silicon nitride film is the most suitable insulating film for preventing the outflow of the glass component, but is not suitable as a TFT base film because of a high stress. However, in the present invention, since the silicon nitride film is formed on at least the front surface and the rear surface of the crystallized glass, the stress of the silicon nitride film is offset between the front and the back of the substrate, and the substrate does not warp.

【0100】〔実施例4〕本実施例では、実施例1乃至
実施例2においてゲイト絶縁膜として減圧熱CVD法に
より成膜した絶縁性シリコン膜を用いる場合の例を示
す。説明には図5を用いる。図5に示す状態は、ゲイト
電極を形成した後にゲイト絶縁膜をエッチングした直後
の状態である。
[Embodiment 4] This embodiment shows an example in which an insulating silicon film formed by a low pressure thermal CVD method is used as the gate insulating film in Embodiments 1 and 2. FIG. 5 is used for the description. The state shown in FIG. 5 is a state immediately after the gate insulating film is etched after the gate electrode is formed.

【0101】図5において、501は結晶化ガラス、5
02は結晶化ガラスからの成分物質の流出を阻止するた
めの保護膜(下地膜)となる酸化窒化シリコン膜であ
る。結晶化ガラス501の表面側には活性層503〜5
05が形成され、ゲイト絶縁膜を成膜した後、ゲイト電
極506〜508が形成される。
In FIG. 5, reference numeral 501 denotes crystallized glass;
Reference numeral 02 denotes a silicon oxynitride film serving as a protective film (base film) for preventing outflow of component substances from crystallized glass. Active layers 503 to 5 are provided on the surface side of crystallized glass 501.
After the gate insulating film 05 is formed and a gate insulating film is formed, gate electrodes 506 to 508 are formed.

【0102】このゲイト電極506〜508をマスクと
してドライエッチングを行うことでゲイト電極直下にゲ
イト絶縁膜509〜511が残存する。
By performing dry etching using the gate electrodes 506 to 508 as a mask, the gate insulating films 509 to 511 remain immediately below the gate electrodes.

【0103】本実施例の最も重要な構成は、ゲイト絶縁
膜として減圧熱CVD法により成膜した絶縁性シリコン
膜(本実施例では酸化窒化シリコン膜)を用いる点にあ
る。即ち、ゲイト絶縁膜も結晶化ガラス501の表面、
裏面及び側面側の全ての面に成膜される点が特徴であ
る。
The most important structure of this embodiment is that an insulating silicon film (in this embodiment, a silicon oxynitride film) formed by a low pressure thermal CVD method is used as a gate insulating film. That is, the gate insulating film also has a surface of the crystallized glass 501,
It is characterized in that a film is formed on all surfaces on the back and side surfaces.

【0104】従って、ゲイト絶縁膜(酸化窒化シリコン
膜)のエッチング工程が終了した時点(図5の状態)で
は基板の表面側はゲイト電極でマスクされた部分以外は
完全に除去され、基板の裏面及び側面にはそのまま酸化
窒化シリコン膜512が残る。なお、側面に形成された
酸化窒化シリコン膜は条件によっては除去されてしまう
が、側面は除去されてしまっても問題ない。
Therefore, when the etching process of the gate insulating film (silicon oxynitride film) is completed (the state shown in FIG. 5), the front surface of the substrate is completely removed except for the portion masked by the gate electrode, and the back surface of the substrate is removed. The silicon oxynitride film 512 remains on the side surface. Note that the silicon oxynitride film formed on the side surface is removed depending on conditions, but there is no problem even if the side surface is removed.

【0105】本実施例の構成では、後の工程で裏面及び
側面が酸化窒化シリコン膜をエッチングしうるエッチャ
ント又はエッチングガスに曝されることがあっても結晶
化ガラス501に直接成膜した酸化窒化シリコン膜50
2を残すことができる。即ち、ガラス基板からの成分物
質の流出を徹底的に阻止することが可能である。
In the structure of this embodiment, even if the back and side surfaces are exposed to an etchant or an etching gas capable of etching the silicon oxynitride film in a later step, the oxynitride film directly formed on the crystallized glass 501 is formed. Silicon film 50
2 can be left. That is, it is possible to thoroughly prevent the outflow of the component substances from the glass substrate.

【0106】〔実施例5〕実施例2ではゲイト電極とし
てN型導電性を呈する結晶性シリコン膜を利用している
が、導電性を有する材料であればあらゆる材料を用いる
ことができる。特に、直視用の液晶表示装置を作製する
場合には、画素マトリクス回路の面積が大きくなるため
配線抵抗の小さい材料を用いることが好ましい。
[Embodiment 5] In Embodiment 2, a crystalline silicon film exhibiting N-type conductivity is used as a gate electrode, but any material having conductivity can be used. In particular, in the case of manufacturing a direct-view liquid crystal display device, it is preferable to use a material having low wiring resistance because the area of the pixel matrix circuit increases.

【0107】その様な場合には、ゲイト電極としてアル
ミニウムまたはアルミニウムを主成分とする材料を用い
ることが望ましい。本実施例ではゲイト電極として2wt
% のスカンジウムを含有したアルミニウム膜を用いる。
In such a case, it is desirable to use aluminum or a material containing aluminum as a main component for the gate electrode. In this embodiment, 2 wt.
% Of scandium is used.

【0108】アルミニウムを主成分とする材料をゲイト
電極として利用する場合には、本発明者らによる特開平
7-135318号公報に記載された技術を利用すると良い。同
公報では実施例1で用いたサイドウォールの代わりにゲ
イト電極を陽極酸化して得られる陽極酸化膜を利用して
いる。
In the case where a material containing aluminum as a main component is used as the gate electrode, the method disclosed in Japanese Patent Application Laid-open No.
It is preferable to use the technology described in JP-A-7-135318. In this publication, an anodic oxide film obtained by anodizing a gate electrode is used instead of the sidewall used in the first embodiment.

【0109】本実施例の様にゲイト電極としてアルミニ
ウムまたはアルミニウムを主成分とする材料を用いるこ
とで配線抵抗の小さいゲイト配線を形成することが可能
となり、応答速度の速いアクティブマトリクス基板を作
製することができる。
By using aluminum or a material containing aluminum as a main component as the gate electrode as in this embodiment, it is possible to form a gate wiring having a low wiring resistance, and to manufacture an active matrix substrate having a high response speed. Can be.

【0110】なお、本実施例は実施例1〜4の構成と組
み合わせることが可能である。
This embodiment can be combined with Embodiments 1 to 4.

【0111】〔実施例6〕実施例2において、活性層中
にTFTのしきい値電圧(Vth)を制御するための不純
物元素を添加することは有効である。この不純物元素は
少なくともチャネル形成領域にさえ添加されていれば良
いので、ゲイト電極の形成前であれば何時添加しても良
い。
[Embodiment 6] In Embodiment 2, it is effective to add an impurity element for controlling the threshold voltage (Vth) of the TFT to the active layer. Since the impurity element only needs to be added to at least the channel formation region, it may be added at any time before the formation of the gate electrode.

【0112】成膜時以外に添加する場合には、イオンイ
ンプランテーション法またはプラズマドーピング法によ
る添加、気相中からの拡散による添加、固相中からの拡
散による添加などの手段を用いることができる。これら
の手段は、例えばNTFTとPTFTとで添加する不純
物を異ならせるといった具合に選択的な添加が可能であ
るため有効である。
In the case of addition other than at the time of film formation, means such as addition by ion implantation or plasma doping, addition by diffusion from a gas phase, and addition by diffusion from a solid phase can be used. . These means are effective because they can be selectively added, for example, by making the impurities to be added different between the NTFT and the PTFT.

【0113】また、添加する不純物元素としては、Vth
をプラス側に移動させるのであれば13族元素(ボロ
ン、ガリウム又はインジウム)を用い、マイナス側に移
動させるのであれば15元素(リン、砒素又はアンチモ
ン)を用いる。
The impurity element to be added is Vth
To move to the plus side, a group 13 element (boron, gallium or indium) is used, and to move to the minus side, 15 elements (phosphorus, arsenic or antimony) are used.

【0114】なお、本実施例は実施例1〜5の構成と組
み合わせることが可能である。
This embodiment can be combined with the structures of the first to fifth embodiments.

【0115】〔実施例7〕本実施例では、実施例1で説
明したアクティブマトリクス基板において、第3の層間
絶縁膜342(図4(C)参照)の上にヒートシンクと
してDLC(Diamond Like Corbon )膜を利用する場合
の例について説明する。
[Embodiment 7] In this embodiment, in the active matrix substrate described in Embodiment 1, a DLC (Diamond Like Corbon) is used as a heat sink on the third interlayer insulating film 342 (see FIG. 4C). An example in which a film is used will be described.

【0116】図6に示す構造は、基本的には図4(C)
の構造と同じであるが第3の層間絶縁膜342上にDL
C膜601が設けられている点が異なる。
The structure shown in FIG. 6 is basically similar to the structure shown in FIG.
Having the same structure as that of FIG.
The difference is that a C film 601 is provided.

【0117】DLCとは、ダイヤモンドの如き物性を示
す炭素または炭素を主成分とする硬度の高い材料であ
る。また、i−カーボンとも呼ばれ、sp3 結合を主体
として構成されている。
DLC is carbon or a material having a high hardness containing carbon as a main component and exhibiting physical properties like diamond. It is also called i-carbon, and is mainly composed of sp 3 bonds.

【0118】ダイヤモンドは室温において最も熱伝導率
の高い材料(室温で約10〜20W/cm・k )であり、それ
と同等の物性を示すDLC膜も高い熱伝導率を示す。本
実施例ではその熱伝導率の高さを利用してヒートシンク
として機能させている。
Diamond is a material having the highest thermal conductivity at room temperature (about 10 to 20 W / cm · k at room temperature), and a DLC film having the same physical properties also exhibits high thermal conductivity. In the present embodiment, the high heat conductivity is used to function as a heat sink.

【0119】また、DLC膜は有機性樹脂膜との密着性
に優れているため、層間絶縁膜として有機性樹脂膜を用
い、その上にヒートシンクを設ける場合には非常に有効
な材料である。
Further, since the DLC film has excellent adhesion to an organic resin film, it is a very effective material when an organic resin film is used as an interlayer insulating film and a heat sink is provided thereon.

【0120】なお、DLC膜の成膜手段としてはプラズ
マCVD法、ECRプラズマCVD法、スパッタ法、イ
オンビームスパッタ法、イオン化蒸着法等の気相成膜法
を用いることができる。
As a means for forming the DLC film, a vapor phase film forming method such as a plasma CVD method, an ECR plasma CVD method, a sputtering method, an ion beam sputtering method, or an ionized vapor deposition method can be used.

【0121】また、DLC膜を形成する際の原料ガスと
しては炭化水素が用いられる。炭化水素としてはメタ
ン、エタン、プロパン等の飽和炭化水素、エチレン、ア
セチレン等の不飽和炭化水素が挙げられる。また、炭化
水素分子の水素のうち1個若しくは複数個がハロゲン元
素に置換したハロゲン化炭化水素を用いても良い。
Further, hydrocarbon is used as a source gas when forming the DLC film. Examples of the hydrocarbon include saturated hydrocarbons such as methane, ethane, and propane, and unsaturated hydrocarbons such as ethylene and acetylene. Alternatively, a halogenated hydrocarbon in which one or more hydrogen atoms of a hydrocarbon molecule are substituted with a halogen element may be used.

【0122】また、炭化水素の他に水素を添加すること
は有効である。水素を添加するとプラズマ中での水素ラ
ジカルが増加し、膜中の余分な水素を引き抜き、膜質を
向上させる効果が期待できる。この時、全ガス流量に対
する水素ガス流量の比は30〜90%、好ましくは50〜70%
が良い。この比が多すぎると成膜速度が減少し、少なす
ぎると余分な水素の引き抜き効果がなくなる。
It is effective to add hydrogen in addition to hydrocarbons. When hydrogen is added, the number of hydrogen radicals in the plasma increases, and the effect of extracting excess hydrogen in the film and improving the film quality can be expected. At this time, the ratio of the hydrogen gas flow rate to the total gas flow rate is 30 to 90%, preferably 50 to 70%.
Is good. If the ratio is too large, the film formation rate is reduced, and if it is too small, the effect of extracting excess hydrogen is lost.

【0123】さらに、原料ガスを希釈するキャリアガス
としてヘリウムを添加することもできるし、スパッタ法
の場合にはスパッタリングガスとしてアルゴンを添加す
る場合もある。また、特開平6-208721号公報に記載され
る様に13〜15族の元素を添加することも有効であ
る。
Further, helium can be added as a carrier gas for diluting the source gas, and in the case of a sputtering method, argon may be added as a sputtering gas. It is also effective to add an element belonging to Groups 13 to 15 as described in JP-A-6-208721.

【0124】また、反応圧力は 5〜1000mTorr 、好まし
くは10〜100mTorrが良い。高周波電力は通常13.56MHzを
用いる。この時、印加するRF電力は0.01〜1W/cm2、好
ましくは0.05〜0.5W/cm2とする。さらに、原料ガスの分
解を助長するために2.45GHzのマイクロ波による励起効
果を付加したり、その励起空間に対して875 ガウスの磁
場を形成し、電子スピン共鳴を利用することも有効であ
る。
The reaction pressure is 5 to 1000 mTorr, preferably 10 to 100 mTorr. 13.56 MHz is usually used for high frequency power. At this time, RF power to be applied 0.01~1W / cm 2, preferably between 0.05 to 0.5 / cm 2. It is also effective to add a 2.45 GHz microwave excitation effect to promote decomposition of the source gas, or to form a 875 Gauss magnetic field in the excitation space and use electron spin resonance.

【0125】本実施例ではプラズマCVD装置の反応空
間に原料ガスとしてメタンガスを50sccm、水素ガスを50
sccmを導入し、成膜圧力は10mTorr 、RF電力は100W、
反応空間の温度は室温とする。また、基板バイアスとし
て 200Vの直流バイアスを加え、プラズマ中の粒子(イ
オン)が被形成面上に入射する様な電界を形成すること
で膜質の緻密化と硬度の向上を図っている。
In this embodiment, 50 sccm of methane gas and 50 g of hydrogen gas are used as raw material gases in the reaction space of the plasma CVD apparatus.
Introduce sccm, deposition pressure is 10mTorr, RF power is 100W,
The temperature of the reaction space is room temperature. Further, a DC bias of 200 V is applied as a substrate bias to form an electric field such that particles (ions) in the plasma are incident on the surface on which the film is to be formed, thereby improving the film quality and improving the hardness.

【0126】また、DLC膜は膜厚が10nm程度でも非常
に高い耐摩耗性を持っている。そのため、図7に示した
構造では第3の層間絶縁膜342を機械的な衝撃から保
護する効果が得られる。これは、ラビング工程等による
摩擦工程に対して非常に効果的である。
The DLC film has very high abrasion resistance even if the film thickness is about 10 nm. Therefore, the structure shown in FIG. 7 has an effect of protecting the third interlayer insulating film 342 from mechanical shock. This is very effective for a friction process such as a rubbing process.

【0127】なお、摩擦係数はDLC膜厚に依存性を有
し、DLC膜厚が厚くなる程小さくなる。従って、DL
C膜の膜厚は10nm以上あれば良いことになるが、厚すぎ
ると液晶に印加される電界が弱くなるので10〜50nm程度
が良い。
The coefficient of friction depends on the DLC film thickness, and decreases as the DLC film thickness increases. Therefore, DL
It is sufficient that the thickness of the C film is 10 nm or more, but if it is too thick, the electric field applied to the liquid crystal is weakened.

【0128】なお、DLC膜のさらに詳細な成膜方法お
よび成膜装置等については、本発明者らによる特公平3-
72711 号公報、同4-27690 号公報、同4-27691 号公報を
参考にすると良い。
It should be noted that a more detailed method and apparatus for forming a DLC film are described in Japanese Patent Publication No.
Reference should be made to JP-A-72711, JP-A-4-27690 and JP-A-4-27691.

【0129】以上の様な構成で得られた図7の構造で
は、TFTで発生した熱が高い効率で逃がされるので、
蓄熱による動作不良を防ぐことができる。特に、プロジ
ェクションタイプの電子機器に用いる液晶表示装置に
は、この様な耐熱構造を利用した方が良い。
In the structure shown in FIG. 7 obtained by the above-described structure, heat generated in the TFT is released with high efficiency.
Malfunction due to heat storage can be prevented. In particular, it is better to use such a heat-resistant structure for a liquid crystal display device used for a projection type electronic device.

【0130】〔実施例8〕実施例1〜7に示した構成を
有するアクティブマトリクス基板を用い、液晶表示装置
を構成した例を図7に示す。図7は液晶表示装置の本体
に相当する部位であり、液晶モジュールとも呼ばれる。
[Embodiment 8] FIG. 7 shows an example in which a liquid crystal display device is constructed using the active matrix substrates having the constructions shown in Embodiments 1 to 7. FIG. 7 shows a portion corresponding to the main body of the liquid crystal display device, which is also called a liquid crystal module.

【0131】図7において、701は結晶化ガラス、7
02は結晶化ガラスの全面を包む様にして形成された絶
縁性シリコン膜である。大版基板から多面取りによって
複数枚のアクティブマトリクス基板を切り出す場合には
切断面となる側面には絶縁性シリコン膜が存在しない
が、それ以外の側面には絶縁性シリコン膜が残るという
のが本願発明の特徴である。勿論、アクティブマトリク
ス基板として完成してしまっているので絶縁性シリコン
膜で保護されていなくても成分物質が流出する心配はな
い。
In FIG. 7, reference numeral 701 denotes crystallized glass;
Numeral 02 is an insulating silicon film formed so as to cover the entire surface of the crystallized glass. In the case where multiple active matrix substrates are cut out from a large-size substrate by cutting multiple substrates, there is no insulating silicon film on the side that will be the cut surface, but the insulating silicon film remains on the other side. This is a feature of the invention. Of course, since it is completed as an active matrix substrate, there is no fear that the component material flows out even if it is not protected by the insulating silicon film.

【0132】そして、この様な構成の基板上に単結晶シ
リコン薄膜でもって複数のTFTが形成されている。こ
れらのTFTは基板上に画素マトリクス回路703、ゲ
イト側駆動回路704、ソース側駆動回路705、ロジ
ック回路706を構成する。そして、その様なアクティ
ブマトリクス基板に対して対向基板707が貼り合わさ
れる。アクティブマトリクス基板と対向基板707との
間には液晶層(図示せず)が挟持される。
A plurality of TFTs are formed of a single-crystal silicon thin film on a substrate having such a structure. These TFTs constitute a pixel matrix circuit 703, a gate side drive circuit 704, a source side drive circuit 705, and a logic circuit 706 on a substrate. Then, a counter substrate 707 is attached to such an active matrix substrate. A liquid crystal layer (not shown) is sandwiched between the active matrix substrate and the counter substrate 707.

【0133】また、図7に示す構成では、アクティブマ
トリクス基板の側面と対向基板の側面とをある一辺を除
いて全て揃えることが望ましい。こうすることで大版基
板からの多面取り数を効率良く増やすことができる。ま
た、前述の一辺では、対向基板の一部を除去してアクテ
ィブマトリクス基板の一部を露出させ、そこにFPC
(フレキシブル・プリント・サーキット)708を取り
付ける。ここには必要に応じてICチップ(単結晶シリ
コン上に形成されたMOSFETで構成される半導体回路)を
搭載しても構わない。
In the structure shown in FIG. 7, it is desirable that the side surfaces of the active matrix substrate and the side surface of the counter substrate are all aligned except for one side. This makes it possible to efficiently increase the number of multi-face removal from the large-size substrate. In addition, on one side described above, a part of the opposing substrate is removed to expose a part of the active matrix substrate, and the FPC is
(Flexible Print Circuit) 708 is attached. Here, an IC chip (semiconductor circuit including a MOSFET formed on single crystal silicon) may be mounted as needed.

【0134】本実施例の回路を構成するTFTは極めて
高い動作速度を有しているため、数百MHz〜数GHz
の高周波数で駆動する信号処理回路を画素マトリクス回
路と同一の基板上に一体形成することが可能である。即
ち、図7に示す液晶モジュールはシステム・オン・パネ
ルを具現化したものである。
Since the TFT constituting the circuit of this embodiment has an extremely high operation speed, several hundred MHz to several GHz
Can be integrally formed on the same substrate as the pixel matrix circuit. That is, the liquid crystal module shown in FIG. 7 embodies a system-on-panel.

【0135】なお、本実施例では本願発明を液晶表示装
置に適用した場合について記載しているが、アクティブ
マトリクス型EL(エレクトロルミネッセンス)表示装
置などを構成することも可能である。また、光電変換層
を具備したイメージセンサ等を同一基板上に形成するこ
とも可能である。
Although the present embodiment describes a case in which the present invention is applied to a liquid crystal display device, an active matrix type EL (electroluminescence) display device or the like can be constructed. Further, an image sensor or the like including a photoelectric conversion layer can be formed over the same substrate.

【0136】なお、上述の液晶表示装置、EL表示装置
及びイメージセンサの様に光学信号を電気信号に変換す
る、又は電気信号を光学信号に変換する機能を有する装
置を電気光学装置と定義する。本願発明は絶縁表面を有
する基板上に半導体薄膜を利用して形成しうる電気光学
装置ならば全てに適用することができる。
A device having a function of converting an optical signal into an electric signal or a function of converting an electric signal into an optical signal, such as the above-described liquid crystal display device, EL display device, and image sensor, is defined as an electro-optical device. The present invention can be applied to any electro-optical device that can be formed using a semiconductor thin film on a substrate having an insulating surface.

【0137】〔実施例9〕本願発明は実施例8に示した
様な電気光学装置だけでなく、機能回路を集積化した薄
膜集積回路(または半導体回路)を構成することもでき
る。例えば、マイクロプロセッサ等の演算回路や携帯機
器用の高周波回路(MMIC:マイクロウェイブ・モジ
ュール・IC)などを構成することもできる。
[Embodiment 9] According to the present invention, not only the electro-optical device as shown in Embodiment 8 but also a thin film integrated circuit (or semiconductor circuit) in which functional circuits are integrated can be constructed. For example, an arithmetic circuit such as a microprocessor or a high-frequency circuit (MMIC: microwave module IC) for a portable device can be configured.

【0138】さらには、薄膜を用いるTFTの利点を生
かして三次元構造の半導体回路を構成し、超高密度に集
積化されたVLSI回路を構成することも可能である。
この様に、本願発明のTFTを用いて非常に機能性に富
んだ半導体回路を構成することが可能である。なお、本
明細書中において、半導体回路とは半導体特性を利用し
て電気信号の制御、変換を行う電気回路と定義する。
Furthermore, a semiconductor circuit having a three-dimensional structure can be formed by taking advantage of a TFT using a thin film, and a VLSI circuit integrated at an extremely high density can be formed.
As described above, a highly functional semiconductor circuit can be formed using the TFT of the present invention. Note that in this specification, a semiconductor circuit is defined as an electric circuit that controls and converts an electric signal using semiconductor characteristics.

【0139】〔実施例10〕本実施例では、実施例8や
実施例9に示された電気光学装置や半導体回路を搭載し
た電子機器(応用製品)の一例を図8に示す。なお、電
子機器とは半導体回路および/または電気光学装置を搭
載した製品と定義する。
[Embodiment 10] In this embodiment, FIG. 8 shows an example of an electronic apparatus (applied product) on which the electro-optical device and the semiconductor circuit shown in Embodiments 8 and 9 are mounted. Note that an electronic device is defined as a product equipped with a semiconductor circuit and / or an electro-optical device.

【0140】本願発明を適用しうる電子機器としてはビ
デオカメラ、電子スチルカメラ、プロジェクター、ヘッ
ドマウントディスプレイ、カーナビゲーション、パーソ
ナルコンピュータ、携帯情報端末(モバイルコンピュー
タ、携帯電話、PHS等)などが挙げられる。
The electronic apparatus to which the present invention can be applied includes a video camera, an electronic still camera, a projector, a head mounted display, a car navigation, a personal computer, a portable information terminal (mobile computer, mobile phone, PHS, etc.).

【0141】図8(A)は携帯電話であり、本体200
1、音声出力部2002、音声入力部2003、表示装
置2004、操作スイッチ2005、アンテナ2006
で構成される。本願発明は音声出力部2002、音声出
力部2003、表示装置2004等に適用することがで
きる。
FIG. 8A shows a mobile phone, and a main body 200.
1, audio output unit 2002, audio input unit 2003, display device 2004, operation switch 2005, antenna 2006
It consists of. The present invention can be applied to the audio output unit 2002, the audio output unit 2003, the display device 2004, and the like.

【0142】図8(B)はビデオカメラであり、本体2
101、表示装置2102、音声入力部2103、操作
スイッチ2104、バッテリー2105、受像部210
6で構成される。本願発明は表示装置2102、音声入
力部2103、受像部2106等に適用することができ
る。
FIG. 8B shows a video camera,
101, display device 2102, audio input unit 2103, operation switch 2104, battery 2105, image receiving unit 210
6. The present invention can be applied to the display device 2102, the sound input unit 2103, the image receiving unit 2106, and the like.

【0143】図8(C)はモバイルコンピュータ(モー
ビルコンピュータ)であり、本体2201、カメラ部2
202、受像部2203、操作スイッチ2204、表示
装置2205で構成される。本願発明はカメラ部220
2、受像部2203、表示装置2205等に適用でき
る。
FIG. 8C shows a mobile computer (mobile computer), which includes a main body 2201 and a camera section 2.
202, an image receiving unit 2203, operation switches 2204, and a display device 2205. The present invention is a camera unit 220.
2. Applicable to the image receiving unit 2203, the display device 2205, and the like.

【0144】図8(D)はヘッドマウントディスプレイ
であり、本体2301、表示装置2302、バンド部2
303で構成される。本発明は表示装置2302に適用
することができる。
FIG. 8D shows a head-mounted display, which includes a main body 2301, a display device 2302, and a band section 2.
303. The present invention can be applied to the display device 2302.

【0145】図8(E)はリア型プロジェクターであ
り、本体2401、光源2402、表示装置2403、
偏光ビームスプリッタ2404、リフレクター240
5、2406、スクリーン2407で構成される。本発
明は表示装置2403に適用することができる。
FIG. 8E shows a rear type projector, in which a main body 2401, a light source 2402, a display device 2403,
Polarizing beam splitter 2404, reflector 240
5, 2406 and a screen 2407. The invention can be applied to the display device 2403.

【0146】図8(F)はフロント型プロジェクターで
あり、本体2501、光源2502、表示装置250
3、光学系2504、スクリーン2505で構成され
る。本発明は表示装置2503に適用することができ
る。
FIG. 8F shows a front type projector, which includes a main body 2501, a light source 2502, and a display device 250.
3. It comprises an optical system 2504 and a screen 2505. The invention can be applied to the display device 2503.

【0147】以上の様に、本願発明の適用範囲は極めて
広く、あらゆる分野の電子機器に適用することが可能で
ある。また、電気光学装置や半導体回路を必要とする製
品であれば全てに適用できる。
As described above, the applicable range of the present invention is extremely wide, and it can be applied to electronic devices in all fields. Further, the present invention can be applied to all products requiring an electro-optical device or a semiconductor circuit.

【0148】[0148]

【発明の効果】本願発明では安価で大版化の可能な結晶
化ガラスを使用し、且つ、結晶化ガラスを安全に(汚染
の心配なく)活用するためにガラスの少なくとも表面及
び裏面(好ましくは外周囲全面)を絶縁性シリコン膜で
保護するといった構成を採用している。
According to the present invention, crystallized glass which is inexpensive and can be enlarged is used, and at least the front and rear surfaces (preferably, glass) are used in order to utilize the crystallized glass safely (without fear of contamination). A configuration is adopted in which the entire outer periphery is protected by an insulating silicon film.

【0149】そして、その上にスマートカット法を利用
して形成した単結晶シリコン薄膜を用いてTFTを作製
することでシステム・オン・パネルを実現し、高性能な
電気光学装置や半導体回路、さらにはそれらを搭載した
電子機器を低価格で提供することができる。
Then, a system-on-panel is realized by manufacturing a TFT using a single-crystal silicon thin film formed thereon using a smart cut method, and a high-performance electro-optical device, a semiconductor circuit, Can provide electronic devices equipped with them at a low price.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 単結晶シリコン薄膜の作製工程を示す図。FIG. 1 is a view showing a manufacturing process of a single crystal silicon thin film.

【図2】 スマートカット法の工程を示す図。FIG. 2 is a diagram showing steps of a smart cut method.

【図3】 薄膜トランジスタの作製工程を示す図。FIG. 3 illustrates a manufacturing process of a thin film transistor.

【図4】 薄膜トランジスタの作製工程を示す図。FIG. 4 illustrates a manufacturing process of a thin film transistor.

【図5】 薄膜トランジスタの構成を示す図。FIG. 5 illustrates a structure of a thin film transistor.

【図6】 薄膜トランジスタの構成を示す図。FIG. 6 illustrates a structure of a thin film transistor.

【図7】 液晶モジュールの構成を示す図。FIG. 7 illustrates a configuration of a liquid crystal module.

【図8】 電子機器の構成を示す図。FIG. 8 illustrates a structure of an electronic device.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】歪点が750℃以上であるガラス基板と、 前記ガラス基板の少なくとも表面及び裏面に対して形成
された絶縁性シリコン膜と、 前記絶縁性シリコン膜上に形成された単結晶シリコン薄
膜をチャネル形成領域とするTFTと、 を構成に含むことを特徴とする半導体装置。
1. A glass substrate having a strain point of 750 ° C. or higher, an insulating silicon film formed on at least the front and back surfaces of the glass substrate, and a single crystal silicon formed on the insulating silicon film And a TFT having a thin film as a channel formation region.
【請求項2】歪点が750℃以上であるガラス基板と、 前記ガラス基板の外周囲を覆って形成された絶縁性シリ
コン膜と、 前記絶縁性シリコン膜上に形成された単結晶シリコン薄
膜をチャネル形成領域とするTFTと、 を構成に含むことを特徴とする半導体装置。
2. A glass substrate having a strain point of 750 ° C. or higher, an insulating silicon film formed so as to cover the outer periphery of the glass substrate, and a single crystal silicon thin film formed on the insulating silicon film. A semiconductor device, comprising: a TFT serving as a channel formation region;
【請求項3】請求項1または請求項2において、前記ガ
ラス基板は結晶化ガラスであることを特徴とする半導体
装置。
3. The semiconductor device according to claim 1, wherein the glass substrate is a crystallized glass.
【請求項4】歪点が750℃以上であるガラス基板の全
面に対して非晶質半導体薄膜を形成する工程と、 第1の加熱処理により前記非晶質半導体薄膜を酸化し、
完全に熱酸化膜に変成させる工程と、 スマートカット法により前記ガラス基板の主表面側に単
結晶シリコン薄膜を形成する工程と、 を含むことを特徴とする半導体装置の作製方法。
4. A step of forming an amorphous semiconductor thin film over the entire surface of a glass substrate having a strain point of 750 ° C. or higher, and oxidizing the amorphous semiconductor thin film by a first heat treatment;
A method for manufacturing a semiconductor device, comprising: a step of completely transforming into a thermal oxide film; and a step of forming a single-crystal silicon thin film on a main surface side of the glass substrate by a smart cut method.
【請求項5】歪点が750℃以上であるガラス基板の全
面に対して減圧熱CVD法により絶縁性シリコン膜を形
成する工程と、 スマートカット法により前記ガラス基板の主表面側に単
結晶シリコン薄膜を形成する工程と、 を含むことを特徴とする半導体装置の作製方法。
5. A step of forming an insulating silicon film on the entire surface of a glass substrate having a strain point of 750 ° C. or more by low pressure thermal CVD, and a step of forming a single crystal silicon on a main surface of the glass substrate by a smart cut method. A method for manufacturing a semiconductor device, comprising: forming a thin film.
【請求項6】請求項4または請求項5において、前記ガ
ラス基板とは結晶化ガラスであることを特徴とする半導
体装置の作製方法。
6. The method for manufacturing a semiconductor device according to claim 4, wherein the glass substrate is crystallized glass.
JP33767097A 1997-11-22 1997-11-22 Semiconductor device and its forming method Withdrawn JPH11163363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33767097A JPH11163363A (en) 1997-11-22 1997-11-22 Semiconductor device and its forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33767097A JPH11163363A (en) 1997-11-22 1997-11-22 Semiconductor device and its forming method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007111191A Division JP2007201502A (en) 2007-04-20 2007-04-20 Semiconductor device and fabricating method thereof
JP2008277835A Division JP4489823B2 (en) 2008-10-29 2008-10-29 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH11163363A true JPH11163363A (en) 1999-06-18

