JPH11124464A - Hydrophobic metal oxide fine powder and its production - Google Patents

Hydrophobic metal oxide fine powder and its production

Info

Publication number
JPH11124464A
JPH11124464A JP9289521A JP28952197A JPH11124464A JP H11124464 A JPH11124464 A JP H11124464A JP 9289521 A JP9289521 A JP 9289521A JP 28952197 A JP28952197 A JP 28952197A JP H11124464 A JPH11124464 A JP H11124464A
Authority
JP
Japan
Prior art keywords
metal oxide
fine powder
group
oxide fine
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9289521A
Other languages
Japanese (ja)
Other versions
JP3978520B2 (en
Inventor
Eiji Komai
栄治 駒井
Masamichi Murota
正道 室田
Hirokuni Kino
博州 城野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP28952197A priority Critical patent/JP3978520B2/en
Publication of JPH11124464A publication Critical patent/JPH11124464A/en
Application granted granted Critical
Publication of JP3978520B2 publication Critical patent/JP3978520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject fine powder having high hydrophobic property, capable of arbitrarily controlling electron charge amount according to treating conditions by treating metal oxide fine powder with a specific surface treating agent. SOLUTION: This fine powder is obtained by treating (A) metal oxide fine powder (preferably silica, titania or alumina, preferably having 10-400 m<2> /g specific surface area) with (B) an epoxy group-containing silane (e.g. θ- glycidoxypropyltrimethoxysilane), (C) an amino group-containing organic compound (preferably monoamine, diamine or the like) and (D) both terminal reactive groups-blocked type organopolysiloxane, preferably represented by the formula [R is methyl or ethyl; X is a halogen or the like; (n) is an integer of 15-500]. Furthermore, total amount of components B to D used is preferably 2-100 wt.% based on the component A to be treated. As a result, the fine powder hardly causes change in electron charge and it can be expected that the powder keeps excellent performance over a long period.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体系では液体樹
脂およびゴムにおいて増粘剤、補強充填剤、接着性改良
の目的で添加され、粉体系では粉体塗料や電子写真用ト
ナー等においてそれらの粉体の流動性改善,固結防止,
帯電調整等の目的で添加される表面改質金属微粉末およ
びその製法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a liquid-based resin and a rubber, which are used for thickening agents, reinforcing fillers, and to improve adhesion. Improvement of powder flowability, prevention of caking,
The present invention relates to a surface-modified metal fine powder added for the purpose of charge adjustment and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】有機系の液体の増粘剤、補強充填剤など
に用いられるシリカなどの金属酸化物粉末は、通常アル
キルシランまたはオルガノポリシロキサン等で処理して
表面を疎水化して用いられている。例えば、特開昭51
−14900号には酸化物微粉末をアルキルハロゲン化
シランで処理することが記載されており、特公昭57−
2641号には酸化物微粉体をオルガノポリシロキサン
で処理することが開示されている。また粉体系では、微
細なシリカ、チタニアやアルミナなどの金属酸化物粉体
の表面を有機物によって処理した表面処理金属酸化物粉
体が、複写機、レーザープリンタ、普通紙ファクシミリ
などの電子写真において、トナー流動性改善剤として広
く用いられている。
2. Description of the Related Art Metal oxide powders such as silica used as an organic liquid thickener and a reinforcing filler are usually treated with an alkylsilane or an organopolysiloxane to make the surface hydrophobic. I have. For example, JP
No. -14900 describes that an oxide fine powder is treated with an alkyl halide silane.
No. 2641 discloses that an oxide fine powder is treated with an organopolysiloxane. In the powder system, fine silica, surface-treated metal oxide powder obtained by treating the surface of metal oxide powder such as titania and alumina with an organic substance is used in electrophotography such as copying machines, laser printers, and plain paper facsimile machines. Widely used as a toner fluidity improver.

【0003】このような用途においては、キヤリアであ
る鉄や酸化鉄に対する摩擦帯電性が重要な粉体特性の一
つである。一般に、負帯電のトナーには負帯電の外添剤
が用いられ、正帯電のトナーには正帯電の外添剤が用い
られるものが多く、正帯電のトナー流動性改善剤として
金属酸化物粉末が一般に用いられている。このような金
属酸化物粉末としてその表面にアミノ基を有するものが
知られている。例えば、特開昭62−52561号に
は、気相法により製造したシリカをエポキシ基含有シラ
ンで処理し、次いでアミン類で処理することが開示され
ている。また、特開平6−83099号には、金属酸化
物粉末をエポキシ含有変性シリコーンオイルで加熱処理
し、更にアミノ基含有有機化合物で処理することが記載
されている。
[0003] In such applications, triboelectric charging of iron or iron oxide as a carrier is one of the important powder characteristics. Generally, a negatively charged toner uses a negatively charged external additive, and a positively charged toner often uses a positively charged external additive. Metal oxide powder is used as a positively charged toner fluidity improver. Is generally used. As such a metal oxide powder, a powder having an amino group on its surface is known. For example, JP-A-62-52561 discloses that silica produced by a gas phase method is treated with an epoxy group-containing silane and then treated with an amine. JP-A-6-83099 describes that a metal oxide powder is heat-treated with an epoxy-containing modified silicone oil and further treated with an amino-containing organic compound.

【0004】[0004]

【発明が解決しようとする課題】近年、トナーが10μ
mから7μmに小粒径化するのに伴い、トナーの流動性
が低下する問題があり、これを改善するためにトナー外
添剤の添加量が従来よりも増えているが、このためトナ
ー外添剤がトナーの帯電性に大きな影響を与えるように
なってきた。特に環境による帯電変動が問題となってお
り、これを防止するため疎水性の高いトナー外添剤が求
められてきている。ところが、先に述べた従来の表面に
アミノ基を有する金属酸化物粉末は水に対して親和力が
高く、このため環境変動による帯電変動などを起こしや
すく、また凝集等も起こりやすい問題がある。
In recent years, toners having a size of 10 μm have been developed.
As the particle size is reduced from m to 7 μm, there is a problem that the fluidity of the toner decreases. To improve this, the amount of the toner external additive added is larger than in the past. Additives have come to greatly affect the chargeability of toner. In particular, charging fluctuation due to the environment has become a problem, and in order to prevent this, a highly hydrophobic toner external additive has been demanded. However, the above-mentioned conventional metal oxide powder having an amino group on the surface has a high affinity for water, and therefore, there is a problem that charge fluctuations due to environmental fluctuations and the like and aggregation easily occur.

【0005】すなわち、従来のように金属酸化物微粉末
をエポキシ基含有シランやアミノ基含有有機化合物によ
って処理するだけでは、疎水性が不十分であり、長期に
わたる使用や水分吸湿により帯電変動を生じ、流動性も
低下する。また、金属酸化物微粉末をエポキシ基含有変
性シリコーンやアミノ基含有有機化合物によって処理し
た場合もやはり疎水性は十分でなく、長期間の使用や水
分吸湿によって帯電変動を生じ、流動性が低下する。
In other words, simply treating a metal oxide fine powder with an epoxy group-containing silane or an amino group-containing organic compound as in the prior art is insufficient in hydrophobicity, causing charge fluctuation due to long-term use or moisture absorption. However, the fluidity also decreases. Also, when the metal oxide fine powder is treated with an epoxy group-containing modified silicone or an amino group-containing organic compound, the hydrophobicity is still insufficient, and charge fluctuation occurs due to long-term use or moisture absorption, and the fluidity decreases. .

【0006】本発明は、従来の金属酸化物粉末における
上記問題を解決したものであり、疎水性が高く、帯電性
がコントロールされた表面改質金属酸化物微粉末および
その製造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems in the conventional metal oxide powder, and provides a surface-modified metal oxide fine powder having high hydrophobicity and controlled chargeability, and a method for producing the same. With the goal.

【0007】[0007]

【課題解決の手段】即ち、本発明は以下の構成からなる
金属酸化物微粉末に関するものである。 (1)金属酸化物微粉末を、エポキシ基含有シラン、アミ
ノ基含有有機化合物および両末端反応基封鎖型オルガノ
ポリシロキサンによって処理したことを特徴とする疎水
性金属酸化物微粉末。
That is, the present invention relates to a metal oxide fine powder having the following constitution. (1) A hydrophobic metal oxide fine powder obtained by treating a metal oxide fine powder with an epoxy group-containing silane, an amino group-containing organic compound, and an organopolysiloxane having a terminal-reactive group.

【0008】本発明の上記金属酸化物微粉末は以下の態
様を含む。 (2)透過率法による疎水率が70%以上である疎水性金
属酸化物微粉末。 (3)金属酸化物微粉末が比表面積10〜400m2/gで
ある疎水性金属酸化物微粉末。 (4)金属酸化物微粉末がシリカ、チタニアまたはアルミ
ナである疎水性金属酸化物微粉末。 (5)両末端反応基封鎖型オルガノポリシロキサンが、以
下の一般式 (式中、Rはメチル基またはエチル基からなるアルキル
基で、一部がビニル基、フェニル基、アミノ基を含む官
能基のいずれか1つを含むアルキル基で置換されていて
もよく、Xはハロゲン原子、水酸基またはアルコキシ基
であり、nは15〜500の整数)で表されるものであ
る請求項1〜4のいずれかに記載の疎水性金属酸化物微
粉末。 (6)両末端反応基封鎖型オルガノポリシロキサンを、金
属酸化物微粉末に対して1〜50重量%用いて処理した
疎水性金属酸化物微粉末。
[0008] The metal oxide fine powder of the present invention includes the following aspects. (2) A hydrophobic metal oxide fine powder having a hydrophobicity of 70% or more as measured by a transmittance method. (3) A hydrophobic metal oxide fine powder having a specific surface area of 10 to 400 m 2 / g. (4) A hydrophobic metal oxide fine powder in which the metal oxide fine powder is silica, titania or alumina. (5) Both ends of the reactive group-blocked organopolysiloxane are represented by the following general formula: (Wherein, R is an alkyl group comprising a methyl group or an ethyl group, and may be partially substituted with an alkyl group containing any one of a functional group containing a vinyl group, a phenyl group, and an amino group; Is a halogen atom, a hydroxyl group or an alkoxy group, and n is an integer of 15 to 500), and the hydrophobic metal oxide fine powder according to any one of claims 1 to 4. (6) Hydrophobic metal oxide fine powder treated with 1 to 50% by weight of a metal oxide fine powder of an organopolysiloxane having a terminal-reactive group.

【0009】また、本発明は以下の疎水性金属酸化物微
粉末の製造方法に関する。 (7)比表面積10〜400m2/gの金属酸化物微粉末
を、エポキシ基含有シラン、アミノ基含有有機化合物お
よび両末端反応基封鎖型オルガノポリシロキサンと共に
混合し、加熱処理することを特徴とする疎水性金属酸化
物微粉末の製造方法。
The present invention also relates to the following method for producing a hydrophobic metal oxide fine powder. (7) A metal oxide fine powder having a specific surface area of 10 to 400 m 2 / g is mixed with an epoxy group-containing silane, an amino group-containing organic compound and an organopolysiloxane blocked at both ends with a reactive group, followed by heat treatment. Of producing a fine hydrophobic metal oxide powder.

【0010】[0010]

【発明の実施形態】以下、本発明を実施例および比較例
と共に詳細に説明する。本発明の疎水性金属酸化物微粉
末は、金属酸化物微粉末を、エポキシ基含有シラン、ア
ミノ基含有有機化合物および両末端反応基封鎖型オルガ
ノポリシロキサンによって処理して得たものである。す
なわち、本発明はこのような処理により、エポキシ基を
開環させ、そこにアミノ基を導入し、さらに開環により
生成した水酸基や金属酸化物の水酸基に反応性のある官
能基を持つオルガノポリシロキサンを反応させることに
より疎水性が高く、かつ帯電性がコントロールされた金
属酸化物微粉末としたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to examples and comparative examples. The hydrophobic metal oxide fine powder of the present invention is obtained by treating a metal oxide fine powder with an epoxy group-containing silane, an amino group-containing organic compound, and an organopolysiloxane having a capped terminal-reactive group. That is, according to the present invention, by such treatment, an epoxy group is opened, an amino group is introduced therein, and an organopolysiloxane having a functional group reactive with a hydroxyl group generated by ring opening or a hydroxyl group of a metal oxide. This is a metal oxide fine powder having high hydrophobicity and controlled chargeability by reacting siloxane.

【0011】本発明に係る金属酸化物微粉末の種類は限
定されない。一般には、シリカ、チタニア、アルミナな
どが好適に用いられる。また、これら金属酸化物微粉末
は、トリメチルクロロシラン、ジメチルジクロロシラ
ン、メチルトリクロロシラン、トリメチルアルコキシシ
ラン、ジメチルジアルコキシシラン、メチルトリアルコ
キシシラン、ヘキサメチルジシラザン、各種シリコーン
オイルや各種シランカップリング剤などで予め疎水化処
理が施されていたものでもよい。
The type of the metal oxide fine powder according to the present invention is not limited. Generally, silica, titania, alumina and the like are preferably used. These metal oxide fine powders include trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, trimethylalkoxysilane, dimethyldialkoxysilane, methyltrialkoxysilane, hexamethyldisilazane, various silicone oils and various silane coupling agents. May have been subjected to a hydrophobic treatment in advance.

【0012】本発明の金属酸化物微粉末の大きさは、各
種の添加剤や充填剤などに用いる場合には、一般に比表
面積が10〜400m2/gのものが好ましい。金属ハロ
ゲン化合物の気相高温加熱分解法等により上記比表面積
の金属酸化物微粉末を得ることができる。
The metal oxide fine powder of the present invention preferably has a specific surface area of generally 10 to 400 m 2 / g when used as various additives and fillers. A metal oxide fine powder having the above specific surface area can be obtained by, for example, a gas phase high temperature thermal decomposition method of a metal halide compound.

【0013】本発明では金属酸化物微粉末の表面処理剤
として、エポキシ基含有シラン、アミノ基含有有機化合
物および両末端反応基封鎖型オルガノポリシロキサンが
用いられる。このうち、エポキシ基含有シランは、例え
ば、グリシジル基、エポキシシクロヘキシル基などのエ
ポキシ基を有するトリアルコキシシラン類もしくはジア
ルコキシシラン類であり、その具体的な例は次の通りで
ある。即ち、γ−グリシドキシプロピルトリメトキシシ
ラン、γ−グリシドキシプロピルトリエトキシシラン、
γ−グリシドキシプロピルメチルジメトキシシラン、γ
−グリシドキシプロピルメチルジエトキシシラン、β−
(3,4エポキシシクロヘキシル)エチルトリメトキシ
シラン、β−(3,4エポキシシクロヘキシル)エチル
トリエトキシシランなどが挙げられる。
In the present invention, an epoxy group-containing silane, an amino group-containing organic compound and an organopolysiloxane blocked at both ends are used as a surface treating agent for the metal oxide fine powder. Among them, the epoxy group-containing silane is, for example, a trialkoxysilane or dialkoxysilane having an epoxy group such as a glycidyl group or an epoxycyclohexyl group, and specific examples thereof are as follows. That is, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane,
γ-glycidoxypropylmethyldimethoxysilane, γ
-Glycidoxypropylmethyldiethoxysilane, β-
(3,4 epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltriethoxysilane and the like can be mentioned.

【0014】また、アミノ基含有有機化合物としては、
モノアミン、ジアミン、トリアミンもしくはテトラミン
が好ましい。具体的には、ジメチルアミン、ジエチルア
ミン、ジブチルアミン、ジメチルアミノプロピルアミ
ン、ジエチルアミノプロピルアミン、ジブチルアミノプ
ロピルアミン、ジエチレントリアミン、トリエチレンテ
トラミンなどが挙げられる。
Further, as the amino group-containing organic compound,
Monoamines, diamines, triamines or tetramines are preferred. Specific examples include dimethylamine, diethylamine, dibutylamine, dimethylaminopropylamine, diethylaminopropylamine, dibutylaminopropylamine, diethylenetriamine, and triethylenetetramine.

【0015】両末端に反応性のある官能基を有するオル
ガノポリシロキサン(両末端反応基封鎖型オルガノポリ
シロキサンと云う)は、以下の一般式(1)で表されるもの
が好適に用いられる。 式中、Rはメチル基またはエチル基からなるアルキル基
で、一部がビニル基、フェニル基、アミノ基を含む官能
基のいずれか1つを含むアルキル基で置換されていても
よく、Xはハロゲン原子、水酸基またはアルコキシ基、
nはシロキサン結合の重合度である。
As the organopolysiloxane having a reactive functional group at both ends (referred to as an organopolysiloxane having both ends reactive group-blocked), those represented by the following general formula (1) are preferably used. In the formula, R is an alkyl group composed of a methyl group or an ethyl group, and may be partially substituted with an alkyl group containing any one of a vinyl group, a phenyl group, and a functional group containing an amino group; A halogen atom, a hydroxyl group or an alkoxy group,
n is the degree of polymerization of the siloxane bond.

【0016】上記一般式のオルガノポリシリキサンはシ
ロキサン結合の両末端にハロゲン原子、水酸基またはア
ルコキシ基を有し、両末端がこれらの反応基によって封
鎖されている。従って、オルガノポリシロキサン端末が
この反応基を介してエポキシ基の開環により生成した水
酸基や金属酸化物の水酸基と反応して安定な疎水性の表
面処理層を形成し、金属酸化物微粉末を疎水化する。
The organopolysilixane of the above general formula has a halogen atom, a hydroxyl group or an alkoxy group at both ends of a siloxane bond, and both ends are blocked by these reactive groups. Therefore, the organopolysiloxane terminal reacts with the hydroxyl group generated by ring opening of the epoxy group and the hydroxyl group of the metal oxide via this reactive group to form a stable hydrophobic surface treatment layer, and the metal oxide fine powder is formed. Hydrophobic.

【0017】好ましいオルガノポリシロキサンは、上記
一般式においてシロキサン結合の重合度nが15〜50
0のものである。この重合度nが15よりも小さいとシ
ロキサンの分子量が小さいため揮発しやすくなり、疎水
化の程度を高めることが困難になる。一方、重合度nが
500を上回ると粉体どうしの凝集が大きくなり、微粉
末としての特性が失われるので好ましくない。
Preferred organopolysiloxanes have a siloxane bond polymerization degree n of 15 to 50 in the above general formula.
0. If the degree of polymerization n is less than 15, the siloxane has a small molecular weight and thus is easily volatilized, making it difficult to increase the degree of hydrophobicity. On the other hand, if the degree of polymerization n exceeds 500, the agglomeration of the powders becomes large, and the properties as a fine powder are lost, which is not preferable.

【0018】これらのエポキシ基含有シラン、アミノ基
含有有機化合物および両末端反応基封鎖型オルガノポリ
シロキサンの使用量は、処理しようとする金属酸化物微
粉末に対して、全量で2〜100重量%の範囲が好まし
い。ここで、アミノ基含有有機化合物の添加量はエポキ
シ基含有シラン添加量と等モルかそれ以下が適当であ
る。それ以上であると、エポキシ基と反応しないアミノ
基含有有機化合物が遊離するので好ましくない。また、
両末端反応基封鎖型オルガノポリシロキサンの使用量は
処理しようとする金属酸化物微粉末に対して1〜50重
量%が好ましい。この添加量が1重量%より少ないと処
理の効果が明瞭でなく、また50重量%を上回ると効果
が飽和する。
The amount of the epoxy group-containing silane, amino group-containing organic compound and organopolysiloxane having a terminal-reactive group blocked is 2 to 100% by weight based on the metal oxide fine powder to be treated. Is preferable. Here, the addition amount of the amino group-containing organic compound is suitably equal to or less than the addition amount of the epoxy group-containing silane. If it is longer than that, an amino group-containing organic compound which does not react with the epoxy group is released, which is not preferable. Also,
The amount of the organopolysiloxane blocked at both ends reactive groups is preferably 1 to 50% by weight based on the metal oxide fine powder to be treated. If the amount is less than 1% by weight, the effect of the treatment is not clear, and if it exceeds 50% by weight, the effect is saturated.

【0019】上記金属酸化物微粉末、好ましくは比表面
積10〜400m2/gの金属酸化物微粉末を、上記所定
量のエポキシ基含有シラン、アミノ基含有有機化合物お
よび両末端反応基封鎖型オルガノポリシロキサンと共に
混合し、加熱処理することにより所望の疎水性金属酸化
物微粉末が得られる。本発明において、混合加熱処理方
法は公知の方法を用いることができる。すなわち、金属
ハロゲン化合物の気相高温加熱分解法等により生成され
た金属酸化物微粉末をミキサーに入れ、窒素雰囲気下で
撹拌し、エポキシ基含有シラン、アミノ基含有有機化合
物、および両末端反応基封鎖型オルガノポリシロキサン
の所定量を、要すれば溶剤と共に上記金属酸化物微粉末
に滴下もしくは噴霧して十分に分散させた後、50℃以
上、好ましくは150℃以上の温度で0.1〜5時間、
好ましくは1〜2時間撹拌して表面処理すると共に溶
剤、副生成物を蒸発除去して、冷却することにより均一
な表面改質金属酸化物微粉末が得られる。
The above-mentioned metal oxide fine powder, preferably a metal oxide fine powder having a specific surface area of 10 to 400 m 2 / g, is mixed with the above-mentioned predetermined amount of an epoxy group-containing silane, an amino group-containing organic compound and an organo-blocked organo-terminal-blocking type. The desired hydrophobic metal oxide fine powder can be obtained by mixing with polysiloxane and subjecting to heat treatment. In the present invention, a known method can be used for the mixing and heating treatment method. That is, a metal oxide fine powder produced by a gas phase high temperature thermal decomposition method of a metal halide compound is put into a mixer, stirred under a nitrogen atmosphere, and an epoxy group-containing silane, an amino group-containing organic compound, After dropping or spraying a predetermined amount of the blocked organopolysiloxane to the above-mentioned metal oxide fine powder together with a solvent, if necessary, and sufficiently dispersing the same, a temperature of 50 ° C. or more, preferably 150 ° C. or more, is used. 5 hours,
Preferably, stirring and surface treatment are carried out for 1 to 2 hours, and solvent and by-products are removed by evaporation, followed by cooling to obtain a uniform surface-modified metal oxide fine powder.

【0020】以上の表面処理により得られる本発明の表
面改質金属酸化物は、高い疎水性を有し、かつ処理条件
により帯電量を任意に調整することができる。即ち、負
帯電性、零帯電性、正帯電性を選択でき、その強度も自
由に変えることができる。具体的には、例えば、鉄粉キ
ャリアに対して−700〜+700μC/gの帯電量を示
し、かつ透過率法による疎水率を70%以上に高めるこ
とができる。
The surface-modified metal oxide of the present invention obtained by the above-mentioned surface treatment has high hydrophobicity, and the charge amount can be arbitrarily adjusted depending on the treatment conditions. That is, negative charging property, zero charging property, and positive charging property can be selected, and the strength can be freely changed. Specifically, for example, a charge amount of −700 to +700 μC / g with respect to the iron powder carrier is exhibited, and the hydrophobicity according to the transmittance method can be increased to 70% or more.

【0021】本発明の表面改質金属酸化物は、70%以
上の疎水率を有することができるので、水分吸着が殆ど
なく、従って環境による帯電変動も極めて少なく、長期
にわたって優れた性能を示す。因みに疎水率が70%よ
り小さいと、水分吸着による帯電変動などを生じ、長期
間の使用に不都合を来す。
Since the surface-modified metal oxide of the present invention can have a hydrophobicity of 70% or more, it hardly adsorbs water, and therefore has very little fluctuation in charging due to the environment, and exhibits excellent performance over a long period of time. By the way, if the hydrophobicity is smaller than 70%, a fluctuation in electrification due to moisture adsorption occurs, which causes inconvenience in long-term use.

【0022】[0022]

【発明の効果】以上のように、本発明の疎水性金属酸化
物微粉末は、疎水性が高く、帯電コントロールされてい
るので帯電変動が少ない。また、経時変化も殆どなく化
学的に安定である。従って、本発明の疎水性金属酸化物
微粉末は、電子写真用トナーに用いることにより、流動
性、帯電性、耐久性を改善し、経時安定性を向上するこ
とができる。また液体樹脂に用いた場合、その表面に官
能基を持っているため、充填剤との相溶性が優れ、機械
的強度や増粘性を向上することができる。
As described above, the hydrophobic metal oxide fine powder of the present invention has high hydrophobicity and is controlled in charge, so that the charge fluctuation is small. In addition, it is chemically stable with little change with time. Therefore, when the hydrophobic metal oxide fine powder of the present invention is used for an electrophotographic toner, fluidity, chargeability and durability can be improved, and stability over time can be improved. Further, when used for a liquid resin, since it has a functional group on its surface, it has excellent compatibility with a filler and can improve mechanical strength and viscosity.

【0023】[0023]

【実施例および比較例】以下、実施例および比較例によ
り本発明を具体的に示す。なお、各例において表面改質
金属酸化物の帯電量および疎水率は以下の方法によって
測定したものである。(1)帯電量 ガラス容器(75ml)に鉄粉キャリア50gと表面改質金属
酸化物粉末0.1gを入れて蓋をし、ターブラミキサー
で5分間振盪した後、該表面改質金属酸化物粉末が混在
した鉄粉キャリアを0.1g採取し、ブローオフ帯電量
測定装置(東芝ケミカル社製TB-200型)で1分間窒素ブロ
ーした後の値を帯電量とする。(2)疎水率 試料1gを分液ロート(200ml)に計りとり、これに純水
100mlを加えて栓をし、ターブラーミキサーで10
分間振盪した後、10分間静置する。静置後、下層の2
0〜30mlをロートから抜き取った後に、下層の混合液
を石英セル(10mm)に分取し、純水をブランクとして比色
計にかけ、その500nmの透過率を疎水率とする。
Examples and Comparative Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In each example, the charge amount and the hydrophobicity of the surface-modified metal oxide were measured by the following methods. (1) Charge amount Put 50 g of iron powder carrier and 0.1 g of surface-modified metal oxide powder in a glass container (75 ml), cover and shake for 5 minutes with a turbula mixer. 0.1 g of an iron powder carrier in which powder is mixed is collected, and the value after nitrogen blowing for 1 minute with a blow-off charge amount measuring device (TB-200, manufactured by Toshiba Chemical Corporation) is defined as the charge amount. (2) 1 g of a hydrophobic sample was weighed into a separating funnel (200 ml), 100 ml of pure water was added thereto, stoppered, and 10 g was added with a turbuler mixer.
After shaking for 10 minutes, let stand for 10 minutes. After standing still, the lower layer 2
After withdrawing 0 to 30 ml from the funnel, the lower mixed solution is dispensed into a quartz cell (10 mm) and subjected to colorimetry using pure water as a blank, and the transmittance at 500 nm is defined as the hydrophobicity.

【0024】実施例1 フュームドシリカ(比表面積200m2/g、日本アエロジル
社製:アエロシ゛ル200)100重量部をミキサーに入れ、窒
素雰囲気下、撹拌しながら、エポキシ基含有シラン(信
越化学社製:KBM403)を3重量部、ジエチルアミノプロ
ピルアミンを1.6重量部、α,ω−ジヒドロキシジメチ
ルポリシロキサン(40cs)を20重量部混合してノルマル
ヘキサン50重量部で希釈したものを滴下し、200℃
で1時間加熱撹拌し、更に溶剤を除去して冷却し、表面
改質シリカ粉末を得た。このシリカ粉末は、鉄粉キャリ
アとの摩擦帯電量は+300μC/g、透過率法による
疎水率は95%、BET比表面積は100m2/g、カー
ボン量は7.0重量%であった。このシリカ粉末を10
℃、20%の低温低湿下(LL)に48時間放置した後の
摩擦帯電量は+340μC/gであり、40℃、85%
の高温高湿下(HH)に48時間放置した後の摩擦帯電量
は+250μC/gを示し、環境による帯電比(HH/LL)は
0.74であった。さらに、このシリカ粉末を7μmの
正帯電性トナーに0.5重量%添加し、市販の複写機を
用いて20,000枚以上刷ったが、画像特性はかぶりもなく
良好であった。また、この微粉末をエポキシ樹脂(商品
名:エヒ゜コート828)に5重量%添加して3本ロールにて混練
し、粘度をE型粘度計にて測定したところ、90Pa・s
(2.5rpm)、41Pa・s(20rpm)、チキソトロピー指数(TI)
は2.2であった。これに硬化剤としてトリエチレンテ
トラミンを添加し、JIS K 6850に基づいて測定したとき
の接着強度は70kgf/cm2であった。これらの評価結果
は比較例1に比べていずれも大幅な改善を示した。
Example 1 100 parts by weight of fumed silica (specific surface area: 200 m 2 / g, manufactured by Nippon Aerosil Co., Ltd .: Aerosil 200) was put into a mixer, and the mixture was stirred under an atmosphere of nitrogen while stirring with an epoxy group-containing silane (available from Shin-Etsu Chemical Co., Ltd.) : KBM403), 1.6 parts by weight of diethylaminopropylamine, 20 parts by weight of α, ω-dihydroxydimethylpolysiloxane (40cs) and a mixture of 50 parts by weight of normal hexane were added dropwise. ° C
For 1 hour, and the mixture was further cooled by removing the solvent to obtain a surface-modified silica powder. This silica powder had a triboelectric charge of +300 μC / g with an iron powder carrier, a hydrophobicity of 95% by a transmittance method, a BET specific surface area of 100 m 2 / g, and a carbon content of 7.0% by weight. This silica powder is
The amount of triboelectric charge after leaving for 48 hours at low temperature and low humidity (LL) of 20 ° C. and 20% is +340 μC / g;
After being left under high temperature and high humidity (HH) for 48 hours, the triboelectric charge amount was +250 μC / g, and the charging ratio (HH / LL) depending on the environment was 0.74. Further, 0.5% by weight of this silica powder was added to a 7 μm positively chargeable toner, and printing was performed on 20,000 or more sheets using a commercial copying machine. The image characteristics were good without fogging. Further, 5% by weight of this fine powder was added to an epoxy resin (trade name: Ejicoat 828), kneaded with three rolls, and the viscosity was measured with an E-type viscometer.
(2.5 rpm), 41 Pas (20 rpm), thixotropic index (TI)
Was 2.2. To this, triethylenetetramine was added as a curing agent, and the adhesive strength measured according to JIS K 6850 was 70 kgf / cm 2 . All of these evaluation results showed a significant improvement compared to Comparative Example 1.

【0025】比較例1 実施例1において、α,ω−ジヒドロキシジメチルポリ
シロキサン(両末端反応基封鎖型オルガノポリシロキサ
ン)を使用しない以外は実施例1と同様な処理を行って
表面改質シリカ粉末を得た。このシリカ粉末は、鉄粉キ
ャリアとの摩擦帯電量は+50μC/g、透過率法によ
る疎水率は10%、BET比表面積は170m2/g、カ
ーボン量は1.8重量%であった。このシリカ粉末をL
L条件下に48時間放置した後の摩擦帯電量は+100
μC/gであり、HH条件下に48時間放置した後の摩
擦帯電量は+20μC/gを示し、帯電比(HH/LL)は0.
20であった。このシリカ粉末を7μmの正帯電性トナ
ーに0.5重量%添加し、市販の複写機を用い1000枚を
刷ったところで、画像特性はかぶりが生じた。また、こ
の微粉末をエポキシ樹脂(商品名:エヒ゜コート828)に5重量
%添加して3本ロールにて混練し、粘度をE型粘度計に
て測定したところ、31Pa・s(2.5rpm)、31Pa・s(20rp
m)、チキソトロピー指数(TI)は1.0であった。これに
硬化剤としてトリエチレンテトラミンを添加し、JIS K
6850に基づいて測定したときの接着強度は60kgf/cm2
であった。
Comparative Example 1 A surface-modified silica powder was prepared in the same manner as in Example 1 except that α, ω-dihydroxydimethylpolysiloxane (organopolysiloxane having both terminal reactive groups blocked) was not used. I got This silica powder had a triboelectric charge of +50 μC / g with an iron powder carrier, a hydrophobicity of 10% by a transmittance method, a BET specific surface area of 170 m 2 / g, and a carbon content of 1.8% by weight. This silica powder is
The amount of triboelectric charge after standing for 48 hours under L conditions is +100
μC / g, the triboelectric charge after leaving for 48 hours under the HH condition shows +20 μC / g, and the charge ratio (HH / LL) is 0.2.
20. When 0.5% by weight of this silica powder was added to a 7 μm positively chargeable toner, and a commercial copying machine was used to print 1,000 sheets, image characteristics fogged. Further, 5% by weight of this fine powder was added to an epoxy resin (trade name: Ehjicoat 828) and kneaded with three rolls, and the viscosity was measured with an E-type viscometer. 31Pa ・ s (20rp
m), the thixotropic index (TI) was 1.0. Triethylenetetramine is added as a curing agent to this, and JIS K
Adhesive strength measured according to 6850 is 60 kgf / cm 2
Met.

【0026】実施例2 フュームドシリカ(比表面積50m2/g、日本アエロジル社
製:アエロシ゛ル50)100重量部をミキサーに入れ、窒素雰
囲気下、撹拌しながら、エポキシ基含有シラン(信越化
学社製:KBM403)を0.7重量部、ジブチルアミノプロピ
ルアミンを0.5重量部、α,ω−ジヒドロキシジメチル
ポリシロキサン(40cs)を10重量部混合してノルマルヘ
キサン20重量部で希釈したものを滴下し、200℃で
1時間加熱撹拌し、更に溶剤を除去して冷却し、表面改
質シリカ粉末を得た。このシリカ粉末は、鉄粉キャリア
との摩擦帯電量は−200μC/g、透過率法による疎
水率は97%、BET比表面積は30m2/g、カーボン
量は3.3重量%であった。また、このシリカ粉末をL
L条件下に48時間放置した後の摩擦帯電量は−250
μC/gであり、HH条件下に48時間放置した後の摩
擦帯電量は−170μC/gを示し、帯電比(HH/LL)は
0.68であった。さらに、このシリカ粉末を7μmの
負帯電性トナーに0.5重量%添加し、市販の複写機を
用いて20,000枚以上刷ったが、画像特性はかぶりもなく
良好であった。また、この微粉末をエポキシ樹脂(商品
名:エヒ゜コート828)に5重量%添加して3本ロールにて混練
し、粘度をE型粘度計にて測定したところ、70Pa・s
(2.5rpm)、39Pa・s(20rpm)、チキソトロピー指数(TI)
は1.8であった。これに硬化剤としてトリエチレンテ
トラミンを添加し、JIS K 6850に基づいて測定したとき
の接着強度は55kgf/cm2であった。これらの評価結果
は比較例2に比べていずれも大幅な改善を示した。
Example 2 100 parts by weight of fumed silica (specific surface area: 50 m 2 / g, manufactured by Nippon Aerosil Co., Ltd .: Aerosil 50) was put into a mixer, and the mixture was stirred under a nitrogen atmosphere while stirring to obtain an epoxy group-containing silane (Shin-Etsu Chemical Co., Ltd.). : KBM403), 0.7 part by weight of dibutylaminopropylamine, 10 parts by weight of α, ω-dihydroxydimethylpolysiloxane (40cs) and diluting with 20 parts by weight of normal hexane are added dropwise. Then, the mixture was heated and stirred at 200 ° C. for 1 hour, and the solvent was further removed and cooled to obtain a surface-modified silica powder. The silica powder had a triboelectric charge of -200 μC / g with an iron powder carrier, a hydrophobicity of 97% by a transmittance method, a BET specific surface area of 30 m 2 / g, and a carbon amount of 3.3% by weight. In addition, this silica powder is
The amount of triboelectric charge after standing for 48 hours under the L condition was -250.
It was μC / g, the triboelectric charge after being left for 48 hours under HH conditions showed −170 μC / g, and the charging ratio (HH / LL) was 0.68. Further, 0.5% by weight of this silica powder was added to a 7 μm negatively chargeable toner, and printing was performed on 20,000 or more sheets using a commercially available copying machine. The image characteristics were good without fogging. Further, 5% by weight of this fine powder was added to an epoxy resin (trade name: Ehjicoat 828), kneaded with a three-roll mill, and the viscosity was measured with an E-type viscometer.
(2.5 rpm), 39 Pas (20 rpm), thixotropic index (TI)
Was 1.8. To this, triethylenetetramine was added as a curing agent, and the adhesive strength measured according to JIS K 6850 was 55 kgf / cm 2 . All of these evaluation results showed a significant improvement compared to Comparative Example 2.

【0027】比較例2 実施例2において、α,ω−ジヒドロキシジメチルポリ
シロキサン(両末端反応基封鎖型オルガノポリシロキサ
ン)を使用しない以外は実施例2と同様な処理を行って
表面改質シリカ粉末を得た。このシリカ粉末は、鉄粉キ
ャリアとの摩擦帯電量は−100μC/g、透過率法に
よる疎水率は10%、BET比表面積は42m2/g、カ
ーボン量は0.4重量%であった。このシリカ粉末をL
L条件下に48時間放置した後の摩擦帯電量は−150
μC/gであり、HH条件下に48時間放置した後の摩
擦帯電量は−70μC/gを示し、帯電比(HH/LL)は0.
47であった。このシリカ粉末を7μmの負帯電性トナ
ーに0.5重量%添加し、市販の複写機を用い700枚
を刷ったところで、画像特性はかぶりが生じた。また、
この微粉末をエポキシ樹脂(商品名:エヒ゜コート828)に5重
量%添加して3本ロールにて混練し、粘度をE型粘度計
にて測定したところ、28Pa・s(2.5rpm)、27Pa・s(20r
pm)、チキソトロピー指数(TI)は1.0であった。これに
硬化剤としてトリエチレンテトラミンを添加し、JIS K
6850に基づいて測定したときの接着強度は50kgf/cm2
であった。
Comparative Example 2 A surface-modified silica powder was prepared in the same manner as in Example 2 except that α, ω-dihydroxydimethylpolysiloxane (organopolysiloxane having both terminal reactive groups blocked) was not used. I got This silica powder had a triboelectric charge amount of −100 μC / g with an iron powder carrier, a hydrophobicity measured by a transmittance method of 10%, a BET specific surface area of 42 m 2 / g, and a carbon amount of 0.4% by weight. This silica powder is
The amount of triboelectric charge after standing for 48 hours under the L condition was -150.
μC / g, the triboelectric charge after standing for 48 hours under HH conditions is −70 μC / g, and the charge ratio (HH / LL) is 0.3.
47. When 0.5% by weight of this silica powder was added to a 7 μm negatively chargeable toner and 700 sheets were printed using a commercially available copying machine, fogging occurred in image characteristics. Also,
This fine powder was added to an epoxy resin (trade name: Echicoat 828) in an amount of 5% by weight, kneaded with a three-roll mill, and the viscosity was measured with an E-type viscometer. The viscosity was 28 Pa · s (2.5 rpm), 27 Pa · s (20r
pm), the thixotropic index (TI) was 1.0. Triethylenetetramine is added as a curing agent to this, and JIS K
Adhesive strength measured according to 6850 is 50 kgf / cm 2
Met.

【0028】実施例3 フュームドシリカ(比表面積110m2/g、日本アエロジル
社製:アエロシ゛ルR972)100重量部をミキサーに入れ、窒
素雰囲気下、撹拌しながら、エポキシ基含有シラン(信
越化学社製:KBM403)を5重量部、ジブチルアミノプロピ
ルアミンを3.9重量部、α,ω−ジヒドロキシジメチル
ポリシロキサン(40cs)を10重量部混合してノルマルヘ
キサン30重量部で希釈したものを滴下し、200℃で
1時間加熱撹拌し、更に溶剤を除去して冷却し、表面改
質シリカ粉末を得た。このシリカ粉末は、鉄粉キャリア
との摩擦帯電量は+430μC/g、透過率法による疎
水率は95%、BET比表面積は80m2/g、カーボン
量は6.0重量%であった。また、このシリカ粉末をL
L条件下に48時間放置した後の摩擦帯電量は+450
μC/gであり、HH条件下に48時間放置した後の摩
擦帯電量は+395μC/gを示し、帯電比(HH/LL)は
0.88であった。さらに、このシリカ粉末を7μmの
正帯電性トナーに0.5重量%添加し、市販の複写機を
用いて20,000枚以上刷ったが、画像特性はかぶりもなく
良好であった。また、この微粉末をエポキシ樹脂(商品
名:エヒ゜コート828)に5重量%添加して3本ロールにて混練
し、粘度をE型粘度計にて測定したところ、90Pa・s
(2.5rpm)、39Pa・s(20rpm)、チキソトロピー指数(TI)
は2.8であった。これに硬化剤としてトリエチレンテ
トラミンを添加し、JIS K 6850に基づいて測定したとき
の接着強度は67kgf/cm2であった。これらの評価結果
は比較例3に比べていずれも大幅な改善を示した。
Example 3 100 parts by weight of fumed silica (specific surface area: 110 m 2 / g, manufactured by Nippon Aerosil Co., Ltd .: Aerosil R972) was put into a mixer, and the mixture was stirred under a nitrogen atmosphere while stirring, under a nitrogen atmosphere. : KBM403), 5 parts by weight of dibutylaminopropylamine, 3.9 parts by weight of α, ω-dihydroxydimethylpolysiloxane (40cs) mixed with 10 parts by weight, and diluted with 30 parts by weight of normal hexane were added dropwise. The mixture was heated and stirred at 200 ° C. for 1 hour, and the solvent was further removed and cooled to obtain a surface-modified silica powder. This silica powder had a triboelectric charge of +430 μC / g with an iron powder carrier, a hydrophobicity of 95% by a transmittance method, a BET specific surface area of 80 m 2 / g, and a carbon content of 6.0% by weight. In addition, this silica powder is
The amount of triboelectric charge after standing for 48 hours under the L condition is +450
μC / g, the triboelectric charge after standing under HH conditions for 48 hours was +395 μC / g, and the charge ratio (HH / LL) was 0.88. Further, 0.5% by weight of this silica powder was added to a 7 μm positively chargeable toner, and printing was performed on 20,000 or more sheets using a commercial copying machine. The image characteristics were good without fogging. Further, 5% by weight of this fine powder was added to an epoxy resin (trade name: Ejicoat 828), kneaded with three rolls, and the viscosity was measured with an E-type viscometer.
(2.5 rpm), 39 Pas (20 rpm), thixotropic index (TI)
Was 2.8. To this, triethylenetetramine was added as a curing agent, and the adhesive strength measured according to JIS K 6850 was 67 kgf / cm 2 . All of these evaluation results showed a significant improvement compared to Comparative Example 3.

【0029】比較例3 実施例3において、エポキシ基含有シランおよびα,ω
−ジヒドロキシジメチルポリシロキサン(両末端反応基
封鎖型オルガノポリシロキサン)の代わりに、エポキシ
変性オルガノポリシロキサン(日本ユニカ社製:FZ3745)
を用いた以外は実施例3と同様な処理を行って表面改質
シリカ粉末を得た。このシリカ粉末は、鉄粉キャリアと
の摩擦帯電量は+400μC/g、透過率法による疎水
率は65%、BET比表面積は85m2/g、カーボン量
は5.0重量%であった。このシリカ粉末をLL条件下
に48時間放置した後の摩擦帯電量は+430μC/g
であり、HH条件下に48時間放置した後の摩擦帯電量
は+300μC/gを示し、帯電比(HH/LL)は0.70で
あった。このシリカ粉末を7μmの正帯電性トナーに
0.5重量%添加し、市販の複写機を用い1000枚を刷っ
たところで、画像特性はかぶりが生じた。また、この微
粉末をエポキシ樹脂(商品名:エヒ゜コート828)に5重量%添
加して3本ロールにて混練し、粘度をE型粘度計にて測
定したところ、78Pa・s(2.5rpm)、39Pa・s(20rpm)、
チキソトロピー指数(TI)は2.0であった。これに硬化
剤としてトリエチレンテトラミンを添加し、JIS K 6850
に基づいて測定したときの接着強度は60kgf/cm2であ
った。
Comparative Example 3 In Example 3, epoxy group-containing silane and α, ω
-In place of dihydroxydimethylpolysiloxane (both terminal reactive group-blocked organopolysiloxane), epoxy-modified organopolysiloxane (FZ3745, manufactured by Nippon Unica Ltd.)
A surface-modified silica powder was obtained by performing the same treatments as in Example 3 except for using. This silica powder had a triboelectric charge of +400 μC / g with an iron powder carrier, a hydrophobicity of 65% by a transmittance method, a BET specific surface area of 85 m 2 / g, and a carbon content of 5.0% by weight. The triboelectric charge after leaving the silica powder for 48 hours under LL conditions is +430 μC / g.
After left for 48 hours under HH conditions, the triboelectric charge amount was +300 μC / g, and the charge ratio (HH / LL) was 0.70. When 0.5% by weight of this silica powder was added to a 7 μm positively chargeable toner and 1000 sheets were printed using a commercially available copying machine, fogging occurred in the image characteristics. Further, 5% by weight of this fine powder was added to an epoxy resin (trade name: Ehjicoat 828) and kneaded with three rolls, and the viscosity was measured with an E-type viscometer. 39 Pas (20 rpm),
The thixotropy index (TI) was 2.0. To this, triethylenetetramine was added as a curing agent, and JIS K 6850
Was 60 kgf / cm 2 .

【0030】実施例4 超微粒子酸化チタン(比表面積50m2/g、日本アエロジル
社製:酸化チタンP25)100重量部をミキサーに入れ、窒
素雰囲気下、撹拌しながら、エポキシ基含有シラン(信
越化学社製:KBM403)を2重量部、ジブチルアミノプロピ
ルアミンを1.5重量部、α,ω−ジヒドロキシジメチル
ポリシロキサン(40cs)を10重量部混合してノルマルヘ
キサン30重量部で希釈したものを滴下し、200℃で
1時間加熱撹拌し、更に溶剤を除去して冷却し、表面改
質チタン粉末を得た。このチタン粉末は、鉄粉キャリア
との摩擦帯電量は+150μC/g、透過率法による疎
水率は80%、BET比表面積は30m2/g、カーボン
量は4.3重量%であった。また、このチタン粉末をL
L条件下に48時間放置した後の摩擦帯電量は+200
μC/gであり、HH条件下に48時間放置した後の摩
擦帯電量は+130μC/gを示し、帯電比(HH/LL)は
0.65であった。さらに、このチタン粉末を7μmの
正帯電性トナーに0.5重量%添加し、市販の複写機を
用いて20,000枚以上刷ったが、画像特性はかぶりもなく
良好であった。また、この微粉末をエポキシ樹脂(商品
名:エヒ゜コート828)に5重量%添加して3本ロールにて混練
し、粘度をE型粘度計にて測定したところ、60Pa・s
(2.5rpm)、40Pa・s(20rpm)、チキソトロピー指数(TI)
は1.5であった。これに硬化剤としてトリエチレンテ
トラミンを添加し、JIS K 6850に基づいて測定したとき
の接着強度は50kgf/cm2であった。これらの評価結果
は比較例4に比べていずれも大幅な改善を示した。
Example 4 100 parts by weight of ultrafine titanium oxide (specific surface area: 50 m 2 / g, manufactured by Nippon Aerosil Co., Ltd .: titanium oxide P25) was placed in a mixer, and the mixture was stirred under a nitrogen atmosphere while stirring with an epoxy group-containing silane (Shin-Etsu Chemical Co., Ltd.). Company: KBM403) (2 parts by weight), dibutylaminopropylamine (1.5 parts by weight), α, ω-dihydroxydimethylpolysiloxane (40cs) (10 parts by weight) mixed, diluted with normal hexane (30 parts by weight), and dropped. Then, the mixture was heated and stirred at 200 ° C. for 1 hour, and the solvent was further removed and cooled to obtain a surface-modified titanium powder. This titanium powder had a triboelectric charge of +150 μC / g with the iron powder carrier, a hydrophobicity of 80% by a transmittance method, a BET specific surface area of 30 m 2 / g, and a carbon content of 4.3% by weight. In addition, this titanium powder is
The triboelectric charge after leaving for 48 hours under the L condition is +200.
It was μC / g, the triboelectric charge after standing for 48 hours under HH conditions showed +130 μC / g, and the charging ratio (HH / LL) was 0.65. Further, 0.5% by weight of this titanium powder was added to a 7 μm positively chargeable toner, and printing was performed on 20,000 or more sheets using a commercially available copying machine. The image characteristics were good without fogging. Further, 5% by weight of this fine powder was added to an epoxy resin (trade name: Ehjicoat 828) and kneaded with three rolls, and the viscosity was measured with an E-type viscometer.
(2.5 rpm), 40 Pas (20 rpm), thixotropic index (TI)
Was 1.5. To this, triethylenetetramine was added as a curing agent, and the adhesive strength measured according to JIS K 6850 was 50 kgf / cm 2 . All of these evaluation results showed a significant improvement compared to Comparative Example 4.

【0031】比較例4 実施例4において、エポキシ基含有シランおよびα,ω
−ジヒドロキシジメチルポリシロキサン(両末端反応基
封鎖型オルガノポリシロキサン)の代わりに、エポキシ
変性オルガノポリシロキサン(日本ユニカ社製:FZ3745)
を用いた以外は実施例4と同様な処理を行って表面改質
チタン粉末を得た。このチタン粉末は、鉄粉キャリアと
の摩擦帯電量は+100μC/g、透過率法による疎水
率は65%、BET比表面積は30m2/g、カーボン量
は3.5重量%であった。このチタン粉末をLL条件下
に48時間放置した後の摩擦帯電量は+125μC/g
であり、HH条件下に48時間放置した後の摩擦帯電量
は+50μC/gを示し、帯電比(HH/LL)は0.40であ
った。このチタン粉末を7μmの正帯電性トナーに0.
5重量%添加し、市販の複写機を用い1000枚を刷ったと
ころで、画像特性はかぶりが生じた。また、この微粉末
をエポキシ樹脂(商品名:エヒ゜コート828)に5重量%添加し
て3本ロールにて混練し、粘度をE型粘度計にて測定し
たところ、50Pa・s(2.5rpm)、40Pa・s(20rpm)、チキ
ソトロピー指数(TI)は1.3であった。これに硬化剤と
してトリエチレンテトラミンを添加し、JIS K 6850に基
づいて測定したときの接着強度は45kgf/cm2であっ
た。
Comparative Example 4 In Example 4, the epoxy group-containing silane and α, ω
-Instead of dihydroxydimethylpolysiloxane (both terminal reactive group-blocked organopolysiloxane), an epoxy-modified organopolysiloxane (FZ3745, manufactured by Nippon Yunika)
A surface-modified titanium powder was obtained by performing the same treatment as in Example 4 except for using. This titanium powder had a triboelectric charge of +100 μC / g with an iron powder carrier, a hydrophobicity of 65% by a transmittance method, a BET specific surface area of 30 m 2 / g, and a carbon content of 3.5% by weight. The triboelectric charge after leaving this titanium powder for 48 hours under LL conditions is +125 μC / g.
The triboelectric charge after standing for 48 hours under HH conditions showed +50 μC / g, and the charge ratio (HH / LL) was 0.40. This titanium powder was added to a 7 μm positively-chargeable toner in an amount of 0.
When 5% by weight was added and 1000 sheets were printed using a commercially available copying machine, fogging occurred in image characteristics. Further, 5% by weight of this fine powder was added to an epoxy resin (trade name: Ehjicoat 828) and kneaded with a three-roll mill, and the viscosity was measured with an E-type viscometer. The viscosity was 40 Pa · s (20 rpm) and the thixotropic index (TI) was 1.3. To this, triethylenetetramine was added as a curing agent, and the adhesive strength measured according to JIS K 6850 was 45 kgf / cm 2 .

【0032】実施例5 超微粒子酸化アルミニウム(比表面積100m2/g、デグサ社
製:アルミニウムオキサイト゛C)100重量部をミキサーに入れ、窒
素雰囲気下、撹拌しながら、エポキシ基含有シラン(信
越化学社製:KBM403)を1重量部、ジブチルアミノプロピ
ルアミンを0.7重量部、α,ω−ジヒドロキシメチルフ
ェニルポリシロキサン(100cs)を15重量部混合してノ
ルマルヘキサン40重量部で希釈したものを滴下し、2
00℃で1時間加熱撹拌し、更に溶剤を除去して冷却
し、表面改質アルミナ粉末を得た。このアルミナ粉末
は、鉄粉キャリアとの摩擦帯電量は−100μC/g、
透過率法による疎水率は85%、BET比表面積は60
2/g、カーボン量は6.0重量%であった。また、こ
のアルミナ粉末をLL条件下に48時間放置した後の摩
擦帯電量は−130μC/gであり、HH条件下に48
時間放置した後の摩擦帯電量は−70μC/gを示し、
帯電比(HH/LL)は0.54であった。さらに、このアルミ
ナ粉末を7μmの負帯電性トナーに0.5重量%添加
し、市販の複写機を用いて20,000枚以上刷ったが、画像
特性はかぶりもなく良好であった。また、この微粉末を
エポキシ樹脂(商品名:エヒ゜コート828)に5重量%添加して
3本ロールにて混練し、粘度をE型粘度計にて測定した
ところ、70Pa・s(2.5rpm)、47Pa・s(20rpm)、チキソ
トロピー指数(TI)は1.5であった。これに硬化剤とし
てトリエチレンテトラミンを添加し、JIS K 6850に基づ
いて測定したときの接着強度は55kgf/cm2であった。
これらの評価結果は比較例5に比べていずれも大幅な改
善を示した。
Example 5 100 parts by weight of ultrafine aluminum oxide (specific surface area: 100 m 2 / g, manufactured by Degussa: aluminum oxide @C) were put into a mixer, and the mixture was stirred under a nitrogen atmosphere while stirring to obtain an epoxy group-containing silane (Shin-Etsu Chemical Co., Ltd.). (KBM403), 0.7 part by weight of dibutylaminopropylamine, 15 parts by weight of α, ω-dihydroxymethylphenylpolysiloxane (100 cs), and a mixture diluted with 40 parts by weight of normal hexane is dropped. And 2
The mixture was heated and stirred at 00 ° C. for 1 hour, and after further removing the solvent and cooling, a surface-modified alumina powder was obtained. This alumina powder has a triboelectric charge amount of −100 μC / g with an iron powder carrier,
85% hydrophobicity and 60% BET specific surface area by transmittance method
m 2 / g, and the amount of carbon was 6.0% by weight. The triboelectric charge after leaving this alumina powder for 48 hours under LL conditions was -130 μC / g,
The amount of triboelectric charge after standing for a time shows -70 μC / g,
The charge ratio (HH / LL) was 0.54. Further, 0.5% by weight of this alumina powder was added to a 7 μm negatively chargeable toner, and printing was performed on 20,000 or more sheets using a commercial copying machine. The image characteristics were good without fogging. Also, 5% by weight of this fine powder was added to an epoxy resin (trade name: Ehjicoat 828) and kneaded with a three-roll mill, and the viscosity was measured with an E-type viscometer. 47 Pa · s (20 rpm) and thixotropic index (TI) were 1.5. To this, triethylenetetramine was added as a curing agent, and the adhesive strength measured according to JIS K 6850 was 55 kgf / cm 2 .
All of these evaluation results showed a significant improvement compared to Comparative Example 5.

【0033】比較例5 実施例5において、α,ω−ジヒドロキシジメチルポリ
シロキサン(両末端反応基封鎖型オルガノポリシロキサ
ン)の代わりに、両末端トリメチルシリル封鎖型メチル
フェニルポリシロキサン(信越社製:KF50-100)を用いた
以外は実施例5と同様な処理を行って表面改質アルミナ
粉末を得た。このアルミナ粉末は、鉄粉キャリアとの摩
擦帯電量は−80μC/g、透過率法による疎水率は2
0%、BET比表面積は70m2/g、カーボン量は6.
5重量%であった。このアルミナ粉末をLL条件下に4
8時間放置した後の摩擦帯電量は−100μC/gであ
り、HH条件下に48時間放置した後の摩擦帯電量は−
30μC/gを示し、帯電比(HH/LL)は0.30であっ
た。このアルミナ粉末を7μmの負帯電性トナーに0.5
重量%添加し、市販の複写機を用い5000枚を刷ったとこ
ろで、画像特性はかぶりが生じた。また、この微粉末を
エポキシ樹脂(商品名:エヒ゜コート828)に5重量%添加して
3本ロールにて混練し、粘度をE型粘度計にて測定した
ところ、60Pa・s(2.5rpm)、45Pa・s(20rpm)、チキソ
トロピー指数(TI)は1.3であった。これに硬化剤とし
てトリエチレンテトラミンを添加し、JIS K 6850に基づ
いて測定したときの接着強度は48kgf/cm2であった。
Comparative Example 5 In Example 5, instead of α, ω-dihydroxydimethylpolysiloxane (both terminal reactive group-blocked organopolysiloxane), methylphenylpolysiloxane blocked by trimethylsilyl at both terminals (KF50- manufactured by Shin-Etsu Co., Ltd.) A surface-modified alumina powder was obtained by performing the same treatment as in Example 5 except that 100) was used. This alumina powder has a triboelectric charge of −80 μC / g with an iron powder carrier, and a hydrophobicity of 2 according to a transmittance method.
0%, BET specific surface area 70 m 2 / g, carbon amount 6.
It was 5% by weight. This alumina powder was dried under LL conditions for 4 hours.
The triboelectric charge after leaving for 8 hours is −100 μC / g, and the triboelectric charge after leaving for 48 hours under HH conditions is −
The charge ratio (HH / LL) was 0.30. This alumina powder is added to a 7 μm negatively chargeable toner by 0.5.
When 5,000 sheets were printed using a commercial copying machine, fog occurred in the image characteristics. Further, 5% by weight of this fine powder was added to an epoxy resin (trade name: Ehjicoat 828) and kneaded with a three-roll mill, and the viscosity was measured with an E-type viscometer to find that the viscosity was 60 Pa · s (2.5 rpm). 45 Pa · s (20 rpm) and thixotropic index (TI) were 1.3. To this, triethylenetetramine was added as a curing agent, and the adhesive strength measured according to JIS K 6850 was 48 kgf / cm 2 .

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物微粉末を、エポキシ基含有シラ
ン、アミノ基含有有機化合物および両末端反応基封鎖型
オルガノポリシロキサンによって処理したことを特徴と
する疎水性金属酸化物微粉末。
1. A hydrophobic metal oxide fine powder obtained by treating a metal oxide fine powder with an epoxy group-containing silane, an amino group-containing organic compound and an organopolysiloxane having a terminal-reactive group.
【請求項2】透過率法による疎水率が70%以上である
請求項1に記載の疎水性金属酸化物微粉末。
2. The hydrophobic metal oxide fine powder according to claim 1, which has a hydrophobicity of 70% or more as measured by a transmittance method.
【請求項3】金属酸化物微粉末が比表面積10〜400
2/gである請求項1または2に記載の疎水性金属酸化
物微粉末。
3. The metal oxide fine powder has a specific surface area of 10 to 400.
hydrophobic metal oxide fine powder according to claim 1 or 2 is m 2 / g.
【請求項4】金属酸化物微粉末がシリカ、チタニアまた
はアルミナである請求項1、2または3に記載の疎水性
金属酸化物微粉末。
4. The hydrophobic metal oxide fine powder according to claim 1, 2 or 3, wherein the metal oxide fine powder is silica, titania or alumina.
【請求項5】両末端反応基封鎖型オルガノポリシロキサ
ンが、以下の一般式 (式中、Rはメチル基またはエチル基からなるアルキル
基で、一部がビニル基、フェニル基、アミノ基を含む官
能基のいずれか1つを含むアルキル基で置換されていて
もよく、Xはハロゲン原子、水酸基またはアルコキシ基
であり、nは15〜500の整数)で表されるものであ
る請求項1〜4のいずれかに記載の疎水性金属酸化物微
粉末。
5. An organopolysiloxane having a terminal-reactive-group-blocking type, represented by the following general formula: (Wherein, R is an alkyl group comprising a methyl group or an ethyl group, and may be partially substituted with an alkyl group containing any one of a functional group containing a vinyl group, a phenyl group, and an amino group; Is a halogen atom, a hydroxyl group or an alkoxy group, and n is an integer of 15 to 500), and the hydrophobic metal oxide fine powder according to any one of claims 1 to 4.
【請求項6】両末端反応基封鎖型オルガノポリシロキサ
ンを、金属酸化物微粉末に対して1〜50重量%用いて
処理した請求項1〜5のいずれかに記載の疎水性金属酸
化物微粉末。
6. The hydrophobic metal oxide fine particle according to claim 1, wherein the organopolysiloxane having both terminal reactive groups blocked is treated with 1 to 50% by weight of the metal oxide fine powder. Powder.
【請求項7】比表面積10〜400m2/gの金属酸化物
微粉末を、エポキシ基含有シラン、アミノ基含有有機化
合物および両末端反応基封鎖型オルガノポリシロキサン
と共に混合し、加熱処理することを特徴とする疎水性金
属酸化物微粉末の製造方法
7. A method comprising mixing a metal oxide fine powder having a specific surface area of 10 to 400 m 2 / g with an epoxy group-containing silane, an amino group-containing organic compound and an organopolysiloxane having a terminal-reactive group-blocked organopolysiloxane, followed by heat treatment. Process for producing finely divided hydrophobic metal oxide powder
JP28952197A 1997-10-22 1997-10-22 Hydrophobic metal oxide fine powder and method for producing the same Expired - Fee Related JP3978520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28952197A JP3978520B2 (en) 1997-10-22 1997-10-22 Hydrophobic metal oxide fine powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28952197A JP3978520B2 (en) 1997-10-22 1997-10-22 Hydrophobic metal oxide fine powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11124464A true JPH11124464A (en) 1999-05-11
JP3978520B2 JP3978520B2 (en) 2007-09-19

Family

ID=17744342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28952197A Expired - Fee Related JP3978520B2 (en) 1997-10-22 1997-10-22 Hydrophobic metal oxide fine powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3978520B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235783A (en) * 2009-03-31 2010-10-21 Dic Corp Surface-modified silica particle and active energy ray-curable resin composition using the same
JP5003988B2 (en) * 1999-12-24 2012-08-22 日本アエロジル株式会社 Surface-modified inorganic oxide powder and production method and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641263A (en) * 1979-09-10 1981-04-17 Shin Etsu Chem Co Ltd Surface modification of silica powder
JPS58185405A (en) * 1982-04-26 1983-10-29 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide
JPS6252561A (en) * 1985-08-31 1987-03-07 Mita Ind Co Ltd Toner for electrophotography
JPS63155154A (en) * 1986-12-19 1988-06-28 Konica Corp Electrostatic developer and electrostatic developing method and image forming method
JPH0959533A (en) * 1995-08-21 1997-03-04 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide and its production
JPH11125927A (en) * 1997-10-22 1999-05-11 Nippon Aerosil Kk Electrophotographic developer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641263A (en) * 1979-09-10 1981-04-17 Shin Etsu Chem Co Ltd Surface modification of silica powder
JPS58185405A (en) * 1982-04-26 1983-10-29 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide
JPS6252561A (en) * 1985-08-31 1987-03-07 Mita Ind Co Ltd Toner for electrophotography
JPS63155154A (en) * 1986-12-19 1988-06-28 Konica Corp Electrostatic developer and electrostatic developing method and image forming method
JPH0959533A (en) * 1995-08-21 1997-03-04 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide and its production
JPH11125927A (en) * 1997-10-22 1999-05-11 Nippon Aerosil Kk Electrophotographic developer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003988B2 (en) * 1999-12-24 2012-08-22 日本アエロジル株式会社 Surface-modified inorganic oxide powder and production method and use thereof
JP2010235783A (en) * 2009-03-31 2010-10-21 Dic Corp Surface-modified silica particle and active energy ray-curable resin composition using the same

Also Published As

Publication number Publication date
JP3978520B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP3229174B2 (en) Surface modified metal oxide fine powder and method for producing the same
JP4118637B2 (en) Silica with low silanol group content
EP0992857B1 (en) Fine powder of hydrophobic metal oxide, method for producing it, and toner composition for electrophotography
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP4578400B2 (en) Toner external additive for electrophotography
JP4512872B2 (en) Surface-modified silica fine powder and method for producing the same
JP2009292915A (en) Surface-modified inorganic oxide powder and toner composition for electrophotography
EP1477532A2 (en) Spherical silica-titania-based fine particles surface-treated with silane, production process therefor, and external additive for electrostatically charged image developing toner using same
JP4743845B2 (en) Hydrophobic positively charged silica fine powder, method for producing the same, and toner for developing electrostatic latent image to which it is added as an external additive
EP0799791A1 (en) Hydrophobic metal oxide powder and use thereof
JP2002256173A (en) Surface modified inorganic oxide powder and its use
JP3965496B2 (en) Electrophotographic developer
JP2016020942A (en) Positive charging silica particle and production method thereof
JP3978520B2 (en) Hydrophobic metal oxide fine powder and method for producing the same
WO2020045037A1 (en) Positive charge type hydrophobic spherical silica particles, method for producing same and positively charged toner composition using same
JP4186254B2 (en) Method for producing surface-modified metal oxide fine powder and method for producing electrophotographic toner composition
JP4122566B2 (en) Hydrophobic metal oxide fine powder, production method thereof, and toner composition for electrophotography
JPS63101855A (en) Electrostatic charge image developer
JP3871297B2 (en) Toner external additive for electrostatic image development
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JPH0393605A (en) Improvement of flowability of metal oxide film powder
JP4611006B2 (en) Spherical silica fine particles, toner external additive for developing electrostatic image and toner
JP3930236B2 (en) Toner external additive for electrostatic image development
JP4936237B2 (en) Positively charged hydrophobic titanium oxide fine powder and its production and use
JP3367349B2 (en) Hydrophobic metal oxide powder and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees