JPH11144864A - Organic electroluminescent element and manufacture thereof - Google Patents

Organic electroluminescent element and manufacture thereof

Info

Publication number
JPH11144864A
JPH11144864A JP9311803A JP31180397A JPH11144864A JP H11144864 A JPH11144864 A JP H11144864A JP 9311803 A JP9311803 A JP 9311803A JP 31180397 A JP31180397 A JP 31180397A JP H11144864 A JPH11144864 A JP H11144864A
Authority
JP
Japan
Prior art keywords
light emitting
gas barrier
organic electroluminescent
layer
electroluminescent device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9311803A
Other languages
Japanese (ja)
Inventor
Yoshiharu Sato
佳晴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9311803A priority Critical patent/JPH11144864A/en
Publication of JPH11144864A publication Critical patent/JPH11144864A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electroluminescent element capable of retaining stable electroluminescent property for a long duration and of preventing dark spot formation. SOLUTION: This organic electroluminescent element comprises an insulating substrate 1, an electroluminescent part constituted of a positive electrode 2, an organic electroluminescent layer 3, and a negative electrode 4 formed on the substrate, and an outer air shielding plate 6 for covering the electroluminescent part. A resin layer 7 is so formed in a gap between the substrate 1 and the outer air shielding plate 6 as to surround the electroluminescent part and seal the electroluminescent part and at the same time a gas barrier membrane 8 mainly containing silicon oxide, nitride and/or oxynitride is formed on the outside face of the resin layer 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電界発光素子及
びその製造方法に関するものであり、詳しくは、有機化
合物から成る発光層に電界をかけて光を放出する薄膜型
デバイスの封止方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescent device and a method of manufacturing the same, and more particularly, to a method of sealing a thin film device which emits light by applying an electric field to a light emitting layer made of an organic compound. It is.

【0002】[0002]

【従来の技術】従来、薄膜型の電界発光(EL)素子と
しては、無機材料のII−VI族化合物半導体であるZn
S、CaS、SrS等に、発光中心であるMnや希土類
元素(Eu、Ce、Tb、Sm等)をドープしたものが
一般的であるが、上記の無機材料から作製したEL素子
は、 1)交流電源駆動が必要(50〜1000Hz)、 2)駆動電圧が高い(〜200V)、 3)フルカラー化が困難(特に青色)、 4)周辺駆動回路のコストが高い、 という問題点を有している。
2. Description of the Related Art Conventionally, as a thin film type electroluminescent (EL) element, Zn, which is a group II-VI compound semiconductor of an inorganic material, is used.
In general, S, CaS, SrS, and the like are doped with Mn or a rare earth element (Eu, Ce, Tb, Sm, or the like) which is a luminescence center. However, EL devices manufactured from the above inorganic materials include: 1) AC power supply is required (50 to 1000 Hz), 2) High drive voltage (up to 200 V), 3) It is difficult to make full color (especially blue), 4) Cost of peripheral drive circuit is high. I have.

【0003】近年、上記問題点の改良のため、有機薄膜
を用いたEL素子の開発が行われるようになった。特
に、発光効率を高めるため、電極からのキャリアー注入
の効率向上を目的として電極の種類の最適化を行い、芳
香族ジアミンから成る正孔輸送層と8−ヒドロキシキノ
リンのアルミニウム錯体から成る発光層とを設けた有機
電界発光素子の開発(Appl.Phys.Let
t.,51巻,913頁,1987年)により、従来の
アントラセン等の単結晶を用いたEL素子と比較して発
光効率の大幅な改善がなされ、実用特性に近づいてい
る。
[0003] In recent years, in order to improve the above problems, EL devices using organic thin films have been developed. In particular, in order to enhance the luminous efficiency, the type of the electrode was optimized for the purpose of improving the efficiency of carrier injection from the electrode, and a hole transport layer composed of an aromatic diamine and a luminescent layer composed of an aluminum complex of 8-hydroxyquinoline were used. Of an organic electroluminescent device provided with a device (Appl. Phys. Let
t. , Vol. 51, p. 913, 1987), the luminous efficiency is greatly improved as compared with a conventional EL device using a single crystal such as anthracene, and the practical characteristics are approached.

【0004】上記の様な低分子材料を用いた電界発光素
子の他にも、発光層の材料として、ポリ(p−フェニレ
ンビニレン)(Nature,347巻,539頁,1
990年他)、ポリ[2−メトキシ−5−(2−エチル
ヘキシルオキシ)−1,4−フェニレンビニレン](A
ppl.Phys.Lett.,58巻,1982頁,
1991年他)、ポリ(3−アルキルチオフェン)(J
pn.J.Appl.Phys.,30巻,L1938
頁,1991年他)等の高分子材料を用いた電界発光素
子の開発や、ポリビニルカルバゾール等の高分子に低分
子の発光材料と電子移動材料を混合した素子(応用物
理,61巻,1044頁,1992年)の開発も行われ
ている。
In addition to the electroluminescent device using a low molecular material as described above, poly (p-phenylenevinylene) (Nature, 347, 539, 1) may be used as a material for the light emitting layer.
990 et al.), Poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene] (A
ppl. Phys. Lett. 58, 1982,
1991 et al.), Poly (3-alkylthiophene) (J
pn. J. Appl. Phys. , 30 volumes, L1938
1991, et al.) And the development of an electroluminescent device using a polymer material, and a device in which a low molecular light emitting material and an electron transfer material are mixed with a polymer such as polyvinyl carbazole (Applied Physics, vol. 61, p. 1044) , 1992).

【0005】このような有機電界発光素子においては、
通常、陽極としてはインジウム錫酸化物(ITO)のよ
うな透明電極が用いられ、陰極としては電子注入を効率
よく行うために、マグネシウム、銀合金、アルミニウ
ム、リチウム合金、カルシウム等の仕事関数の低い金属
電極が用いられている。しかし、これらの陰極材料は大
気中の水分や酸素により容易に酸化し、その結果、陰極
が有機層から剥離し一般にダークスポット(素子の発光
面において発光しない部分をさす)と呼ばれる欠陥が発
生する。この有機電界発光素子内のダークスポットの数
や大きさは、長期間の素子の保存または駆動の際に増加
し、そのために素子の不安定性をもたらし寿命を短いも
のとしている。従って、有機電界発光素子の安定性を向
上させ信頼性を高めるためには、素子を大気中の水分や
酸素から保護するための封止が必要不可欠となってい
る。
In such an organic electroluminescent device,
Usually, a transparent electrode such as indium tin oxide (ITO) is used as an anode, and a low work function of magnesium, silver alloy, aluminum, lithium alloy, calcium, etc. is used as a cathode in order to efficiently inject electrons. Metal electrodes are used. However, these cathode materials are easily oxidized by moisture and oxygen in the atmosphere, and as a result, the cathode is separated from the organic layer, and a defect generally called a dark spot (refers to a portion that does not emit light on the light emitting surface of the device) occurs. . The number and size of dark spots in the organic electroluminescent device increase when the device is stored or driven for a long period of time, thereby causing instability of the device and shortening its life. Therefore, in order to improve the stability and reliability of the organic electroluminescent device, it is essential to seal the device to protect the device from moisture and oxygen in the atmosphere.

【0006】有機電界発光素子の封止方法として、アク
リル樹脂でモールドする方法(特開平3−37991号
公報)、気密ケース内にP2 5 とともに入れて外気か
ら遮断する方法(特開平3−261091号公報)、金
属の酸化物等の保護膜を設けた後にガラス板等を用いて
気密にする方法(特開平4−212284号公報)、素
子上にプラズマ重合膜及び光硬化型樹脂層を設ける方法
(特開平4−267097号公報)、フッ素化炭素から
なる不活性液体中に保持する方法(特開平4−3638
90号公報他)、高分子保護膜を設けた後シリコーンオ
イル中に保持する方法(特開平5−36475号公
報)、無機酸化物等の保護膜の上にポリビニルアルコー
ルを塗布したガラス板をエポキシ樹脂で接着する方法
(特開平5−89959号公報)、流動パラフィンやシ
リコーンオイル中に封じ込める方法(特開平5−129
080号公報)、耐湿性光硬化性樹脂層を用いてSiO
2 層を介して素子上に透水性が小さい基板を接着する方
法(特開平5−182759号公報)等が開示されてい
る。
As a method of sealing an organic electroluminescent element, a method of molding with an acrylic resin (Japanese Patent Application Laid-Open No. 3-37991), a method of putting it together with P 2 O 5 in an airtight case and shielding it from the outside air (Japanese Patent Application Laid-Open No. 3-37991). No. 261091), a method of providing a protective film of a metal oxide or the like and then making it airtight using a glass plate or the like (Japanese Patent Application Laid-Open No. 4-212284), and disposing a plasma polymerized film and a photocurable resin layer on the element. (Japanese Patent Application Laid-Open No. 4-267097), and a method of holding in an inert liquid composed of fluorinated carbon (Japanese Patent Application Laid-Open No. 4-3638).
No. 90, etc.), a method in which a polymer protective film is provided and then held in silicone oil (Japanese Patent Application Laid-Open No. 5-36475). A method of bonding with a resin (JP-A-5-89959), a method of sealing in liquid paraffin or silicone oil (JP-A-5-129)
080), using a moisture-resistant photocurable resin layer to form SiO2
A method of bonding a substrate having low water permeability to an element via two layers (JP-A-5-182759) and the like are disclosed.

【0007】しかしながら、従来の有機電界発光素子の
封止方法はいずれも満足できるものではなかった。例え
ば、吸湿剤とともに気密構造に素子を封じ込めただけの
方法はダークスポットの抑制が不十分である。また、フ
ッ素化炭素やシリコーンオイル中に保持する方法は、液
体を注入する工程を含むことにより封止工程が煩雑にな
るだけではなく、ダークスポットの増加も完全には防げ
ず、むしろ液体が陰極と有機層の界面に侵入して陰極の
剥離を促進する問題もある。紫外線硬化樹脂で直接素子
を接着封止する方法は、接着剤に含まれる溶剤による素
子のダメージや紫外線によるダメージがあり、硬化時の
応力歪によって陰極が有機層から剥離する等が起こり実
用的ではない。光硬化性や熱硬化性のエポキシ樹脂を素
子の外周部に塗布し背面ガラス基板等を用いる封止方法
では、硬化後の樹脂自体の透湿度(JIS Z020
8)が10[g/m2 /24時間]程度であり、大気中
の水分に極めて敏感な有機電界発光素子の封止用接着剤
としては不十分なのが現状である。有機電界発光素子の
ダークスポットによる劣化が改善されず発光特性が不安
定なことは、ファクシミリ、複写機、液晶ディスプレイ
のバックライト等の光源としては大きな問題であり、フ
ラットパネル・ディスプレイ等の表示素子としても望ま
しくない特性である。
[0007] However, none of the conventional methods for sealing an organic electroluminescent element has been satisfactory. For example, a method in which an element is simply sealed in an airtight structure together with a moisture absorbent does not sufficiently suppress dark spots. In addition, the method of holding in fluorinated carbon or silicone oil not only complicates the sealing step by including the step of injecting the liquid, but also does not completely prevent the increase of dark spots. In addition, there is a problem that the cathode penetrates into the interface between the cathode and the organic layer to promote the separation of the cathode. The method of directly bonding and sealing the element with an ultraviolet curable resin involves damage to the element due to a solvent contained in the adhesive and damage due to ultraviolet rays, and the stress is distorted during curing, such that the cathode is peeled off from the organic layer and the like. Absent. In a sealing method in which a photocurable or thermosetting epoxy resin is applied to the outer peripheral portion of the element and a rear glass substrate or the like is used, the moisture permeability of the cured resin itself (JIS Z020) is used.
8) is about 10 [g / m 2/24 hr], the insufficient as a sealing adhesive for highly sensitive organic electroluminescent element to atmospheric moisture at present. The fact that the deterioration due to dark spots of the organic electroluminescent device is not improved and the light emission characteristics are unstable is a major problem as a light source for facsimile machines, copiers, backlights of liquid crystal displays, and display devices such as flat panel displays. This is an undesirable characteristic.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記実状に
鑑み、ダークスポットの発生を防止し、長期に亘って優
れた発光特性を維持することの可能な有機電界発光素子
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide an organic electroluminescent device capable of preventing dark spots from occurring and maintaining excellent light emitting characteristics for a long period of time. is there.

【0009】[0009]

【課題を解決するための手段】本発明は、かかる目的達
成のために鋭意検討した結果、素子の外周部に樹脂層を
設けて素子を支持する絶縁性基板と対向して外気遮蔽材
を接着した後、この樹脂層の大気側表面に、シリコンの
酸化膜、窒化膜または酸化窒化膜から成るガスバリア膜
で被覆することにより上記課題を解決することができる
ことを見い出し、本発明を完成するに至った。
According to the present invention, as a result of intensive studies for achieving the above object, a resin layer is provided on the outer periphery of the element, and an outside air shielding material is adhered to the insulating substrate which supports the element. After that, it has been found that the above problem can be solved by coating the air-side surface of the resin layer with a gas barrier film made of a silicon oxide film, a nitride film or an oxynitride film, and completed the present invention. Was.

【0010】即ち、本発明は、絶縁性基板と、該基板上
に形成された陽極、有機発光層及び陰極を有する発光部
と、該発光部を覆う外気遮蔽板とを有し、かつ、基板と
外気遮蔽板との間隙に発光部を囲繞するように樹脂層を
形成して発光部を封止すると共に該樹脂層の外側表面に
シリコンの酸化物、窒化物及び/又は酸化窒化物を主成
分とするガスバリア膜を形成してなることを特徴とする
有機電界発光素子を提供するものである。
That is, the present invention provides an insulating substrate, a light emitting portion having an anode, an organic light emitting layer, and a cathode formed on the substrate, and an outside air shielding plate covering the light emitting portion. A resin layer is formed so as to surround the light emitting portion in a gap between the light emitting portion and the outside air shielding plate, and the light emitting portion is sealed, and silicon oxide, nitride and / or oxynitride is mainly formed on the outer surface of the resin layer. An object of the present invention is to provide an organic electroluminescent device formed by forming a gas barrier film as a component.

【0011】[0011]

【発明の実施の形態】図4は本発明に用いられる一般的
な有機電界発光素子の発光部の構造例を模式的に示す断
面図であり、図4(A)においては、基板1の上に、陽
極2が形成され、その上に有機発光層3と陰極4が積層
されて発光部5が形成されている。基板1は有機電界発
光素子の支持体となるものであり、石英やガラスの板、
金属板や金属箔、プラスチックフィルムやシートなどが
用いられる。特にガラス板や、ポリエステル、ポリメタ
クリレート、ポリカーボネート、ポリスルホンなどの透
明な合成樹脂の板が好ましい。合成樹脂基板を使用する
場合にはガスバリア性に留意する必要があり、基板のガ
スバリア性が小さすぎると、基板を通過した外気により
有機電界発光素子が劣化することがあるので好ましくな
い。このため、合成樹脂基板の少なくとも片面に緻密な
シリコン酸化膜等を設けてガスバリア性を確保する方法
も好ましい方法の一つである。
FIG. 4 is a cross-sectional view schematically showing an example of the structure of a light-emitting portion of a general organic electroluminescent device used in the present invention. In FIG. An organic light emitting layer 3 and a cathode 4 are laminated thereon to form a light emitting portion 5. The substrate 1 serves as a support for the organic electroluminescent device, and is made of a quartz or glass plate,
Metal plates, metal foils, plastic films and sheets are used. Particularly, a glass plate or a plate of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to the gas barrier property. If the gas barrier property of the substrate is too small, the organic air-emitting device may be deteriorated by outside air passing through the substrate, which is not preferable. For this reason, a method of providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate to secure gas barrier properties is also a preferable method.

【0012】基板1上には陽極2が設けられるが、陽極
2は有機発光層3への正孔注入の役割を果たすものであ
る。この陽極2は、通常、アルミニウム、金、銀、ニッ
ケル、パラジウム、白金等の金属、インジウム及び/又
はスズの酸化物などの金属酸化物、ヨウ化銅などのハロ
ゲン化金属、カーボンブラック、あるいは、ポリ(3−
メチルチオフェン)、ポリピロール、ポリアニリン等の
導電性高分子などによって構成される。陽極2の形成は
通常、スパッタリング法、真空蒸着法などにより行われ
る。また、銀などの金属微粒子、ヨウ化銅などの微粒
子、カーボンブラック、導電性の金属酸化物微粒子、導
電性高分子微粉末などの場合には、適当なバインダー樹
脂溶液に分散し、基板1上に塗布することにより陽極2
を形成することもできる。
An anode 2 is provided on a substrate 1. The anode 2 plays a role of injecting holes into the organic light emitting layer 3. The anode 2 is usually made of a metal such as aluminum, gold, silver, nickel, palladium, and platinum, a metal oxide such as an oxide of indium and / or tin, a metal halide such as copper iodide, carbon black, or Poly (3-
(Methylthiophene), conductive polymers such as polypyrrole and polyaniline. The formation of the anode 2 is usually performed by a sputtering method, a vacuum evaporation method, or the like. In the case of fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, or conductive polymer fine powder, they are dispersed in a suitable binder resin solution and Anode 2 by applying to
Can also be formed.

【0013】さらに、導電性高分子の場合は電解重合に
より直接基板1上に薄膜を形成したり、基板1上に導電
性高分子を塗布して陽極2を形成することもできる。陽
極2は異なる物質を積層して形成することも可能であ
る。陽極2の厚みは、必要とする透明性により異なる。
透明性が必要とされる場合は、可視光の透過率を、通
常、60%以上、好ましくは80%以上とすることが望
ましく、この場合、厚みは、通常、5〜1000nm、
好ましくは10〜500nm程度である。不透明でよい
場合は陽極2は基板1と同一肉厚でもよい。
Further, in the case of a conductive polymer, a thin film can be formed directly on the substrate 1 by electrolytic polymerization, or the conductive polymer can be applied on the substrate 1 to form the anode 2. The anode 2 can be formed by laminating different materials. The thickness of the anode 2 depends on the required transparency.
When transparency is required, it is desirable that the transmittance of visible light is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 5 to 1000 nm,
Preferably it is about 10 to 500 nm. If opaque, the anode 2 may have the same thickness as the substrate 1.

【0014】陽極2の上に形成された有機発光層3は、
電界を与えられた電極間において、陽極2から注入され
た正孔と陰極4から注入された電子を効率よく輸送して
再結合させ、かつ、再結合により効率よく発光する材料
から形成される。また、この有機発光層3は発光効率の
向上のために、図4(B)に示す様に、正孔輸送層3b
と電子輸送層3cに分割して機能分離型にすることがで
きる。
The organic light emitting layer 3 formed on the anode 2
It is made of a material that efficiently transports and recombines holes injected from the anode 2 and electrons injected from the cathode 4 between the electrodes to which the electric field is applied, and emits light efficiently by the recombination. Further, as shown in FIG. 4B, the organic light emitting layer 3 has a hole transporting layer 3b for improving luminous efficiency.
And the electron transport layer 3c to be of a function-separated type.

【0015】上記の機能分離型素子において、正孔輸送
層3bの材料としては、陽極2からの正孔注入効率が高
く、かつ、注入された正孔を効率よく輸送することがで
きる材料であることが望ましい。そのためには、イオン
化ポテンシャルが小さく、しかも正孔移動度が大きく、
さらに安定性に優れ、トラップとなる不純物が製造時や
使用時に発生しにくいものが好ましい。
In the above-mentioned function-separated element, the material of the hole transport layer 3b is a material having a high hole injection efficiency from the anode 2 and capable of transporting the injected holes efficiently. It is desirable. For that purpose, the ionization potential is small, and the hole mobility is large.
Further, it is preferable that the material has excellent stability and hardly generates impurities serving as traps at the time of production or use.

【0016】このような正孔輸送材料としては、例え
ば、1,1−ビス(4−ジ−p−トリルアミノフェニ
ル)シクロヘキサン等の3級芳香族アミンユニットを連
結した芳香族ジアミン化合物(特開昭59−19439
3号公報)、4,4' −ビス[N−(1−ナフチル)−
N−フェニルアミノ]ビフェニルで代表される2個以上
の3級アミンを含み2個以上の縮合芳香族環が窒素原子
に置換した芳香族アミン(特開平5−234681号公
報)、トリフェニルベンゼンの誘導体でスターバースト
構造を有する芳香族トリアミン(米国特許第4,92
3,774号)、N,N' −ジフェニル−N,N' −ビ
ス(3−メチルフェニル)ビフェニル−4−4' −ジア
ミン等の芳香族ジアミン(米国特許第4,764,62
5号)、分子全体として立体的に非対称なトリフェニル
アミン誘導体(特開平4−129271号公報)、ピレ
ニル基に芳香族ジアミノ基が複数個置換した化合物(特
開平4−175395号公報)、エチレン基で3級芳香
族アミンユニットを連結した芳香族ジアミン(特開平4
−264189号公報)、スチリル構造を有する芳香族
ジアミン(特開平4−290851号公報)、チオフェ
ン基で芳香族3級アミンユニットを連結したもの(特開
平4−304466号公報)、スターバースト型芳香族
トリアミン(特開平4−308688号公報)、ベンジ
ルフェニル化合物(特開平4−364153号公報)、
フルオレン基で3級アミンを連結したもの(特開平5−
25473号公報)、トリアミン化合物(特開平5−2
39455号公報)、ビスジピリジルアミノビフェニル
(特開平5−320634号公報)、N,N,N−トリ
フェニルアミン誘導体(特開平6−1972号公報)フ
ェノキサジン構造を有する芳香族ジアミン(特開平7−
138562号公報)、ジアミノフェニルフェナントリ
ジン誘導体(特開平7−252474号公報)、シラザ
ン化合物(米国特許第4,950,950号公報)、シ
ラナミン誘導体(特開平6−49079号公報)、ホス
ファミン誘導体(特開平6−25659号公報)等が挙
げられる。これらの化合物は、単独で用いてもよいし、
必要に応じて、各々、混合して用いてもよい。
As such a hole transport material, for example, an aromatic diamine compound in which tertiary aromatic amine units such as 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane are linked (Japanese Patent Laid-Open Publication No. 1959-19439
No. 3), 4,4'-bis [N- (1-naphthyl)-
Aromatic amines containing two or more tertiary amines represented by [N-phenylamino] biphenyl and having two or more condensed aromatic rings substituted with nitrogen atoms (JP-A-5-234681); Aromatic triamines having a starburst structure in derivatives (US Pat. No. 4,92
No. 3,774), aromatic diamines such as N, N′-diphenyl-N, N′-bis (3-methylphenyl) biphenyl-4-4′-diamine (US Pat. No. 4,764,62)
No. 5), a triphenylamine derivative which is sterically asymmetric as a whole molecule (JP-A-4-129271), a compound in which a pyrenyl group is substituted with a plurality of aromatic diamino groups (JP-A-4-175395), ethylene Diamine in which a tertiary aromatic amine unit is linked by a group
-264189), an aromatic diamine having a styryl structure (Japanese Patent Application Laid-Open No. 4-290851), a compound in which an aromatic tertiary amine unit is linked by a thiophene group (Japanese Patent Application Laid-Open No. 4-304466), a starburst type aromatic compound Aliphatic triamines (JP-A-4-308688), benzylphenyl compounds (JP-A-4-364153),
A tertiary amine linked by a fluorene group (Japanese Unexamined Patent Publication No.
No. 25473), triamine compounds (JP-A-5-252)
39455), bisdipyridylaminobiphenyl (JP-A-5-320634), N, N, N-triphenylamine derivative (JP-A-6-1972), and an aromatic diamine having a phenoxazine structure (Japanese Patent Laid-open No. −
138562), diaminophenylphenanthridine derivatives (JP-A-7-252474), silazane compounds (US Pat. No. 4,950,950), silanamin derivatives (JP-A-6-49079), phosphamine derivatives (JP-A-6-25659). These compounds may be used alone,
If necessary, they may be mixed and used.

【0017】上記の化合物以外に、正孔輸送層3bの材
料として、ポリビニルカルバゾールやポリシラン(Ap
pl.Phys.Lett.,59巻,2760頁,1
991年)、ポリフォスファゼン(特開平5−3109
49号公報)、ポリアミド(特開平5−310949号
公報)、ポリビニルトリフェニルアミン(特開平7−5
3953号公報)、トリフェニルアミン骨格を有する高
分子(特開平4−133065号公報)、トリフェニル
アミン単位をメチレン基等で連結した高分子(Synt
hetic Metals,55−57巻,4163
頁,1993年)、芳香族アミンを含有するポリメタク
リレート(J.Polym.Sci.,Polym.C
hem.Ed.,21巻,969頁,1983年)等の
高分子材料が挙げられる。
In addition to the above compounds, polyvinyl carbazole and polysilane (Ap
pl. Phys. Lett. 59, 2760, 1
991), polyphosphazene (JP-A-5-3109)
No. 49), polyamide (JP-A-5-310949), polyvinyl triphenylamine (JP-A-7-5).
3953), a polymer having a triphenylamine skeleton (Japanese Patent Application Laid-Open No. 4-1330065), and a polymer in which triphenylamine units are linked by a methylene group or the like (Synt.
hetic Metals, 55-57, 4163
P. 1993), polymethacrylates containing aromatic amines (J. Polym. Sci., Polym. C).
hem. Ed. , 21, 969, 1983).

【0018】上記の正孔輸送材料を塗布法あるいは真空
蒸着法により前記陽極2上に積層することにより正孔輸
送層3bを形成する。塗布法の場合は、正孔輸送材料を
1種または2種以上と、必要により正孔のトラップにな
らないバインダー樹脂や塗布性改良剤などの添加剤とを
添加し、溶解して塗布溶液を調製し、スピンコート法な
どの方法により陽極2上に塗布し、乾燥して正孔輸送層
3bを形成する。バインダー樹脂としては、ポリカーボ
ネート、ポリアリレート、ポリエステル等が挙げられ
る。バインダー樹脂は添加量が多いと正孔移動度を低下
させるので、少ない方が望ましく、通常、50重量%以
下が好ましい。
The hole transport layer 3b is formed by laminating the above hole transport material on the anode 2 by a coating method or a vacuum evaporation method. In the case of the coating method, one or more hole transport materials and, if necessary, an additive such as a binder resin or a coating improver which does not trap holes are added and dissolved to prepare a coating solution. Then, it is coated on the anode 2 by a method such as spin coating, and dried to form the hole transport layer 3b. Examples of the binder resin include polycarbonate, polyarylate, and polyester. If the amount of the binder resin is large, the hole mobility is reduced, so that a small amount is desirable, and usually 50% by weight or less is preferable.

【0019】真空蒸着法の場合には、正孔輸送材料を真
空容器内に設置されたルツボに入れ、真空容器内を適当
なポンプで10-4Pa程度にまで排気した後、ルツボを
加熱して、正孔輸送材料を蒸発させ、ルツボと向き合っ
て置かれた基板1上の陽極2上に正孔輸送層3bを形成
させる。正孔輸送層3bの膜厚は、通常、10〜300
nm、好ましくは30〜100nmである。この様に薄
い膜を一様に形成するためには、一般に真空蒸着法が望
ましい。
In the case of the vacuum deposition method, the hole transporting material is put into a crucible placed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 -4 Pa by a suitable pump, and then the crucible is heated. Then, the hole transport material is evaporated to form a hole transport layer 3b on the anode 2 on the substrate 1 placed facing the crucible. The film thickness of the hole transport layer 3b is usually from 10 to 300.
nm, preferably 30-100 nm. In order to uniformly form such a thin film, a vacuum deposition method is generally desirable.

【0020】また、正孔注入の効率をさらに向上させ、
かつ、有機層全体の陽極への付着力を改善させるため
に、図4(C)に示すように、正孔輸送層3bと陽極2
との間に陽極バッファ層3aを挿入することもできる。
陽極バッファ層3aを挿入することで、初期の素子の駆
動電圧が下がると同時に、素子を定電流で連続駆動した
時の電圧上昇も抑制される効果がある。陽極バッファ層
に用いられる材料としては、陽極とのコンタクトがよく
均一な薄膜が形成でき、熱的に安定、すなわち、融点及
びガラス転移温度が高く、融点としては300℃以上、
ガラス転移温度としては100℃以上のものが望まし
い。さらに、イオン化ポテンシャルが低く陽極からの正
孔注入が容易なこと、正孔移動度が大きいことが挙げら
れる。
Further, the efficiency of hole injection is further improved,
Further, in order to improve the adhesion of the whole organic layer to the anode, as shown in FIG.
The anode buffer layer 3a can also be inserted between the above.
The insertion of the anode buffer layer 3a has the effect of reducing the initial drive voltage of the device and suppressing the voltage rise when the device is continuously driven with a constant current. As a material used for the anode buffer layer, a uniform thin film can be formed with good contact with the anode, and is thermally stable, that is, has a high melting point and a high glass transition temperature, and a melting point of 300 ° C. or higher.
A glass transition temperature of 100 ° C. or higher is desirable. In addition, the ionization potential is low, holes can be easily injected from the anode, and the hole mobility is high.

【0021】この目的のために、ポルフィリン誘導体や
フタロシアニン化合物(特開昭63−295695号公
報)、スターバスト型芳香族トリアミン(特開平4−3
08688号公報)、ヒドラゾン化合物(特開平4−3
20483号公報)、アルコキシ置換の芳香族ジアミン
誘導体(特開平4−220995号公報)、p−(9−
アントリル)−N,N−ジ−p−トリルアニリン(特開
平3−111485号公報)、ポリチエニレンビニレン
やポリ−p−フェニレンビニレン(特開平4−1451
92号公報)、ポリアニン(Appl.Phys.Le
tt.,64巻,1245頁,1994年参照)等の有
機化合物や、スパッタ・カーボン膜(特開平8−315
73号公報)や、バナジウム酸化物、ルテニウム酸化
物、モリブデン酸化物等の金属酸化物(第43回応用物
理学関係連合講演会,27a−SY−9,1996年)
を用いることができる。
For this purpose, porphyrin derivatives and phthalocyanine compounds (JP-A-63-29569) and star-bust-type aromatic triamines (JP-A-Hei.
No. 08688), hydrazone compounds (Japanese Unexamined Patent Publication No. 4-3)
20483), an alkoxy-substituted aromatic diamine derivative (JP-A-4-220995), p- (9-
(Anthryl) -N, N-di-p-tolylaniline (JP-A-3-111485), polythienylenevinylene and poly-p-phenylenevinylene (JP-A-4-1451)
No. 92), polyanine (Appl. Phys. Le).
tt. 64, p. 1245, 1994) and sputtered carbon films (JP-A-8-315).
No. 73) and metal oxides such as vanadium oxide, ruthenium oxide and molybdenum oxide (The 43rd Joint Lecture on Applied Physics, 27a-SY-9, 1996)
Can be used.

【0022】上記陽極バッファ層材料としてよく使用さ
れる化合物としては、ポルフィリン化合物またはフタロ
シアニン化合物が挙げられる。これらの化合物は中心金
属を有していてもよいし、無金属のものでもよい。好ま
しいこれらの化合物の具体例として、以下の化合物が挙
げられる: ポルフィン 5,10,15,20−テトラフェニル−21H,23
H−ポルフィン 5,10,15,20−テトラフェニル−21H,23
H−ポルフィンコバルト(II) 5,10,15,20−テトラフェニル−21H,23
H−ポルフィン銅(II) 5,10,15,20−テトラフェニル−21H,23
H−ポルフィン亜鉛(II) 5,10,15,20−テトラフェニル−21H,23
H−ポルフィンバナジウム(IV) オキシド 5,10,15,20−テトラ(4−ピリジル)−21
H,23H−ポルフィン 29H,31H−フタロシアニン 銅(II)フタロシアニン 亜鉛(II)フタロシアニン チタンフタロシアニンオキシド マグネシウムフタロシアニン 鉛フタロシアニン 銅(II)4,4' ,4'', 4''' −テトラアザ−29
H,31H−フタロシアニン 陽極バッファ層3aの場合も、正孔輸送層3bと同様に
して薄膜形成可能であるが、無機物の場合には、さら
に、スパッタ法や電子ビーム蒸着法、プラズマCVD法
が用いられる。
Examples of the compound often used as the material of the anode buffer layer include a porphyrin compound and a phthalocyanine compound. These compounds may have a central metal or may be non-metallic. Specific examples of preferred such compounds include the following compounds: porphine 5,10,15,20-tetraphenyl-21H, 23
H-porphine 5,10,15,20-tetraphenyl-21H, 23
H-porphine cobalt (II) 5,10,15,20-tetraphenyl-21H, 23
H-porphine copper (II) 5,10,15,20-tetraphenyl-21H, 23
H-porphine zinc (II) 5,10,15,20-tetraphenyl-21H, 23
H-porphine vanadium (IV) oxide 5,10,15,20-tetra (4-pyridyl) -21
H, 23H-porphine 29H, 31H-phthalocyanine copper (II) phthalocyanine zinc (II) phthalocyanine titanium phthalocyanine oxide magnesium phthalocyanine lead phthalocyanine copper (II) 4,4 ′, 4 ″, 4 ″ ′-tetraaza-29
In the case of the H, 31H-phthalocyanine anode buffer layer 3a, a thin film can be formed in the same manner as the hole transporting layer 3b. However, in the case of an inorganic substance, a sputtering method, an electron beam evaporation method, or a plasma CVD method is used. Can be

【0023】以上の様にして形成される陽極バッファ層
3aの膜厚は、通常、3〜100nm、好ましくは10
〜50nmである。正孔輸送層3bの上には電子輸送層
3cが設けられる。電子輸送層3cは、電界を与えられ
た電極間において陰極からの電子を効率よく正孔輸送層
3bの方向に輸送することができる化合物により形成さ
れる。
The thickness of the anode buffer layer 3a formed as described above is usually 3 to 100 nm, preferably 10 to 100 nm.
5050 nm. An electron transport layer 3c is provided on the hole transport layer 3b. The electron transport layer 3c is formed of a compound capable of efficiently transporting electrons from the cathode in the direction of the hole transport layer 3b between electrodes to which an electric field is applied.

【0024】電子輸送層3cに用いられる電子輸送性化
合物としては、陰極4からの電子注入効率が高く、か
つ、注入された電子を効率よく輸送することができる化
合物であることが望ましい。そのためには、電子親和力
が大きく、しかも電子移動度が大きく、さらに安定性に
優れトラップとなる不純物が製造時や使用時に発生しに
くい化合物であることが好ましい。
The electron transporting compound used for the electron transporting layer 3c is preferably a compound having a high electron injection efficiency from the cathode 4 and capable of efficiently transporting the injected electrons. For this purpose, it is preferable that the compound be a compound having a high electron affinity, a high electron mobility, and further having excellent stability and being less likely to generate trapping impurities during production or use.

【0025】このような条件を満たす材料としては、8
−ヒドロキシキノリンのアルミニウム錯体などの金属錯
体(特開昭59−194393号公報)、10−ヒドロ
キシベンゾ[h]キノリンの金属錯体(特開平6−32
2362号公報)、ビススチリルベンゼン誘導体(特開
平1−245087号公報、同2−222484号公
報)、希土類錯体(特開平1−256584号公報)、
ジスチリルピラジン誘導体(特開平2−252793号
公報)、p−フェニレン化合物(特開平3−33183
号公報)、チアジアゾロピリジン誘導体(特開平3−3
7292号公報)、ピロロピリジン誘導体(特開平3−
37293号公報)、ナフチリジン誘導体(特開平3−
203982号公報)、シロール誘導体(日本化学会第
70春季年会,2D1 02及び2D1 03,199
6年)などが挙げられる。
Materials satisfying such conditions include 8
Metal complexes such as aluminum complexes of 10-hydroxyquinoline (JP-A-59-194393) and metal complexes of 10-hydroxybenzo [h] quinoline (JP-A-6-32)
No. 2362), bisstyrylbenzene derivatives (JP-A-1-245087 and JP-A-2-222484), rare-earth complexes (JP-A-1-256584),
Distyrylpyrazine derivatives (JP-A-2-252793) and p-phenylene compounds (JP-A-3-33183)
Japanese Patent Application Laid-Open No. 3-3), thiadiazolopyridine derivatives (Japanese Unexamined Patent Application Publication No. 3-3)
7292), pyrrolopyridine derivatives (Japanese Unexamined Patent Publication No.
37293), naphthyridine derivatives (Japanese Unexamined Patent Publication No.
No. 203982), silole derivatives (Chemical Society of Japan 70th Annual Meeting, 2D102 and 2D103, 199).
6 years).

【0026】これらの化合物を用いた電子輸送層3c
は、一般に、電子を輸送する役割と、正孔と電子の再結
合の際に発光をもたらす役割を同時に果たすことができ
る。正孔輸送層3bが発光機能を有する場合は、電子輸
送層3cは電子を輸送する役割だけを果たす場合もあ
る。素子の発光効率を向上させるとともに発光色を変え
る目的で、例えば、8−ヒドロキシキノリンのアルミニ
ウム錯体をホスト材料として、クマリン等のレーザ用蛍
光色素をドープすることができる。この方法の利点とし
て、 1)高効率の蛍光色素により発光効率が向上、 2)蛍光色素の選択により発光波長が可変、 3)濃度消光を起こす蛍光色素も使用可能、 4)薄膜性のわるい蛍光色素も使用可能、 等が挙げられる。
Electron transport layer 3c using these compounds
Can generally play a role of transporting electrons and a role of providing light emission upon recombination of holes and electrons. When the hole transport layer 3b has a light emitting function, the electron transport layer 3c may only play the role of transporting electrons. For the purpose of improving the luminous efficiency of the device and changing the luminescent color, for example, a fluorescent dye for laser such as coumarin can be doped using an aluminum complex of 8-hydroxyquinoline as a host material. The advantages of this method are: 1) improved luminous efficiency by high-efficiency fluorescent dye, 2) variable emission wavelength by selection of fluorescent dye, 3) fluorescent dye which causes concentration quenching can be used, 4) fluorescent light with poor thin film property Dyes can also be used.

【0027】素子の駆動寿命を改善する目的において
も、前記電子輸送層材料をホスト材料として、蛍光色素
をドープすることは有効である。例えば、8−ヒドロキ
シキノリンのアルミニウム錯体などの金属錯体をホスト
材料として、ルブレンに代表されるナフタセン誘導体
(特開平4−335087号公報)、キナクリドン誘導
体(特開平5−70773号公報)、ペリレン等の縮合
多環芳香族環(特開平5−198377号公報)を、ホ
スト材料に対して0.1〜10重量%ドープすることに
より、素子の発光特性、特に駆動安定性を大きく向上さ
せることができる。
For the purpose of improving the driving life of the device, it is effective to dope a fluorescent dye with the electron transport layer material as a host material. For example, using a metal complex such as an aluminum complex of 8-hydroxyquinoline as a host material, naphthacene derivatives represented by rubrene (JP-A-4-335087), quinacridone derivatives (JP-A-5-70773), perylene, etc. By doping a condensed polycyclic aromatic ring (JP-A-5-198377) with 0.1 to 10% by weight based on the host material, it is possible to greatly improve the light-emitting characteristics of the device, especially the driving stability. .

【0028】電子輸送層3cの膜厚は、通常、10〜2
00nm、好ましくは30〜100nmである。電子輸
送層3cも正孔輸送層3bと同様の方法で形成すること
ができるが、通常は真空蒸着法が用いられる。図4
(A)のように機能分離を行わない単層型の有機発光層
3としては、先に挙げたポリ(p−フェニレンビニレ
ン)(Nature,347巻,539頁,1990年
他)、ポリ[2−メトキシ−5−(2−エチルヘキシル
オキシ)−1,4−フェニレンビニレン](Appl.
Phys.Lett.,58巻,1982頁,1991
年他)、ポリ(3−アルキルチオフェン)(Jpn.
J.Appl.Phys.,30巻,L1938頁,1
991年他)等の高分子材料や、ポリビニルカルバゾー
ル等の高分子に発光材料と電子移動材料を混合した系
(応用物理,61巻,1044頁,1992年)等が挙
げられる。
The thickness of the electron transport layer 3c is usually 10 to 2
00 nm, preferably 30 to 100 nm. The electron transport layer 3c can be formed by the same method as the hole transport layer 3b, but usually, a vacuum evaporation method is used. FIG.
Examples of the single-layer organic light-emitting layer 3 that does not perform functional separation as in (A) include poly (p-phenylenevinylene) (Nature, 347, 539, 1990, etc.) and poly [2 -Methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene] (Appl.
Phys. Lett. 58, 1982, 1991.
Year, etc.), poly (3-alkylthiophene) (Jpn.
J. Appl. Phys. , Vol. 30, L1938, 1
991 et al.) And a system in which a light emitting material and an electron transfer material are mixed with a polymer such as polyvinyl carbazole (Applied Physics, Vol. 61, p. 1044, 1992).

【0029】有機電界発光素子の発光効率をさらに向上
させる方法として、有機発光層3の上にさらに電子注入
層(図示せず)を積層することもできる。この電子注入
層に用いられる化合物には、陰極からの電子注入が容易
で、電子の輸送能力がさらに大きいことが要求される。
この様な電子輸送材料としては、既に発光層材料として
挙げた8−ヒドロキシキノリンのアルミ錯体、オキサジ
アゾール誘導体(Appl.Phys.Lett.,5
5巻,1489頁,1989年他)やそれらをポリメタ
クリル酸メチル(PMMA)等の樹脂に分散した系(A
ppl.Phys.Lett.,61巻,2793頁,
1992年)、フェナントロリン誘導体(特開平5−3
31459号公報)、2−t−ブチル−9,10−N,
N' −ジシアノアントラキノンジイミン(Phys.S
tat.Sol.(a),142巻,489頁,199
4年)、n型水素化非晶質炭化シリコン、n型硫化亜
鉛、n型セレン化亜鉛等が挙げられる。電子注入層の膜
厚は、通常、5〜200nm、好ましくは10〜100
nmである。
As a method for further improving the luminous efficiency of the organic electroluminescent device, an electron injection layer (not shown) can be further laminated on the organic luminescent layer 3. The compound used for the electron injection layer is required to be capable of easily injecting electrons from the cathode and having a higher electron transport ability.
Examples of such electron transport materials include 8-hydroxyquinoline aluminum complexes and oxadiazole derivatives (Appl. Phys. Lett., 5
5, p. 1489, 1989, etc.) and a system in which they are dispersed in a resin such as polymethyl methacrylate (PMMA) (A
ppl. Phys. Lett. , 61, 2793,
1992), phenanthroline derivatives (JP-A-5-3
No. 31459), 2-t-butyl-9,10-N,
N'-dicyanoanthraquinone diimine (Phys. S
tat. Sol. (A), 142, 489, 199
4 years), n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type zinc selenide, and the like. The thickness of the electron injection layer is usually 5 to 200 nm, preferably 10 to 100 nm.
nm.

【0030】陰極4は、有機発光層3に電子を注入する
役割を果たす。陰極4として用いられる材料は、前記陽
極2に使用される材料を用いることが可能であるが、効
率よく電子注入を行うには、仕事関数の低い金属が好ま
しく、スズ、マグネシウム、インジウム、カルシウム、
アルミニウム、銀等の適当な金属またはそれらの合金が
用いられる。
The cathode 4 plays a role of injecting electrons into the organic light emitting layer 3. As the material used for the cathode 4, the material used for the anode 2 can be used. However, for efficient electron injection, a metal having a low work function is preferable, and tin, magnesium, indium, calcium,
A suitable metal such as aluminum or silver or an alloy thereof is used.

【0031】具体例としては、マグネシウム−銀合金、
マグネシウム−インジウム合金、アルミニウム−リチウ
ム合金等の低仕事関数合金電極が挙げられる。さらに、
陰極4と有機発光層3または電子輸送層3cの界面にL
iF、Li2 O等の極薄膜(0.1〜5nm)を挿入す
ることも、素子の効率を向上させる有効な方法である。
陰極4の膜厚は通常、陽極2と同様である。低仕事関数
金属から成る陰極を保護する目的で、この上にさらに、
仕事関数が高く大気に対して安定な金属層を積層するこ
とは素子の安定性を増す。この目的のために、アルミニ
ウム、銀、ニッケル、クロム、金、白金等の金属が使わ
れる。
Specific examples include a magnesium-silver alloy,
Low work function alloy electrodes such as a magnesium-indium alloy and an aluminum-lithium alloy are exemplified. further,
L is applied to the interface between the cathode 4 and the organic light emitting layer 3 or the electron transport layer 3c.
Inserting an ultra-thin film (0.1 to 5 nm) such as iF or Li 2 O is also an effective method for improving the efficiency of the device.
The thickness of the cathode 4 is usually the same as that of the anode 2. In order to protect the cathode made of low work function metal,
Stacking a metal layer having a high work function and being stable to the atmosphere increases the stability of the device. For this purpose, metals such as aluminum, silver, nickel, chromium, gold, platinum and the like are used.

【0032】尚、図4(A)とは逆の構造、すなわち、
基板上に陰極4、有機発光層3、陽極2の順に積層する
ことも可能であり、既述したように少なくとも一方が透
明性の高い2枚の基板の間に本発明の有機電界発光素子
を設けることも可能である。同様に図4(B)及び図4
(C)に示した前記各層構成とは逆の構造に積層するこ
とも可能である。有機電界発光素子の安定性及び信頼性
を向上させるために素子全体を封止する必要がある。以
下に、本発明の封止方法を図3の構造例を用いて説明す
る。
The structure opposite to that shown in FIG.
It is also possible to laminate the cathode 4, the organic light emitting layer 3, and the anode 2 in this order on the substrate. As described above, at least one of the two substrates is highly transparent and the organic electroluminescent device of the present invention is disposed between the two substrates. It is also possible to provide. 4 (B) and FIG.
It is also possible to laminate in a structure opposite to the above-mentioned respective layer constitutions shown in (C). In order to improve the stability and reliability of the organic electroluminescent device, it is necessary to seal the entire device. Hereinafter, the sealing method of the present invention will be described with reference to the structural example of FIG.

【0033】有機電界発光素子の陰極は低仕事関数であ
るために、特に湿気により酸化され、酸化部分が高抵抗
化したり有機層から剥離するために、ダークスポットを
発生させやすい。従って、ダークスポットを抑制するた
めには、先ず、発光部5を外気からの水分を遮断した気
密な構造中に素子を置かなければならない。発光部5を
気密構造中に封止する具体的な方法として、発光部5を
支持する絶縁性基板1と対向して、ガスバリア性のある
板状もしくはシート状の外気遮蔽板6を被せると共に樹
脂7を発光部5の周囲を囲繞するように塗布して、貼り
合わせて封止する。外気遮蔽板6としては、絶縁性基板
1として既に挙げたものを使用することができ、石英や
ガラスの板、金属板や金属箔、プラスチックフィルムや
シートなどが用いられる。
Since the cathode of the organic electroluminescent device has a low work function, it is oxidized particularly by moisture, and the oxidized portion tends to have a high resistance or peel off from the organic layer, so that a dark spot is easily generated. Therefore, in order to suppress the dark spot, first, the light emitting unit 5 must be placed in an airtight structure in which moisture from outside air is blocked. As a specific method of sealing the light emitting unit 5 in an airtight structure, a plate-shaped or sheet-shaped outside air shielding plate 6 having gas barrier properties is placed opposite to the insulating substrate 1 supporting the light emitting unit 5 and a resin is formed. 7 is applied so as to surround the periphery of the light emitting unit 5, and bonded and sealed. As the outside air shielding plate 6, those already mentioned as the insulating substrate 1 can be used, and a quartz or glass plate, a metal plate or a metal foil, a plastic film or a sheet, or the like is used.

【0034】特にガラス板や、ポリエステル、ポリメタ
クリレート、ポリカーボネート、ポリスルホンなどの透
明な合成樹脂の板が好ましい。合成樹脂基板を使用する
場合にはガスバリア性に留意する必要があり、合成樹脂
基板の少なくとも片面に緻密なシリコン酸化膜等を設け
てガスバリア性を確保することが望ましい。絶縁性基板
1と外気遮蔽板6を接着するのに、樹脂層7が用いられ
る。樹脂層7に使用される材料としては、ガスバリア性
を考慮するとエポキシ系樹脂が好ましい。エポキシ系樹
脂としては、光硬化型と熱硬化型のものが挙げられる。
光硬化型エポキシ樹脂としては、スリーボンド(株)製
30Y−184G、長瀬チバ(株)製XNR5493T
等が挙げられる。熱硬化型エポキシ樹脂としては、長瀬
チバ(株)製XNR5155等が挙げられる。この他
に、室温硬化型のチバガイギー(株)製アラルダイトや
変性エポキシ弾性接着剤、例えば、セメダイン(株)製
EP−001、コニシ(株)製MOS7や真空用接着剤
であるVarian社製Torr Seal等が挙げら
れる。
In particular, a glass plate and a plate of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone are preferred. When using a synthetic resin substrate, it is necessary to pay attention to the gas barrier property, and it is desirable to provide a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate to secure the gas barrier property. A resin layer 7 is used to bond the insulating substrate 1 and the outside air shielding plate 6. As a material used for the resin layer 7, an epoxy resin is preferable in consideration of gas barrier properties. Examples of the epoxy-based resin include a light-curing type and a thermosetting type.
Examples of the photocurable epoxy resin include 30Y-184G manufactured by Three Bond Co., Ltd. and XNR5493T manufactured by Chise Nagase Co., Ltd.
And the like. Examples of the thermosetting epoxy resin include XNR5155 manufactured by Nagase Chiba Co., Ltd. In addition, room temperature curing type Araldite or modified epoxy elastic adhesive manufactured by Ciba Geigy Co., Ltd., for example, EP-001 manufactured by Cemedine Co., Ltd., MOS7 manufactured by Konishi Co., Ltd., and Varian Torr Seal manufactured by Varian Co., Ltd. And the like.

【0035】しかしながら、上記樹脂層の透湿度は高々
10[g/m2 /24時間](JIS Z0208)程
度であり、実用上、不十分である。従って、外気の水分
を遮断する図3に示した樹脂層7だけではガスバリア性
が不足する。本発明では、上記の点に鑑みて、図1に示
すように、樹脂層7の外側にガスバリア性に優れたガス
バリア膜8を設けることが、外気の水分を遮断するのに
効果的なことを見いだした。図1を上部(外気遮蔽板)
側からみたものを図2に示す。9は樹脂層7が発光体5
の外周部に設けてある部分を示し、その外側にガスバリ
ア膜8が設けてある。2aは陽極の取り出し電極部分を
示し、4aは陰極の取り出し電極部分を示す。ガスバリ
ア膜8はこれらの外部回路との接触部分を残す形で、形
成される。
[0035] However, the moisture permeability of the resin layer is at most 10 [g / m 2/24 hr] (JIS Z0208) about practically insufficient. Accordingly, the gas barrier property is insufficient with only the resin layer 7 shown in FIG. 3 that blocks moisture from the outside air. In the present invention, in view of the above points, as shown in FIG. 1, it is effective to provide a gas barrier film 8 having excellent gas barrier properties on the outside of the resin layer 7 to effectively block moisture in the outside air. I found it. Fig. 1 at the top (outside air shielding plate)
FIG. 2 shows a view from the side. Reference numeral 9 denotes the resin layer 7 and the light emitting body 5
The gas barrier film 8 is provided on the outside of the portion provided on the outer peripheral portion of FIG. 2a indicates an extraction electrode portion of the anode, and 4a indicates an extraction electrode portion of the cathode. The gas barrier film 8 is formed so as to leave a contact portion with these external circuits.

【0036】ガスバリア膜8としては、シリコンの酸化
膜、窒化膜及び/又は酸化窒化膜を主成分とするものが
使用される。シリコン酸化膜をSiOxで表すと、組成
比xが1.0〜2.0の範囲にあることが好ましい。シ
リコン窒化膜をSiNxで表すと、組成比xが0.5〜
1.3の範囲にあることが好ましい。シリコン酸化窒化
膜(オキシナイトライド)をSiOxNyで表すと、x
及びyは、x=0.1〜1.8、y=0.1〜1.0;
x+y<2.0の範囲に各々あることが好ましい。さら
には、上記ガスバリア膜中のシリコンダングリングボン
ドを減らすために、膜中に0.1〜10wt.%の水素
原子または炭素原子を含有させることも、有効である。
As the gas barrier film 8, a film mainly composed of a silicon oxide film, a nitride film and / or an oxynitride film is used. When the silicon oxide film is represented by SiOx, the composition ratio x is preferably in the range of 1.0 to 2.0. When the silicon nitride film is represented by SiNx, the composition ratio x is 0.5 to
It is preferably in the range of 1.3. When a silicon oxynitride film (oxynitride) is represented by SiOxNy, x
And y are x = 0.1 to 1.8, y = 0.1 to 1.0;
It is preferable that each of them is in the range of x + y <2.0. Further, in order to reduce silicon dangling bonds in the gas barrier film, 0.1 to 10 wt. It is also effective to contain% hydrogen or carbon atoms.

【0037】前記ガスバリア膜の厚さは、10nm〜1
0μmの範囲にあることが好ましい。10nm未満の厚
さだと膜の欠陥等を通して、外気の水分が透過すること
が起こる。10μm以上だと膜の応力が大きくなり、剥
離等の現象が起こるので好ましくない。前記ガスバリア
膜は、プラズマCVD(化学気相成長)法、反応性真空
蒸着法、スパッタ法のいずれかの方法にて作製される。
The gas barrier film has a thickness of 10 nm to 1
It is preferably in the range of 0 μm. If the thickness is less than 10 nm, moisture in the outside air may pass through the film due to defects. When the thickness is 10 μm or more, the stress of the film increases, and phenomena such as peeling occur, which is not preferable. The gas barrier film is formed by any one of a plasma CVD (chemical vapor deposition) method, a reactive vacuum deposition method, and a sputtering method.

【0038】プラズマCVD法は、大きく分けて、容量
結合型と誘導結合型の二つの種類に分類されるが、いず
れの方法も採用される。容量結合型では、二つの対向す
る電極によりプラズマを生成し、原料ガスを導入するこ
とにより膜を形成する。容量結合方式を図5に示す。こ
の方式では、整合器10を通して高周波電源11に接続
される電極12が陰極となり、接地される電極13が陽
極となる。ガスバリア膜を付与される試料14はいずれ
の電極におかれてもよいが、負のバイアス電圧を印加し
たい場合には、図5に示した様に基板試料は陰極側に設
置される。一方、誘導結合型のプラズマCVD法におい
ては、試料は通常、排気可能なガラスまたは石英管内に
置かれ、この管の外側にコイルを必要ターン数巻き、そ
のコイルに整合器を通して高周波電源を接続することに
より、管内にプラズマを生成することができる。
The plasma CVD method is roughly classified into two types, namely, a capacitive coupling type and an inductive coupling type. Either method is adopted. In the capacitive coupling type, a plasma is generated by two opposing electrodes, and a film is formed by introducing a source gas. FIG. 5 shows the capacitive coupling method. In this method, the electrode 12 connected to the high frequency power supply 11 through the matching device 10 serves as a cathode, and the electrode 13 grounded serves as an anode. The sample 14 to which the gas barrier film is applied may be placed on any electrode. However, when a negative bias voltage is to be applied, the substrate sample is placed on the cathode side as shown in FIG. On the other hand, in the inductively coupled plasma CVD method, a sample is usually placed in a glass or quartz tube that can be evacuated, and a coil is wound around the tube for a required number of turns, and a high frequency power supply is connected to the coil through a matching device. Thereby, plasma can be generated in the tube.

【0039】プラズマCVD法で前記ガスバリア膜を形
成するために使用される原料ガスとしては、有機シリコ
ン化合物が挙げられる。この化合物をプラズマCVD法
に使用するためには、1Torr程度の蒸気圧を室温か
ら、100℃の範囲で有することが好ましい。このよう
な性質を持つ化合物として、具体例を以下に示すが、本
発明は何らこれらの化合物に限定されるものではない:
例えば1,1,3,3−テトラメチルジシロキサン、ヘ
キサメチルジシロキサン、テトラメチルシラン、テトラ
メトキシシラン、テトラエトキシシラン、メチルトリメ
トキシシラン、メチルトリエトキシシラン、ジメチルエ
トキシシラン、ジメチルジメトキシシラン、ジメチルジ
エトキシシラン、ジエトキシシラン、トリエトキシシラ
ン、ビニルトリエトキシシラン、3−メタクリルオキシ
プロピルトリメトキシシラン、ビニルトリス(2−メト
キシエトキシ)シラン、トリメチルエトキシシラン、ビ
ニルトリアセトキシシラン、エチルトリエトキシシラ
ン、テトラキス(2−メトキシエトキシ)シラン、テト
ラキス(2−エチルヘキソキシ)シラン、トリス(トリ
メチルシロキシ)シラン、トリメトキシビニルシラン、
トリメチルビニルシラン、メチルフェニルジメトキシシ
ラン、トリエトキシクロロシラン、n−プロピルトリメ
トキシシラン、テトラキス(2−エチルブトキシ)シラ
ン、n−オクチルトリエトキシシラン、アセトキシプロ
ピルトリメトキシシラン、トリス(トリメチルシロキ
シ)フェニルシラン、オクタメチルシクロテトラシロキ
サン、オクタメチルトリシロキサン、1,2,3,3−
テトラキス(トリメチルシロキシ)ジシロキサン、1,
2,3,3−テトラメチルジシロキサン、ペンタメチル
ジシロキサン、N,O−ビス(ジメチルシリル)アセタ
ミド、1,3−ジビニル−1,1,3,3−テラメチル
ジシロキサン、1,3−ジエトキシテトラメチルジシロ
キサン、1,1,3,3,5,5−ヘキサメチルシクロ
トリシラザン、1,3,5,7−テトラメチルシクロテ
トラシロキサン、ビス(トリメチルシロキシ)エチルシ
ラン、1,1,3,3−テトラメチルジシラザン、ヘキ
サメチルジシラザン、1−トリメチルシリル−1,2,
4−トリアゾール、ピペリジノトリメチルシラン、テト
ラキス(ジメチルアミノ)シラン、ヘプタメチルジシラ
ザン、1,3−ジビニル−1,1,3,3−テトラメチ
ルジシラザン、及び1,1,3,3,5,5−ヘキサメ
チルシクロトリシラザンを挙げることができる。
As a source gas used for forming the gas barrier film by the plasma CVD method, an organic silicon compound can be used. In order to use this compound for the plasma CVD method, it is preferable that the compound has a vapor pressure of about 1 Torr in the range of room temperature to 100 ° C. Specific examples of compounds having such properties are shown below, but the present invention is not limited to these compounds in any way:
For example, 1,1,3,3-tetramethyldisiloxane, hexamethyldisiloxane, tetramethylsilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethylethoxysilane, dimethyldimethoxysilane, dimethyl Diethoxysilane, diethoxysilane, triethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, trimethylethoxysilane, vinyltriacetoxysilane, ethyltriethoxysilane, tetrakis (2-methoxyethoxy) silane, tetrakis (2-ethylhexoxy) silane, tris (trimethylsiloxy) silane, trimethoxyvinylsilane,
Trimethylvinylsilane, methylphenyldimethoxysilane, triethoxychlorosilane, n-propyltrimethoxysilane, tetrakis (2-ethylbutoxy) silane, n-octyltriethoxysilane, acetoxypropyltrimethoxysilane, tris (trimethylsiloxy) phenylsilane, octa Methylcyclotetrasiloxane, octamethyltrisiloxane, 1,2,3,3-
Tetrakis (trimethylsiloxy) disiloxane, 1,
2,3,3-tetramethyldisiloxane, pentamethyldisiloxane, N, O-bis (dimethylsilyl) acetamide, 1,3-divinyl-1,1,3,3-teramethyldisiloxane, 1,3- Diethoxytetramethyldisiloxane, 1,1,3,3,5,5-hexamethylcyclotrisilazane, 1,3,5,7-tetramethylcyclotetrasiloxane, bis (trimethylsiloxy) ethylsilane, 1,1, 3,3-tetramethyldisilazane, hexamethyldisilazane, 1-trimethylsilyl-1,2,2
4-triazole, piperidinotrimethylsilane, tetrakis (dimethylamino) silane, heptamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, and 1,1,3,3, 5,5-hexamethylcyclotrisilazane can be mentioned.

【0040】シリコン酸化膜にはシロキサン系化合物
を、シリコン窒化膜にはシラザン系化合物を使用し、シ
リコン酸化窒化膜の場合には、両者どちらかもしくは両
者から選ばれた化合物の混合物を使用することが好まし
い。プラズマ成膜時に使用するガスとしては、蒸気の有
機シリコン化合物の他に反応性を高めるために、酸化膜
の場合は酸化性ガスとして、酸素、一酸化炭素、二酸化
炭素等が用いられ、窒化膜の場合には窒素、アンモニア
が用いられ、酸化窒化膜の場合には、亜酸化窒素、二酸
化窒素等が使用される。さらには、希釈ガスとして、ヘ
リウム、アルゴン等の希ガスが適宜添加される。
A siloxane-based compound is used for the silicon oxide film, a silazane-based compound is used for the silicon nitride film, and a silicon oxynitride film is a mixture of one or both compounds. Is preferred. As a gas used in the plasma film formation, in order to increase reactivity in addition to the vapor organosilicon compound, in the case of an oxide film, oxygen, carbon monoxide, carbon dioxide, or the like is used as an oxidizing gas, and a nitride film is used. In this case, nitrogen and ammonia are used, and in the case of an oxynitride film, nitrous oxide, nitrogen dioxide and the like are used. Further, a rare gas such as helium or argon is appropriately added as a diluting gas.

【0041】プラズマ成膜時のガス圧は1mTorr〜
10Torrの範囲が好ましく、処理時の基板温度は0
〜150℃の範囲内が好ましい。また、電源周波数は1
0k〜100MHzの範囲が好ましい。容量結合型での
基板バイアス電圧の範囲は−30〜−1000Vの範囲
にあることが好ましい。マイクロ波プラズマやECRモ
ードでのプラズマを使用することも本発明の目的には適
している。
The gas pressure during plasma film formation is 1 mTorr to
The range is preferably 10 Torr, and the substrate temperature during processing is 0
The temperature is preferably in the range of 150 to 150 ° C. The power frequency is 1
The range of 0 kHz to 100 MHz is preferred. The range of the substrate bias voltage in the capacitive coupling type is preferably in the range of -30 to -1000V. The use of microwave plasma or plasma in ECR mode is also suitable for the purpose of the present invention.

【0042】反応性真空蒸着法で、シリコンを含有する
蒸着源を真空中で蒸発させて、基板上に蒸着する際に、
雰囲気をプラズマCVDで挙げた反応性ガスを50mT
orr程度の圧力で反応容器中に流し、成膜する。シリ
コン酸化膜の場合には、酸素を用いることが好ましい。
この際、蒸着源と基板の間にコイル等によりプラズマを
生成させ、イオンプレーティング法で堆積させることも
よい方法である。酸化膜の場合の蒸着源としては、抵抗
加熱法ではSiOが、電子ビーム法ではSi、SiO、
SiO2 が好ましく用いられる。
When a silicon-containing evaporation source is evaporated in a vacuum by a reactive vacuum evaporation method to deposit the silicon on a substrate,
50 mT of reactive gas whose atmosphere is given by plasma CVD
It flows into the reaction vessel at a pressure of about orr to form a film. In the case of a silicon oxide film, it is preferable to use oxygen.
At this time, it is also a good method that plasma is generated between the evaporation source and the substrate by a coil or the like, and the plasma is deposited by an ion plating method. As a deposition source in the case of an oxide film, SiO is used in the resistance heating method, and Si, SiO,
SiO 2 is preferably used.

【0043】スパッタ法では、ターゲットとしてSiO
2 、Si3 4 等を用い、既述の反応性ガス中で成膜す
ることにより、所望のガスバリア膜を得ることが出来
る。上記のいずれの成膜方法においても、樹脂層とガス
バリア膜の密着性を高めるために、接着層を挿入するこ
とも有効である。シリコン酸化膜を使用する場合の接着
層としては、酸素含有量がガスバリア膜より少なくシリ
コン含有量がより多い膜が好ましく、SiOxとした組
成式においてはxが1未満であることが望ましい。窒化
膜、酸化窒化膜の場合も同様である。また、この接着層
の膜厚は0.5nm〜0.5μmの範囲にあることが好
ましい。プラズマCVD法を例にとると、接着層はガス
バリア層の原料ガスから反応性ガス(酸素源、窒素源を
含む)を使用しないことにより容易に形成できる。本発
明は、有機電界発光素子が、単一の素子、アレイ状に配
置された構造からなる素子、陽極と陰極がX−Yマトリ
ックス状に配置された構造のいずれにおいても適用する
ことができる。
In the sputtering method, SiO 2 is used as a target.
2 , a desired gas barrier film can be obtained by forming a film in the above-mentioned reactive gas using Si 3 N 4 or the like. In any of the above film forming methods, it is also effective to insert an adhesive layer in order to increase the adhesion between the resin layer and the gas barrier film. When a silicon oxide film is used, the adhesive layer is preferably a film having a lower oxygen content and a higher silicon content than the gas barrier film, and it is preferable that x is less than 1 in the composition formula of SiOx. The same applies to nitride films and oxynitride films. The thickness of the adhesive layer is preferably in the range of 0.5 nm to 0.5 μm. Taking the plasma CVD method as an example, the adhesive layer can be easily formed from the source gas of the gas barrier layer without using a reactive gas (including an oxygen source and a nitrogen source). The present invention can be applied to any of a single element, an element having a structure in which the organic electroluminescent elements are arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.

【0044】[0044]

【実施例】次に、本発明を実施例によって更に具体的に
説明するが、本発明はその要旨を越えない限り、以下の
実施例の記載に限定されるものではない。 実施例1 図4(C)に示す発光部構造を有する有機電界発光素子
を以下の方法で作製した。ガラス基板上にインジウム・
スズ酸化物(ITO)透明導電膜を120nm堆積した
もの(ジオマテック社製;電子ビーム成膜品;シート抵
抗15Ω)を通常のフォトリソグラフィ技術と塩酸エッ
チングを用いて2mm幅のストライプにパターニングし
て陽極を形成した。パターン形成したITO基板を、ア
セトンによる超音波洗浄、純水による水洗、イソプロピ
ルアルコールによる超音波洗浄の順で洗浄後、窒素ブロ
ーで乾燥させ、最後に紫外線オゾン洗浄を行って、真空
蒸着装置内に設置した。上記装置の粗排気を油回転ポン
プにより行った後、装置内の真空度が2x10-6Tor
r(約2.7x10-4Pa)以下になるまで液体窒素ト
ラップを備えた油拡散ポンプを用いて排気した。上記装
置内に配置されたモリブデンボートに入れた以下に示す
銅フタロシアニン(結晶形はβ型)を加熱して蒸着を行
った。真空度2x10-6Torr(約2.7x10-4
a)、蒸着時間1分で蒸着を行い、膜厚20nmの陽極
バッファ層3aを得た。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the description of the following examples unless it exceeds the gist. Example 1 An organic electroluminescent device having a light emitting portion structure shown in FIG. 4C was manufactured by the following method. Indium on glass substrate
A tin oxide (ITO) transparent conductive film deposited to a thickness of 120 nm (manufactured by Geomatics Co .; electron beam film-formed product; sheet resistance: 15Ω) is patterned into a 2 mm-wide stripe using ordinary photolithography technology and hydrochloric acid etching to form an anode. Was formed. The patterned ITO substrate is cleaned in the order of ultrasonic cleaning with acetone, water cleaning with pure water, and ultrasonic cleaning with isopropyl alcohol, dried with nitrogen blow, and finally cleaned with ultraviolet and ozone, and placed in a vacuum evaporation apparatus. installed. After the rough evacuation of the above apparatus was performed by an oil rotary pump, the degree of vacuum in the apparatus was 2 × 10 −6 Torr.
R (about 2.7 × 10 −4 Pa) or less was evacuated using an oil diffusion pump equipped with a liquid nitrogen trap. Copper phthalocyanine (crystal form is β-form) shown below, which was put in a molybdenum boat placed in the above apparatus, was heated for vapor deposition. Degree of vacuum 2 × 10 −6 Torr (about 2.7 × 10 −4 P
a), evaporation was performed for one minute to obtain an anode buffer layer 3a having a thickness of 20 nm.

【0045】[0045]

【化1】 Embedded image

【0046】次に、前記装置内に配置されたセラミック
るつぼに入れた、以下に示す、4,4' −ビス[N−
(1−ナフチル)−N−フェニルアミノ]ビフェニルを
るつぼの周囲のタンタル線ヒーターで加熱して蒸着を行
った。
Next, the following 4,4'-bis [N- was placed in a ceramic crucible placed in the apparatus.
(1-Naphthyl) -N-phenylamino] biphenyl was deposited by heating with a tantalum wire heater around the crucible.

【0047】[0047]

【化2】 Embedded image

【0048】この時のるつぼの温度は、250〜260
℃の範囲で制御した。蒸着時の真空度1.7x10-6
orr(約2.3x10-4Pa)、蒸着時間3分30秒
で膜厚60nmの正孔輸送層3bを得た。引続き、発光
機能を有する電子輸送層3cのホスト材料として、以下
の構造式に示すアルミニウムの8−ヒドロキシキノリン
錯体(Al(C9 6 NO)3 )、ドープ色素として以
下の構造式に示すルブレンを、各々、別々のるつぼを用
いて2元蒸着を行った。
At this time, the temperature of the crucible is from 250 to 260
The temperature was controlled in the range of ° C. Degree of vacuum at the time of vapor deposition 1.7 × 10 -6 T
A hole transport layer 3b having a film thickness of 60 nm was obtained at an orr (about 2.3 × 10 −4 Pa) and a deposition time of 3 minutes and 30 seconds. Subsequently, an 8-hydroxyquinoline complex of aluminum (Al (C 9 H 6 NO) 3 ) represented by the following structural formula is used as a host material of the electron transporting layer 3 c having a light emitting function, and rubrene represented by the following structural formula is used as a doped dye. Was subjected to binary deposition using separate crucibles.

【0049】[0049]

【化3】 Embedded image

【0050】この時のアルミニウムの8−ヒドロキシキ
ノリン錯体のるつぼ温度は270〜300℃の範囲で、
ルブレンのるつぼ温度は150〜160℃の範囲で制御
し、蒸着時の真空度は1.3x10-6Torr(約1.
7x10-4Pa)、蒸着時間は3分10秒で、蒸着され
た電子輸送層の膜厚は75nmであった。上記の陽極バ
ッファ層3a、正孔輸送層3b及び電子輸送層3cを真
空蒸着する時の基板温度は室温に保持した。
At this time, the crucible temperature of the aluminum 8-hydroxyquinoline complex is in the range of 270 to 300 ° C.
The temperature of the crucible of rubrene is controlled in the range of 150 to 160 ° C., and the degree of vacuum at the time of deposition is 1.3 × 10 −6 Torr (approximately 1.
7 × 10 −4 Pa), the deposition time was 3 minutes and 10 seconds, and the thickness of the deposited electron transport layer was 75 nm. The substrate temperature during vacuum deposition of the above-described anode buffer layer 3a, hole transport layer 3b, and electron transport layer 3c was kept at room temperature.

【0051】ここで、電子輸送層3cまでの蒸着を行っ
た素子を一度前記真空蒸着装置内より大気中に取り出し
て、陰極蒸着用のマスクとして2mm幅のストライプ状
シャドーマスクを、陽極2のITOストライプとは直交
するように素子に密着させて、別の真空蒸着装置内に設
置して有機層と同様にして装置内の真空度が2x10 -6
Torr(約2.7x10-4Pa)以下になるまで排気
した。続いて、陰極4として、マグネシウムと銀の合金
電極を2元同時蒸着法によって膜厚44nmとなるよう
に蒸着した。蒸着はモリブデンボートを用いて、真空度
1x10-5Torr(約1.3x10-3Pa)、蒸着時
間3分20秒で行った。また、マグネシウムと銀の原子
比は10:1.4とした。さらに続いて、装置の真空を
破らないで、アルミニウムをモリブデンボートを用いて
40nmの膜厚でマグネシウム・銀合金膜の上に積層し
て陰極4を完成させた。アルミニウム蒸着時の真空度は
1.5x10-5Torr(約2.0x10-3Pa)、蒸
着時間は1分20秒であった。以上のマグネシウム・銀
合金とアルミニウムの2層型陰極の蒸着時の基板温度は
室温に保持した。
Here, vapor deposition up to the electron transport layer 3c is performed.
Once removed element from the vacuum evaporation system to the atmosphere
2 mm wide stripes as a mask for cathode deposition
Make the shadow mask orthogonal to the ITO stripe of anode 2.
In a vacuum deposition apparatus
And the degree of vacuum in the apparatus is 2 × 10 -6
Torr (about 2.7 × 10-FourExhaust until below Pa)
did. Then, as the cathode 4, an alloy of magnesium and silver
The electrode is made to have a thickness of 44 nm by a binary simultaneous evaporation method.
Was deposited. Vapor deposition using molybdenum boat
1x10-FiveTorr (about 1.3 × 10-3Pa), during evaporation
For 3 minutes and 20 seconds. Also, the atoms of magnesium and silver
The ratio was 10: 1.4. Subsequently, the vacuum of the device is reduced.
Do not break the aluminum using a molybdenum boat
Laminated on a magnesium-silver alloy film with a thickness of 40 nm
Thus, the cathode 4 was completed. The degree of vacuum during aluminum deposition
1.5x10-FiveTorr (about 2.0 × 10-3Pa), steam
The wearing time was 1 minute and 20 seconds. More magnesium and silver
The substrate temperature during the deposition of a two-layer cathode of alloy and aluminum is
It was kept at room temperature.

【0052】以上の様にして、2mm×2mmのサイズ
の有機電界発光素子が得られた。この素子を陰極蒸着装
置から取り出した後、次に、図1及び図2に示す構造に
従って素子の封止を行った。先ず、蒸着マスクを素子部
分全体を覆うシャドーマスクに交換した後、既述の陰極
蒸着装置に再び上記素子を設置した後、これまでに示し
たのと同様にして、GeO膜を陰極4上に膜厚200n
mで積層して、保護層とした。この時の真空度は1.5
x10-6Torr、蒸着時間は5分、基板温度は室温で
あった。素子を上記装置より大気に取り出して、外気遮
断材として基板と同材質・同厚みのガラス板に光硬化樹
脂(スリーボンド社製30Y−184G)を図1に示し
たように素子外周部に塗布した後、高圧水銀ランプで4
J/cm2 照射露光して硬化させた。
As described above, an organic electroluminescent device having a size of 2 mm × 2 mm was obtained. After the device was taken out of the cathode vapor deposition device, the device was sealed according to the structure shown in FIGS. First, after replacing the evaporation mask with a shadow mask covering the entire element portion, the above-described element is installed again in the above-described cathode evaporation apparatus, and the GeO film is formed on the cathode 4 in the same manner as described above. 200n film thickness
m to form a protective layer. The degree of vacuum at this time is 1.5
x10 -6 Torr, deposition time was 5 minutes, and substrate temperature was room temperature. The device was taken out of the above device into the atmosphere, and a photocurable resin (30Y-184G manufactured by Three Bond Co.) was applied to a glass plate of the same material and thickness as the substrate as an outside air blocking material as shown in FIG. After that, 4
It was cured by exposure to J / cm 2 radiation.

【0053】光硬化樹脂で封止した素子を、次に、容量
結合型プラズマCVD装置の反応テェンバに設置して、
油拡散ポンプにて容器内の真空度が1x10-5Torr
(約1.3x10-3Pa)以下になるまで排気した。続
いて、原料ガスとして1,1,3,3−テトラメチルジ
シロキサン8SCCM、酸素8SCCM、ヘリウム8S
CCMを容器中に導入し、圧力を50〜60mTorr
の範囲に調整した後、110kHzの周波数の電源を素
子を設置した基板ホルダに0.5W/cm2 の電力密度
でプラズマ生成した。この時の基板バイアス電圧は−4
00Vであった。5分間の成膜で膜厚0.7μmのガス
バリア膜を樹脂層の上に積層した。このガスバリア膜の
組成をX線光電子分光法で分析すると、SiO1.9
0.4 であり、さらに水素原子がFT−IR測定により2
原子%含有されていることが判明した。また、光硬化樹
脂層に上記ガスバリア膜を積層したものの透湿度は0.
2[g/m2 /24時間](JIS Z0208)であ
った。
Next, the element sealed with the photocurable resin is set in a reaction chamber of a capacitively coupled plasma CVD apparatus,
The degree of vacuum in the container is 1 × 10 -5 Torr by the oil diffusion pump
(Approximately 1.3 × 10 −3 Pa). Then, 1,1,3,3-tetramethyldisiloxane 8SCCM, oxygen 8SCCM, helium 8S
CCM is introduced into the vessel and the pressure is increased to 50-60 mTorr.
After adjusting to the range, a power source having a frequency of 110 kHz was plasma-generated at a power density of 0.5 W / cm 2 on the substrate holder on which the element was installed. The substrate bias voltage at this time is -4
00V. A gas barrier film having a thickness of 0.7 μm was laminated on the resin layer by forming the film for 5 minutes. When the composition of this gas barrier film was analyzed by X-ray photoelectron spectroscopy, it was found that SiO 1.9 C
0.4 , and a hydrogen atom is 2 by FT-IR measurement.
Atomic% was found to be contained. In addition, the moisture permeability of the gas barrier film obtained by laminating the above gas barrier film on the photocurable resin layer is 0.1 mm.
Was 2 [g / m 2/24 hr] (JIS Z0208).

【0054】この様にして得られた有機電界発光素子
を、温度80℃−相対湿度90%の条件に設定された環
境試験機に放置して、発光輝度とダークスポットの面積
を測定した。輝度及び電圧は15mA/cm2 の電流駆
動における値である。ダークスポットの測定は、素子の
発光面をCCDカメラにより撮影した後、画像解析によ
り2値化して定量化を行った。測定した経時変化を表1
に示す。ダークスポットの成長は実用上問題とならない
レベルに抑制できた。
The organic electroluminescent device thus obtained was left in an environmental tester set at a temperature of 80 ° C. and a relative humidity of 90%, and the light emission luminance and dark spot area were measured. The brightness and the voltage are values in the case of driving at a current of 15 mA / cm 2 . For the measurement of the dark spot, the light emitting surface of the element was photographed with a CCD camera, and then binarized by image analysis to quantify. Table 1 shows the measured changes over time.
Shown in The growth of dark spots could be suppressed to a level that would not be a problem in practical use.

【0055】[0055]

【表1】 [Table 1]

【0056】比較例1 ガスバリア層を設けない他は実施例1と同様にして封止
素子を作製した。80℃−90%での環境試験結果を表
2に示す。48時間保存後では、直径250μmのダー
クスポットが多数発生した。
Comparative Example 1 A sealing element was produced in the same manner as in Example 1 except that no gas barrier layer was provided. Table 2 shows the results of the environmental test at 80 ° C.-90%. After storage for 48 hours, many dark spots having a diameter of 250 μm were generated.

【0057】[0057]

【表2】 [Table 2]

【0058】実施例2 長瀬チバ社製光硬化樹脂(XNR5493T)を照射露
光量12J/cm2 で硬化させた後、ガスバリア膜の下
引き層として、酸素を加えないでプラズマCVD成膜を
行い0.1μmの炭素リッチ膜(組成比SiCxOy;
x=0.6、y=0.8)を形成した他は、実施例1と
同様にして封止素子を作成した。80℃−90%の環境
試験測定の結果を表3に示す。電圧上昇も少なく、ダー
クスポットも十分抑制できた。
Example 2 After curing a photocurable resin (XNR5493T) manufactured by Nagase Chiba Co., Ltd. at an irradiation exposure dose of 12 J / cm 2 , a plasma CVD film was formed without adding oxygen as a sublayer of a gas barrier film. .1 μm carbon-rich film (composition ratio: SiCxOy;
x = 0.6, y = 0.8), except that a sealing element was formed in the same manner as in Example 1. Table 3 shows the results of the environmental test measurement at 80 ° C.-90%. The voltage rise was small, and the dark spot was sufficiently suppressed.

【0059】[0059]

【表3】 [Table 3]

【0060】比較例2 ガスバリア層を設けない他は実施例2と同様にして封止
素子を作製した。80℃−90%での環境試験結果を表
4に示す。48時間保存後、ダークスポットの有意な増
加が観測された。
Comparative Example 2 A sealing element was produced in the same manner as in Example 2 except that no gas barrier layer was provided. Table 4 shows the environmental test results at 80 ° C.-90%. After storage for 48 hours, a significant increase in dark spots was observed.

【0061】実施例3 ガスバリア膜形成時の原料ガスとして、酸素の代わりに
2 Oを16SCCM用いた他は実施例1と同様にして
ガスバリア膜を形成した。この膜の組成は実施例1と同
様の環境試験を実施したが、48時間保存後もダークス
ポットの面積比は1%未満であった。
Example 3 A gas barrier film was formed in the same manner as in Example 1, except that 16 SCCM of N 2 O was used instead of oxygen as a source gas at the time of forming the gas barrier film. The composition of this film was subjected to the same environmental test as in Example 1, but the area ratio of dark spots was less than 1% even after storage for 48 hours.

【0062】実施例4 実施例1と同様にして光硬化樹脂を用いて封止した素子
を、反応性真空蒸着装置に設置して、油拡散ポンプにて
容器内の真空度が1x10-6Torr(約2.7x10
-4Pa)以下になるまで排気した。続いて、反応性ガス
として酸素を導入して、圧力を10〜5Torrに調整
した後、抵抗加熱により金属ボート内の蒸着源SiOを
蒸発させて0.5μのガスバリア膜を樹脂層の上に積層
した。このガスバリア膜の組成をX線光電子分光法で分
析すると、SiO1.6 であった。また、光硬化樹脂層に
上記ガスバリア膜を積層したものの透湿度は0.3[g
/m2 /24時間](JIS Z0208)であった。
実施例1と同様の環境試験を実施したが、48時間後で
もダークスポットの面積比は1%未満であった。
Example 4 An element sealed with a photocurable resin in the same manner as in Example 1 was set in a reactive vacuum evaporation apparatus, and the degree of vacuum in the container was set to 1 × 10 -6 Torr by an oil diffusion pump. (About 2.7x10
-4 Pa) or less. Subsequently, oxygen is introduced as a reactive gas, the pressure is adjusted to 10 to 5 Torr, and then the evaporation source SiO in the metal boat is evaporated by resistance heating to form a 0.5 μm gas barrier film on the resin layer. did. When the composition of this gas barrier film was analyzed by X-ray photoelectron spectroscopy, it was SiO 1.6 . Moreover, the moisture permeability of the gas barrier film laminated on the photocurable resin layer is 0.3 [g].
/ M 2/24 hr] was (JIS Z0208).
An environmental test similar to that of Example 1 was performed, but the area ratio of dark spots was less than 1% even after 48 hours.

【0063】[0063]

【表4】 [Table 4]

【0064】[0064]

【発明の効果】本発明の有機電界発光素子の封止方法に
よれば、封止樹脂層の上に特定のガスバリア層を有する
ために、大気中の水分の影響を受けずに保存や駆動の際
に安定した発光特性を示す封止素子を得ることができ
る。従って、本発明による有機電界発光素子はフラット
パネル・ディスプレイ(例えばOAコンピュータ用や壁
掛けテレビ)、車載表示素子、携帯電話表示や面発光体
としての特徴を生かした光源(例えば、複写機の光源、
液晶ディスプレイや計器類のバックライト光源)、表示
板、標識灯への応用が考えられ、その技術的価値は大き
いものである。
According to the method for sealing an organic electroluminescent device of the present invention, since a specific gas barrier layer is provided on a sealing resin layer, storage and driving can be performed without being affected by moisture in the atmosphere. In this case, a sealing element exhibiting stable light emission characteristics can be obtained. Therefore, the organic electroluminescent device according to the present invention can be used as a light source (for example, a light source of a copier, a light source of a copier,
It can be applied to liquid crystal displays and backlight sources for instruments, display panels, and sign lights, and its technical value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明有機電界発光素子の一例を示す縦断面
図。
FIG. 1 is a longitudinal sectional view showing an example of the organic electroluminescent device of the present invention.

【図2】図1の有機電界発光素子の平面図。FIG. 2 is a plan view of the organic electroluminescent device of FIG.

【図3】従来の有機電界発光素子の縦断面図。FIG. 3 is a longitudinal sectional view of a conventional organic electroluminescent device.

【図4】発光部の構造を示す縦断面図。FIG. 4 is a longitudinal sectional view showing a structure of a light emitting unit.

【図5】プラズマCVDによるガスバリア膜形成方法を
示す説明図。
FIG. 5 is an explanatory view showing a gas barrier film forming method by plasma CVD.

【符号の説明】[Explanation of symbols]

1 基板 2 陽極 3 有機発光層 3a 正孔輸送層 3b 電子輸送層 4 陰極 5 発光部 6 外気遮蔽板 7 樹脂層 8 ガスバリア膜 DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Organic light emitting layer 3a Hole transport layer 3b Electron transport layer 4 Cathode 5 Light emitting part 6 Outside air shielding plate 7 Resin layer 8 Gas barrier film

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板と、該基板上に形成された陽
極、有機発光層及び陰極を有する発光部と、該発光部を
覆う外気遮蔽板とを有し、かつ、基板と外気遮蔽板との
間隙に発光部を囲繞するように樹脂層を形成して発光部
を封止すると共に該樹脂層の外側表面にシリコンの酸化
物、窒化物及び/又は酸化窒化物を主成分とするガスバ
リア膜を形成してなることを特徴とする有機電界発光素
子。
1. An insulating substrate, a light emitting portion having an anode, an organic light emitting layer and a cathode formed on the substrate, and an outside air shielding plate covering the light emitting portion, and the substrate and the outside air shielding plate A resin layer is formed so as to surround the light emitting portion in a gap between the light emitting portion and the light emitting portion, and a gas barrier mainly composed of silicon oxide, nitride and / or oxynitride is formed on the outer surface of the resin layer. An organic electroluminescent device characterized by comprising a film.
【請求項2】 ガスバリア膜の厚さが、10nm〜10
μmの範囲にあることを特徴とする請求項1記載の有機
電界発光素子。
2. A gas barrier film having a thickness of 10 nm to 10 nm.
2. The organic electroluminescent device according to claim 1, wherein said organic electroluminescent device is in a range of μm.
【請求項3】 樹脂層が光硬化型のエポキシ樹脂を主成
分とすることを特徴とする請求項1又は2に記載の有機
電界発光素子。
3. The organic electroluminescent device according to claim 1, wherein the resin layer contains a photo-curable epoxy resin as a main component.
【請求項4】 樹脂層が熱硬化型のエポキシ樹脂を主成
分とすることを特徴とする請求項1又は2に記載の有機
電界発光素子。
4. The organic electroluminescent device according to claim 1, wherein the resin layer contains a thermosetting epoxy resin as a main component.
【請求項5】 ガスバリア膜が、接着層を介して樹脂層
外側表面に形成されてなる請求項1〜4のいずれかに記
載の有機電界発光素子。
5. The organic electroluminescent device according to claim 1, wherein the gas barrier film is formed on an outer surface of the resin layer via an adhesive layer.
【請求項6】 絶縁性基板上に、陽極、有機発光層及び
陰極を有する発光部を形成し、該発光部を外気遮蔽板で
覆うと共に、基板と外気遮蔽板との間隙に発光部を囲繞
するように樹脂層を形成して発光部を封止し、かつ、該
樹脂層の外側表面にシリコンの酸化物、窒化物及び/又
は酸化窒化物を主成分とするガスバリア膜を形成するこ
とを特徴とする有機電界発光素子の製造法。
6. A light emitting portion having an anode, an organic light emitting layer and a cathode is formed on an insulating substrate, and the light emitting portion is covered with an outside air shielding plate, and the light emitting portion is surrounded by a gap between the substrate and the outside air shielding plate. A light emitting portion is sealed by forming a resin layer so that a gas barrier film containing silicon oxide, nitride and / or oxynitride as a main component is formed on the outer surface of the resin layer. A method for producing an organic electroluminescent device, which is characterized by the following.
【請求項7】 ガスバリア膜を有機シリコン化合物を原
料とする反応性プラズマCVD法で形成することを特徴
とする請求項6に記載の有機電界発光素子の製造方法。
7. The method according to claim 6, wherein the gas barrier film is formed by a reactive plasma CVD method using an organic silicon compound as a raw material.
【請求項8】 ガスバリア膜を反応性真空蒸着法で形成
することを特徴とする請求項6に記載の有機電界発光素
子の製造方法。
8. The method according to claim 6, wherein the gas barrier film is formed by a reactive vacuum deposition method.
【請求項9】 ガスバリア膜をスパッタリング法で形成
することを特徴とする請求項6に記載の有機電界発光素
子の製造方法。
9. The method according to claim 6, wherein the gas barrier film is formed by a sputtering method.
【請求項10】 樹脂層とガスバリア膜の間に、接着層
を設けることを特徴とする請求項6〜9のいずれか1項
に記載の有機電界発光素子の製造方法。
10. The method for manufacturing an organic electroluminescent device according to claim 6, wherein an adhesive layer is provided between the resin layer and the gas barrier film.
JP9311803A 1997-11-13 1997-11-13 Organic electroluminescent element and manufacture thereof Pending JPH11144864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9311803A JPH11144864A (en) 1997-11-13 1997-11-13 Organic electroluminescent element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9311803A JPH11144864A (en) 1997-11-13 1997-11-13 Organic electroluminescent element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11144864A true JPH11144864A (en) 1999-05-28

Family

ID=18021627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9311803A Pending JPH11144864A (en) 1997-11-13 1997-11-13 Organic electroluminescent element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11144864A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267065A (en) * 2000-03-22 2001-09-28 Casio Comput Co Ltd Electroluminescence element
JP2002151253A (en) * 2000-08-18 2002-05-24 Semiconductor Energy Lab Co Ltd Luminescent device and display device
JP2002184569A (en) * 2000-10-03 2002-06-28 Semiconductor Energy Lab Co Ltd Luminescent device
WO2002063929A1 (en) * 2001-02-08 2002-08-15 Nec Corporation Organic el device
US6660409B1 (en) * 1999-09-16 2003-12-09 Panasonic Communications Co., Ltd Electronic device and process for producing the same
JP2004503066A (en) * 2000-07-12 2004-01-29 スリーエム イノベイティブ プロパティズ カンパニー Encapsulated organic electronic device and method of manufacturing the same
JP2004084027A (en) * 2002-08-28 2004-03-18 Konica Minolta Holdings Inc Functional body and method for forming the same
JP2005108575A (en) * 2003-09-30 2005-04-21 Seiko Epson Corp Organic el element, its manufacturing method and organic el display device
JP2005527076A (en) * 2002-04-15 2005-09-08 ショット アーゲー Hermetic sealing of organic electro-optic elements
WO2005094131A1 (en) * 2004-03-26 2005-10-06 Sakigake-Semiconductor Corporation Organic device and manufacturing method thereof
US6956323B2 (en) 2003-02-20 2005-10-18 Fuji Electric Co., Ltd. Color conversion filter substrate and organic multicolor light emitting device
KR100647005B1 (en) 2005-09-27 2006-11-23 삼성에스디아이 주식회사 Organic electroluminescence display device and method for fabricating thereof
JP2007172919A (en) * 2005-12-20 2007-07-05 Matsushita Electric Works Ltd Organic el spotlight and organic el down light
JP2007294416A (en) * 2006-03-31 2007-11-08 Canon Inc Organic light-emitting device and its manufacturing method
JP2008270170A (en) * 2007-04-23 2008-11-06 Samsung Sdi Co Ltd Organic light emitting device and its manufacturing method
JP2012164543A (en) * 2011-02-08 2012-08-30 Kaneka Corp Organic el device and method for manufacturing the same
US8680766B2 (en) 2007-11-06 2014-03-25 Japan Display Inc. Organic electroluminescence display device and manufacturing method thereof
JP2016066617A (en) * 1999-09-17 2016-04-28 株式会社半導体エネルギー研究所 Light-emitting device
JP2020043035A (en) * 2018-09-13 2020-03-19 エルジー ディスプレイ カンパニー リミテッド Organic light emitting display and manufacturing method thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660409B1 (en) * 1999-09-16 2003-12-09 Panasonic Communications Co., Ltd Electronic device and process for producing the same
JP2016066617A (en) * 1999-09-17 2016-04-28 株式会社半導体エネルギー研究所 Light-emitting device
US9735218B2 (en) 1999-09-17 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. EL display device and method for manufacturing the same
JP2001267065A (en) * 2000-03-22 2001-09-28 Casio Comput Co Ltd Electroluminescence element
JP2004503066A (en) * 2000-07-12 2004-01-29 スリーエム イノベイティブ プロパティズ カンパニー Encapsulated organic electronic device and method of manufacturing the same
US8497516B2 (en) 2000-08-18 2013-07-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US9263697B2 (en) 2000-08-18 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US8735899B2 (en) 2000-08-18 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US9768239B2 (en) 2000-08-18 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US8106407B2 (en) 2000-08-18 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US10236331B2 (en) 2000-08-18 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
JP2002151253A (en) * 2000-08-18 2002-05-24 Semiconductor Energy Lab Co Ltd Luminescent device and display device
JP2002184569A (en) * 2000-10-03 2002-06-28 Semiconductor Energy Lab Co Ltd Luminescent device
WO2002063929A1 (en) * 2001-02-08 2002-08-15 Nec Corporation Organic el device
US7465963B2 (en) 2001-02-08 2008-12-16 Samsung Sdi Co., Ltd. Organic EL device
JP2005527076A (en) * 2002-04-15 2005-09-08 ショット アーゲー Hermetic sealing of organic electro-optic elements
JP2004084027A (en) * 2002-08-28 2004-03-18 Konica Minolta Holdings Inc Functional body and method for forming the same
JP4686956B2 (en) * 2002-08-28 2011-05-25 コニカミノルタホールディングス株式会社 Method for forming functional body
US6956323B2 (en) 2003-02-20 2005-10-18 Fuji Electric Co., Ltd. Color conversion filter substrate and organic multicolor light emitting device
JP2005108575A (en) * 2003-09-30 2005-04-21 Seiko Epson Corp Organic el element, its manufacturing method and organic el display device
WO2005094131A1 (en) * 2004-03-26 2005-10-06 Sakigake-Semiconductor Corporation Organic device and manufacturing method thereof
KR100647005B1 (en) 2005-09-27 2006-11-23 삼성에스디아이 주식회사 Organic electroluminescence display device and method for fabricating thereof
JP4561623B2 (en) * 2005-12-20 2010-10-13 パナソニック電工株式会社 Organic EL spotlight and organic EL downlight
JP2007172919A (en) * 2005-12-20 2007-07-05 Matsushita Electric Works Ltd Organic el spotlight and organic el down light
JP2007294416A (en) * 2006-03-31 2007-11-08 Canon Inc Organic light-emitting device and its manufacturing method
JP2008270170A (en) * 2007-04-23 2008-11-06 Samsung Sdi Co Ltd Organic light emitting device and its manufacturing method
US8680766B2 (en) 2007-11-06 2014-03-25 Japan Display Inc. Organic electroluminescence display device and manufacturing method thereof
JP2012164543A (en) * 2011-02-08 2012-08-30 Kaneka Corp Organic el device and method for manufacturing the same
JP2020043035A (en) * 2018-09-13 2020-03-19 エルジー ディスプレイ カンパニー リミテッド Organic light emitting display and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3334408B2 (en) Organic electroluminescent device and method of manufacturing the same
JPH11144864A (en) Organic electroluminescent element and manufacture thereof
KR100902706B1 (en) Support and Organic Electroluminescence Element Comprising the Support
EP0869701B1 (en) Organic electroluminescent device
JP4508219B2 (en) Organic electroluminescence display device and organic electroluminescence display element sealing method
JP2000323273A (en) Electroluminescent element
JPH06325871A (en) Organic electroluminescent element
JP2021151794A (en) Laminated film and method of manufacturing the same
TW200423794A (en) Organic electroluminescent device and manufacturing method thereof
JP2008153004A (en) Organic electroluminescent element
TW525308B (en) Organic light emitting diodes on plastic substrates
TW201336137A (en) Organic electronic device and method for producing of organic electronic device
JP2007118564A (en) Gas barrier material, its production process, and method for mounting gas barrier layer
JPH06267658A (en) Organic el element
JPH1036832A (en) Organic electroluminescence element
JP3552317B2 (en) Manufacturing method of organic electroluminescent device
JP4225030B2 (en) Organic electroluminescence device
JP2007090702A (en) Water vapor barrier film and organic electroluminescence element
JP3463364B2 (en) Organic electroluminescent device
JP4172230B2 (en) Substrate used for organic electroluminescence display device and organic electroluminescence display device
JP2010013735A (en) Method for producing resin film, and organic electroluminescence element using the resin film
JPH06330032A (en) Organic electroluminescent element
JP4154898B2 (en) Organic electroluminescence display device and organic electroluminescence display element sealing method
JP2004001429A (en) Substrate and organic electroluminescent element having the substrate
JP2008021575A (en) Organic electroluminescent element and manufacturing method of same