Family

ID=18310860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33767097A Withdrawn JPH11163363A (en) 1997-11-22 1997-11-22 Semiconductor device and its forming method

Country Status (1)

Country Link
JP (1) JPH11163363A (en)

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099892A1 (en) * 2001-06-04 2002-12-12 Sony Corporation Functional device and production method therefor
JP2004087606A (en) * 2002-08-23 2004-03-18 Sharp Corp Soi substrate, display device using the same and manufacturing method of soi substrate
JP2004165600A (en) * 2002-09-25 2004-06-10 Sharp Corp Single-crystal silicon substrate, semiconductor device and manufacturing method therefor
JP2004179630A (en) * 2002-10-07 2004-06-24 Soi Tec Silicon On Insulator Technologies Method of producing substrate by transferring donor wafer containing different species and associated donor wafer
JP2005150297A (en) * 2003-11-13 2005-06-09 Seiko Epson Corp Method of manufacturing substrate for electrooptic device, electrooptic device, substrate therefor and electronic apparatus
JP2005252244A (en) * 2004-02-03 2005-09-15 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing semiconductor substrate
US7119365B2 (en) 2002-03-26 2006-10-10 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
WO2006023594A3 (en) * 2004-08-18 2007-05-10 Corning Inc High strain glass/glass-ceramic containing semiconductor-on-insulator structures
JP2008042218A (en) * 2001-06-07 2008-02-21 Ind Technol Res Inst Manufacturing method of thin film transistor panel
JP2008510315A (en) * 2004-08-18 2008-04-03 コーニング インコーポレイテッド Strained semiconductor structure on insulator and method for making strained semiconductor structure on insulator
JP2008113034A (en) * 2008-01-25 2008-05-15 Sharp Corp Soi substrate, display unit, and method of manufacturing soi substrate
EP1981083A2 (en) 2007-04-12 2008-10-15 Shin-Etsu Chemical Company, Ltd. Method for manufacturing an SOI substrate
WO2008123117A1 (en) * 2007-03-26 2008-10-16 Semiconductor Energy Laboratory Co., Ltd. Soi substrate and method for manufacturing soi substrate
EP1983566A2 (en) 2007-04-20 2008-10-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing SOI substrate
EP1993128A2 (en) 2007-05-17 2008-11-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing soi substrate
JP2008288579A (en) * 2007-04-20 2008-11-27 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
EP1998369A2 (en) 2007-06-01 2008-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and manufacturing method of semiconductor device
JP2008294425A (en) * 2007-04-27 2008-12-04 Semiconductor Energy Lab Co Ltd Soi substrate and manufacturing method thereof, and semiconductor device
JP2008294417A (en) * 2007-04-27 2008-12-04 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor substrate, and manufacturing method of semiconductor device
WO2008149699A1 (en) * 2007-06-01 2008-12-11 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor substrate and semiconductor device
JP2008306166A (en) * 2007-05-10 2008-12-18 Semiconductor Energy Lab Co Ltd Method of manufacturing substrate for manufacturing semiconductor device and method of manufacturing semiconductor device
WO2008156119A1 (en) * 2007-06-21 2008-12-24 Yuyama Mfg. Co., Ltd. Tablet filler device
WO2008156040A1 (en) * 2007-06-20 2008-12-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP2008311621A (en) * 2007-05-11 2008-12-25 Semiconductor Energy Lab Co Ltd Manufacturing method of soi substrate and manufacturing method of semiconductor device
EP2009694A2 (en) 2007-06-29 2008-12-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
EP2009687A2 (en) 2007-06-29 2008-12-31 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an SOI substrate and method of manufacturing a semiconductor device
JP2009003434A (en) * 2007-05-18 2009-01-08 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2009004736A (en) * 2007-03-16 2009-01-08 Semiconductor Energy Lab Co Ltd Semiconductor device, semiconductor display device, and manufacturing method of semiconductor display device
JP2009033124A (en) * 2007-06-22 2009-02-12 Semiconductor Energy Lab Co Ltd Semiconductor substrate, method for manufacturing semiconductor substrate, semiconductor device and electronic device
US7508034B2 (en) 2002-09-25 2009-03-24 Sharp Kabushiki Kaisha Single-crystal silicon substrate, SOI substrate, semiconductor device, display device, and manufacturing method of semiconductor device
EP2048705A2 (en) 2007-10-10 2009-04-15 Semiconductor Energy Laboratory Co, Ltd. Manufacturing method of SOI substrate
JP2009088498A (en) * 2007-09-14 2009-04-23 Semiconductor Energy Lab Co Ltd Methods of manufacturing soi substrate and semiconductor device
JP2009094495A (en) * 2007-09-21 2009-04-30 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009094494A (en) * 2007-09-21 2009-04-30 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009111362A (en) * 2007-10-10 2009-05-21 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
EP2068366A2 (en) 2007-12-03 2009-06-10 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
JP2009135468A (en) * 2007-11-01 2009-06-18 Semiconductor Energy Lab Co Ltd Semiconductor substrate and method for manufacturing the same, and method for manufacturing semiconductor device
JP2009200526A (en) * 2009-05-29 2009-09-03 Sharp Corp Soi substrate, and display device using the same
JP2009212502A (en) * 2008-02-04 2009-09-17 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
JP2009212505A (en) * 2008-02-06 2009-09-17 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
JP2009218534A (en) * 2008-03-13 2009-09-24 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the semiconductor device
US7601601B2 (en) 2007-05-11 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2009283749A (en) * 2008-05-23 2009-12-03 Semiconductor Energy Lab Co Ltd Semiconductor device, and method for manufacturing semiconductor device
JP2010016356A (en) * 2008-06-04 2010-01-21 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor substrate
JP2010050446A (en) * 2008-07-22 2010-03-04 Semiconductor Energy Lab Co Ltd Method for manufacturing soi substrate
JP2010050444A (en) * 2008-07-22 2010-03-04 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
US7678668B2 (en) 2007-07-04 2010-03-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
JP2010087067A (en) * 2008-09-30 2010-04-15 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
US7745268B2 (en) 2007-06-01 2010-06-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device with irradiation of single crystal semiconductor layer in an inert atmosphere
US7750345B2 (en) 2007-05-18 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7776722B2 (en) 2007-05-18 2010-08-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of semiconductor substrate, thin film transistor and semiconductor device
US7781308B2 (en) 2007-12-03 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US7781306B2 (en) 2007-06-20 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and method for manufacturing the same
US7790563B2 (en) 2007-07-13 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device and method for manufacturing semiconductor device
US7795114B2 (en) 2007-08-10 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of SOI substrate and semiconductor device
US7795111B2 (en) 2007-06-27 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US7799658B2 (en) 2007-10-10 2010-09-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
US7816234B2 (en) 2007-11-05 2010-10-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7820524B2 (en) 2007-05-18 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US7829431B2 (en) 2007-07-13 2010-11-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a SOI with plurality of single crystal substrates
US7851332B2 (en) 2007-10-10 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7858431B2 (en) 2007-11-30 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing photoelectric conversion device
US7867873B2 (en) 2007-06-26 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a semiconductor substrate using a damaged region
US7875881B2 (en) 2007-04-03 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US7875532B2 (en) 2007-06-15 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Substrate for manufacturing semiconductor device and manufacturing method thereof
US7888242B2 (en) 2007-10-29 2011-02-15 Semiconductor Energy Laboratory Co., Ltd. Formation method of single crystal semiconductor layer, formation method of crystalline semiconductor layer, formation method of polycrystalline layer, and method for manufacturing semiconductor device
US7892934B2 (en) 2005-12-20 2011-02-22 Shin-Etsu Chemical Co., Ltd. SOI substrate and method for manufacturing SOI substrate
US7910465B2 (en) 2008-01-24 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor substrate
US7939389B2 (en) 2008-04-18 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7943414B2 (en) 2008-08-01 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US7951656B2 (en) 2008-06-06 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7960262B2 (en) 2007-05-18 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device by applying laser beam to single-crystal semiconductor layer and non-single-crystal semiconductor layer through cap film
US7964423B2 (en) 2007-06-14 2011-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7977206B2 (en) 2008-01-16 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate using the heat treatment apparatus
US7985604B2 (en) 2007-11-30 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing photoelectric conversion device
US7994022B2 (en) 2007-10-19 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and semiconductor device and manufacturing method of the same
US8003483B2 (en) 2008-03-18 2011-08-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US8008169B2 (en) 2007-12-28 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US8030169B2 (en) 2008-07-08 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and manufacturing method thereof
US8044905B2 (en) 2007-12-03 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. TFT arrangement for display device
US8048773B2 (en) 2009-03-24 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US8048728B2 (en) 2007-04-13 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Display device, method for manufacturing display device, and SOI substrate
US8053332B2 (en) 2009-01-21 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
US8067793B2 (en) 2007-09-27 2011-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including storage capacitor with yttrium oxide capacitor dielectric
US8101466B2 (en) 2007-03-26 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and method for manufacturing SOI substrate
US8101501B2 (en) 2007-10-10 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US8110478B2 (en) 2007-10-23 2012-02-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate, display panel, and display device
US8193071B2 (en) 2008-03-11 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8232598B2 (en) 2007-09-20 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US8236630B2 (en) 2007-08-31 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device, semiconductor device, and electronic device
US8263476B2 (en) 2007-07-23 2012-09-11 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate
US8278713B2 (en) 2008-03-28 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8283238B2 (en) 2007-06-28 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Layer transfer process for semiconductor device
US8314009B2 (en) 2007-09-14 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and method for manufacturing semiconductor device
US8324086B2 (en) 2008-01-16 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor substrate by laser irradiation
US8338218B2 (en) 2008-06-26 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device module and manufacturing method of the photoelectric conversion device module
US8343847B2 (en) 2008-10-10 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI semiconductor device
US8383491B2 (en) 2008-09-29 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate
US8394703B2 (en) 2008-12-15 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US8431451B2 (en) 2007-06-29 2013-04-30 Semicondutor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US8470648B2 (en) 2007-08-24 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2013128136A (en) * 2013-02-12 2013-06-27 Semiconductor Energy Lab Co Ltd Semiconductor device
US8476147B2 (en) 2010-02-03 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and manufacturing method thereof
US8518797B2 (en) 2007-09-21 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Method of making an SOI substrate by using a separation layer with regions of non-uniform concentration
US8530333B2 (en) 2009-03-12 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8530336B2 (en) 2010-11-12 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate
US8598013B2 (en) 2007-10-10 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
US8653568B2 (en) 2007-11-19 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate with stripes of different crystal plane directions and semiconductor device including the same
US8772128B2 (en) 2007-10-10 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8815657B2 (en) 2008-09-05 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US9070604B2 (en) 1998-09-04 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
US10770648B2 (en) 2015-06-02 2020-09-08 Shin-Etsu Chemical Co., Ltd. Method for producing composite wafer having oxide single-crystal film
JP2021016001A (en) * 2011-05-11 2021-02-12 株式会社半導体エネルギー研究所 Semiconductor device
US10971674B2 (en) * 2015-06-02 2021-04-06 Shin-Etsu Chemical Co., Ltd. Method for producing composite wafer having oxide single-crystal film
US11195987B2 (en) 2015-06-02 2021-12-07 Shin-Etsu Chemical Co., Ltd. Method for producing composite wafer having oxide single-crystal film

Cited By (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070604B2 (en) 1998-09-04 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
WO2002099892A1 (en) * 2001-06-04 2002-12-12 Sony Corporation Functional device and production method therefor
CN100380681C (en) * 2001-06-04 2008-04-09 索尼公司 Functional device and production method therefor
US6953754B2 (en) 2001-06-04 2005-10-11 Sony Corporation Functional device and method of manufacturing the same
JP2008042218A (en) * 2001-06-07 2008-02-21 Ind Technol Res Inst Manufacturing method of thin film transistor panel
US7619250B2 (en) 2002-03-26 2009-11-17 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
US7884367B2 (en) 2002-03-26 2011-02-08 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
US7119365B2 (en) 2002-03-26 2006-10-10 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
JP2004087606A (en) * 2002-08-23 2004-03-18 Sharp Corp Soi substrate, display device using the same and manufacturing method of soi substrate
US7508034B2 (en) 2002-09-25 2009-03-24 Sharp Kabushiki Kaisha Single-crystal silicon substrate, SOI substrate, semiconductor device, display device, and manufacturing method of semiconductor device
JP2004165600A (en) * 2002-09-25 2004-06-10 Sharp Corp Single-crystal silicon substrate, semiconductor device and manufacturing method therefor
JP2004179630A (en) * 2002-10-07 2004-06-24 Soi Tec Silicon On Insulator Technologies Method of producing substrate by transferring donor wafer containing different species and associated donor wafer
JP2005150297A (en) * 2003-11-13 2005-06-09 Seiko Epson Corp Method of manufacturing substrate for electrooptic device, electrooptic device, substrate therefor and electronic apparatus
JP2005252244A (en) * 2004-02-03 2005-09-15 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing semiconductor substrate
JP2008510315A (en) * 2004-08-18 2008-04-03 コーニング インコーポレイテッド Strained semiconductor structure on insulator and method for making strained semiconductor structure on insulator
JP2008511137A (en) * 2004-08-18 2008-04-10 コーニング インコーポレイテッド Semiconductor structure on insulator with high strain glass / glass-ceramic
KR101140450B1 (en) * 2004-08-18 2012-04-30 코닝 인코포레이티드 Strained semiconductor-on-insulator structure and methods for making strained semiconductor-on-insulator structures
US7473969B2 (en) * 2004-08-18 2009-01-06 Corning Incorporated High strain glass/glass-ceramic containing semiconductor-on-insulator structures
WO2006023594A3 (en) * 2004-08-18 2007-05-10 Corning Inc High strain glass/glass-ceramic containing semiconductor-on-insulator structures
US7892934B2 (en) 2005-12-20 2011-02-22 Shin-Etsu Chemical Co., Ltd. SOI substrate and method for manufacturing SOI substrate
US7755113B2 (en) 2007-03-16 2010-07-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor display device, and manufacturing method of semiconductor device
JP2009004736A (en) * 2007-03-16 2009-01-08 Semiconductor Energy Lab Co Ltd Semiconductor device, semiconductor display device, and manufacturing method of semiconductor display device
JP2008270772A (en) * 2007-03-26 2008-11-06 Semiconductor Energy Lab Co Ltd Soi substrate and manufacturing method thereof
WO2008123117A1 (en) * 2007-03-26 2008-10-16 Semiconductor Energy Laboratory Co., Ltd. Soi substrate and method for manufacturing soi substrate
US8101466B2 (en) 2007-03-26 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and method for manufacturing SOI substrate
US8222117B2 (en) 2007-03-26 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and method for manufacturing SOI substrate
US9111997B2 (en) 2007-03-26 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and method for manufacturing SOI substrate
US7875881B2 (en) 2007-04-03 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US8187917B2 (en) 2007-04-03 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing memory device
EP1981083A2 (en) 2007-04-12 2008-10-15 Shin-Etsu Chemical Company, Ltd. Method for manufacturing an SOI substrate
US7691724B2 (en) 2007-04-12 2010-04-06 Shin-Etsu Chemical Co., Ltd. Method for manufacturing SOI substrate
US8748243B2 (en) 2007-04-13 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Display device, method for manufacturing display device, and SOI substrate
US8048728B2 (en) 2007-04-13 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Display device, method for manufacturing display device, and SOI substrate
EP1983566A2 (en) 2007-04-20 2008-10-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing SOI substrate
JP2008288579A (en) * 2007-04-20 2008-11-27 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
US7897476B2 (en) 2007-04-20 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing SOI substrate
US8193068B2 (en) 2007-04-20 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing SOI substrate
US7829433B2 (en) 2007-04-27 2010-11-09 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and manufacturing method of the same, and semiconductor device
KR101436115B1 (en) * 2007-04-27 2014-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor substrate and manufacturing method of semiconductor device
US8847314B2 (en) 2007-04-27 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and manufacturing method of the same, and semiconductor device
JP2008294425A (en) * 2007-04-27 2008-12-04 Semiconductor Energy Lab Co Ltd Soi substrate and manufacturing method thereof, and semiconductor device
JP2008294417A (en) * 2007-04-27 2008-12-04 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor substrate, and manufacturing method of semiconductor device
US7635617B2 (en) 2007-04-27 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor substrate and manufacturing method of semiconductor device
JP2008306166A (en) * 2007-05-10 2008-12-18 Semiconductor Energy Lab Co Ltd Method of manufacturing substrate for manufacturing semiconductor device and method of manufacturing semiconductor device
JP2008311621A (en) * 2007-05-11 2008-12-25 Semiconductor Energy Lab Co Ltd Manufacturing method of soi substrate and manufacturing method of semiconductor device
US7902041B2 (en) 2007-05-11 2011-03-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7601601B2 (en) 2007-05-11 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7825007B2 (en) 2007-05-11 2010-11-02 Semiconductor Energy Laboratory Co., Ltd. Method of joining a plurality of SOI substrates on a glass substrate by a heat treatment
US8629433B2 (en) 2007-05-11 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8030174B2 (en) 2007-05-17 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US7666757B2 (en) 2007-05-17 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US20110315900A1 (en) * 2007-05-17 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing soi substrate
EP1993128A2 (en) 2007-05-17 2008-11-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing soi substrate
US7820524B2 (en) 2007-05-18 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US8895407B2 (en) 2007-05-18 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US7960262B2 (en) 2007-05-18 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device by applying laser beam to single-crystal semiconductor layer and non-single-crystal semiconductor layer through cap film
JP2009003434A (en) * 2007-05-18 2009-01-08 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
US8471272B2 (en) 2007-05-18 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a display portion
US7776722B2 (en) 2007-05-18 2010-08-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of semiconductor substrate, thin film transistor and semiconductor device
US7750345B2 (en) 2007-05-18 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7989273B2 (en) 2007-06-01 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and manufacturing method of semiconductor device
US8592908B2 (en) 2007-06-01 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and manufacturing method of semiconductor device
US7745268B2 (en) 2007-06-01 2010-06-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device with irradiation of single crystal semiconductor layer in an inert atmosphere
EP1998369A2 (en) 2007-06-01 2008-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and manufacturing method of semiconductor device
US7863155B2 (en) 2007-06-01 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor substrate and semiconductor device
US8053333B2 (en) 2007-06-01 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
WO2008149699A1 (en) * 2007-06-01 2008-12-11 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor substrate and semiconductor device
US7964423B2 (en) 2007-06-14 2011-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8759842B2 (en) 2007-06-14 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8390067B2 (en) 2007-06-15 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Substrate for manufacturing semiconductor device and manufacturing method thereof
US7875532B2 (en) 2007-06-15 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Substrate for manufacturing semiconductor device and manufacturing method thereof
WO2008156040A1 (en) * 2007-06-20 2008-12-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US8093135B2 (en) 2007-06-20 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7781306B2 (en) 2007-06-20 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and method for manufacturing the same
US8551828B2 (en) 2007-06-20 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
KR101478813B1 (en) * 2007-06-20 2015-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of manufacturing semiconductor device
US8912624B2 (en) 2007-06-20 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and method for manufacturing the same
WO2008156119A1 (en) * 2007-06-21 2008-12-24 Yuyama Mfg. Co., Ltd. Tablet filler device
JP2009033124A (en) * 2007-06-22 2009-02-12 Semiconductor Energy Lab Co Ltd Semiconductor substrate, method for manufacturing semiconductor substrate, semiconductor device and electronic device
US7763502B2 (en) 2007-06-22 2010-07-27 Semiconductor Energy Laboratory Co., Ltd Semiconductor substrate, method for manufacturing semiconductor substrate, semiconductor device, and electronic device
US8273611B2 (en) 2007-06-22 2012-09-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate
US7867873B2 (en) 2007-06-26 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a semiconductor substrate using a damaged region
US7795111B2 (en) 2007-06-27 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US8283238B2 (en) 2007-06-28 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Layer transfer process for semiconductor device
US8431451B2 (en) 2007-06-29 2013-04-30 Semicondutor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
EP2009687A2 (en) 2007-06-29 2008-12-31 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an SOI substrate and method of manufacturing a semiconductor device
US8361873B2 (en) 2007-06-29 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an SOI substrate and method of manufacturing a semiconductor device
US7727846B2 (en) 2007-06-29 2010-06-01 Semiconductor Energy Laboratory Co., Ltd Method of manufacturing an SOI substrate and method of manufacturing a semiconductor device
US7915684B2 (en) 2007-06-29 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
EP2009694A2 (en) 2007-06-29 2008-12-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
US8324077B2 (en) 2007-06-29 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7678668B2 (en) 2007-07-04 2010-03-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US7790563B2 (en) 2007-07-13 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device and method for manufacturing semiconductor device
US7829431B2 (en) 2007-07-13 2010-11-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a SOI with plurality of single crystal substrates
US8263476B2 (en) 2007-07-23 2012-09-11 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate
US7795114B2 (en) 2007-08-10 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of SOI substrate and semiconductor device
US7994023B2 (en) 2007-08-10 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of SOI substrate and semiconductor device
US8470648B2 (en) 2007-08-24 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8236630B2 (en) 2007-08-31 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device, semiconductor device, and electronic device
US7951689B2 (en) 2007-09-14 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and method for manufacturing semiconductor device
JP2009088498A (en) * 2007-09-14 2009-04-23 Semiconductor Energy Lab Co Ltd Methods of manufacturing soi substrate and semiconductor device
US8314009B2 (en) 2007-09-14 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and method for manufacturing semiconductor device
US8399337B2 (en) 2007-09-14 2013-03-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and method for manufacturing semiconductor device
US8232598B2 (en) 2007-09-20 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
KR101510652B1 (en) * 2007-09-21 2015-04-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 semiconductor device
US8581309B2 (en) 2007-09-21 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2009094494A (en) * 2007-09-21 2009-04-30 Semiconductor Energy Lab Co Ltd Semiconductor device
US8044464B2 (en) 2007-09-21 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8518797B2 (en) 2007-09-21 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Method of making an SOI substrate by using a separation layer with regions of non-uniform concentration
US7982250B2 (en) 2007-09-21 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2009094495A (en) * 2007-09-21 2009-04-30 Semiconductor Energy Lab Co Ltd Semiconductor device
US8765535B2 (en) 2007-09-27 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a capacitor having a yttrium oxide layer
US8067793B2 (en) 2007-09-27 2011-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including storage capacitor with yttrium oxide capacitor dielectric
US7851332B2 (en) 2007-10-10 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8772128B2 (en) 2007-10-10 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8598013B2 (en) 2007-10-10 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
US8101501B2 (en) 2007-10-10 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7799658B2 (en) 2007-10-10 2010-09-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
EP2048705A2 (en) 2007-10-10 2009-04-15 Semiconductor Energy Laboratory Co, Ltd. Manufacturing method of SOI substrate
US8314012B2 (en) 2007-10-10 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
JP2009111362A (en) * 2007-10-10 2009-05-21 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
US8828844B2 (en) 2007-10-10 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate
US7994022B2 (en) 2007-10-19 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and semiconductor device and manufacturing method of the same
US8227866B2 (en) 2007-10-19 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and semiconductor device and manufacturing method of the same
US8110478B2 (en) 2007-10-23 2012-02-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate, display panel, and display device
US7888242B2 (en) 2007-10-29 2011-02-15 Semiconductor Energy Laboratory Co., Ltd. Formation method of single crystal semiconductor layer, formation method of crystalline semiconductor layer, formation method of polycrystalline layer, and method for manufacturing semiconductor device
US7851318B2 (en) 2007-11-01 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and method for manufacturing the same, and method for manufacturing semiconductor device
US8481393B2 (en) 2007-11-01 2013-07-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and method for manufacturing the same, and method for manufacturing semiconductor device
JP2009135468A (en) * 2007-11-01 2009-06-18 Semiconductor Energy Lab Co Ltd Semiconductor substrate and method for manufacturing the same, and method for manufacturing semiconductor device
US7816234B2 (en) 2007-11-05 2010-10-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8653568B2 (en) 2007-11-19 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate with stripes of different crystal plane directions and semiconductor device including the same
US7985604B2 (en) 2007-11-30 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing photoelectric conversion device
US7858431B2 (en) 2007-11-30 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing photoelectric conversion device
US8507313B2 (en) 2007-11-30 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing photoelectric conversion device
US8143087B2 (en) 2007-11-30 2012-03-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing photoelectric conversion device
EP2068366A2 (en) 2007-12-03 2009-06-10 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
US7781308B2 (en) 2007-12-03 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US8304832B2 (en) 2007-12-03 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2017097354A (en) * 2007-12-03 2017-06-01 株式会社半導体エネルギー研究所 Display device
US9423657B2 (en) 2007-12-03 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. TFT arrangement for display device
US9147368B2 (en) 2007-12-03 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. TFT arrangement for display device
US8044905B2 (en) 2007-12-03 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. TFT arrangement for display device
US8687161B2 (en) 2007-12-03 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. TFT arrangement for display device
US8008169B2 (en) 2007-12-28 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US8653426B2 (en) 2008-01-16 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Heat treatment apparatus and method for manufacturing SOI substrate using the heat treatment apparatus
US7977206B2 (en) 2008-01-16 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate using the heat treatment apparatus
US8324086B2 (en) 2008-01-16 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor substrate by laser irradiation
US8492248B2 (en) 2008-01-24 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor substrate
US7910465B2 (en) 2008-01-24 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor substrate
JP2008113034A (en) * 2008-01-25 2008-05-15 Sharp Corp Soi substrate, display unit, and method of manufacturing soi substrate
JP2009212502A (en) * 2008-02-04 2009-09-17 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
US7767547B2 (en) 2008-02-06 2010-08-03 Semiconductor Energy Laboratory Co., Ltd Manufacturing method of SOI substrate
US7939426B2 (en) 2008-02-06 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate
JP2009212505A (en) * 2008-02-06 2009-09-17 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
US8193071B2 (en) 2008-03-11 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2009218534A (en) * 2008-03-13 2009-09-24 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the semiconductor device
US8383487B2 (en) 2008-03-18 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US8003483B2 (en) 2008-03-18 2011-08-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US8441021B2 (en) 2008-03-28 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8278713B2 (en) 2008-03-28 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US7939389B2 (en) 2008-04-18 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8288215B2 (en) 2008-04-18 2012-10-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2009283749A (en) * 2008-05-23 2009-12-03 Semiconductor Energy Lab Co Ltd Semiconductor device, and method for manufacturing semiconductor device
JP2010016356A (en) * 2008-06-04 2010-01-21 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor substrate
US7951656B2 (en) 2008-06-06 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8173496B2 (en) 2008-06-06 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8338218B2 (en) 2008-06-26 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device module and manufacturing method of the photoelectric conversion device module
US8633542B2 (en) 2008-07-08 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and manufacturing method thereof
US8030169B2 (en) 2008-07-08 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and manufacturing method thereof
US8884371B2 (en) 2008-07-08 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and manufacturing method thereof
JP2010050446A (en) * 2008-07-22 2010-03-04 Semiconductor Energy Lab Co Ltd Method for manufacturing soi substrate
JP2010050444A (en) * 2008-07-22 2010-03-04 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
US7943414B2 (en) 2008-08-01 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US9076839B2 (en) 2008-08-01 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US8815657B2 (en) 2008-09-05 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US8383491B2 (en) 2008-09-29 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate
JP2010087067A (en) * 2008-09-30 2010-04-15 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate
US8343847B2 (en) 2008-10-10 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI semiconductor device
US8394703B2 (en) 2008-12-15 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US8053332B2 (en) 2009-01-21 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
US8338270B2 (en) 2009-01-21 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
US8530333B2 (en) 2009-03-12 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8048773B2 (en) 2009-03-24 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
JP2009200526A (en) * 2009-05-29 2009-09-03 Sharp Corp Soi substrate, and display device using the same
US8476147B2 (en) 2010-02-03 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and manufacturing method thereof
US8530336B2 (en) 2010-11-12 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate
JP2021016001A (en) * 2011-05-11 2021-02-12 株式会社半導体エネルギー研究所 Semiconductor device
JP2013128136A (en) * 2013-02-12 2013-06-27 Semiconductor Energy Lab Co Ltd Semiconductor device
US10770648B2 (en) 2015-06-02 2020-09-08 Shin-Etsu Chemical Co., Ltd. Method for producing composite wafer having oxide single-crystal film
US10971674B2 (en) * 2015-06-02 2021-04-06 Shin-Etsu Chemical Co., Ltd. Method for producing composite wafer having oxide single-crystal film
US11195987B2 (en) 2015-06-02 2021-12-07 Shin-Etsu Chemical Co., Ltd. Method for producing composite wafer having oxide single-crystal film

Similar Documents

Publication Publication Date Title
JPH11163363A (en) Semiconductor device and its forming method
KR100517394B1 (en) Semiconductor device and its manufacturing method
JP4027740B2 (en) Method for manufacturing semiconductor device
JP5902796B2 (en) Semiconductor device
JP4068219B2 (en) Method for manufacturing semiconductor device
JP3856889B2 (en) Reflective display device and electronic device
JPH05136170A (en) Manufacture of high-mobility thin-film transistor and plurality of high-mobility thin-film transistors
US20070063281A1 (en) Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
JP2009177203A (en) Soi substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP2010226124A (en) Method of manufacturing soi substrate
JP4183786B2 (en) Method for manufacturing semiconductor device
JP2007201502A (en) Semiconductor device and fabricating method thereof
JP4567282B2 (en) Method for manufacturing light emitting device
JP4609867B2 (en) Method for manufacturing SOI substrate and method for manufacturing semiconductor device
JP4223092B2 (en) Method for manufacturing semiconductor device
US20100059892A1 (en) Production method of semiconductor device, production method of display device, semiconductor device, production method of semiconductor element, and semiconductor element
JPS6390859A (en) Thin film transistor and manufacture thereof
JPH04356967A (en) Semiconductor device
JP4489823B2 (en) Method for manufacturing semiconductor device
JP4115589B2 (en) Method for manufacturing semiconductor device
JP4642130B2 (en) Method for forming single crystal silicon thin film on glass substrate
JP4693938B2 (en) Method for manufacturing semiconductor device
JP4298009B2 (en) Method for manufacturing SOI substrate and method for manufacturing semiconductor device
JP2001298169A (en) Semiconductor device and producing method therefor
US20210358975A1 (en) Array substrate, manufacturing method thereof, and display device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Effective date: 20070110

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Effective date: 20070709

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080729

A02 Decision of refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A02

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110606