JPH11140580A - Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature - Google Patents

Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature

Info

Publication number
JPH11140580A
JPH11140580A JP30178397A JP30178397A JPH11140580A JP H11140580 A JPH11140580 A JP H11140580A JP 30178397 A JP30178397 A JP 30178397A JP 30178397 A JP30178397 A JP 30178397A JP H11140580 A JPH11140580 A JP H11140580A
Authority
JP
Japan
Prior art keywords
strength steel
low
cast slab
toughness
temperature toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30178397A
Other languages
Japanese (ja)
Other versions
JP3898814B2 (en
Inventor
Hitoshi Asahi
均 朝日
Hiroshi Tamehiro
博 為広
Takuya Hara
卓也 原
Riyuuji Uemori
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30178397A priority Critical patent/JP3898814B2/en
Publication of JPH11140580A publication Critical patent/JPH11140580A/en
Application granted granted Critical
Publication of JP3898814B2 publication Critical patent/JP3898814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit the coarsening of austenite on reheating of a cast slab and to obtain a high strength hot rolled steel plate having fine-grained structure and excellent toughness at low temperature by specifying the area ratio of transgranular transformed ferrite in martensitic and bainitic structures of a cast slab. SOLUTION: A steel composition, consisting of, by mass ratio, 0.03-0.10% C, <0.6% Si, 1.2 2.5% Mn, <0.005% P, <0.003% S, 0.1-1.0% Ni, 0.15-0.60% Mo, 0.005-0.10% Nb, 0.001-0.006% N, 0.005-0.006% Ti, and the balance essentially Fe and containing, if necessary, one or >=2 kinds among <0.10% Cr, <1.0% Cu, <0.10% V, 0.0005-0.0020% B, <0.006% Ca, <0.02% REM, <0.006% Mg, and <0.10% Zn, is provided. Simultaneously, a cast slab, in which the area ratio of transgranular transformed ferrite in martensitic and bainitic structures is regulated to >=10%, is provided. Further, this cast slab is formed into steel plate by controlled rolling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、引張り強度が77
0MPa 以上の引張り強さ(TS)を有する低温靱性に優
れた熱間圧延鋼材の製造に使用される連続鋳造鋳片およ
びその製造法に関するものであり、このような連続鋳造
鋳片から製造された鋼は、天然ガス・原油輸送用のライ
ンパイプをはじめ、各種圧力容器、鋼構造物などの溶接
性鋼材として広く使用できる。
[0001] The present invention relates to a tensile strength of 77
The present invention relates to a continuous cast slab used for producing a hot-rolled steel material having a tensile strength (TS) of 0 MPa or more and excellent in low-temperature toughness, and a method for producing the same, and produced from such a continuous cast slab. Steel can be widely used as a weldable steel material for various pressure vessels, steel structures, etc., including line pipes for transporting natural gas and crude oil.

【0002】[0002]

【従来の技術】高強度鋼は一般に合金元素を多く含有
し、焼入れ性が良いために、その製造に使用される連続
鋳造鋼片の組織はフェライトの生成が抑制され、鋳造組
織に対応した粗大なマルテンサイト、ベイナイト組織で
ある。このような組織の鋳片を熱間加工のためにオース
テナイト域に再加熱した場合、加熱速度が速いと通常の
フェライトからオーステナイトへの変態のように多数の
核生成が有り、細かいオーステナイト粒が得られる。一
方、加熱速度が遅いと元の粗大な鋳造時のオーステナイ
ト粒に相当するオーステナイト粒にマッシブ的に変態
し、再加熱時の結晶粒が鋳造組織と同様な粗大粒になる
ことが知られている(Transactions ISIJ, Vol.25, 198
5, p311-317)。
2. Description of the Related Art High-strength steels generally contain a large amount of alloying elements and have good quenchability, so that the structure of continuous cast steel slabs used for the production thereof is suppressed in the formation of ferrite, and has a coarse structure corresponding to the cast structure. Martensite, bainite structure. When the slab having such a structure is reheated to the austenite region for hot working, when the heating rate is high, many nuclei are formed as in the usual transformation from ferrite to austenite, and fine austenite grains are obtained. Can be On the other hand, it is known that when the heating rate is low, the austenite grains corresponding to the original coarse cast austenite grains are transformed massively, and the crystal grains upon reheating become coarse grains similar to the cast structure. (Transactions ISIJ, Vol.25, 198
5, p311-317).

【0003】一般に、鋼片再加熱時の加熱速度は遅く、
10℃/分以下である。このような加熱速度では、再加
熱時の組織には鋳造組織の粗大粒を引き継いだ数百μm
から数千μmの粗大粒が存在する。このような粗大粒は
熱間加工工程で再結晶することが困難であり、再結晶す
ることなく偏平した粗大な結晶粒が圧延後に残存する。
高強度鋼において粗大粒が存在すると低温靱性が著しく
劣化することは周知のことである。従って、低温靱性を
向上させるためには、結晶粒の微細化が必須である。
[0003] Generally, the heating rate during reheating of billets is low,
10 ° C./min or less. At such a heating rate, the structure at the time of reheating is several hundred μm inheriting the coarse grains of the cast structure.
To several thousand μm. Such coarse grains are difficult to recrystallize in the hot working step, and flat coarse grains remain after rolling without recrystallization.
It is well known that the presence of coarse grains in high-strength steel significantly lowers low-temperature toughness. Therefore, in order to improve the low-temperature toughness, it is essential to refine the crystal grains.

【0004】粗大粒を熱間加工で再結晶させて細粒化す
るためには圧下率が数10%以上の1パス大圧下が必要
である。しかし、このような大圧下を大型の連続鋳造鋳
片で行うことは困難であり、非常に強力な圧延機等が必
要である。一方、鋼片の加熱速度を早くすることも通常
の雰囲気加熱炉では困難である。
[0004] In order to recrystallize coarse grains by hot working to make them finer, it is necessary to perform one-pass large rolling with a rolling reduction of several tens% or more. However, it is difficult to perform such a large reduction with a large continuous cast slab, and a very powerful rolling mill or the like is required. On the other hand, it is also difficult to increase the heating rate of the steel slab in a normal atmosphere heating furnace.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記のよう
な設備対応をせずに、再加熱時に細粒オーステナイトが
得られ、その結果熱間加工中に再結晶が容易に起こり、
結果として細粒組織の優れた低温靱性を有する高強度鋼
が得られる連続鋳造鋳片およびその製造方法、および低
温靱性に優れた高強度鋼を提供するものである。
SUMMARY OF THE INVENTION According to the present invention, fine grained austenite is obtained at the time of reheating without using the equipment as described above, and as a result, recrystallization easily occurs during hot working,
As a result, the present invention provides a continuous cast slab, a method for producing the same, and a high-strength steel excellent in low-temperature toughness, from which high-strength steel having a fine-grained structure and excellent low-temperature toughness can be obtained.

【0006】[0006]

【課題を解決するための手段】本発明者らは、連続鋳造
鋳片の組織と熱間加工のための再加熱温度での結晶粒径
の関係について鋭意検討した結果、連続鋳造鋳片の組織
がマルテンサイト、ベイナイト中に粒内変態フェライト
が面積率にして10%以上存在していれば、再加熱途上
に多数の核発生が起こり、再加熱温度での結晶粒が微細
化することを見いだした。
The present inventors have conducted intensive studies on the relationship between the structure of the continuous cast slab and the crystal grain size at the reheating temperature for hot working. It is found that if the intragranular transformed ferrite is present in the martensite and bainite in an area ratio of 10% or more, a large number of nuclei are generated during the reheating, and the crystal grains are refined at the reheating temperature. Was.

【0007】本発明はこの新知見を具現化したものであ
り、本発明の要旨とするところは、(1)マルテンサイ
ト、ベイナイト組織中の粒内変態フェライトの面積率が
10%以上であることを特徴とする低温靱性に優れた高
強度鋼用の連続鋳造鋳片、(2)マルテンサイト、ベイ
ナイト組織中の粒内変態フェライトの面積率が10%以
上でかつポリゴナルフェライトが生成していることを特
徴とする低温靱性に優れた高強度鋼用の連続鋳造鋳片、
(3)質量%で、 C:0.03−0.10%, Si:<0.6%, Mn:1.2−2.5%, P:<0.015%, S:<0.003%, Ni:0.1−1.0%, Mo:0.15−0.60%, Nb:0.005−0.10%, N:0.001−0.006%, Ti:0.005−0.050%, Al:<0.06%, を含有し、必要に応じて、 Cr:<1.0%, Cu:<1.0%, V:<0.10%, B:0.0005−0.0020%, Ca:<0.006%, REM:<0.02%, Mg:<0.006%, Zr:<0.10%, の1種または2種以上、を含有し残部が実質的に鉄であ
る鋼において、マルテンサイト、ベイナイト組織中の粒
内変態フェライトの面積率が10%以上であることを特
徴とする低温靱性に優れた高強度鋼用の連続鋳造鋳片、
(4)(3)において、マルテンサイト、ベイナイト組
織中の粒内変態フェライトの面積率が10%以上でかつ
ポリゴナルフェライトが生成していることを特徴とする
低温靱性に優れた高強度鋼用の連続鋳造鋳片、(5)
(3)または(4)において、Al:<0.004%で
あることを特徴とする低温靱性に優れた高強度鋼用の連
続鋳造鋳片、(6)質量%で、 C:0.03−0.10%, Si:<0.6%, Mn:1.2−2.5%, P:<0.015%, S:<0.003%, Ni:0.1−1.0%, Mo:0.15−0.60%, Nb:0.005−0.10%, N:0.001−0.006%, Ti:0.005−0.050%, を含有し、必要に応じて、 Cr:<1.0%, Cu:<1.0%, V:<0.10%, B:0.0005−0.0020%, Ca:<0.006%, REM:<0.02%, Mg:<0.006%, Zr:<0.10%, の1種または2種以上、を含有し残部が実質的に鉄であ
る溶鋼において、Al:<0.004%とすることで、
マルテンサイト、ベイナイト組織中の粒内変態フェライ
トの面積率を10%以上としたことを特徴とする低温靱
性に優れた高強度鋼用の連続鋳造鋳片の製造法。
The present invention embodies this new finding, and the gist of the present invention is that (1) the area ratio of the intragranular transformed ferrite in the martensite and bainite structure is 10% or more. Continuous cast slab for high-strength steel excellent in low-temperature toughness characterized by (2) martensite, the area ratio of intragranular transformed ferrite in the bainite structure is 10% or more, and polygonal ferrite is generated. Continuous cast slab for high-strength steel with excellent low-temperature toughness,
(3) In mass%, C: 0.03-0.10%, Si: <0.6%, Mn: 1.2-2.5%, P: <0.015%, S: <0. 003%, Ni: 0.1-1.0%, Mo: 0.15-0.60%, Nb: 0.005-0.10%, N: 0.001-0.006%, Ti: 0 0.005% to 0.050%, Al: <0.06%, and, if necessary, Cr: <1.0%, Cu: <1.0%, V: <0.10%, B : 0.0005-0.0020%, Ca: <0.006%, REM: <0.02%, Mg: <0.006%, Zr: <0.10%, one or more of the following: Low-temperature toughness, characterized in that the area ratio of the intragranular transformed ferrite in the martensite and bainite structure is 10% or more in a steel containing iron and the balance being substantially iron. Continuous casting slab for the excellent high-strength steel,
(4) For high-strength steel according to (3), wherein the area ratio of the intragranular transformed ferrite in the martensite and bainite structures is 10% or more and polygonal ferrite is formed. Continuous cast slab of (5)
(3) or (4), a continuous cast slab for high-strength steel excellent in low-temperature toughness, characterized by Al: <0.004%, (6) mass%, C: 0.03% -0.10%, Si: <0.6%, Mn: 1.2-2.5%, P: <0.015%, S: <0.003%, Ni: 0.1-1.0 %, Mo: 0.15 to 0.60%, Nb: 0.005 to 0.10%, N: 0.001 to 0.006%, Ti: 0.005 to 0.050%, If necessary, Cr: <1.0%, Cu: <1.0%, V: <0.10%, B: 0.0005-0.0020%, Ca: <0.006%, REM: <0.02%, Mg: <0.006%, Zr: <0.10%, In a molten steel containing one or more of the following, and the balance being substantially iron, Al: < By the .004%,
A method for producing a continuous cast slab for high-strength steel excellent in low-temperature toughness, characterized in that the area ratio of intragranular transformed ferrite in a martensite and bainite structure is 10% or more.

【0008】(7)(6)において、連続鋳造時の表面
冷却速度が800〜500℃間を100分以下で冷却す
ることにより、マルテンサイト、ベイナイト組織中の粒
内変態フェライトの面積率を10%以上としたことを特
徴とする低温靱性に優れた高強度鋼用の連続鋳造鋳片の
製造法、(8)(1)〜(5)の鋳片をオーステナイト
域に再加熱し、制御圧延を行い、その後空冷以上の冷却
速度で冷却したことを特徴とする低温靱性に優れた高強
度鋼、である。
(7) In (6), the area ratio of the intragranular transformed ferrite in the martensite and bainite structure is reduced by cooling the surface cooling rate during continuous casting between 800 and 500 ° C. for 100 minutes or less. % Or more, a method for producing a continuous cast slab for high-strength steel excellent in low-temperature toughness, wherein the slab of (8), (1) to (5) is reheated to the austenite region and controlled rolling is performed. And then cooled at a cooling rate equal to or higher than air cooling, and is a high-strength steel excellent in low-temperature toughness.

【0009】なお、ここでマルテンサイト、ベイナイト
とはこれらが焼戻しされた状態のものも含めて言う。
[0009] Here, martensite and bainite include those in a state where they are tempered.

【0010】[0010]

【発明の実施の形態】以下、本発明の内容について詳細
に説明する。本発明の対象とするようなTSが770MP
a を越えるような高強度鋼用の連続鋳造鋼片では、合金
含有量が多く焼入れ性が高いために、冷却速度が遅いに
もかかわらずマルテンサイトまたはベイナント組織にな
り、通常はフェライトは生成しない。変態後も徐冷却さ
れるために、マルテンサイトやベイナイトは焼戻しされ
た状態になっている。これらを、例えば200mm以上の
厚さの鋼片での雰囲気加熱中の加熱に相当する10℃/
分以下の加熱速度で1100℃まで加熱すると、鋳造組
織に相当する連続鋳造鋳片での組織を引き継いだ極めて
粗大な組織になる。しかし、連続鋳造鋳片の組織にフェ
ライトが分散して少量生成すると細粒化することがわか
った。フェライト生成量と再加熱結晶粒径の関係を検討
するために、以下のような検討を行った。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the contents of the present invention will be described in detail. TS of 770MP as the object of the present invention
Continuous cast billets for high-strength steels exceeding a have martensite or bainant structure despite slow cooling rate due to high alloy content and high hardenability, and usually do not generate ferrite. . Since it is gradually cooled even after the transformation, martensite and bainite are in a tempered state. These are heated at a temperature of 10 ° C /
When heated to 1100 ° C. at a heating rate of 1 minute or less, the structure becomes an extremely coarse structure that inherits the structure of the continuous cast slab corresponding to the cast structure. However, it was found that when a small amount of ferrite was dispersed and formed in the structure of the continuous cast slab, it was refined. In order to study the relationship between the ferrite generation amount and the reheated crystal grain size, the following study was conducted.

【0011】まず、鋳造後の冷却パターンを変化させて
粒内変態フェライト生成量を変化させた。これを6℃/
分で1100℃まで加熱し、急冷してその結晶粒径を測
定した。図1の結果から明らかなように粒内変態フェラ
イトが生成すると、再加熱時の結晶粒径は最大粒径が2
50μm以下と細かくなり、面積率にして粒内フェライ
トが10%以上生成すると安定して細粒が得られるよう
になる。これは、フェライトとマルテンサイト、ベイナ
イトの界面からオーステナイトが核生成し、かつ粒内変
態フェライトは結晶粒内に均一に分散して生成する特徴
があるためである。従って、マルテンサイト、ベイナイ
ト組織中の粒内変態フェライトは面積率にして10%以
上必要である。粒内変態フェライトの生成比率の上限は
特に規定しないが、これは10%以上では細粒化の効果
がほぼ一定であることと、粒内変態フェライトが生成で
きる割合は自ずから上限が存在するからである。
First, the cooling pattern after casting was changed to change the amount of intragranular transformed ferrite. 6 ℃ /
The temperature was increased to 1100 ° C. per minute, and the mixture was rapidly cooled, and the crystal grain size was measured. As is apparent from the results of FIG. 1, when intragranular transformed ferrite is formed, the maximum crystal grain size upon reheating is 2.
When the grain size is reduced to 50 μm or less and the intragranular ferrite is formed in an area ratio of 10% or more, fine grains can be stably obtained. This is because austenite is nucleated from the interface between ferrite, martensite, and bainite, and intragranular transformed ferrite is uniformly dispersed and formed in crystal grains. Therefore, the intragranular transformed ferrite in the martensite and bainite structures needs to have an area ratio of 10% or more. The upper limit of the intragranular transformed ferrite generation ratio is not particularly specified, but this is because the effect of grain refinement is almost constant at 10% or more, and the ratio at which the intragranular transformed ferrite can be formed naturally has an upper limit. is there.

【0012】この発明の目的とするような高強度鋼用の
化学成分組成ではポリゴナルフェライトは生成しにくい
が、化学成分量が比較的低い時や、鋳造後の冷却速度が
比較的遅い場合にはポリゴナルフェライトも生成するこ
とがある。ポリゴナルフェライトは粒内変態フェライト
と併存して若干の細粒化効果を有する。この効果は付加
的であるので特に下限値を規定しない。また上限値につ
いても自ずから限界があるので特に規定しないが、50
%程度である。このような粒内変態フェライトが面積率
で10%以上存在し、また場合によりポリゴナルフェラ
イトが存在すると、低い加熱速度で再加熱した場合でも
細粒のオーステナイト粒になる。
[0012] Polygonal ferrite is not easily produced with the chemical composition for high-strength steel as the object of the present invention. However, when the chemical composition is relatively low or when the cooling rate after casting is relatively low, May also produce polygonal ferrite. Polygonal ferrite coexists with intragranular transformed ferrite and has a slight grain refinement effect. Since this effect is additive, no lower limit is specified. The upper limit is also not specified because it naturally has a limit.
%. If such intragranular transformed ferrite is present in an area ratio of 10% or more, and in some cases polygonal ferrite is present, fine austenite grains are obtained even when reheated at a low heating rate.

【0013】低温靱性に優れた高強度鋼は特定の化学成
分で得られるので以下に、この化学成分の限定理由につ
いて述べる。C量は0.03〜0.10%に限定する。
炭素は鋼の強度向上に極めて有効であり、マルテンサイ
ト組織において目標とする強度を得るためには、最低
0.03%は必要である。しかし、C量が多すぎると母
材、HAZの低温靱性や現地溶接性の著しい劣化を招く
ので、その上限を0.10%とした。
Since a high-strength steel excellent in low-temperature toughness can be obtained with a specific chemical composition, the reason for limiting the chemical composition will be described below. C content is limited to 0.03 to 0.10%.
Carbon is extremely effective in improving the strength of steel, and at least 0.03% is necessary to obtain the target strength in the martensite structure. However, if the C content is too large, the low-temperature toughness and the on-site weldability of the base material and HAZ are remarkably deteriorated, so the upper limit is set to 0.10%.

【0014】Siは脱酸や強度向上のために添加する元
素であるが、多く添加するとHAZ靱性、現地溶接性を
著しく劣化させるので、上限を0.6%とした。ただ
し、鋼の脱酸はAlでもTiでも十分可能であり、Si
は必ずしも添加する必要はない。Mnは本発明鋼のミク
ロ組織を下部ベイナイト主体の組織とし、優れた強度・
低温靱性のバランスを確保する上で不可欠な元素であ
り、その下限は1.2%である。しかし、Mnが多すぎ
ると鋼の焼入れ性が増してHAZ靱性、現地溶接性を劣
化させるだけでなく、連続鋳造鋼片の中心偏析を助長
し、母材の低温靱性をも劣化させるので上限を2.5%
とした。
[0014] Si is an element added for deoxidation and improvement of strength, but if added in a large amount, HAZ toughness and on-site weldability are significantly deteriorated, so the upper limit was made 0.6%. However, deoxidation of steel is sufficiently possible with Al or Ti,
Need not necessarily be added. Mn makes the microstructure of the steel of the present invention a structure mainly composed of lower bainite, and has excellent strength and strength.
It is an element indispensable for securing the balance of low-temperature toughness, and its lower limit is 1.2%. However, if the Mn content is too large, the hardenability of the steel is increased to deteriorate not only the HAZ toughness and the on-site weldability, but also the central segregation of the continuously cast steel slab and the low-temperature toughness of the base material. 2.5%
And

【0015】Niを添加する目的は低炭素の本発明鋼の
低温靱性を、現地溶接性を劣化させることなく向上させ
るためである。Ni添加はMnやCr,Mo添加に比較
して圧延組織(とくに連続鋳造鋼片の中心偏析帯)中に
低温靱性に有害な硬化組織を形成することが少ないばか
りか、0.1%以上の微量Ni添加がHAZ靱性の改善
にも有効であることが判明した。しかし、添加量が多す
ぎると、経済性だけでなく、HAZ靱性や現地溶接性を
劣化させるので、その上限を1.0%とした。また、N
i添加は連続鋳造時、熱間圧延時におけるCu割れの防
止にも有効である。この場合、NiはCu量の1/3以
上添加する必要がある。
The purpose of adding Ni is to improve the low temperature toughness of the low carbon steel of the present invention without deteriorating the on-site weldability. Compared with the addition of Mn, Cr and Mo, Ni addition not only causes less formation of a hardened structure harmful to low-temperature toughness in the rolled structure (especially the central segregation zone of a continuously cast steel slab), but also has a content of 0.1% or more. It has been found that the addition of a small amount of Ni is also effective for improving the HAZ toughness. However, if the addition amount is too large, not only economic efficiency but also HAZ toughness and on-site weldability are degraded, so the upper limit was made 1.0%. Also, N
The addition of i is also effective in preventing Cu cracking during continuous casting and hot rolling. In this case, Ni needs to be added at least 1/3 of the Cu amount.

【0016】Moを添加する理由は鋼の焼入れ性を向上
させ、目的とする下部ベイナイト主体の組織を得るため
である。B添加鋼においてはMoの焼入れ性向上効果が
高まり、B添加鋼ではMo添加が特に有効である。ま
た、MoはNbと共存して制御圧延時にオーステナイト
の再結晶を抑制し、オーステナイト組織の微細化にも効
果がある。このような効果を得るために、Moは最低で
も0.15%必要である。しかし、過剰なMo添加はH
AZ靱性、現地溶接性を劣化させるので上限は、0.6
0%とした。
The reason for adding Mo is to improve the hardenability of steel and obtain the desired structure mainly composed of lower bainite. In the B-added steel, the effect of improving the hardenability of Mo is enhanced, and in the B-added steel, the addition of Mo is particularly effective. Further, Mo coexists with Nb to suppress recrystallization of austenite during controlled rolling, and is also effective in refining the austenite structure. In order to obtain such an effect, Mo must be at least 0.15%. However, excessive Mo addition is
Since the AZ toughness and on-site weldability deteriorate, the upper limit is 0.6
0%.

【0017】また、本発明鋼では、必須の元素としてN
b:0.005〜0.10%、Ti:0.005〜0.
050%を含有する。NbはMoと共存して制御圧延時
にオーステナイトの再結晶を抑制して組織を微細化する
だけでなく、析出硬化や焼入れ性増大にも寄与し、鋼を
強靱化する。特にNbとBが共存すると焼入れ性向上効
果が相乗的に高まる。しかし、Nb添加量が多すぎる
と、HAZ靱性や現地溶接性に悪影響をもたらすので、
その上限を0.10%とした。一方、Ti添加は微細な
TiNを形成し、スラブ再加熱時およびHAZのオース
テナイト粒の粗大化を抑制してミクロ組織を微細化し、
母材およびHAZの低温靱性を改善する。また、Bの焼
入れ性向上効果に有害な固溶NをTiNとして固定する
役割も有する。この目的のために、Ti量は3.4N
(各々重量%)以上添加することが望ましい。また、A
l量が少ない時(たとえば0.004%以下)、Tiは
酸化物を形成し、粒内変態フェライト生成核として作用
し、本発明の目的の細粒化に特に有効である。このよう
なTiNの効果を発現させるためには、最低0.005
%のTi添加が必要である。しかし、Ti量が多すぎる
と、TiNの粗大化やTiCによる析出硬化が生じ、低
温靱性を劣化させるので、その上限を0.050%に限
定した。
In the steel of the present invention, N is an essential element.
b: 0.005 to 0.10%, Ti: 0.005 to 0.
Contains 050%. Nb coexists with Mo to suppress the recrystallization of austenite during controlled rolling, not only to refine the structure, but also to contribute to precipitation hardening and hardenability, and toughen the steel. In particular, when Nb and B coexist, the effect of improving hardenability increases synergistically. However, if the added amount of Nb is too large, it adversely affects HAZ toughness and on-site weldability.
The upper limit was set to 0.10%. On the other hand, the addition of Ti forms fine TiN, suppresses coarsening of austenite grains in the HAZ during reheating of the slab and refines the microstructure,
Improves low temperature toughness of base metal and HAZ. Also, it has a role of fixing solid solution N harmful to the effect of improving the hardenability of B as TiN. For this purpose, the Ti content is 3.4 N
(Each by weight). Also, A
When the amount of l is small (for example, 0.004% or less), Ti forms an oxide and acts as an intragranular transformed ferrite forming nucleus, which is particularly effective for the grain refinement for the purpose of the present invention. In order to exert such an effect of TiN, at least 0.005
% Ti addition is required. However, if the amount of Ti is too large, coarsening of TiN and precipitation hardening due to TiC occur, deteriorating low-temperature toughness. Therefore, the upper limit is limited to 0.050%.

【0018】Alは通常脱酸材として鋼に含まれる元素
で、組織の微細化にも効果を有する。しかし、Al量が
0.06%を越えるとAl系非金属介在物が増加して鋼
の清浄度を害するので、上限を0.06%とした。しか
し、脱酸はTiあるいはSiでも可能であり、Alは必
ずしも添加する必要はない。NはTiNを形成しスラブ
再加熱時およびHAZのオーステナイト粒の粗大化を抑
制して母材、HAZの低温靱性を向上させる。このため
に必要な最小量は0.001%である。しかし、N量が
多すぎるとスラブ表面疵や固溶NによるHAZ靱性の劣
化、Bの焼入れ性向上効果の低下の原因となるので、そ
の上限は0.006%に抑える必要がある。
Al is an element usually contained in steel as a deoxidizing material, and also has an effect on refining the structure. However, if the amount of Al exceeds 0.06%, Al-based nonmetallic inclusions increase and impair the cleanliness of the steel, so the upper limit was made 0.06%. However, deoxidation is possible with Ti or Si, and Al need not always be added. N forms TiN and suppresses coarsening of austenite grains in the slab during reheating and in the HAZ, thereby improving the low-temperature toughness of the base material and the HAZ. The minimum required for this is 0.001%. However, if the N amount is too large, it causes deterioration of the HAZ toughness due to slab surface flaws and solid solution N, and a decrease in the effect of improving the hardenability of B, so the upper limit must be suppressed to 0.006%.

【0019】さらに、本発明では、不純物元素である
P,S量をそれぞれ0.015%、0.003%未満と
する。この主たる理由は低温靱性をより一層向上させる
ためである。P量の低減は連続鋳造スラブの中心偏析を
軽減するとともに、粒界破壊を防止して低温靱性を向上
させる。また、S量の低減は熱間圧延で延伸化するMn
Sを低減して延靱性を向上させる効果がある。
Further, in the present invention, the contents of P and S as impurity elements are set to less than 0.015% and 0.003%, respectively. The main reason for this is to further improve the low-temperature toughness. The reduction of the P content reduces the segregation of the center of the continuously cast slab, prevents the grain boundary fracture, and improves the low-temperature toughness. Further, the reduction of the amount of S is achieved by Mn which is stretched by hot rolling.
This has the effect of reducing S and improving ductility.

【0020】つぎに、V,Cu,Cr,B,Ca,RE
M,Mg,Zrを添加する目的について説明する。基本
となる成分に、更にこれらの元素を添加する主たる目的
は、特徴を損なうことなく、強度・靱性の一層の向上や
製造可能な鋼材サイズの拡大をはかるためである。した
がって、その添加量は自ずから制限されるべき性質のも
のである。
Next, V, Cu, Cr, B, Ca, RE
The purpose of adding M, Mg, and Zr will be described. The main purpose of adding these elements to the basic components is to further improve the strength and toughness and expand the size of the steel material that can be manufactured without deteriorating the characteristics. Therefore, the amount of addition is of a nature that should be naturally restricted.

【0021】VはNbとほぼ同様の効果を有するが、そ
の効果はNbに比較して弱い。しかし、超高強度鋼にお
けるV添加の効果は大きく、NbとVの複合添加は本発
明鋼の優れた特徴をさらに顕著なものとする。上限はH
AZ靱性、現地溶接性の点から0.10%まで許容でき
る。Cuは母材、溶接部の強度を増加させるが、多すぎ
るとHAZ靱性や現地溶接性を著しく劣化させる。この
ためCu量の上限は1.0%である。
V has almost the same effect as Nb, but the effect is weaker than Nb. However, the effect of V addition on ultra-high strength steel is great, and the combined addition of Nb and V makes the excellent features of the steel of the present invention more remarkable. The upper limit is H
From the point of AZ toughness and on-site weldability, 0.10% is acceptable. Cu increases the strength of the base material and the welded portion, but if it is too large, the HAZ toughness and on-site weldability are significantly deteriorated. Therefore, the upper limit of the amount of Cu is 1.0%.

【0022】Crは母材、溶接部の強度を増加させる
が、多すぎるとHAZ靱性や現地溶接性を著しく劣化さ
せる。このためCr量の上限は1.0%である。Bは極
微量で鋼の焼入れ性を飛躍的に高め、上部ベイナイトの
生成を抑制し下部ベイナイト主体の組織を得るために、
極めて有効な元素である。1%Mnに相当する効果があ
る。さらに、BはMoの焼入れ性向上効果を高めると共
に、Nbと共存して相乗的に焼入れ性を増す。このよう
な効果を得るためには、Bは最低でも0.0005%必
要である。一方、過剰に添加すると、低温靱性を劣化さ
せるだけでなく、かえってBの焼入れ性向上効果を消失
せしめることもあるので、その上限を0.0020%と
した。
[0022] Cr increases the strength of the base material and the welded portion, but if too much, the HAZ toughness and the on-site weldability are remarkably deteriorated. For this reason, the upper limit of the amount of Cr is 1.0%. B is a very small amount to dramatically enhance the hardenability of steel, suppress the formation of upper bainite, and obtain a structure mainly composed of lower bainite.
It is a very effective element. There is an effect equivalent to 1% Mn. Further, B enhances the effect of improving the hardenability of Mo, and synergistically increases the hardenability together with Nb. In order to obtain such an effect, B must be at least 0.0005%. On the other hand, if it is added excessively, it not only deteriorates the low-temperature toughness but also sometimes loses the effect of improving the hardenability of B, so the upper limit was made 0.0020%.

【0023】CaおよびREMは硫化物(MnS)の形
態を制御し、低温靱性を向上(シャルピー試験の吸収エ
ネルギーの増加など)させる。Ca量が0.006%、
REMが0.02%を越えて添加するとCaO−CaS
またはREM−CaSが大量に生成して大型クラスタ
ー、大型介在物となり、鋼の清浄度を害するだけでな
く、現地溶接性にも悪影響をおよぼす。このためCa添
加量の上限を0.006%またはREM添加量の条件を
0.02%に制限した。
Ca and REM control the sulfide (MnS) morphology and improve low-temperature toughness (such as an increase in the energy absorbed in the Charpy test). Ca content is 0.006%,
When REM is added in excess of 0.02%, CaO-CaS
Alternatively, a large amount of REM-CaS is generated to form large clusters and large inclusions, which not only impairs the cleanliness of steel but also adversely affects on-site weldability. Therefore, the upper limit of the amount of Ca added was limited to 0.006%, and the condition of the amount of REM added was limited to 0.02%.

【0024】Mgは微細分散した酸化物を形成し、溶接
熱影響部の粒粗大化を抑制して低温靱性を向上させる。
0.006%以上では粗大酸化物を生成し逆に靱性を劣
化させるので上限を0.006%とした。ZrはP化合
物を形成して実質的に低P化を実現し、低温靱性を向上
させる効果がある。しかし、0.10%を越えて含有す
ると粗大な酸化物を形成し、却って低温靱性を劣化させ
るので添加量の0.10%以下とした。
Mg forms a finely dispersed oxide, suppresses grain coarsening of the heat affected zone by welding, and improves low temperature toughness.
If the content is 0.006% or more, a coarse oxide is formed and the toughness is deteriorated, so the upper limit is made 0.006%. Zr has the effect of forming a P compound to substantially reduce P and to improve low-temperature toughness. However, when the content exceeds 0.10%, a coarse oxide is formed, and the low-temperature toughness is rather deteriorated. Therefore, the addition amount is set to 0.10% or less.

【0025】上記のような化学成分組成を有する鋼は基
本的に低温靱性が優れた高強度鋼になる。このような鋼
において、さらにAl含有量を0.004%未満にする
ことで通常の連続鋳造において微細に分散したTi酸化
物が形成され、これから粒内変態フェライトが生成す
る。表面温度にして800〜500℃を100分以下で
冷却すると、特に粒内変態フェライトは生成しやすい。
A steel having the above-mentioned chemical composition is basically a high-strength steel having excellent low-temperature toughness. In such steels, by further reducing the Al content to less than 0.004%, finely dispersed Ti oxides are formed in ordinary continuous casting, and intragranular transformed ferrite is generated therefrom. When the surface temperature is cooled from 800 to 500 ° C. for 100 minutes or less, intragranular transformed ferrite is particularly likely to be formed.

【0026】このように、粒内変態フェライトが面積率
にして10%以上存在する本発明の鋳片をオーステナイ
ト域に再加熱すると細粒のオーステナイトになり、これ
から制御圧延をおこなうと低温靱性の優れた高強度鋼が
得られる。
As described above, when the slab of the present invention in which the intragranular transformed ferrite is present in an area ratio of 10% or more is reheated to the austenite region, the slab becomes fine-grained austenite. High strength steel is obtained.

【0027】[0027]

【実施例】表1に示す化学成分の鋼を転炉で溶成し、連
続鋳造により250mm厚の鋳片を製造した。これらを1
050℃に再加熱し(600℃から900℃の平均加熱
速度は約6℃/分)、950℃以下の温度で100mmか
ら20mmまで制御圧延し、740℃で圧延を終了して、
板厚中央の平均冷却速度が約20℃/秒となるように4
00℃まで冷却し鋼板を製造した。
EXAMPLES Steel having the chemical composition shown in Table 1 was melted in a converter and cast into a 250 mm thick slab by continuous casting. These are 1
Reheat to 050 ° C (average heating rate from 600 ° C to 900 ° C is about 6 ° C / min), control roll from 100mm to 20mm at 950 ° C or lower, finish rolling at 740 ° C,
4 so that the average cooling rate at the center of the thickness is about 20 ° C / sec.
It was cooled to 00 ° C. to produce a steel sheet.

【0028】これらについて、鋳片でのフェライト割
合、再加熱後そのまま冷却して観察した結晶粒径、圧延
後の鋼板の引張り試験結果(TS)、シャルピー試験結
果(vTrs)、板厚方向に測定した結晶粒径を表2に
示す。
For these, the ferrite ratio in the slab, the crystal grain size observed by cooling as it is after reheating, the tensile test result (TS), the Charpy test result (vTrs) of the rolled steel sheet, and the measurement in the thickness direction Table 2 shows the obtained crystal grain sizes.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明によれば、従来と同じ熱間加工工
程で容易に低温靱性に優れた細粒組織の高強度鋼が製造
可能になった。
According to the present invention, a high-strength steel having a fine-grained structure excellent in low-temperature toughness can be easily produced in the same hot working step as in the prior art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、鋳片の粒内変態フェライト生成量と、
1100℃加熱後の結晶粒径との関係を示すグラフであ
る。
FIG. 1 is a graph showing the amount of intragranular transformed ferrite produced in a slab;
It is a graph which shows the relationship with the crystal grain size after heating at 1100 degreeC.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植森 龍治 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Ryuji Uemori 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 マルテンサイト、ベイナイト組織中の粒
内変態フェライトの面積率が10%以上であることを特
徴とする低温靱性に優れた高強度鋼用の連続鋳造鋳片。
1. A continuous cast slab for high-strength steel excellent in low-temperature toughness, characterized in that the area ratio of intragranular transformed ferrite in a martensite or bainite structure is 10% or more.
【請求項2】 マルテンサイト、ベイナイト組織中の粒
内変態フェライトの面積率が10%以上でかつポリゴナ
ルフェライトが生成していることを特徴とする低温靱性
に優れた高強度鋼用の連続鋳造鋳片。
2. Continuous casting for high-strength steel excellent in low-temperature toughness, characterized in that the area ratio of intragranular transformed ferrite in the martensite and bainite structure is 10% or more and polygonal ferrite is formed. Slab.
【請求項3】 質量%で、 C:0.03−0.10%, Si:<0.6%, Mn:1.2−2.5%, P:<0.015%, S:<0.003%, Ni:0.1−1.0%, Mo:0.15−0.60%, Nb:0.005−0.10%, N:0.001−0.006%, Ti:0.005−0.050%, Al:<0.06%, を含有し、必要に応じて、 Cr:<1.0%, Cu:<1.0%, V:<0.10%, B:0.0005−0.0020%, Ca:<0.006%, REM:<0.02%, Mg:<0.006%, Zr:<0.10%, の1種または2種以上、を含有し残部が実質的に鉄であ
る鋼において、マルテンサイト、ベイナイト組織中の粒
内変態フェライトの面積率が10%以上であることを特
徴とする低温靱性に優れた高強度鋼用の連続鋳造鋳片。
3. In mass%, C: 0.03-0.10%, Si: <0.6%, Mn: 1.2-2.5%, P: <0.015%, S: < 0.003%, Ni: 0.1-1.0%, Mo: 0.15-0.60%, Nb: 0.005-0.10%, N: 0.001-0.006%, Ti : 0.005 to 0.050%, Al: <0.06%, and if necessary, Cr: <1.0%, Cu: <1.0%, V: <0.10% , B: 0.0005-0.0020%, Ca: <0.006%, REM: <0.02%, Mg: <0.006%, Zr: <0.10%, one or two of the following: In a steel containing the above and the balance being substantially iron, the area ratio of the intragranular transformed ferrite in the martensite and bainite structure is at least 10%. Continuous cast slab for high strength steel with excellent thermal toughness.
【請求項4】 請求項3において、マルテンサイト、ベ
イナイト組織中の粒内変態フェライトの面積率が10%
以上でかつポリゴナルフェライトが生成していることを
特徴とする低温靱性に優れた高強度鋼用の連続鋳造鋳
片。
4. The method according to claim 3, wherein the area ratio of the intragranular transformed ferrite in the martensite and bainite structures is 10%.
A continuous cast slab for high-strength steel excellent in low-temperature toughness, characterized in that polygonal ferrite is formed as described above.
【請求項5】 請求項3または4において、Al:<
0.004%であることを特徴とする低温靱性に優れた
高強度鋼用の連続鋳造鋳片。
5. The method according to claim 3, wherein Al: <
A continuous cast slab for high-strength steel excellent in low-temperature toughness characterized by being 0.004%.
【請求項6】 質量%で、 C:0.03−0.10%, Si:<0.6%, Mn:1.2−2.5%, P:<0.015%, S:<0.003%, Ni:0.1−1.0%, Mo:0.15−0.60%, Nb:0.005−0.10%, N:0.001−0.006%, Ti:0.005−0.050%, を含有し、必要に応じて、 Cr:<1.0%, Cu:<1.0%, V:<0.10%, B:0.0005−0.0020%, Ca:<0.006%, REM:<0.02%, Mg:<0.006%, Zr:<0.10%, の1種または2種以上、を含有し残部が実質的に鉄であ
る溶鋼において、Al:<0.004%とすることで、
マルテンサイト、ベイナイト組織中の粒内変態フェライ
トの面積率を10%以上としたことを特徴とする低温靱
性に優れた高強度鋼用の連続鋳造鋳片の製造法。
6. In mass%, C: 0.03-0.10%, Si: <0.6%, Mn: 1.2-2.5%, P: <0.015%, S: < 0.003%, Ni: 0.1-1.0%, Mo: 0.15-0.60%, Nb: 0.005-0.10%, N: 0.001-0.006%, Ti : 0.005 to 0.050%, and if necessary, Cr: <1.0%, Cu: <1.0%, V: <0.10%, B: 0.0005-0 .0020%, Ca: <0.006%, REM: <0.02%, Mg: <0.006%, Zr: <0.10%, and the balance is substantially In molten steel, which is primarily iron, by setting Al: <0.004%,
A method for producing a continuous cast slab for high-strength steel excellent in low-temperature toughness, characterized in that the area ratio of intragranular transformed ferrite in a martensite and bainite structure is 10% or more.
【請求項7】 請求項6において、連続鋳造時の表面冷
却速度が800〜500℃間を100分以下で冷却する
ことにより、マルテンサイト、ベイナイト組織中の粒内
変態フェライトの面積率を10%以上としたことを特徴
とする低温靱性に優れた高強度鋼用の連続鋳造鋳片の製
造法。
7. The area ratio of the intragranular transformed ferrite in the structure of martensite and bainite is reduced by cooling the surface cooling rate during continuous casting between 800 and 500 ° C. for 100 minutes or less. A method for producing a continuous cast slab for high-strength steel excellent in low-temperature toughness, characterized by the above.
【請求項8】 請求項1〜5のいずれかに記載の鋳片を
オーステナイト域に再加熱し、制御圧延を行い、その後
空冷以上の冷却速度で冷却したことを特徴とする低温靱
性に優れた高強度鋼。
8. An excellent low-temperature toughness characterized in that the slab according to any one of claims 1 to 5 is reheated to an austenite region, subjected to controlled rolling, and then cooled at a cooling rate higher than air cooling. High strength steel.
JP30178397A 1997-11-04 1997-11-04 Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness Expired - Fee Related JP3898814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30178397A JP3898814B2 (en) 1997-11-04 1997-11-04 Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30178397A JP3898814B2 (en) 1997-11-04 1997-11-04 Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH11140580A true JPH11140580A (en) 1999-05-25
JP3898814B2 JP3898814B2 (en) 2007-03-28

Family

ID=17901126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30178397A Expired - Fee Related JP3898814B2 (en) 1997-11-04 1997-11-04 Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP3898814B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293039A (en) * 2002-04-01 2003-10-15 Nippon Steel Corp Method for producing high strength steel plate and steel pipe with low content of coarse crystal grin and having excellent low temperature toughness
WO2004031420A1 (en) * 2002-10-01 2004-04-15 Sumitomo Metal Industries, Ltd. High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
KR100635074B1 (en) * 1999-12-28 2006-10-16 주식회사 포스코 A method for production of the high strength and toughness steel by coarse precipitate
WO2007017161A1 (en) * 2005-08-04 2007-02-15 Tenaris Connections Ag High-strength steel for seamless, weldable steel pipes
EP1918397A1 (en) * 2005-08-22 2008-05-07 Sumitomo Metal Industries Limited Seamless steel pipe for line pipe and method for producing same
US7416617B2 (en) 2002-10-01 2008-08-26 Sumitomo Metal Industries, Ltd. High strength seamless steel pipe excellent in hydrogen-induced cracking resistance
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US8715430B2 (en) 2005-04-04 2014-05-06 Nippon Steel & Sumitomo Metal Corporation High strength steel plate and high strength welded pipe excellent in ductile fracture characteristic and methods of production of same
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US10844669B2 (en) 2009-11-24 2020-11-24 Tenaris Connections B.V. Threaded joint sealed to internal and external pressures
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN114959511A (en) * 2022-05-13 2022-08-30 河北普阳钢铁有限公司 Manufacturing method of 700MPa grade high-toughness explosion-proof steel plate
CN115717220A (en) * 2022-11-29 2023-02-28 钢铁研究总院有限公司 590 MPa-grade polar region hull structural steel with low-temperature toughness and preparation method thereof
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100635074B1 (en) * 1999-12-28 2006-10-16 주식회사 포스코 A method for production of the high strength and toughness steel by coarse precipitate
JP2003293039A (en) * 2002-04-01 2003-10-15 Nippon Steel Corp Method for producing high strength steel plate and steel pipe with low content of coarse crystal grin and having excellent low temperature toughness
WO2004031420A1 (en) * 2002-10-01 2004-04-15 Sumitomo Metal Industries, Ltd. High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
AU2003264947B2 (en) * 2002-10-01 2006-08-31 Nippon Steel Corporation High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
US7416617B2 (en) 2002-10-01 2008-08-26 Sumitomo Metal Industries, Ltd. High strength seamless steel pipe excellent in hydrogen-induced cracking resistance
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8715430B2 (en) 2005-04-04 2014-05-06 Nippon Steel & Sumitomo Metal Corporation High strength steel plate and high strength welded pipe excellent in ductile fracture characteristic and methods of production of same
WO2007017161A1 (en) * 2005-08-04 2007-02-15 Tenaris Connections Ag High-strength steel for seamless, weldable steel pipes
US8007603B2 (en) 2005-08-04 2011-08-30 Tenaris Connections Limited High-strength steel for seamless, weldable steel pipes
US7931757B2 (en) 2005-08-22 2011-04-26 Sumitomo Metal Industries, Ltd. Seamless steel pipe for line pipe and a process for its manufacture
EP1918397A4 (en) * 2005-08-22 2009-08-19 Sumitomo Metal Ind Seamless steel pipe for line pipe and method for producing same
EP1918397A1 (en) * 2005-08-22 2008-05-07 Sumitomo Metal Industries Limited Seamless steel pipe for line pipe and method for producing same
NO340253B1 (en) * 2005-08-22 2017-03-27 Sumitomo Metal Ind Seamless steel pipe for conduit and method of manufacture thereof
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US10844669B2 (en) 2009-11-24 2020-11-24 Tenaris Connections B.V. Threaded joint sealed to internal and external pressures
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN114959511A (en) * 2022-05-13 2022-08-30 河北普阳钢铁有限公司 Manufacturing method of 700MPa grade high-toughness explosion-proof steel plate
CN115717220A (en) * 2022-11-29 2023-02-28 钢铁研究总院有限公司 590 MPa-grade polar region hull structural steel with low-temperature toughness and preparation method thereof
CN115717220B (en) * 2022-11-29 2024-03-08 钢铁研究总院有限公司 590 MPa-grade polar region ship body structural steel with low-temperature toughness and preparation method thereof

Also Published As

Publication number Publication date
JP3898814B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP4294854B2 (en) Ultra-high strength, weldable steel with excellent ultra-low temperature toughness
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
US4591396A (en) Method of producing steel having high strength and toughness
JP7244718B2 (en) Steel material for thick high-strength line pipe with excellent low-temperature toughness, elongation and small yield ratio, and method for producing the same
JP2006342421A (en) Method for producing high-tension steel excellent in weld crack resistance
KR20000062788A (en) Continuous casting slab suitable for the production of non-tempered high tensile steel material
JP3258207B2 (en) Ultra high strength steel with excellent low temperature toughness
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4286581B2 (en) Wear-resistant steel
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP3244981B2 (en) Weldable high-strength steel with excellent low-temperature toughness
JPH0225968B2 (en)
JP2000104116A (en) Production of steel excellent in strength and toughness
JP3244986B2 (en) Weldable high strength steel with excellent low temperature toughness
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JPH09302445A (en) Nickel-containing steel for low temperature use and its production
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP3444244B2 (en) High tensile strength steel excellent in toughness and method of manufacturing the same
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees