JPH11159605A - Control device of automatic transmission and method therefor - Google Patents

Control device of automatic transmission and method therefor

Info

Publication number
JPH11159605A
JPH11159605A JP9327577A JP32757797A JPH11159605A JP H11159605 A JPH11159605 A JP H11159605A JP 9327577 A JP9327577 A JP 9327577A JP 32757797 A JP32757797 A JP 32757797A JP H11159605 A JPH11159605 A JP H11159605A
Authority
JP
Japan
Prior art keywords
friction
shift
automatic transmission
transmission
information storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9327577A
Other languages
Japanese (ja)
Inventor
Toshimichi Minowa
利通 箕輪
Tatsuya Ochi
辰哉 越智
Hiroshi Kuroiwa
弘 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9327577A priority Critical patent/JPH11159605A/en
Priority to DE19854624A priority patent/DE19854624A1/en
Priority to KR1019980051386A priority patent/KR19990045661A/en
Publication of JPH11159605A publication Critical patent/JPH11159605A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • F16H2059/425Rate of change of input or turbine shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • F16H2059/702Rate of change of gear ratio, e.g. for triggering clutch engagement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0084Neural networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • F16H2061/064Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means for calibration of pressure levels for friction members, e.g. by monitoring the speed change of transmission shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2342/00Calibrating
    • F16H2342/04Calibrating engagement of friction elements
    • F16H2342/044Torque transmitting capability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an excellent shift characteristic by accurately controlling working oil pressure of a clutch, by generating a shift starting signal of an automatic transmission, prestoring information on a friction coefficient related to a speed shift, and deciding a pressure adjusting command value by an operation on the basis of frictional information storage after generating the signal. SOLUTION: An engine torque operation means 32 in a control controller 31 outputs a control signal to an electronic control throttle 5, a fuel injector 6 and an igniter 2. An operation is performed on the gear ratio of a transmission 19 by inputting an input shaft rotating speed Nt and an output shaft rotating speed No to a rotational ratio operation means 33 in the control controller 31. An operation is performed on input shaft torque of the transmission 19 by inputting an engine speed Ne, a torque converter characteristic stored in a torque converter characteristic storage means and the engine side inertia moment stored in a correction constant storage means to an input shaft torque operation means 36. Therefore, an excellent characteristic can be obtained by feedforward control of operating pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の自動変速
機における変速の際の油圧を制御するための装置に関
し、特に電気的にクラッチ(摩擦係合装置)作用油圧を
制御しクラッチの解放あるいは係合を実行する制御装置
およびその方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling a hydraulic pressure at the time of shifting in an automatic transmission of a motor vehicle, and more particularly to a device for electrically controlling a hydraulic pressure applied to a clutch (friction engaging device) to release or release a clutch. The present invention relates to a control device for performing engagement and a method thereof.

【0002】[0002]

【従来の技術】電気的にクラッチ作用油圧を制御しクラ
ッチの解放,係合を実行する公知例として特開昭63−26
3248号公報に記載されたものがある。この公報には、シ
フトアップ時の係合側クラッチ,シフトダウン時の解放
側クラッチの作用油圧を制御する際、変速機の入力軸回
転数(タービン回転数)を用い、この入力軸回転数が予
め設定された前記入力軸回転数の目標値に追従するよう
制御する方式が記載されている。この発明は、クラッチ
部の摩擦係数変化により生じる変速中回転数変化を検出
し、これをフィードバックし油圧制御に反映されるもの
である。これにより、安定した変速中クラッチ油圧制御
ができるように提案するものである。
2. Description of the Related Art Japanese Patent Laid-Open Publication No. Sho 63-26 discloses a known example in which the clutch operating hydraulic pressure is electrically controlled to release and engage the clutch.
There is one described in Japanese Patent No. 3248. In this publication, when controlling the working oil pressure of the on-coming clutch at the time of upshifting and the disengagement clutch at the time of downshifting, the input shaft speed (turbine speed) of the transmission is used. A method of controlling so as to follow a preset target value of the input shaft rotation speed is described. According to the present invention, a change in the number of revolutions during a shift caused by a change in the friction coefficient of the clutch unit is detected, and this is fed back to be reflected in the hydraulic control. Thus, it is proposed that clutch oil pressure control during stable shifting can be performed.

【0003】[0003]

【発明が解決しようとする課題】当該公知例によれば、
前記クラッチの作用油圧を前記変速機入力軸回転数フィ
ードバックで制御するため、前記クラッチの摩擦係数が
クラッチ入出力軸回転差及びクラッチ毎で大きく変化し
た場合、前記フィードバックでは対応しきれず変速性能
が悪化するといった課題が生じる。よって、前記回転
差,クラッチ毎での摩擦係数変化による変速ショック増
大が避けられない。
According to the known example,
Since the working oil pressure of the clutch is controlled by the transmission input shaft rotation speed feedback, if the friction coefficient of the clutch changes greatly between the clutch input / output shaft rotation difference and each clutch, the feedback cannot cope with the clutch and the transmission performance deteriorates. There is a problem of doing so. Therefore, an increase in shift shock due to the rotation difference and a change in friction coefficient for each clutch cannot be avoided.

【0004】本発明は、前記回転差,クラッチ毎での摩
擦係数が大きく変化した場合でも、前記クラッチの作用
油圧を正確に制御して良好な変速特性を得ることを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to accurately control the working oil pressure of the clutch to obtain good shift characteristics even when the rotational difference and the friction coefficient for each clutch greatly change.

【0005】[0005]

【課題を解決するための手段】自動変速機の小型,軽量
化及び制御性能向上の面からワンウェイクラッチを除去
し、且つ電気的にクラッチ作用油圧を直接制御しクラッ
チの解放,係合を実行する変速機制御システムの確立が
重要となってきている。前記システムでは、クラッチ作
用油圧を精度良く制御し、変速中のトルク変動(ショッ
ク)を抑制することが不可欠である。しかし、実際の車
両では、大量生産に伴う変速機毎の機差,経年変化によ
るクラッチの摩耗係数変化、さらにはクラッチ入出力軸
回転差に伴う摩耗係数変化が生じ、これが前記トルク変
動の発生要因になっている。よって、何らかのセンサ信
号を用いてクラッチ作用油圧の変化状態を検知し、この
検知結果に基づいてフィードバック制御することが提案
されている。しかし、前記摩擦係数変化がかなり大きい
場合は、前記フィードバックでは対応しきれず変速性能
が悪化するといった課題が生じる。よって、前記回転
差,クラッチ毎での摩擦係数変化による変速ショック増
大が避けられない。
In order to reduce the size and weight of the automatic transmission and to improve the control performance, the one-way clutch is eliminated, and the clutch operation is disengaged and engaged by directly controlling the clutch hydraulic pressure electrically. The establishment of a transmission control system is becoming important. In the above system, it is essential to accurately control the hydraulic pressure acting on the clutch to suppress torque fluctuations (shock) during shifting. However, in an actual vehicle, a machine difference between transmissions due to mass production, a change in clutch wear coefficient due to aging, and a change in wear coefficient due to a clutch input / output shaft rotation difference occur. This is a cause of the torque fluctuation. It has become. Therefore, it has been proposed to detect a change state of the clutch hydraulic pressure using some kind of sensor signal, and to perform feedback control based on the detection result. However, when the change in the friction coefficient is considerably large, there is a problem that the feedback cannot cope with the change and the shift performance deteriorates. Therefore, an increase in shift shock due to the rotation difference and a change in friction coefficient for each clutch cannot be avoided.

【0006】上記課題に対し、具体的には次に示す装置
によって前述した課題を解決する。すなわち、本発明
は、エンジンに連結された自動変速機における少なくと
も1つの摩擦係合装置を係合あるいは解放させることに
より変速を実行し、前記変速の際に前記摩擦係合装置に
作用する油圧を調圧しかつその調圧特性を変化させるこ
とのできる調圧指令演算手段を備えた自動変速機の油圧
制御装置において、前記自動変速機の変速開始信号を発
生する変速指令信号発生手段と、変速に係わる前記摩擦
係合装置の摩擦係数に関する情報を予め記憶しておく摩
擦情報記憶手段とを備え、前記信号発生手段からの信号
が発生された後、前記調圧指令演算手段で演算される調
圧指令値が前記摩擦情報記憶手段の情報に基づいて決定
される装置を提供する。
[0006] In order to solve the above problems, the following problems are specifically solved by the following apparatus. That is, the present invention performs a shift by engaging or disengaging at least one friction engagement device in an automatic transmission connected to an engine, and reduces a hydraulic pressure acting on the friction engagement device during the shift. In a hydraulic control apparatus for an automatic transmission, comprising a pressure adjustment command calculating means capable of adjusting the pressure and changing the pressure adjustment characteristic, a shift command signal generating means for generating a shift start signal of the automatic transmission; Frictional information storage means for preliminarily storing information on a friction coefficient of the frictional engagement device concerned, wherein a pressure adjustment calculated by the pressure adjustment command calculation means after a signal is generated from the signal generation means. An apparatus is provided in which a command value is determined based on information in the friction information storage means.

【0007】好ましくは、前記調圧指令演算手段に前記
変速機の油圧系の遅れを補償する遅れ補償手段を設け
る。
[0007] Preferably, the pressure regulation command calculating means is provided with a delay compensating means for compensating for a delay in a hydraulic system of the transmission.

【0008】好ましくは、前記摩擦情報記憶手段に記憶
された摩擦情報は、少なくとも変速機入力軸回転数の変
化に応じて変更される。
Preferably, the friction information stored in the friction information storage means is changed at least in accordance with a change in a transmission input shaft speed.

【0009】好ましくは、前記摩擦係合装置の前記摩擦
情報を検出する摩擦情報検出手段を設け、前記検出結果
に基づき前記摩擦情報記憶手段に記憶された摩擦情報を
書き換える摩擦情報書き換え手段を設ける。
Preferably, there is provided friction information detecting means for detecting the friction information of the friction engagement device, and friction information rewriting means for rewriting the friction information stored in the friction information storage means based on the detection result.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例を図面に基
づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】図1は本発明の一実施例である。図2は本
発明の詳細ブロック図である。図1において、エンジン
1は、本実施例においては4気筒エンジンである。この
エンジン1には、点火装置2が設けられている。点火装
置2は、エンジン1の気筒数に対応して4つの点火プラ
グ3を有している。エンジン1に空気を取り込むための
吸気管4には、ここを通る空気の流量を調節する電子制
御スロットル5,燃料を噴射する燃料噴射装置6および
空気流量計7が設けられている。燃料噴射装置6は、エ
ンジン1の気筒数に対応して4つの燃料噴射弁8を有し
ている。また、前記噴射弁8はエンジン1内のシリンダ
(図示しない)に直接吹き込んでも良い。電子制御スロ
ットル5とは、アクチュエータ9でスロットルバルブ1
0を駆動し空気流量を制御するものである。また、通常
の自動車ではスロットルバルブ10とアクセルペダル
(図示されていない)が機械式ワイヤ(図示されていな
い)で連結されており、一対一で動作する。
FIG. 1 shows an embodiment of the present invention. FIG. 2 is a detailed block diagram of the present invention. In FIG. 1, an engine 1 is a four-cylinder engine in this embodiment. The engine 1 is provided with an ignition device 2. The ignition device 2 has four ignition plugs 3 corresponding to the number of cylinders of the engine 1. An intake pipe 4 for taking air into the engine 1 is provided with an electronic control throttle 5 for adjusting a flow rate of air passing therethrough, a fuel injection device 6 for injecting fuel, and an air flow meter 7. The fuel injection device 6 has four fuel injection valves 8 corresponding to the number of cylinders of the engine 1. Further, the injection valve 8 may be directly blown into a cylinder (not shown) in the engine 1. The electronically controlled throttle 5 is the throttle valve 1
0 is driven to control the air flow rate. In a normal automobile, the throttle valve 10 and an accelerator pedal (not shown) are connected by a mechanical wire (not shown), and operate one-to-one.

【0012】エンジン1のクランク軸11にはフライホ
イール12が取り付けられている。フライホイール12
には、クランク軸11の回転数、すなわちエンジン回転
数Neを検出するエンジン回転数センサ13が取り付け
られている。このフライホイール12と直結されている
トルクコンバータ14は、ポンプ15,タービン16及
びステータ17から成っている。タービン16の出力
軸、つまり変速機の入力軸18は、有段式変速機19と
直結されている。ここでは、2つの摩擦係合装置22,
23を係合,解放することにより変速が実行される、い
わゆるクラッチ・ツウ・クラッチの変速機19を例とし
て説明する。変速機入力軸18には、変速機入力軸回転
数(タービン回転数)Ntを測定する変速機入力軸回転
数センサ20が取り付けられている。変速機19は、遊
星歯車21,クラッチ22,23から構成され、上記ク
ラッチ22,23を係合,解放することにより歯車21
の歯車比が変化して変速が実行される。これらクラッチ
22,23は、それぞれスプール弁26,27およびリ
ニアソレノイド28,29(調圧装置)により制御され
る。また、変速機19は出力軸24と連結されており、
軸24の回転数を検出する変速機出力軸回転数センサ2
5、いわゆる車速センサ25が取り付けられている。こ
れらの部品で自動変速機30が構成されている。
A flywheel 12 is attached to a crankshaft 11 of the engine 1. Flywheel 12
Is provided with an engine speed sensor 13 for detecting the speed of the crankshaft 11, that is, the engine speed Ne. The torque converter 14 directly connected to the flywheel 12 includes a pump 15, a turbine 16, and a stator 17. The output shaft of the turbine 16, that is, the input shaft 18 of the transmission, is directly connected to the stepped transmission 19. Here, two friction engagement devices 22,
A description will be given of a so-called clutch-to-clutch transmission 19 in which a shift is executed by engaging and disengaging 23. A transmission input shaft rotation speed sensor 20 for measuring a transmission input shaft rotation speed (turbine rotation speed) Nt is attached to the transmission input shaft 18. The transmission 19 includes a planetary gear 21 and clutches 22 and 23. The gear 21 is engaged and disengaged by engaging and disengaging the clutches 22 and 23.
Is changed and the gear ratio is changed. These clutches 22 and 23 are controlled by spool valves 26 and 27 and linear solenoids 28 and 29 (pressure adjusting devices), respectively. Further, the transmission 19 is connected to the output shaft 24,
Transmission output shaft speed sensor 2 for detecting the speed of shaft 24
5. A so-called vehicle speed sensor 25 is attached. The automatic transmission 30 is constituted by these components.

【0013】以上説明したエンジン1および自動変速機
30駆動のためのアクチュエータは、制御コントローラ
31により制御される。制御コントローラ31には、ス
ロットル開度θ,変速機入力軸回転数Nt,エンジン回
転数Ne,変速機出力軸回転数No,変速機油温Toil
,アクセルペダル踏み込み量α,加速度センサ信号G
等が入力され制御に用いられる。制御コントローラ31
内のエンジントルク演算手段32は、電子制御スロット
ル5,燃料噴射装置6および点火装置2への制御信号を
出力する。
The actuators for driving the engine 1 and the automatic transmission 30 described above are controlled by the controller 31. The controller 31 includes a throttle opening θ, a transmission input shaft rotation speed Nt, an engine rotation speed Ne, a transmission output shaft rotation speed No, and a transmission oil temperature Toil.
, Accelerator pedal depression amount α, acceleration sensor signal G
Are input and used for control. Control controller 31
The engine torque calculation means 32 outputs control signals to the electronic control throttle 5, the fuel injection device 6, and the ignition device 2.

【0014】次に、図1,図2に記載した制御ブロック
図の内容について図3,図4,図5を用いて説明する。
図3は本発明を用いた場合の2−3変速特性である。図
4は係合側油圧指令値の概略図である。図5はクラッチ
摩擦係数の概略図である。ここでは、シフトアップ時の
係合側クラッチの作用油圧の制御方法について記述す
る。制御コントローラ31内では、まず、前記入力軸回
転数Ntと前記出力軸回転数Noが回転比演算手段33
に入力され、変速機19の回転比gr、いわゆるギア比
が演算される。また、前記入力軸回転数Nt、前記エン
ジン回転数Ne及びコントローラ31のトルクコンバー
タ特性記憶手段34(図2)に記憶されたトルクコンバ
ータ特性、補正定数記憶手段35(図2)に記憶された
エンジン側慣性モーメントが入力軸トルク演算手段36
に入力され、変速機19の入力軸トルクTtが演算され
る。一般的にこの入力軸トルクは(1)式により求ま
る。
Next, the contents of the control block diagrams shown in FIGS. 1 and 2 will be described with reference to FIGS.
FIG. 3 shows a 2-3 shift characteristic when the present invention is used. FIG. 4 is a schematic diagram of the engagement side hydraulic pressure command value. FIG. 5 is a schematic diagram of the clutch friction coefficient. Here, a method of controlling the working oil pressure of the engagement side clutch at the time of upshift will be described. In the controller 31, first, the input shaft rotation speed Nt and the output shaft rotation speed No are determined by a rotation ratio calculating means 33.
And the rotation ratio gr of the transmission 19, that is, the so-called gear ratio is calculated. Further, the input shaft speed Nt, the engine speed Ne, and the torque converter characteristics stored in the torque converter characteristics storage means 34 (FIG. 2) of the controller 31 and the engine stored in the correction constant storage means 35 (FIG. 2). The side moment of inertia is calculated by the input shaft torque calculating means 36.
And the input shaft torque Tt of the transmission 19 is calculated. Generally, this input shaft torque is obtained by the equation (1).

【0015】 Tt=t(Nt/Ne)*{c(Nt/Ne)*Ne*Ne−k1*dNt/dt} …(1) t :トルクコンバータトルク比(Nt/Neの関数) c :トルクコンバータポンプ容量係数(Nt/Neの
関数) k1:補正定数 前記入力軸回転数Nt,前記出力軸回転数No(前記回
転比grで摩擦係数が求められているものは、grを適
用)、及び変速指令信号発生手段37からの指令信号S
sが摩擦情報記憶手段38に入力され、摩擦情報μが演
算される。例えば、図5のような摩擦係数特性を示す。
ここで、クラッチ入出力軸回転差がゼロの時は、クラッ
チが完全に係合している状態であり、完全に解放してい
る場合は前記回転差が無限大となる。シフトアップ時の
係合側クラッチは、無限大側から回転差がスタートし油
圧上昇に伴い回転差が小さくなる。実線は、製造時の摩
擦係数、破線は経年変化した後の摩擦係数である。この
摩擦係数の変化が、変速中のトルク変動の主要因である
ことが分かった。図3において、係合側油圧が一定で摩
擦係数が図5の実線のクラッチを用いた場合、イナーシ
ャ相での変速機出力軸トルクが変動している。これは、
前述の摩擦係数の変化と一致する。つまり、このクラッ
チの摩擦係数の変化に応じて係合側油圧を制御できれ
ば、イナーシャ相での変速機出力軸のトルク変動を実線
のように滑らかにすることができる。そこで、図5に示
した摩擦係数μ,前記入力軸トルクTt,前記入力軸回
転数Ntが調圧指令演算手段39に入力され、前記トル
ク変動を抑制するように係合側油圧指令値Ptが演算さ
れる。このPtは図4に示す係合側油圧指令値の関数式
(2),(3)により得られる。
Tt = t (Nt / Ne) * {c (Nt / Ne) * Ne * Ne−k1 * dNt / dt} (1) t: torque converter torque ratio (a function of Nt / Ne) c: torque Converter pump displacement coefficient (function of Nt / Ne) k1: Correction constant The input shaft rotation speed Nt, the output shaft rotation speed No (gr is applied if the friction coefficient is determined by the rotation ratio gr), and Command signal S from shift command signal generating means 37
s is input to the friction information storage means 38, and the friction information μ is calculated. For example, a friction coefficient characteristic as shown in FIG. 5 is shown.
Here, when the clutch input / output shaft rotation difference is zero, the clutch is completely engaged, and when the clutch is completely released, the rotation difference becomes infinite. At the time of upshifting, the rotation difference of the engagement side clutch starts from the infinity side, and the rotation difference becomes smaller as the hydraulic pressure rises. The solid line is the friction coefficient at the time of manufacture, and the broken line is the friction coefficient after aging. It has been found that this change in the coefficient of friction is the main factor of the torque fluctuation during gear shifting. In FIG. 3, when the clutch shown by the solid line in FIG. 5 is used while the engagement side oil pressure is constant, the transmission output shaft torque in the inertia phase fluctuates. this is,
This is consistent with the aforementioned change in the coefficient of friction. That is, if the engagement hydraulic pressure can be controlled in accordance with the change in the friction coefficient of the clutch, the torque fluctuation of the transmission output shaft in the inertia phase can be smoothed as shown by the solid line. Therefore, the friction coefficient μ, the input shaft torque Tt, and the input shaft rotation speed Nt shown in FIG. 5 are input to the pressure regulation command calculating means 39, and the engagement side hydraulic command value Pt is controlled so as to suppress the torque fluctuation. Is calculated. This Pt is a function formula of the engagement side hydraulic command value shown in FIG.
(2) and (3) are obtained.

【0016】 It*dNt/dt+Cd*Nt=Tt−Tc …(2) Tc=μ***(A*Pt−F) …(3) It:エンジン,トルクコンバータ慣性モーメント Cd:粘性抵抗係数 Tc:クラッチトルク μ:クラッチ摩擦係数 R:クラッチ有効半径 N:クラッチ枚数 A:クラッチピストン受圧面積 F:クラッチ反力 上記2つの式を用いることにより、変速初期(トルク相
〜イナーシャ相初期)を含むイナーシャ相の油圧指令値
Ptは、横軸Tt,Ntの関数fで表すことができる。
つまり、上記2つの式の変速機特性(It,Cdなど)
を予め取得し、記憶しておくことによりテーブルを用い
ることなくPtが求まる。図4から分かるように、上記
2つの式を整理するとPtは摩擦係数μの変化により変
化する(斜線部)。このPtを用いてフィードフォワー
ドでクラッチ作用油圧を制御することにより図5に示し
たクラッチ摩擦係数μの大きな変化が生じた場合でも変
速中のトルク変動抑制が可能になる。上記内容を実行し
た場合の例を図3を用いて説明する。図3において、理
想的な係合側油圧はイナーシャ相の変速機出力軸のトル
ク変動に応じて変化させることにより実現する。この場
合、油圧指令と実際の油圧との間には、むだ時間及び一
次遅れがあるため、この遅れを補償する遅れ補償手段4
0が必要になる(図1,図2)。前記遅れ補償手段40
には前記回転比grが入力され、grを用いて理想油圧
指令値を求め、前記理想油圧を実現する。また、図5実
線に示すような摩擦係数のクラッチの場合、簡易手法と
して2段階の油圧制御でも良好な変速性能を実現するこ
とができる。この場合、前記回転比を用いさらに前記油
圧遅れを考慮する変速初期認識手段41(図1,図2)を
用いて、前記回転比が予め決められた回転比aに到達し
た時、図4のμ大,μ小を切り換える方式である。つま
り、イナーシャ相初期ではクラッチμが大きいため前記
Ptを低く設定し、その後クラッチμが小さくなるタイ
ミングで前記Ptを高く設定するのである。ここで、前
記Pt切り換えに前記回転比を用いているが、この理由
は切り換えのための前記aの数が少なくて済むことであ
り、メモリ容量を低減することができる。メモリ容量を
考えなければ、前記変速機入力軸回転数を用いることも
できる。但し、変速時の前記回転数毎に切り換え回転数
を持つ必要があり、膨大なメモリが不可欠になる。ま
た、入力軸トルクが大きい運転では、変速時間が大きく
なるためクラッチ破損の要因になる。そこで、点火時期
リタード制御によりエンジントルクを低減し変速時間を
目標値内に制御する。点火時期制御に関しては、一般的
に用いられているものであり、処理44から処理49は
説明を省略する。但し、空燃比が大きい、いわゆるリー
ンバーンエンジンで点火時期リタード制御を実行すると
失火が生じ、目的とするトルク低減制御が困難であり、
燃料量制御(空燃比制御)あるいは空気量制御を用い
る。
It * dNt / dt + Cd * Nt = Tt−Tc (2) Tc = μ * R * N * (A * Pt−F) (3) It: Engine, torque converter inertia moment Cd: Viscous drag coefficient Tc: Clutch torque μ: Clutch friction coefficient R: Clutch effective radius N: Number of clutches A: Clutch piston pressure receiving area F: Clutch reaction force By using the above two equations, including the initial gear shift (the initial torque phase to the initial inertia phase) The hydraulic pressure command value Pt of the inertia phase can be represented by a function f of the horizontal axes Tt and Nt.
That is, the transmission characteristics of the above two formulas (It, Cd, etc.)
Is obtained in advance and stored, Pt is obtained without using a table. As can be seen from FIG. 4, when the above two equations are arranged, Pt changes according to the change in the friction coefficient μ (shaded portion). By controlling the clutch hydraulic pressure in feedforward using this Pt, even when a large change occurs in the clutch friction coefficient μ shown in FIG. 5, it is possible to suppress torque fluctuation during gear shifting. An example in which the above contents are executed will be described with reference to FIG. In FIG. 3, the ideal engagement side hydraulic pressure is realized by changing according to the torque fluctuation of the transmission output shaft in the inertia phase. In this case, there is a dead time and a first-order delay between the hydraulic pressure command and the actual hydraulic pressure.
0 is required (FIGS. 1 and 2). The delay compensating means 40
The rotation ratio gr is input to the, and an ideal oil pressure command value is obtained using the gr to realize the ideal oil pressure. Further, in the case of a clutch having a friction coefficient as shown by the solid line in FIG. 5, good shifting performance can be realized by two-stage hydraulic control as a simple method. In this case, when the speed ratio reaches a predetermined speed ratio a by using the speed ratio initial recognition means 41 (FIGS. 1 and 2) using the speed ratio and further considering the oil pressure delay, FIG. This is a method of switching between μ large and μ small. That is, at the beginning of the inertia phase, the clutch μ is large, so that the Pt is set low, and thereafter, the Pt is set high at the timing when the clutch μ becomes small. Here, the rotation ratio is used for the Pt switching. The reason for this is that the number of “a” for the switching is small, and the memory capacity can be reduced. If the memory capacity is not considered, the transmission input shaft rotation speed can be used. However, it is necessary to have a switching rotation speed for each rotation speed at the time of shifting, and a huge memory is indispensable. Further, in an operation in which the input shaft torque is large, the shift time becomes longer, which may cause a clutch breakage. Therefore, the engine torque is reduced by the ignition timing retard control, and the shift time is controlled within a target value. The ignition timing control is generally used, and the description of steps 44 to 49 is omitted. However, if the ignition timing retard control is executed in a so-called lean burn engine having a large air-fuel ratio, a misfire occurs, and the target torque reduction control is difficult.
The fuel amount control (air-fuel ratio control) or the air amount control is used.

【0017】次に、クラッチが経年変化した場合の前記
クラッチ摩擦係数の学習法について説明する。図1及び
図2において、前記摩擦情報記憶手段38はクラッチ製
造時に得られた摩擦係数が記憶されており、各クラッチ
毎の摩擦係数ばらつきは考慮できない。そこで、クラッ
チの摩擦係数をクラッチ毎、使用状況毎(経年変化)で
検出し、前記記憶手段38に記憶された前記摩擦係数を
書き換える必要がある。そのため、摩擦情報検出手段4
2及び摩擦情報書き換え手段43を設けた。図6に一例
としてニューラルネットワークを用いた摩擦情報検出法
を示す。前述のように、変速中の変速機出力軸トルク
(入力軸トルク* ハイギア側変速比:入力軸トルクと同
一波形)の変化が前記摩擦係数の変化に起因することか
ら、入力軸トルク、前記回転比及び前記油圧指令値を用
いて前記クラッチの摩擦情報(係数)を求める。図6にお
いて、前記入力軸トルク、前記回転比及び前記油圧指令
値の時系列データが任意のサンプリング周期でニューラ
ルネットの入力層に入力され、中間層を経て出力層へ伝
わる。中間層と出力層の各ユニットは、入力信号Xiの
それぞれに対して重みWiを掛けたものの和を入力と
し、シグモイド関数(v=1/(1+exp(−ΣWiX
i))で入力を変換して出力する。これにより、出力層
から前記クラッチの摩擦情報が得られる。この摩擦情報
を書き換え手段43に入力し、摩擦情報記憶手段38の
記憶値を書き換える。ここで、摩擦情報検出手段42に
油圧指令値が入力されている理由は、油圧変化により前
記入力軸トルクが変化しているか、摩擦係数の変化によ
るものなのかを判断するためである。これにより、クラ
ッチが経年変化した場合、生産時ばらつきなどが生じた
場合の変速性能を良好に保つことが可能になる。
Next, a method for learning the friction coefficient of the clutch when the clutch is aged will be described. In FIG. 1 and FIG. 2, the friction information storage means 38 stores the friction coefficient obtained at the time of manufacturing the clutch, and cannot consider the friction coefficient variation for each clutch. Therefore, it is necessary to detect the friction coefficient of the clutch for each clutch and for each use condition (aging) and rewrite the friction coefficient stored in the storage means 38. Therefore, the friction information detecting means 4
2 and friction information rewriting means 43 are provided. FIG. 6 shows a friction information detection method using a neural network as an example. As described above, a change in the transmission output shaft torque (input shaft torque * high gear side gear ratio: the same waveform as the input shaft torque) during shifting is caused by a change in the friction coefficient. Using the ratio and the hydraulic command value, friction information (coefficient) of the clutch is obtained. In FIG. 6, time series data of the input shaft torque, the rotation ratio, and the oil pressure command value is input to the input layer of the neural network at an arbitrary sampling cycle, and transmitted to the output layer via the intermediate layer. Each unit of the intermediate layer and the output layer receives the sum of the input signal Xi multiplied by the weight Wi as an input, and obtains a sigmoid function (v = 1 / (1 + exp (−ΣWiX
In i)), the input is converted and output. Thereby, the friction information of the clutch is obtained from the output layer. This friction information is input to the rewriting means 43, and the value stored in the friction information storage means 38 is rewritten. Here, the reason why the oil pressure command value is input to the friction information detecting means 42 is to judge whether the input shaft torque is changed due to a change in oil pressure or whether the input shaft torque is caused by a change in friction coefficient. As a result, it is possible to maintain good shifting performance when the clutch is aged and when there is variation during production.

【0018】[0018]

【発明の効果】クラッチ入出力軸回転差、クラッチ毎で
の摩擦情報に基づいて前記クラッチの作用油圧がフィー
ドフォワードで制御されるため、クラッチ摩擦係数が大
きく変化した場合でも良好な変速特性を得られる。
According to the present invention, since the working oil pressure of the clutch is controlled in a feed-forward manner on the basis of the clutch input / output shaft rotation difference and the friction information for each clutch, a good shift characteristic can be obtained even when the clutch friction coefficient is largely changed. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例。FIG. 1 shows an embodiment of the present invention.

【図2】本発明の詳細ブロック図。FIG. 2 is a detailed block diagram of the present invention.

【図3】本発明を用いた場合の2−3変速特性。FIG. 3 shows 2-3 shift characteristics when the present invention is used.

【図4】係合側油圧指令値の概略図。FIG. 4 is a schematic diagram of an engagement side hydraulic pressure command value.

【図5】クラッチ摩擦係数の概略図。FIG. 5 is a schematic diagram of a clutch friction coefficient.

【図6】ニューラルネットワークを用いた摩擦情報検出
法。
FIG. 6 is a friction information detection method using a neural network.

【符号の説明】[Explanation of symbols]

1…エンジン、19…変速機、22…クラッチ、28…
リニアソレノイド、30…自動変速機、32…エンジン
トルク演算手段、33…回転比演算手段、36…入力軸
トルク演算手段、38…摩擦情報記憶手段、39…調圧
指令演算手段、40…遅れ補償手段、41…変速初期認
識手段、42…摩擦情報検出手段、43…摩擦情報書き
換え手段。
DESCRIPTION OF SYMBOLS 1 ... Engine, 19 ... Transmission, 22 ... Clutch, 28 ...
Linear solenoid, 30 ... automatic transmission, 32 ... engine torque calculation means, 33 ... rotation ratio calculation means, 36 ... input shaft torque calculation means, 38 ... friction information storage means, 39 ... pressure regulation command calculation means, 40 ... delay compensation Means, 41: Shift initial recognition means, 42: Friction information detecting means, 43: Friction information rewriting means.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】エンジンに連結された自動変速機における
少なくとも1つの摩擦係合装置を係合あるいは解放させ
ることにより変速を実行し、前記変速の際に前記摩擦係
合装置に作用する油圧を調圧し、かつその調圧特性を変
化させることのできる調圧指令演算手段を備えた自動変
速機の油圧制御装置において、 前記自動変速機の変速開始信号を発生する変速指令信号
発生手段と、 変速に係わる前記摩擦係合装置の摩擦係数に関する情報
を予め記憶しておく摩擦情報記憶手段とを備え、 前記信号発生手段からの信号が発生された後、前記調圧
指令演算手段で演算される調圧指令値が前記摩擦情報記
憶手段の情報に基づいて決定されることを特徴とする自
動変速機の制御装置。
A shift is executed by engaging or disengaging at least one friction engagement device in an automatic transmission connected to an engine, and adjusting a hydraulic pressure acting on the friction engagement device during the shift. A pressure command signal generating means for generating a shift start signal for the automatic transmission; and a shift command signal generating means for generating a shift start signal for the automatic transmission. Frictional information storage means for preliminarily storing information relating to a friction coefficient of the friction engagement device concerned, and a pressure adjustment calculated by the pressure adjustment command calculation means after a signal is generated from the signal generation means. A control device for an automatic transmission, wherein a command value is determined based on information in the friction information storage means.
【請求項2】請求項第1項において、前記変速機の油圧
系の遅れを補償する遅れ補償手段を設けたことを特徴と
する自動変速機の制御装置。
2. A control device for an automatic transmission according to claim 1, further comprising delay compensation means for compensating for a delay in a hydraulic system of said transmission.
【請求項3】請求項第1項において、前記摩擦情報記憶
手段に記憶された摩擦情報は、少なくとも変速機入力軸
回転数の変化に応じて変更されることを特徴とする自動
変速機の制御装置。
3. The control of an automatic transmission according to claim 1, wherein the friction information stored in the friction information storage means is changed at least in accordance with a change in the rotation speed of the transmission input shaft. apparatus.
【請求項4】請求項第1項において、前記摩擦係合装置
の前記摩擦情報を検出する摩擦情報検出手段を設け、前
記検出結果に基づき前記摩擦情報記憶手段に記憶された
摩擦情報を書き換える摩擦情報書き換え手段を設けたこ
とを特徴とする自動変速機の制御装置。
4. A friction device according to claim 1, further comprising friction information detecting means for detecting said friction information of said friction engagement device, and rewriting friction information stored in said friction information storage means based on said detection result. A control device for an automatic transmission, comprising information rewriting means.
【請求項5】エンジンに連結された自動変速機における
少なくとも1つの摩擦係合装置を係合あるいは解放させ
ることにより変速を実行し、前記変速の際に前記摩擦係
合装置に作用する油圧を調圧しかつその調圧特性を変化
させることのできる調圧指令演算手段を備えた自動変速
機の油圧制御装置において、 前記自動変速機の変速開始信号を発生する変速指令信号
発生手段と、 変速機出力軸の回転数を検出する変速機出力軸回転数検
出手段と、 変速機入力軸の回転数を検出する変速機入力軸回転数検
出手段と、 前記2つの回転数検出手段により得られた回転数を用い
て変速機の出力軸回転比を演算する回転比演算手段と、 前記信号発生手段からの信号が発生された後、前記回転
比が変化し始まる変速初期が認識できる変速初期認識手
段とを備え、 シフトアップ時、前記変速初期認識手段から得られた目
標の回転比と前記回転比演算手段で得られた回転比が一
致した時点で、前記調圧指令演算手段で演算される調圧
指令値を大きくすることを特徴とする自動変速機の制御
装置。
5. A shift is performed by engaging or disengaging at least one friction engagement device in an automatic transmission connected to an engine, and adjusting a hydraulic pressure acting on the friction engagement device during the shift. A shift command signal generating means for generating a shift start signal for the automatic transmission, comprising: a shift command signal generating means for generating a shift start signal for the automatic transmission; and a transmission output. Transmission output shaft rotation number detection means for detecting the rotation number of the shaft; transmission input shaft rotation number detection means for detecting the rotation number of the transmission input shaft; and the rotation number obtained by the two rotation number detection means. A rotation ratio calculating means for calculating an output shaft rotation ratio of the transmission by using; a shift initial recognition means capable of recognizing a shift initial state where the rotation ratio starts to change after a signal is generated from the signal generating means; A pressure regulation command calculated by the pressure regulation command calculation means when the target rotation ratio obtained by the speed change initial recognition means coincides with the rotation ratio obtained by the rotation ratio calculation means at the time of upshifting. A control device for an automatic transmission characterized by increasing the value.
【請求項6】エンジンに連結された自動変速機における
少なくとも1つの摩擦係合装置を係合あるいは解放させ
ることにより変速を実行し、前記変速の際に前記摩擦係
合装置に作用する油圧を調圧しかつその調圧特性を変化
させることのできる調圧指令演算手段を備えた自動変速
機の油圧制御装置において、 前記自動変速機の変速開始信号を発生する変速指令信号
発生手段と、 変速機出力軸の回転数を検出する変速機出力軸回転数検
出手段と、 変速機入力軸の回転数を検出する変速機入力軸回転数検
出手段と、 前記2つの回転数検出手段により得られた回転数を用い
て変速機の出力軸回転比を演算する回転比演算手段と、 前記信号発生手段からの信号が発生された後、前記回転
比が変化し始まる変速初期が認識できる変速初期認識手
段とを備え、 シフトダウン時、前記変速初期認識手段から得られた目
標の回転比と前記回転比演算手段で得られた回転比が一
致した時点で、前記調圧指令演算手段で演算される調圧
指令値を小さくすることを特徴とする自動変速機の制御
装置。
6. A shift is performed by engaging or disengaging at least one friction engagement device in an automatic transmission connected to an engine, and adjusting a hydraulic pressure acting on the friction engagement device during the shift. A shift command signal generating means for generating a shift start signal for the automatic transmission, comprising: a shift command signal generating means for generating a shift start signal for the automatic transmission; and a transmission output. Transmission output shaft rotation number detection means for detecting the rotation number of the shaft; transmission input shaft rotation number detection means for detecting the rotation number of the transmission input shaft; and the rotation number obtained by the two rotation number detection means. A rotation ratio calculating means for calculating an output shaft rotation ratio of the transmission by using; a shift initial recognition means capable of recognizing a shift initial state where the rotation ratio starts to change after a signal is generated from the signal generating means; A pressure control command calculated by the pressure control command calculating means when the target rotation ratio obtained by the shift initial recognition means matches the rotation ratio obtained by the rotation ratio calculation means during downshifting. A control device for an automatic transmission, characterized in that the value is reduced.
【請求項7】請求項第5,6項において、変速に係わる
前記摩擦係合装置の摩擦係数に関する情報を予め記憶し
ておく摩擦情報記憶手段とを備え、前記調圧指令演算手
段で演算される調圧指令値は、前記摩擦情報記憶手段に
記憶された摩擦情報に基づき決定されることを特徴とす
る自動変速機の制御装置。
7. A friction information storage device according to claim 5, further comprising: a friction information storage device for storing in advance information relating to a friction coefficient of said friction engagement device relating to a shift, wherein said friction information storage device calculates the friction coefficient. The control device for an automatic transmission, wherein the pressure adjustment command value is determined based on the friction information stored in the friction information storage means.
【請求項8】請求項第5,6項において、前記摩擦情報
記憶手段に記憶された摩擦情報は、少なくとも2つであ
ることを特徴とする自動変速機の制御装置。
8. A control device for an automatic transmission according to claim 5, wherein the friction information stored in said friction information storage means is at least two.
【請求項9】請求項第7項において、前記摩擦係合装置
の前記摩擦情報を検出する摩擦情報検出手段を設け、前
記検出結果に基づき前記摩擦情報記憶手段に記憶された
摩擦情報を書き換える摩擦情報書き換え手段を設けたこ
とを特徴とする自動変速機の制御装置。
9. A friction device according to claim 7, further comprising friction information detecting means for detecting said friction information of said friction engagement device, and rewriting friction information stored in said friction information storage means based on said detection result. A control device for an automatic transmission, comprising information rewriting means.
【請求項10】エンジンに連結された自動変速機におけ
る少なくとも1つの摩擦係合装置を係合あるいは解放さ
せることにより変速を実行し、前記変速の際に前記摩擦
係合装置に作用する油圧を調圧しかつその調圧特性を変
化させ、前記変速機の出力軸トルクを制御する自動変速
機の油圧制御方法において、 前記自動変速機の変速開始信号を発生する変速指令信号
発生手段と、 変速に係わる前記摩擦係合装置の摩擦係数に関する情報
を予め記憶しておく摩擦情報記憶手段とを備え、 前記信号発生手段からの信号が発生された後、前記調圧
指令演算手段で演算された調圧指令値は、前記摩擦情報
記憶手段の情報に基づいて決定されることを特徴とする
自動変速機の制御方法。
10. A shift is executed by engaging or disengaging at least one friction engagement device in an automatic transmission connected to an engine, and adjusting a hydraulic pressure acting on the friction engagement device during the shift. A shift command signal generating means for generating a shift start signal for the automatic transmission, wherein the shift command signal generating means generates a shift start signal for the automatic transmission. A friction information storage unit for storing information relating to a friction coefficient of the friction engagement device in advance, and a pressure adjustment command calculated by the pressure adjustment command calculation unit after a signal from the signal generation unit is generated. The value is determined based on the information in the friction information storage means.
JP9327577A 1997-11-28 1997-11-28 Control device of automatic transmission and method therefor Pending JPH11159605A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9327577A JPH11159605A (en) 1997-11-28 1997-11-28 Control device of automatic transmission and method therefor
DE19854624A DE19854624A1 (en) 1997-11-28 1998-11-26 Control system for automatic transmission
KR1019980051386A KR19990045661A (en) 1997-11-28 1998-11-27 Control device of automatic transmission and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9327577A JPH11159605A (en) 1997-11-28 1997-11-28 Control device of automatic transmission and method therefor

Publications (1)

Publication Number Publication Date
JPH11159605A true JPH11159605A (en) 1999-06-15

Family

ID=18200622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9327577A Pending JPH11159605A (en) 1997-11-28 1997-11-28 Control device of automatic transmission and method therefor

Country Status (3)

Country Link
JP (1) JPH11159605A (en)
KR (1) KR19990045661A (en)
DE (1) DE19854624A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001953A (en) * 2008-06-19 2010-01-07 Jatco Ltd Gear shift control device for automatic transmission
JP2014114832A (en) * 2012-12-06 2014-06-26 Jtekt Corp Driving force transmission control device
CN105546106A (en) * 2016-01-11 2016-05-04 山东理工大学 AMT gear shift control method capable of carrying out follow-up compensation of friction coefficient and system thereof
CN113794422A (en) * 2021-09-22 2021-12-14 北京理工大学 Nonlinear transmission torque model modeling method and gear wave disturbance torque suppression method
JP2022006653A (en) * 2020-06-24 2022-01-13 トヨタ自動車株式会社 Automatic transmission failure evaluation device, automatic transmission failure evaluation method and automatic transmission failure evaluation program
CN113794422B (en) * 2021-09-22 2024-05-28 北京理工大学 Nonlinear transmission moment model modeling method and gear wave disturbance moment suppression method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208205B4 (en) * 2001-02-27 2015-04-02 Schaeffler Technologies AG & Co. KG Method for controlling / regulating optimal engagement patterns during start-up and re-insertion after gear changes
JP4603601B2 (en) 2008-06-16 2010-12-22 ジヤトコ株式会社 Control device for automatic transmission
JP4787293B2 (en) 2008-06-19 2011-10-05 ジヤトコ株式会社 Shift control device for automatic transmission
DE102015207758A1 (en) 2015-04-28 2016-11-03 Dürkopp Adler AG Sewing system and operating method for this
DE202015102109U1 (en) 2015-04-28 2016-08-01 Dürkopp Adler AG sewing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001953A (en) * 2008-06-19 2010-01-07 Jatco Ltd Gear shift control device for automatic transmission
JP4566251B2 (en) * 2008-06-19 2010-10-20 ジヤトコ株式会社 Shift control device for automatic transmission
JP2014114832A (en) * 2012-12-06 2014-06-26 Jtekt Corp Driving force transmission control device
CN105546106A (en) * 2016-01-11 2016-05-04 山东理工大学 AMT gear shift control method capable of carrying out follow-up compensation of friction coefficient and system thereof
CN105546106B (en) * 2016-01-11 2018-08-28 山东理工大学 A kind of friction coefficient follows the AMT shift control methods and system of compensation
JP2022006653A (en) * 2020-06-24 2022-01-13 トヨタ自動車株式会社 Automatic transmission failure evaluation device, automatic transmission failure evaluation method and automatic transmission failure evaluation program
CN113794422A (en) * 2021-09-22 2021-12-14 北京理工大学 Nonlinear transmission torque model modeling method and gear wave disturbance torque suppression method
CN113794422B (en) * 2021-09-22 2024-05-28 北京理工大学 Nonlinear transmission moment model modeling method and gear wave disturbance moment suppression method

Also Published As

Publication number Publication date
DE19854624A1 (en) 1999-06-24
KR19990045661A (en) 1999-06-25

Similar Documents

Publication Publication Date Title
US6243637B1 (en) Control apparatus and method for automatic transmission by oil pressure on clutch
US6991584B2 (en) Control of powertrain smoothness using output torque sensing and input torque control
US6014604A (en) Powertrain control device
US7462129B2 (en) Driveline shift quality in variable valve engine equipped drivelines
JPH1182721A (en) Shift control device of automatic transmission
US9488120B2 (en) Apparatus and method for in situ fuel injector calibration in an internal combustion engine
US5944765A (en) Control system for internal combustion engines for vehicles
JP3555367B2 (en) Control device and method for automatic transmission
JPH11159605A (en) Control device of automatic transmission and method therefor
JP2016183713A (en) Lock-up clutch control device
JP3630199B2 (en) Output torque control device for internal combustion engine for vehicle
JPH11325232A (en) Control device and method for clutch hydraulic pressure of automatic transmission
US5827151A (en) Control system for internal combustion engines for vehicles
JP3917675B2 (en) Method and apparatus for controlling the output of a motor vehicle drive
US6032095A (en) Control apparatus for an automatic transmission of a vehicle and method
JPH06207660A (en) Device for controlling vehicle drive power and method thereof
US6183394B1 (en) Control apparatus and method for an automatic transmission of a vehicle
US6438479B1 (en) Control apparatus for an automatic transmission of a vehicle and method
JPH08291860A (en) Transmission controller
JPH11291794A (en) Control device and control method of automatic transmission
JP2004003671A (en) Control device for automatic transmission
JP2002340171A (en) Control device and control method for automatic transmission
JP3041726B2 (en) Output shaft torque control device for automatic transmission
Wentao et al. Research on control strategy of shifting progress
JP2818889B2 (en) Fluid coupling slip control device