JPH11135115A - Negative electrode material for nonaqueous secondary battery and its manufacture - Google Patents

Negative electrode material for nonaqueous secondary battery and its manufacture

Info

Publication number
JPH11135115A
JPH11135115A JP9293898A JP29389897A JPH11135115A JP H11135115 A JPH11135115 A JP H11135115A JP 9293898 A JP9293898 A JP 9293898A JP 29389897 A JP29389897 A JP 29389897A JP H11135115 A JPH11135115 A JP H11135115A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
thin film
compound
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9293898A
Other languages
Japanese (ja)
Other versions
JP4453111B2 (en
Inventor
Ryuichi Akagi
赤木  隆一
Toru Nishimura
徹 西村
Masayuki Okamoto
昌幸 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP29389897A priority Critical patent/JP4453111B2/en
Publication of JPH11135115A publication Critical patent/JPH11135115A/en
Application granted granted Critical
Publication of JP4453111B2 publication Critical patent/JP4453111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new negative electrode material for a nonaqueous electrolyte secondary battery with high voltage, high capacity, satisfactory charging/ discharging cycle characteristics, and provide its manufacturing method. SOLUTION: A semiconductor thin film of an element or the compound of at least one kind selected from among groups IIIB, IVB, VB of the periodic table, capable of inserting/releasing lithium ions is used as the negative active material of a negative electrode, a metal oxide containing transition metals as the constituting element is used as the positive active material of a positive electrode, and a lithium ion conductive nonaqueous electrolyte prepared by dissolving a lithium compound in an organic solvent, or holding an organic solvent containing a lithium compound as a solid solution or in which a lithium compound is dissolved in a polymer is used as an electrolyte. By assembling these positive electrode, negative electrode and electrolyte, a nonaqueous electrolyte secondary battery with high capacity, high voltage, and satisfactory charging/discharging cycle characteristics is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池に
関するものであり、さらに詳しくは非水系用二次電池用
負極材料に関する。
The present invention relates to a non-aqueous secondary battery, and more particularly, to a negative electrode material for a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】3V級の電圧をもつ非水系二次電池にお
いては、負極活物質として、金属リチウム、正極活物質
としてCo,Mn,Niに代表される遷移金属の酸化物
を用いる方法が代表的である。しかし、負極に金属リチ
ウムを用いると、充放電中に金属リチウムが樹枝状の形
態(デンドライト)で成長するため内部でショートした
り、またデンドライトの活性が高く発火の危険性がある
などの問題がある。そのため、金属リチウムに代わる活
物質としてリチウムイオンを挿入・放出することのでき
る焼成炭素質材料が負極として実用化されている。しか
しながら、炭素材料は体積当たりの容量が低いという欠
点を持っている。
2. Description of the Related Art In a non-aqueous secondary battery having a voltage of 3V class, a method of using metallic lithium as a negative electrode active material and a transition metal oxide represented by Co, Mn and Ni as a positive electrode active material is typical. It is a target. However, when metallic lithium is used for the negative electrode, the metallic lithium grows in a dendritic form (dendrite) during charge and discharge, causing a short circuit inside, and the dendrite has high activity and there is a risk of ignition. is there. For this reason, fired carbonaceous materials capable of inserting and releasing lithium ions as active materials instead of metallic lithium have been put to practical use as negative electrodes. However, carbon materials have the disadvantage of low capacity per volume.

【0003】そこで、高い体積当りの容量が期待できる
負極活物質として、リチウムイオンを挿入・放出できる
1)TiS2,LiTiS2(米国特許第398347
6)などの遷移金属カルコゲン化合物、2)ルチル構造
の遷移金属酸化物、例えば、WO2(米国特許第419
8476)、3)LixFe(Fe2)O4などのスピネ
ル化合物(特開昭58−220362号)、4)電気化
学的に合成されたFe23のリチウム化合物(米国特許
第4464447)、Fe23のリチウム化合物(特開
平3−112070号)、Nb25(特開昭62−59
412号、特開平2−82447号)、酸化鉄、Fe
O,Fe23,Fe34,酸化コバルト、CoO,Co
23,Co34(特開平3−291862号)などの遷
移金属酸化物が知られている。一方、5)リチウムと合
金を形成することが知られているSn,Cd(Proc
eedings of the Electroche
mical Society,87−1,1987)A
l(Solid StateIonics,20,19
86),Si,Pb,Bi,Sb(Proceedin
gs of the Electrochemical
Society,87−1,1987)及びこれらの
リチウムとの合金(例えば特開平7−29602号)を
用いることが提案されている。
Therefore, lithium ion can be inserted and released as a negative electrode active material which can be expected to have a high capacity per volume. 1) TiS 2 , LiTiS 2 (US Pat. No. 3,984,347)
6) transition metal chalcogen compounds, 2) transition metal oxides having a rutile structure, for example, WO 2 (US Pat. No. 419)
8476), 3) LixFe (Fe 2) spinels such as O 4 (JP 58-220362), 4) electrochemically synthesized Fe 2 O 3 of a lithium compound (U.S. Patent No. 4464447), Fe Lithium compound of 2 O 3 (JP-A-3-112070), Nb 2 O 5 (JP-A-62-59)
412, JP-A-2-82447), iron oxide, Fe
O, Fe 2 O 3 , Fe 3 O 4 , cobalt oxide, CoO, Co
Transition metal oxides such as 2 O 3 and Co 3 O 4 (Japanese Patent Application Laid-Open No. 3-291962) are known. On the other hand, 5) Sn, Cd (Proc) which is known to form an alloy with lithium
eatings of the Electroche
medical Society, 87-1, 1987) A
1 (Solid StateIonics, 20, 19)
86), Si, Pb, Bi, Sb (Proceedin
gs of the Electrochemical
Society, 87-1, 1987) and their alloys with lithium (for example, JP-A-7-29602) have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、通常上
記負極活物質は粉末として得られるため、電極を作製す
る際には、導電助剤を加え結着剤を溶かした有機溶剤に
粉末状の負極活物質を加えペースト状とし、集電体上に
塗布した後、加熱乾燥し溶媒を除去する方法が採られて
いる。しかし、塗布法によっては、粉末粒子の凝集体の
生成を抑制できず、負極活物質の粉末粒子を1次粒子に
まで分散させるのは困難である。そのため電極の電気抵
抗が大きくなり、結果として低い作動電圧しか得られ
ず、また集電が不十分なため大電流が流れる高速充放電
時には負極活物質の利用率が低く十分な充放電容量を引
き出せていないのが現状である。そこで本発明の目的
は、1)大量のリチウムイオンの可逆的な挿入・放出が
可能でかつ負極の電気抵抗を低減できる負極活物質と
2)その製造方法を提供し、さらに3)高電圧、高容量
で充放電特性の優れた非水系二次電池を提供することで
ある。
However, since the above-mentioned negative electrode active material is usually obtained as a powder, when preparing an electrode, a powdery negative electrode active material is added to an organic solvent in which a conductive additive is added and a binder is dissolved. A method is used in which a substance is added to form a paste, applied to a current collector, and then dried by heating to remove the solvent. However, depending on the coating method, the formation of aggregates of powder particles cannot be suppressed, and it is difficult to disperse the powder particles of the negative electrode active material into primary particles. As a result, the electrical resistance of the electrode increases, resulting in a low operating voltage.In addition, the current collection is insufficient, and the high utilization rate of the negative electrode active material during high-speed charging and discharging when a large current flows causes a sufficient charge / discharge capacity to be drawn out. It is not at present. Therefore, an object of the present invention is to provide 1) a negative electrode active material capable of reversibly inserting and releasing a large amount of lithium ions and reducing the electric resistance of the negative electrode, and 2) a method for producing the negative electrode active material. An object of the present invention is to provide a non-aqueous secondary battery having high capacity and excellent charge / discharge characteristics.

【0005】[0005]

【課題を解決するための手段】上記の第1の目的を達成
するため、本発明の負極活物質は、リチウムイオンを挿
入・放出する1種又は2種以上の周期律表IIIB、I
VB、VB族から選ばれた元素の単体又はその化合物か
らなる半導体薄膜であることを特徴とする。第2の目的
は、集電体として用いる銅又はステンレス基板上に蒸着
法、スパッタリング法、イオンプレーテイング法、CV
D法等の真空薄膜作製法から選ばれたいずれか1つの方
法を用いて上記半導体薄膜を作製することにより達成さ
れる。さらに上記真空薄膜作製法により作製された半導
体薄膜を、真空下、熱処理することを特徴とする。第3
の目的は、本発明の半導体薄膜を負極活物質とし、遷移
金属を構成元素として含む金属酸化物を正極活物質と
し、有機溶媒にリチウム化合物を溶解させた、又は高分
子にリチウム化合物を固溶或いはリチウム化合物を溶解
させた有機溶媒を保持させたリチウムイオン導電性の非
水電解質を電解質として非水系二次電池を構成すること
により達成される。
In order to achieve the first object, the negative electrode active material of the present invention comprises one or more kinds of periodic tables IIIB and I which insert and release lithium ions.
It is a semiconductor thin film made of an element selected from the group consisting of VB and VB or a compound thereof. The second object is to use a vapor deposition method, a sputtering method, an ion plating method, a CV method on a copper or stainless steel substrate used as a current collector.
This is achieved by manufacturing the semiconductor thin film using any one method selected from vacuum thin film manufacturing methods such as Method D. Further, the semiconductor thin film manufactured by the above-described vacuum thin film manufacturing method is heat-treated under vacuum. Third
The purpose of the present invention is to use a semiconductor thin film of the present invention as a negative electrode active material, a metal oxide containing a transition metal as a constituent element as a positive electrode active material, and dissolve a lithium compound in an organic solvent or dissolve a lithium compound in a polymer. Alternatively, this is achieved by forming a nonaqueous secondary battery using a lithium ion conductive nonaqueous electrolyte holding an organic solvent in which a lithium compound is dissolved as an electrolyte.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いる元素とは、周期律表IIIB族のB、A
l、Ga、In、Tl、IVB族のC、Si、Ge、S
n、Pb、およびVB族のN、P、As、Sb、Biで
ある。単体としては、Si、C、Ge、Snが好まし
い。化合物としては、リチウムイオンの挿入・放出が可
能である半導体が望ましく、III族とV族からなるI
nBi、Bi3In5、BiIn2、InSb、InA
s、InP、InN、GaSb、GaAs、GaP、G
aN、Tl5Sb、Sb5Tl7、Bi2Tl、AlSb等
の化合物半導体が挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The elements used in the present invention include B and A in Group IIIB of the periodic table.
1, Ga, In, Tl, IVB group C, Si, Ge, S
n, Pb, and N, P, As, Sb, Bi of the VB group. As a simple substance, Si, C, Ge, and Sn are preferable. As the compound, a semiconductor capable of inserting and releasing lithium ions is desirable.
nBi, Bi 3 In 5 , BiIn 2 , InSb, InA
s, InP, InN, GaSb, GaAs, GaP, G
Compound semiconductors such as aN, Tl 5 Sb, Sb 5 Tl 7 , Bi 2 Tl, and AlSb are exemplified.

【0007】集電体として用いる導電性の金属又は合金
は、通常非水系二次電池の負極用に用いられているいず
れのものも使用できるが、銅又はステンレスが望まし
い。
As the conductive metal or alloy used as the current collector, any one commonly used for a negative electrode of a non-aqueous secondary battery can be used, but copper or stainless steel is preferable.

【0008】本発明の負極活物質の製造方法としては、
下記の方法が上げられるが、これに限定されるものでは
なく、蒸着法、イオンプレーテイング法、CVD法等の
既知の真空成膜法を用いることができる。本発明の望ま
しい製造方法は、IIIB、IVB、VB族の元素のう
ちの目的の単体又はその化合物からなる円板状ターゲッ
トを用い、1×10-2〜1×10-3Torrのアルゴン
雰囲気で、高周波(RF)スパッタリングにより、銅箔
又はステンレス箔からなる基板上に成膜する方法であ
る。さらに、必要に応じて真空下で熱処理を行う。
The method for producing the negative electrode active material of the present invention includes:
The following method can be used, but the method is not limited thereto, and a known vacuum film forming method such as an evaporation method, an ion plating method, and a CVD method can be used. A preferable production method of the present invention is to use a disk-shaped target made of a target simple substance or a compound thereof from among the elements of the IIIB, IVB, and VB groups in an argon atmosphere of 1 × 10 −2 to 1 × 10 −3 Torr. This is a method of forming a film on a substrate made of copper foil or stainless steel foil by high frequency (RF) sputtering. Further, heat treatment is performed under vacuum if necessary.

【0009】本発明の正極活物質として用いられる正極
材料は、従来公知の何れの材料も使用でき、例えば、L
ixCoO2,LixNiO2,MnO2,LiMnO2
LixMn24,LixMn2-y4,α−V25,Ti
2等が挙げられる。
As the positive electrode material used as the positive electrode active material of the present invention, any conventionally known materials can be used.
ixCoO 2 , LixNiO 2 , MnO 2 , LiMnO 2 ,
LixMn 2 O 4, LixMn 2- y O 4, α-V 2 O 5, Ti
S 2, and the like.

【0010】本発明に使用される非水電解質は、有機溶
媒にリチウム化合物を溶解させた非水電解液、又は高分
子にリチウム化合物を固溶或いはリチウム化合物を溶解
させた有機溶媒を保持させた高分子固体電解質を用いる
ことができる。非水電解液は、有機溶媒と電解質とを適
宜組み合わせて調製されるが、これら有機溶媒や電解質
はこの種の電池に用いられるものであればいずれも使用
可能である。有機溶媒としては、例えばプロピレンカー
ボネート、エチレンカーボネート、ピニレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、メ
チルエチルカーボネート、メチルエチルカーボネート、
1,2−ジメトキシエタン、1,2−ジエトキシエタン
メチルフォルメイト、ブチロラクトン、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、1−3ジオキソ
フラン、4−メチル−1、3−ジオキソフラン、ジエチ
ルエーテル、スルホラン、メチルスルホラン、アセトニ
トリル、プロピオニトリル、ブチロニトリル、バレロニ
トリル、ベンゾニトリル、1,2−ジクロロエタン、4
−メチル−2ーペンタノン、1、4−ジオキサン、アニ
ソール、ジグライム、ジメチルホルムアミド、ジメチル
スルホキシド等である。これらの溶媒はその1種を単独
で使用することができるし、2種以上を併用することも
できる。電解質としては、例えばLiClO4,LiA
sF6,LiPF6,LiBF4,LiB(C654
LiCl,LiBr,LiI,LiCH3SO3,LiC
3SO3,LiAlCl4等が挙げられ、これらの1種
を単独で使用することもできるし、2種以上を併用する
こともできる。
The non-aqueous electrolyte used in the present invention is a non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or a polymer in which a lithium compound is dissolved or an organic solvent in which a lithium compound is dissolved is held. A polymer solid electrolyte can be used. The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery. Examples of the organic solvent include propylene carbonate, ethylene carbonate, pinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl ethyl carbonate,
1,2-dimethoxyethane, 1,2-diethoxyethanemethylformate, butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1-3 dioxofuran, 4-methyl-1,3-dioxofuran, diethyl ether, sulfolane, methylsulfolane, Acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane,
-Methyl-2-pentanone, 1,4-dioxane, anisole, diglyme, dimethylformamide, dimethylsulfoxide and the like. One of these solvents can be used alone, or two or more can be used in combination. As the electrolyte, for example, LiClO 4 , LiA
sF 6, LiPF 6, LiBF4, LiB (C 6 H 5) 4,
LiCl, LiBr, LiI, LiCH 3 SO 3 , LiC
F 3 SO 3 , LiAlCl 4 and the like can be mentioned. One of these can be used alone, or two or more can be used in combination.

【0011】本発明に使用される高分子固体電解質は、
上記の電解質から選ばれる電解質を以下に述べる高分子
に固溶させたものを用いることができる。例えば、ポリ
エチレンオキサイドやポリプロピレンオキサイドのよう
なポリエーテル鎖を有する高分子、ポリエチレンサクシ
ネート、ポリ−カプロラクタムのようなポリエステル鎖
を有する高分子、ポリエチレンイミンのようなポリアミ
ン鎖を有する高分子、ポリアルキレンスルフィドのよう
なポリスルフィド鎖を有する高分子が挙げられる。ま
た、本発明に使用される高分子固体電解質として、ポリ
フッ化ビニリデン、フッ化ビニリデン−テトラフルオロ
エチレン共重合体、ポリエチレンオキサイド、ポリアク
リロニトリル、ポリプロピレンオキサイド等の高分子に
上記非水電解液を保持させ上記高分子を可塑化させたも
のを用いることもできる。
The solid polymer electrolyte used in the present invention is:
An electrolyte selected from the above-mentioned electrolytes and dissolved in a polymer described below can be used. For example, a polymer having a polyether chain such as polyethylene oxide or polypropylene oxide, a polymer having a polyester chain such as polyethylene succinate, poly-caprolactam, a polymer having a polyamine chain such as polyethyleneimine, a polyalkylene sulfide And a polymer having a polysulfide chain. Further, as the polymer solid electrolyte used in the present invention, polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, polyethylene oxide, polyacrylonitrile, holding the non-aqueous electrolyte in a polymer such as polypropylene oxide What plasticized the said polymer can also be used.

【0012】[0012]

【実施例】以下、実施例を用いて本発明をさらに詳細に
説明するが、本発明はかかる実施例に限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0013】実施例1.フルウチ化学製の純度99.9
9%のケイ素をターゲットとし、厚さ0.1mmで純度
99.9%の銅基板上に、RFスパッタリング装置を用
いてケイ素の薄膜を成膜した。スパッタリング中、ベル
ジャー内を1.7×10-3Torrのアルゴン雰囲気と
し、成膜時間は45分とした。さらに、9.0×10-6
Torrの真空下、650℃で1時間保持しアニール処
理を行った。このようにして、膜厚2μmの結晶性ケイ
素の薄膜を得、これを負極として用いた。正極は次の様
にして作製した。炭酸リチウムLi23と炭酸コバルト
CoCO3を等モル比で秤量し、イソプロピルアルコー
ルを用いてボールミルで湿式混合した後、溶媒を蒸発さ
せ800℃、1時間で仮焼した。仮焼粉を振動ミルで再
粉砕した後、成型圧1.3ton/cm2で直径16m
m、厚さ0.5mmのペレットに加圧成型した後、80
0℃で10時間焼成したものを正極とした。電解液はエ
チレンカーボネートとジメチルカーボネートの体積比
1:1の混合溶媒に六フッ化リン酸リチウムLiPF6
を1モル/l溶解したものを用いた。以上述べた負極、
正極および電解質を用いてコイン電池を作製し、室温で
一昼夜放置しエージングした後、1.5mAの定電流で
4.2Vから2.5Vの電位範囲で充放電試験を行っ
た。結果を表1に示す。
Embodiment 1 FIG. 99.9 purity from Furuuchi Chemical
A thin film of silicon was formed on a copper substrate having a thickness of 0.1 mm and a purity of 99.9% by using an RF sputtering apparatus with a target of 9% silicon. During sputtering, the inside of the bell jar was set to an argon atmosphere of 1.7 × 10 −3 Torr, and the film formation time was set to 45 minutes. Furthermore, 9.0 × 10 -6
The film was held at 650 ° C. for 1 hour under a Torr vacuum to perform an annealing treatment. Thus, a crystalline silicon thin film having a thickness of 2 μm was obtained and used as a negative electrode. The positive electrode was produced as follows. Lithium carbonate Li 2 O 3 and cobalt carbonate CoCO 3 were weighed at an equimolar ratio and wet-mixed in a ball mill using isopropyl alcohol, then the solvent was evaporated and calcined at 800 ° C. for 1 hour. After re-crushing the calcined powder with a vibration mill, the molding pressure is 1.3 ton / cm 2 and the diameter is 16 m.
m, after being pressed into a 0.5 mm thick pellet,
What was fired at 0 ° C. for 10 hours was used as a positive electrode. The electrolytic solution was prepared by mixing lithium hexafluorophosphate LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1.
Was dissolved at 1 mol / l. Negative electrode described above,
A coin battery was prepared using the positive electrode and the electrolyte, left standing at room temperature for 24 hours, aged, and then subjected to a charge / discharge test at a constant current of 1.5 mA in a potential range of 4.2 V to 2.5 V. Table 1 shows the results.

【0014】比較例1.(株)高純度化学研究所製のケ
イ素粉末に導電助剤としてグラファイト、結着剤にテフ
ロンを用い銅基板上に塗布したものを負極とした以外は
実施例1と同様にしてコイン電池を作製し、充放電試験
を行った。結果を表1に示す。
Comparative Example 1 A coin battery was manufactured in the same manner as in Example 1 except that a negative electrode was used in which graphite was used as a conductive aid and Teflon was used as a binder, and the resultant was coated on a copper substrate using silicon powder manufactured by Kojundo Chemical Laboratory Co., Ltd. Then, a charge / discharge test was performed. Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上述べた様に、本発明は非水系二次電
池の負極活物質としてリチウムイオンを挿入・放出する
周期律表IIIB、IVB、VB族から選ばれた1種又
は2種以上の元素の単体又はその化合物からなる半導体
薄膜を、正極活物質として遷移金属を構成元素として含
む金属酸化物を、有機溶媒リチウム化合物を溶解させ
た、又は高分子にリチウム化合物を固溶或いはリチウム
化合物を溶解させた有機溶媒を保持させたリチウムイオ
ン導電性の非水電解質を電解質として用いると、粒子状
の負極活物質を用いる場合に比べ高容量、高電圧で高電
流密度での充放電特性に優れた非水系二次電池が得られ
る。
As described above, the present invention provides one or more members selected from Groups IIIB, IVB and VB of the periodic table for inserting and releasing lithium ions as a negative electrode active material of a non-aqueous secondary battery. A semiconductor thin film made of a simple substance of the element or a compound thereof, a metal oxide containing a transition metal as a constituent element as a positive electrode active material, an organic solvent lithium compound dissolved, or a lithium compound dissolved in a polymer or a lithium compound When a lithium ion conductive non-aqueous electrolyte holding an organic solvent in which is dissolved is used as an electrolyte, the charge / discharge characteristics at a higher capacity, a higher voltage and a higher current density than when a particulate negative electrode active material is used are improved. An excellent non-aqueous secondary battery can be obtained.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極とを有する非水系二次電池に
おいて、リチウムイオンを挿入・放出する1種又は2種
以上の周期律表IIIB、IVB、VB族から選ばれた
元素の単体又はその化合物からなる半導体薄膜を負極活
物質として用いることを特徴とする非水系二次電池用負
極材料。
1. A non-aqueous secondary battery having a positive electrode and a negative electrode, in which one or more elements selected from Group IIIB, IVB, and VB of the periodic table that inserts / releases lithium ions or a single element thereof. A negative electrode material for a non-aqueous secondary battery, wherein a semiconductor thin film made of a compound is used as a negative electrode active material.
【請求項2】 上記半導体薄膜が周期律表IIIB族元
素としてB、Al、Ga、In及びTlからなる群、I
VB族元素としてC、Si、Ge、Sn及びPbからな
る群、VB族元素としてN、P、As、Sb及びBiか
らなる群から選ばれた1種又は2種以上の元素の単体又
はその化合物からなることを特徴とする請求項1記載の
非水系二次電池用負極材料。
2. The semiconductor thin film according to claim 1, wherein said semiconductor thin film is a group consisting of B, Al, Ga, In and Tl as Group IIIB elements of the periodic table;
A simple substance or a compound of one or more elements selected from the group consisting of C, Si, Ge, Sn and Pb as group VB elements and the group consisting of N, P, As, Sb and Bi as group VB elements The negative electrode material for a non-aqueous secondary battery according to claim 1, comprising:
【請求項3】 周期律表IIIB、IVB、VB族から
選ばれた1種又は2種以上の元素の単体又はその化合物
からなる半導体薄膜を、集電体基板上に蒸着法、スパッ
タリング法、イオンプレーテイング法、CVD法から選
ばれたいずれか1つの方法で作製することを特徴とする
非水系二次電池用負極材料の製造方法。
3. A method for depositing a semiconductor thin film comprising a simple substance of one or more elements selected from the groups IIIB, IVB and VB of the periodic table or a compound thereof on a current collector substrate by an evaporation method, a sputtering method, A method for producing a negative electrode material for a non-aqueous secondary battery, wherein the method is produced by one of a plating method and a CVD method.
【請求項4】 集電体基板上に蒸着法、スパッタリング
法、イオンプレーテイング法、CVD法から選ばれたい
ずれか1つの方法で作製された上記半導体薄膜を、真空
下で熱処理することを特徴とする請求項3記載の非水系
二次電池用負極材料の製造方法。
4. The method according to claim 1, wherein the semiconductor thin film formed on the current collector substrate by any one method selected from a vapor deposition method, a sputtering method, an ion plating method, and a CVD method is heat-treated under vacuum. The method for producing a negative electrode material for a non-aqueous secondary battery according to claim 3.
【請求項5】 周期律表IIIB、IVB、VB族から
選ばれた1種又は2種以上の元素の単体又はその化合物
からなる半導体薄膜を負極活物質とし、遷移金属を構成
元素として含む金属酸化物を正極活物質とし、有機溶媒
にリチウム化合物を溶解させた、又は高分子にリチウム
化合物を固溶或いはリチウム化合物を溶解させた有機溶
媒を保持させたリチウムイオン導電性の非水電解質を電
解質として用いることを特徴とする非水系二次電池。
5. A metal oxide comprising, as a negative electrode active material, a semiconductor thin film made of one or more of one or more elements selected from Groups IIIB, IVB, and VB of the periodic table as a negative electrode active material, and a transition metal as a constituent element. The lithium ion conductive non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or a lithium compound is dissolved in a polymer or an organic solvent in which a lithium compound is dissolved is held as an electrolyte. A non-aqueous secondary battery characterized by being used.
JP29389897A 1997-10-27 1997-10-27 Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery Expired - Fee Related JP4453111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29389897A JP4453111B2 (en) 1997-10-27 1997-10-27 Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29389897A JP4453111B2 (en) 1997-10-27 1997-10-27 Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009252660A Division JP2010027627A (en) 2009-11-04 2009-11-04 Negative electrode material for nonaqueous secondary battery material, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11135115A true JPH11135115A (en) 1999-05-21
JP4453111B2 JP4453111B2 (en) 2010-04-21

Family

ID=17800590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29389897A Expired - Fee Related JP4453111B2 (en) 1997-10-27 1997-10-27 Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4453111B2 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185744A (en) * 1997-12-25 1999-07-09 Yuasa Corp Nonaqueous electrolyte battery
JP2002520783A (en) * 1998-07-10 2002-07-09 ミネソタ マイニング アンド マニュファクチャリング カンパニー Electrode material and composition containing the same
WO2002071512A1 (en) * 2001-03-06 2002-09-12 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
JP2002541637A (en) * 1999-04-01 2002-12-03 スリーエム イノベイティブ プロパティズ カンパニー Lithium-ion battery with improved resistance to sustained self-heating
US6685804B1 (en) 1999-10-22 2004-02-03 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
WO2005124897A1 (en) * 2004-06-15 2005-12-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery and negative electrode thereof
JP2006511907A (en) * 2002-12-23 2006-04-06 エイ 123 システムズ,インク. High energy density High power density electrochemical cell
US7105253B2 (en) 2001-06-25 2006-09-12 Sanyo Electric Co., Ltd. Method of and apparatus for manufacturing lithium secondary cell
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2007053084A (en) * 2005-07-21 2007-03-01 Sumitomo Titanium Corp Method of manufacturing negative electrode for lithium secondary battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
WO2007094311A1 (en) 2006-02-14 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
JP2007534177A (en) * 2004-04-22 2007-11-22 カリフォルニア インスティテュート オブ テクノロジー High capacity nanostructured germanium-containing materials and their lithium alloys
US7311999B2 (en) 2002-11-19 2007-12-25 Sony Corporation Anode for a battery and a battery using an anode
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7459233B2 (en) 2003-11-05 2008-12-02 Sony Corporation Anode and battery
US7459236B2 (en) 2004-10-18 2008-12-02 Sony Corporation Battery
US7476464B2 (en) 2006-08-02 2009-01-13 Sony Corporation Negative electrode and secondary cell
US7482095B2 (en) 2003-05-20 2009-01-27 Sony Corporation Anode and battery using the same
US7494743B2 (en) 2005-09-29 2009-02-24 Sony Corporation Anode and battery
US7655359B2 (en) 2005-12-16 2010-02-02 Sony Corporation Secondary battery
US7682742B2 (en) 2005-07-20 2010-03-23 Sony Corporation Battery
US7700235B2 (en) 2004-11-25 2010-04-20 Sony Corporation Battery and method of manufacturing the same
US7846582B2 (en) 2006-12-19 2010-12-07 Sony Corporation Negative electrode, battery using the same, and method of manufacturing negative electrode
EP2287946A1 (en) * 2009-07-22 2011-02-23 Belenos Clean Power Holding AG New electrode materials, in particular for rechargeable lithium ion batteries
US7943254B2 (en) 2006-03-20 2011-05-17 Sony Corportion Anode and battery
JP2011198756A (en) * 2010-02-26 2011-10-06 Semiconductor Energy Lab Co Ltd Power storage device, its manufacturing method, secondary battery, and capacitor
US8048563B2 (en) 2005-10-25 2011-11-01 Sony Corporation Anode, battery, and methods of manufacturing them
US8097365B2 (en) 2006-06-29 2012-01-17 Sony Corporation Electrode current collector and method for inspecting the same, electrode for battery and method for producing the same, and secondary battery and method for producing the same
US8119287B2 (en) 2005-05-16 2012-02-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte rechargeable battery, and negative electrode and material thereof
US8169003B2 (en) 2007-03-20 2012-05-01 Power Integrations, Inc. Termination and contact structures for a high voltage GaN-based heterojunction transistor
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
US8507135B2 (en) 2009-04-01 2013-08-13 The Swatch Group Research And Development Ltd Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
US8629525B2 (en) 2005-11-15 2014-01-14 Power Integrations, Inc. Second contact schottky metal layer to improve GaN schottky diode performance
US8633094B2 (en) 2011-12-01 2014-01-21 Power Integrations, Inc. GaN high voltage HFET with passivation plus gate dielectric multilayer structure
US8771874B2 (en) 2007-03-13 2014-07-08 Panasonic Corporation Negative electrode contacting silicon oxide active material layers for lithium secondary battery and method for producing the same
US8795886B2 (en) 2008-03-28 2014-08-05 Sony Corporation Anode and secondary battery
US8802286B2 (en) 2006-01-30 2014-08-12 Sony Corporation Negative electrode for use with secondary battery and secondary battery using such negative electrode
KR101466405B1 (en) * 2008-09-17 2014-11-27 주식회사 엘지화학 Current collectors for Batteries and Secondary Batteries comprising the same
US8916929B2 (en) 2004-06-10 2014-12-23 Power Integrations, Inc. MOSFET having a JFET embedded as a body diode
US8928037B2 (en) 2013-02-28 2015-01-06 Power Integrations, Inc. Heterostructure power transistor with AlSiN passivation layer
US8940441B2 (en) 2006-04-04 2015-01-27 Sony Corporatin Anode and battery
US8940620B2 (en) 2011-12-15 2015-01-27 Power Integrations, Inc. Composite wafer for fabrication of semiconductor devices
US9048504B2 (en) 2006-12-27 2015-06-02 Sony Corporation Secondary battery electrode, method for manufacturing same, and secondary battery
US9112238B2 (en) 2006-03-20 2015-08-18 Sony Corporation Anode and battery
US9246160B2 (en) * 2002-12-26 2016-01-26 Sony Corporation Anode and battery using the same
US9564640B2 (en) 2006-06-26 2017-02-07 Sony Corporation Electrode current collector and method for producing the same, electrode for battery and method for producing the same, and secondary battery
US9761867B2 (en) 2009-03-12 2017-09-12 Belenos Clean Power Holding Ag Open porous electrically conductive nanocomposite material
US11469333B1 (en) 2020-02-19 2022-10-11 Semiq Incorporated Counter-doped silicon carbide Schottky barrier diode

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185744A (en) * 1997-12-25 1999-07-09 Yuasa Corp Nonaqueous electrolyte battery
JP4846901B2 (en) * 1998-07-10 2011-12-28 スリーエム カンパニー Electrode material and composition containing the same
JP2002520783A (en) * 1998-07-10 2002-07-09 ミネソタ マイニング アンド マニュファクチャリング カンパニー Electrode material and composition containing the same
JP2002541637A (en) * 1999-04-01 2002-12-03 スリーエム イノベイティブ プロパティズ カンパニー Lithium-ion battery with improved resistance to sustained self-heating
JP4662639B2 (en) * 1999-04-01 2011-03-30 スリーエム イノベイティブ プロパティズ カンパニー Lithium ion battery with improved resistance to sustained self-heating
US6685804B1 (en) 1999-10-22 2004-02-03 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7794881B1 (en) 1999-10-22 2010-09-14 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
KR100766200B1 (en) * 1999-10-22 2007-10-10 산요덴키가부시키가이샤 Electrode for lithium secondary cell and lithium secondary cell
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
WO2002071512A1 (en) * 2001-03-06 2002-09-12 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
US7160646B2 (en) 2001-03-06 2007-01-09 Sanyo Electric Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery
US7105253B2 (en) 2001-06-25 2006-09-12 Sanyo Electric Co., Ltd. Method of and apparatus for manufacturing lithium secondary cell
US7311999B2 (en) 2002-11-19 2007-12-25 Sony Corporation Anode for a battery and a battery using an anode
US8003250B2 (en) 2002-12-23 2011-08-23 A123 Systems, Inc. High energy and power density electrochemical cells
JP2006511907A (en) * 2002-12-23 2006-04-06 エイ 123 システムズ,インク. High energy density High power density electrochemical cell
US9246160B2 (en) * 2002-12-26 2016-01-26 Sony Corporation Anode and battery using the same
US7482095B2 (en) 2003-05-20 2009-01-27 Sony Corporation Anode and battery using the same
US7625668B2 (en) 2003-11-05 2009-12-01 Sony Corporation Anode and battery
US7459233B2 (en) 2003-11-05 2008-12-02 Sony Corporation Anode and battery
JP2007534177A (en) * 2004-04-22 2007-11-22 カリフォルニア インスティテュート オブ テクノロジー High capacity nanostructured germanium-containing materials and their lithium alloys
US8916929B2 (en) 2004-06-10 2014-12-23 Power Integrations, Inc. MOSFET having a JFET embedded as a body diode
KR100860341B1 (en) 2004-06-15 2008-09-26 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery and negative electrode thereof
WO2005124897A1 (en) * 2004-06-15 2005-12-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery and negative electrode thereof
US7459236B2 (en) 2004-10-18 2008-12-02 Sony Corporation Battery
US7700235B2 (en) 2004-11-25 2010-04-20 Sony Corporation Battery and method of manufacturing the same
US8119287B2 (en) 2005-05-16 2012-02-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte rechargeable battery, and negative electrode and material thereof
US7682742B2 (en) 2005-07-20 2010-03-23 Sony Corporation Battery
JP4648879B2 (en) * 2005-07-21 2011-03-09 株式会社大阪チタニウムテクノロジーズ Method for producing negative electrode for lithium secondary battery
JP2007053084A (en) * 2005-07-21 2007-03-01 Sumitomo Titanium Corp Method of manufacturing negative electrode for lithium secondary battery
US7494743B2 (en) 2005-09-29 2009-02-24 Sony Corporation Anode and battery
US8048563B2 (en) 2005-10-25 2011-11-01 Sony Corporation Anode, battery, and methods of manufacturing them
US8629525B2 (en) 2005-11-15 2014-01-14 Power Integrations, Inc. Second contact schottky metal layer to improve GaN schottky diode performance
US7655359B2 (en) 2005-12-16 2010-02-02 Sony Corporation Secondary battery
US8802286B2 (en) 2006-01-30 2014-08-12 Sony Corporation Negative electrode for use with secondary battery and secondary battery using such negative electrode
WO2007094311A1 (en) 2006-02-14 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
US7781101B2 (en) 2006-02-14 2010-08-24 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
US8268484B2 (en) 2006-02-14 2012-09-18 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
US7943254B2 (en) 2006-03-20 2011-05-17 Sony Corportion Anode and battery
US8173299B2 (en) 2006-03-20 2012-05-08 Sony Corporation Anode and battery
US9806371B2 (en) 2006-03-20 2017-10-31 Sony Corporation Anode and battery
US9112238B2 (en) 2006-03-20 2015-08-18 Sony Corporation Anode and battery
US8940441B2 (en) 2006-04-04 2015-01-27 Sony Corporatin Anode and battery
US9564640B2 (en) 2006-06-26 2017-02-07 Sony Corporation Electrode current collector and method for producing the same, electrode for battery and method for producing the same, and secondary battery
US8097365B2 (en) 2006-06-29 2012-01-17 Sony Corporation Electrode current collector and method for inspecting the same, electrode for battery and method for producing the same, and secondary battery and method for producing the same
US7476464B2 (en) 2006-08-02 2009-01-13 Sony Corporation Negative electrode and secondary cell
US7846582B2 (en) 2006-12-19 2010-12-07 Sony Corporation Negative electrode, battery using the same, and method of manufacturing negative electrode
US9048504B2 (en) 2006-12-27 2015-06-02 Sony Corporation Secondary battery electrode, method for manufacturing same, and secondary battery
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
US8771874B2 (en) 2007-03-13 2014-07-08 Panasonic Corporation Negative electrode contacting silicon oxide active material layers for lithium secondary battery and method for producing the same
US8169003B2 (en) 2007-03-20 2012-05-01 Power Integrations, Inc. Termination and contact structures for a high voltage GaN-based heterojunction transistor
US8795886B2 (en) 2008-03-28 2014-08-05 Sony Corporation Anode and secondary battery
US9831498B2 (en) 2008-03-28 2017-11-28 Sony Corporation Anode and secondary battery
KR101466405B1 (en) * 2008-09-17 2014-11-27 주식회사 엘지화학 Current collectors for Batteries and Secondary Batteries comprising the same
US9761867B2 (en) 2009-03-12 2017-09-12 Belenos Clean Power Holding Ag Open porous electrically conductive nanocomposite material
US8507135B2 (en) 2009-04-01 2013-08-13 The Swatch Group Research And Development Ltd Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
EP2287946A1 (en) * 2009-07-22 2011-02-23 Belenos Clean Power Holding AG New electrode materials, in particular for rechargeable lithium ion batteries
JP2015133326A (en) * 2010-02-26 2015-07-23 株式会社半導体エネルギー研究所 power storage device
US10141120B2 (en) 2010-02-26 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Power storage system and manufacturing method thereof and secondary battery and capacitor
JP2011198756A (en) * 2010-02-26 2011-10-06 Semiconductor Energy Lab Co Ltd Power storage device, its manufacturing method, secondary battery, and capacitor
US8633094B2 (en) 2011-12-01 2014-01-21 Power Integrations, Inc. GaN high voltage HFET with passivation plus gate dielectric multilayer structure
US8940620B2 (en) 2011-12-15 2015-01-27 Power Integrations, Inc. Composite wafer for fabrication of semiconductor devices
US8928037B2 (en) 2013-02-28 2015-01-06 Power Integrations, Inc. Heterostructure power transistor with AlSiN passivation layer
US11469333B1 (en) 2020-02-19 2022-10-11 Semiq Incorporated Counter-doped silicon carbide Schottky barrier diode

Also Published As

Publication number Publication date
JP4453111B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP4453111B2 (en) Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery
JP2948205B1 (en) Method for producing negative electrode for secondary battery
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
EP1406325B1 (en) Non-aqueous electrolyte secondary cell
US20040033419A1 (en) Negative active material, negative electrode using the same, non-aqueous electrolyte battery using the same, and method for preparing the same
KR101403498B1 (en) Anode active material for secondary battery and secondary battery including the same
KR20110005807A (en) High voltage cathode compositions
JP2012164624A (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material
JP4191281B2 (en) Negative electrode active material, negative electrode and method for producing the same, and non-aqueous secondary battery
KR100416140B1 (en) Negative active material for lithium secondary battery and method of preparing same
JPH11135120A (en) Negative electrode material for nonaqueous secondary battery
JP3771846B2 (en) Non-aqueous secondary battery and charging method thereof
KR101840885B1 (en) Thin film alloy electrodes
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JPH11339796A (en) Negative electrode material for nonaqueous secondary battery
JP4439660B2 (en) Nonaqueous electrolyte secondary battery
WO2002061864A1 (en) A lithium electrode comprising surface-treated lithium particles, its fabrication method and lithium battery comprising the same
CN111247672B (en) Lithium secondary battery with long service life and ultra-high energy density
KR102505370B1 (en) Cathode Active Material for Lithium Secondary Battery
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP3481140B2 (en) Anode material for lithium secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JPH056765A (en) Nonaqueous solvent secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JP2010027627A (en) Negative electrode material for nonaqueous secondary battery material, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees