JPH11104833A - Weld line tracking method in welding - Google Patents

Weld line tracking method in welding

Info

Publication number
JPH11104833A
JPH11104833A JP9287742A JP28774297A JPH11104833A JP H11104833 A JPH11104833 A JP H11104833A JP 9287742 A JP9287742 A JP 9287742A JP 28774297 A JP28774297 A JP 28774297A JP H11104833 A JPH11104833 A JP H11104833A
Authority
JP
Japan
Prior art keywords
welding
difference
molten
image
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9287742A
Other languages
Japanese (ja)
Other versions
JP3322617B2 (en
Inventor
Ken Fujita
藤田  憲
Yukio Doge
幸雄 道下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28774297A priority Critical patent/JP3322617B2/en
Publication of JPH11104833A publication Critical patent/JPH11104833A/en
Application granted granted Critical
Publication of JP3322617B2 publication Critical patent/JP3322617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a weld line tracking method during welding without an inclination against the case that the influence of an arc deflection and a welding bead substrate exists and is capable of welding to uniformly fuse a groove wall. SOLUTION: An image in a molten pool including a welding wire inserted position during welding is fetched by a CCD camera and is image-processed, a welding wire insertion position deviation ΔX for groove left/right ends is calculated from its molten pool shape and further, from the correlation signals such as a difference ΔH in the left/right wet heights of the molten pool, a difference Δρ in the curvatures of the left/right molten pools, a difference ΔA in the areas of clearances in the corner parts of the left/right molten pool ends and a difference ΔG in the amt. of the clearances in the left/right molten pools, the molten state discrimination signals of left/right groove walls are obtained. Based on a welding wire inserted position deviation signal and the molten state discrimination signal of the left/right groove walls, left/right tracking axis center positions are controlled in a real time by using an arithmetic means of fuzzy logic, etc., and thus, weld line tracking is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は溶接中にアーク直下
の溶接状況をモニタすることで、人の調整なしに自動的
に溶接線を自動倣いする方法に係り、特に溶接中のアー
ク直下の溶接状況をCCDカメラでモニタし、画像処理
装置にて溶接中の溶融池形状などの特徴量を認識してリ
アルタイムに溶接線倣いを行なう溶接中の溶接線倣い方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of automatically following a welding line without welding by monitoring welding conditions immediately below an arc during welding. The present invention relates to a welding line profiling method during welding in which a situation is monitored by a CCD camera, a feature amount such as a molten pool shape being welded is recognized by an image processing device, and welding line profiling is performed in real time.

【0002】[0002]

【従来の技術】従来の自動溶接は、溶接士が溶接状況を
監視しながら溶接を行い、左右倣いは溶接士が調節して
おり、人手を省くことが出来なかった。溶接線の自動倣
い方式としては、接触式の機械的倣い法や非接触式の電
気的倣い法がある。前者は接触式であるために開先の仕
上げ精度に影響され、特に溶接のように開先が主にガス
カットでされている面では、その面の表面形状に依存し
て精度面や耐久性の問題があった。後者の非接触式で
は、電磁センサを用いた倣い方式や電流や電圧の変化を
利用したアークセンサといわれる非接触式倣い方式が実
用化されているが、電磁センサは耐熱やスプラインパッ
タの付着で精度・耐久性に劣るのみならず、センサが大
きいため、開先内への装備化が困難という問題がある。
また、アークセンサは、これらの中でもっとも多用され
ているが、溶接姿勢の影響を受け易く精度が得られにく
かった。
2. Description of the Related Art In conventional automatic welding, a welder performs welding while monitoring the welding condition, and the right and left scanning is adjusted by the welder, so that labor cannot be saved. As the automatic scanning method of the welding line, there are a mechanical scanning method of a contact type and an electric scanning method of a non-contact type. The former is affected by the finishing accuracy of the groove because it is a contact type, especially on surfaces where the groove is mainly gas cut, such as welding, depending on the surface shape of the surface, accuracy and durability There was a problem. In the latter non-contact method, a copying method using an electromagnetic sensor and a non-contact copying method called an arc sensor using a change in current or voltage have been put into practical use. Not only is accuracy and durability inferior, but also the sensor is large, which makes it difficult to install it in a groove.
Further, the arc sensor is most frequently used among these, but it is easily affected by the welding posture and it is difficult to obtain the accuracy.

【0003】[0003]

【発明が解決しようとする課題】そこで、溶接姿勢や溶
接中のノイズの影響を受けず、高精度な溶接線倣いを行
うため、溶接部を直視してCCDカメラで撮像し、その
溶融池形状を画像処理して制御する方式が考えられてき
た。画像処理の場合は、図5に示すように一般的には溶
融池画像の左右端位置XL、XRの中央位置に対するワイ
ヤ挿入位置XWのずれΔX、すなわち、ワイヤ挿入位置
ずれΔXを下記(1)式で求め、 ΔX=XW−(XL+XR)/2 ……(1) このずれ量ΔXが0になるように図1に示した左右倣い
軸17を移動させて溶接線倣いを行う方法が採られてい
る。
Therefore, in order to carry out a high-precision welding line copying without being affected by the welding posture and noise during welding, the welded portion is directly viewed and imaged by a CCD camera. A method of controlling the image by image processing has been considered. For image processing, the following deviation ΔX of the wire insertion position X W relative to generally the center position of left and right edge positions X L, X R of the molten pool image as shown in FIG. 5, i.e., the wire insertion position deviation ΔX (1) determined by the equation, ΔX = X W - (X L + X R) / 2 ...... (1) welding line is moved right and left scanning axis 17 shown in FIG. 1 as the shift amount [Delta] X is 0 A method of copying is adopted.

【0004】しかしながら、かかる方法ではアーク3の
偏向や溶接ビード4の下地の影響があった場合、微妙に
ビード形状がその方向に偏り、傾きのないかつ開先壁を
均等に溶かす溶接が出来なかった。本発明は、かかる技
術的課題に鑑み、アークの偏向や溶接ビードの下地の影
響があった場合に対しても傾きのないかつ開先壁を均等
に溶かす溶接が可能な溶接中の溶接線倣い方法を提供す
ることを目的とする。
However, in such a method, when the deflection of the arc 3 or the influence of the base of the welding bead 4 is affected, the bead shape is slightly biased in that direction, and it is not possible to perform welding without inclination and uniformly melting the groove wall. Was. The present invention has been made in view of the above technical problems, and has a welding line profile during welding capable of performing welding without tilting and evenly melting a groove wall even when there is an influence of arc deflection or a base of a welding bead. The aim is to provide a method.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
溶接中のアーク直下の溶接状況をCCDカメラでモニタ
し、画像処理装置にて溶接中の溶融池形状などの特徴量
を認識してリアルタイムに溶接線倣いを行なう溶接線倣
い方法において、溶接中における溶接ワイヤ挿入位置を
含む溶融池の画像をCCDカメラにより取り込み、これ
を画像処理して、その溶融池形状から開先左右端に対す
る溶接ワイヤ挿入位置ずれΔXを演算すると共に、さら
に溶融池の左右の濡れ高さの差ΔH、左右の溶融池の曲
率の差Δρ、左右溶融池の端のコーナ部分の隙間の面積
差ΔA、左右溶融池の隙間の量の差ΔG等の相関信号よ
り左右の開先壁の溶融状態判別信号を得、前記溶接ワイ
ヤ挿入位置ずれ信号と左右の開先壁の溶融状態判別信号
とにより、左右倣い軸の中心位置をファジィ推論等の演
算手段を用いてリアルタイムに制御し、溶接線倣いを行
うことを特徴とする。
According to the first aspect of the present invention,
In the welding line profiling method, which monitors the welding status immediately below the arc during welding with a CCD camera and recognizes features such as the shape of the molten pool being welded with an image processing device and performs welding line profiling in real time, An image of the weld pool including the welding wire insertion position is captured by a CCD camera, image-processed, and a welding wire insertion position shift ΔX with respect to the left and right ends of the groove is calculated from the shape of the weld pool. The difference between the wetting height ΔH, the curvature difference Δρ between the left and right weld pools, the area difference ΔA between the corners at the edges of the left and right weld pools, the difference ΔG in the amount of gap between the left and right weld pools, etc. A melting state discrimination signal for the front wall is obtained, and the center position of the left and right scanning shafts is calculated using fuzzy inference and other arithmetic means based on the welding wire insertion position shift signal and the melting state discrimination signals for the left and right groove walls. Controls Im, and performs the copying weld line.

【0006】かかる発明によれば、溶接ワイヤ挿入位置
ずれ量ΔXとともに、左右の開先壁の溶融状態判別信号
の2つの信号に基づいて溶接中の溶接線倣いを行なうた
めに、アークの偏向や溶接ビードの下地の影響があった
場合にも傾きの無い、且つ開先壁を均等に溶かす溶接が
可能な溶接線倣いを行なうことが出来る。
According to this invention, the welding line is traced during welding based on the two signals of the melting state determination signals of the left and right groove walls together with the displacement amount ΔX of the welding wire insertion position. Even when the base of the weld bead is affected, it is possible to perform welding line profiling without inclination and capable of performing welding for melting the groove wall evenly.

【0007】請求項2記載の発明は、ウィービングを伴
う溶接中のアーク直下の溶接状況をCCDカメラでモニ
タし、画像処理装置にて溶接中の溶融池形状などの特徴
量を認識してリアルタイムに溶接線倣いを行なう溶接線
倣い方法において、溶接中にウィービングの中央にウィ
ーバが到達したことを検知手段で検知し、ウィービング
中央の溶融池の画像をCCDカメラにより取り込み、こ
れを画像処理して、その溶融池形状から開先左右端に対
する溶接ワイヤ挿入位置ずれΔXを演算すると共に、さ
らに溶融池の左右の濡れ高さの偏差ΔH、左右の溶融池
の曲率の差Δρ、左右溶融池の端のコーナ部分の隙間の
面積差ΔA、左右溶融池の隙間の量の差ΔG等の相関信
号より左右の開先壁の溶融状態判別信号を得、前記溶接
ワイヤ挿入位置ずれ信号と左右の開先壁の溶融状態判別
信号とにより、左右倣い軸の中心位置をファジィ推論等
の演算手段を用いてリアルタイムに制御し、溶接線倣い
を行うことを特徴とする。
According to a second aspect of the present invention, a welding condition immediately below an arc during welding with weaving is monitored by a CCD camera, and a feature amount such as a molten pool shape being welded is recognized by an image processing device in real time. In the welding line profiling method of performing welding line profiling, the detection means detects that the weaver has reached the center of the weaving during welding, captures an image of the weld pool at the center of the weaving with a CCD camera, processes the image, From the shape of the molten pool, the welding wire insertion position deviation ΔX with respect to the left and right ends of the groove is calculated, and further, the deviation ΔH of the left and right wet heights of the molten pool, the difference Δρ in the curvature of the left and right molten pools, From the correlation signals such as the area difference ΔA of the gap at the corner portion and the difference ΔG of the amount of the gap between the left and right molten pools, the melting state determination signals of the left and right groove walls are obtained, and the welding wire insertion position displacement signal is obtained. And by a melting state determination signal of the left and right GMA wall to control in real time the center position of left and right scanning axis by using an arithmetic means of fuzzy inference or the like, and performs the copying weld line.

【0008】即ち、ウィービングを伴う溶接の場合は、
ウィービングの中央位置で画像を取り込む必要があるた
め、ウィービング軸に取り付けられたエンコーダよりの
検知信号、あるいはウィービング幅一定の溶接法なら左
右端に取り付けられたリミットスイッチよりの検知信号
により、ウィービング左右端を検知しながら、演算で得
たそのウィービング中央位置で、その瞬間に同期(中央
位置信号にランダムに同期)して取り込めるランダムシ
ャッタトリガ機能付きCCDカメラにより画像を取り込
むのがよい。通常のCCDカメラでは1/30秒ごとあ
るいは1/60秒ごとに一定のサイクルで同期してお
り、この同期が合うまで、最大1/30もしくは1/6
0秒待って、ずれた画像を撮り込むことになる。これ
を、ランダムに同期するCCDカメラによればその瞬間
に画像を取り込むことが出来、全くずれない画像を得る
ことが可能となる。
That is, in the case of welding involving weaving,
Since it is necessary to capture the image at the center position of the weaving, the detection signal from the encoder attached to the weaving shaft, or the detection signal from the limit switch attached to the left and right ends in the welding method with a constant weaving width, detects the weaving left and right ends. It is preferable to capture an image by using a CCD camera with a random shutter trigger function that can capture in synchronization with the weaving center position obtained by calculation (randomly synchronized with the center position signal) at the moment while detecting the position. In a normal CCD camera, synchronization is performed at a constant cycle every 1/30 seconds or 1/60 seconds. Until this synchronization is achieved, a maximum of 1/30 or 1/6 is obtained.
After waiting for 0 seconds, a shifted image is taken. According to a CCD camera that synchronizes this randomly, an image can be captured at that moment, and an image without any shift can be obtained.

【0009】請求項3記載の発明によれば、溶接中のア
ーク直下の溶接状況をCCDカメラでモニタし、画像処
理装置にて溶接中の溶融池形状などの特徴量を認識して
リアルタイムに溶接線倣いを行なう溶接線倣い方法にお
いて、溶接ワイヤが溶融池に短絡したことを検知手段で
検知し、短絡後の溶融池の画像をCCDカメラに取込
み、これを画像処理して、その溶融池形状から開先左右
端に対する溶接ワイヤ挿入位置ずれΔXを演算すると共
に、さらに溶融池の左右の濡れ高さの偏差ΔH、左右の
溶融池の曲率の差Δρ、左右溶融池の端のコーナ部分の
隙間の面積差ΔA、左右溶融池の隙間の量の差ΔG等の
相関信号より左右の開先壁の溶融状態判別信号を得、前
記溶接ワイヤ挿入位置ずれ信号と左右の開先壁の溶融状
態判別信号とにより、左右倣い軸の中心位置をファジィ
推論等の演算手段を用いてリアルタイムに制御し、溶接
線倣いを行うことを特徴とする。
According to the third aspect of the present invention, the welding situation immediately below the arc during welding is monitored by the CCD camera, and the image processing device recognizes the characteristic amount such as the shape of the molten pool being welded and welds in real time. In the welding line profiling method that performs wire profiling, the short circuit of the welding wire is detected by a detecting means by a detection means, an image of the molten pool after the short circuit is taken into a CCD camera, and the image is processed, and the molten pool shape is processed. The welding wire insertion position deviation ΔX with respect to the left and right ends of the groove is calculated, and the deviation ΔH of the left and right wet heights of the molten pool, the difference Δρ in the curvature of the left and right molten pools, and the gap between the corners of the left and right molten pools are further calculated. The melting state determination signal of the left and right groove walls is obtained from the correlation signal such as the area difference ΔA of the gap between the left and right molten pools and the difference ΔG of the gap amount between the left and right molten pools. Left by traffic light The center position of the scanning axis is controlled in real time by using an arithmetic means of fuzzy inference or the like, and performs the copying weld line.

【0010】即ち、高精度・高信頼性のある監視を実現
するためには、より鮮明に画像を得る必要がある。そこ
で本発明は、溶接ワイヤが溶融池に短絡した際にその画
像を取り込むように構成することにより、溶接のアーク
光を除外でき、溶融池のみ写った画像を入力できる。こ
れにより溶融池左右のコーナ曲率ρL、ρRや溶融池左右
の隙間面積AL、AR、及び溶融池左右の隙間量GL、GR
等の局部的な画像も精度よく測定出来る。この溶接ワイ
ヤが溶融池に短絡したか否かの検知は、溶接中の溶接電
圧Vをモニタして溶接電圧が小さい時、または、溶接機
から出て来る短絡信号がONの時、溶接ワイヤが短絡し
たものとしてランダムにシャッタが切れるランダムシャ
ッタトリガ機能付きCCDカメラを用いて画像を取り込
むことにより精度よく測定出来る。
That is, in order to realize monitoring with high accuracy and high reliability, it is necessary to obtain a clearer image. Therefore, the present invention is configured to take in an image when the welding wire is short-circuited to the molten pool, thereby excluding welding arc light and inputting an image showing only the molten pool. Thus the corner curvature of the molten pool right ρ L, ρ R and molten pool left and right clearance area A L, A R, and molten pool left and right gap amounts G L, G R
Can be measured with high accuracy. The detection of whether or not the welding wire has short-circuited to the molten pool is performed by monitoring the welding voltage V during welding, when the welding voltage is low, or when the short-circuit signal coming out of the welding machine is ON, the welding wire is turned on. Accurate measurement can be achieved by capturing an image using a CCD camera with a random shutter trigger function in which the shutter is randomly released as a short circuit.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成回路、構成部品の相対的配
置、種類等は特に特定的な記載がないかぎりは、この発
明の範囲をそれに限定する趣旨ではなく、単なる説明例
にすぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, unless otherwise specified, the configuration circuits, relative arrangements, types, and the like of the constituent circuits and components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. .

【0012】図1は、本発明の一実施形態に係る溶接倣
い装置の制御ブロック図を示し、図2及び図3はアーク
の偏向を伴う溶融池の処理画像を表した説明図で、図2
は溶融池先端からの左右のコーナ部の溶融池14の濡れ
高さHL、HRを、図3は溶融池左右のコーナ曲率ρL
ρRや溶融池左右の隙間面積AL、AR、及び溶融池左右
の隙間量GL、GRを示す。図1に基づいて本装置の概略
を説明するに、溶接状況を遮光フィルタ7を前面に配し
たCCDカメラ6によりカメラ制御盤8を介して撮像
し、これを画像処理装置10に取り込み、所定の画像処
理を行って、その結果を全体制御装置11に送信して制
御を行う構成となっている。
FIG. 1 is a control block diagram of a welding copying apparatus according to an embodiment of the present invention. FIGS. 2 and 3 are explanatory views showing processing images of a molten pool accompanied by arc deflection.
Are the wetting heights H L and H R of the weld pool 14 at the left and right corners from the weld pool tip, and FIG. 3 is the corner curvature ρ L of the weld pool right and left.
[rho R and molten pool left and right clearance area A L, A R, and molten pool left and right gap amounts G L, showing a G R. In order to explain the outline of the present apparatus based on FIG. 1, a welding situation is imaged through a camera control panel 8 by a CCD camera 6 having a light-shielding filter 7 disposed on the front side, and the captured image is taken into an image processing apparatus 10 and given a predetermined image. The image processing is performed, and the result is transmitted to the overall control device 11 to perform control.

【0013】溶融池画像を取込むCCDカメラ6の撮像
タイミングは、溶接機13からの信号により、全体制御
装置11から画像処理装置10を介してカメラ制御を行
う。CCDカメラ6で撮像された画像や画像処理結果
は、TVモニタ12に表示される。開先位置ずれを検出
すると全体制御装置11よりサーボモータ制御盤9を介
して左右倣い軸17を動作させて、上下軸16やウィー
ビング軸15などの軸ステージ先端に取り付けた溶接ト
ーチ1を動かして左右倣いを行う。
The imaging timing of the CCD camera 6 for taking in the molten pool image is controlled by the overall control device 11 via the image processing device 10 in accordance with a signal from the welding machine 13. Images captured by the CCD camera 6 and image processing results are displayed on the TV monitor 12. When the groove position shift is detected, the overall control device 11 operates the right and left scanning shaft 17 via the servo motor control panel 9 to move the welding torch 1 attached to the tip of the shaft stage such as the vertical shaft 16 and the weaving shaft 15. Perform left-right copying.

【0014】即ち本実施形態に係わる溶接監視装置は、
その全体の制御を行う全体制御装置11により、溶接状
況の画像を画像処理装置10より得て監視し、溶接線倣
いや、溶接条件適応制御を自動的に行うもので、撮像手
段であるCCDカメラ6、カメラ制御盤8、画像処理装
置10、制御装置11及び溶接機13により構成されて
いる。ここで、TVモニタ12は、溶接状況を確認する
ためのモニタ装置であり、必要に応じ設置される。本実
施形態が適用される溶接方法には、例えばティグ溶接や
ガスシールドアーク溶接が適用される。これらの溶接を
高品質に実施するため、溶接トーチ1の上下左右位置制
御、電流制御、溶接速度制御、フィラーワイヤ供給速度
制御、ウィービング速度制御、ウィービング両端停止時
間制御などを全体制御装置11で行う。これは、従来、
作業者が行っていたもので、これを自動制御化すること
で、無人溶接での工数低減及び高品質な溶接を提供する
ことが出来る。
That is, the welding monitoring device according to the present embodiment
An image of the welding status is obtained from the image processing device 10 and monitored by an overall control device 11 which performs overall control, and welding line profiling and welding condition adaptive control are automatically performed. 6, a camera control panel 8, an image processing device 10, a control device 11, and a welding machine 13. Here, the TV monitor 12 is a monitor device for checking a welding situation, and is installed as needed. For example, TIG welding or gas shielded arc welding is applied to the welding method to which the present embodiment is applied. In order to perform these weldings with high quality, the overall control device 11 controls the vertical and horizontal positions of the welding torch 1, current control, welding speed control, filler wire supply speed control, weaving speed control, weaving both end stop time control, and the like. . This is traditionally
This operation is performed by an operator, and by automatically controlling the operation, it is possible to reduce man-hours in unmanned welding and provide high-quality welding.

【0015】本実施形態では、これを自動的に行うた
め、溶接状況の画像を干渉フィルタなどの遮光フィルタ
7により減光し、CCDカメラ6でカメラ制御盤8を介
して画像入力し、画像処理装置10により画像解析して
図2における溶接トーチ1の位置、すなわち溶接トーチ
1のウィービング軸15の中央位置での挿入位置XW
開先の左右端である溶融池左端XL、溶融池右端XR、溶
融池先端からの左右のコーナ部の溶融池14の濡れ高さ
L、HRを得て、制御装置11に溶接情報として出力す
る。尚、溶接トーチ1のウィービングを行なわない場合
は、溶接トーチ1そのままの位置が、挿入位置XW とな
る。
In the present embodiment, in order to perform this automatically, the image of the welding situation is dimmed by a light-shielding filter 7 such as an interference filter, and the image is input by a CCD camera 6 via a camera control panel 8 to perform image processing. The image is analyzed by the device 10 and the position of the welding torch 1 in FIG. 2, that is, the insertion position X W at the center position of the weaving shaft 15 of the welding torch 1,
The weld pool left end X L and the weld pool right end X R , which are the left and right ends of the groove, and the wet heights H L and H R of the weld pools 14 at the left and right corners from the weld pool tip are obtained and welded to the control device 11. Output as information. In the case of not performing weaving of the welding torch 1, a welding torch 1 situ is the inserting position X W.

【0016】溶融池14の濡れ高さHL、HRを求める理
由は、例えば図2に示すように、溶融池14の濡れ高さ
Hが低ければ、それだけ溶融池14が溶けて垂れている
ことを表し、溶融池14の濡れ高さHが高ければ、溶融
池14が後退して溶けていないことを相関的(間接的)
に表していることになる。従って、溶融池14の濡れ高
さHL、HRから左右の開先壁の溶融状態を判別出来、こ
れを左右の高さHL、HRが等しくなるように、言換えれ
ば、ΔH(ΔH:HL〜HR:左右の高さの差)が0にな
るように制御することで左右均等に開先壁を溶かすこと
が可能となる。
The reason for obtaining the wet heights H L and H R of the molten pool 14 is, for example, as shown in FIG. 2, the lower the wet height H of the molten pool 14, the more the molten pool 14 melts and hangs. If the wet height H of the molten pool 14 is high, it is correlated (indirectly) that the molten pool 14 has receded and has not melted.
It will be represented in. Accordingly, wetting height H L of the molten pool 14, can determine the molten state of the GMA walls of the left and right from the H R, which the left and right height H L, as H R is equal, if words Kaere, [Delta] H ( ΔH: H L ~H R: it is possible to dissolve the lateral evenly groove wall by the difference between the right and left height) is controlled to be zero.

【0017】つまり、溶融池部14をCCDカメラ6で
撮像し、その溶融池14の形状から開先5の両端と溶接
ワイヤ2の挿入位置を画像処理装置10で画像処理し
て、開先左右端XL、XRに対する現在の溶接ワイヤ2の
挿入位置XW を求め、これらより下記(1)式でワイヤ
挿入位置ずれΔXを求める。 ΔX=XW−(XL+XR)/2 …(1) 更に左右のコーナ部の溶融池濡れ高さ位置の差ΔHを下
記(2)式で求め、 ΔH=HL−HR …(2) これらの偏差ΔX、ΔHより、図4に示すファジィルー
ルによりファジィ推論を行い、該ファジィ推論結果によ
り左右倣い軸17を動かして溶接線倣いを行う。前記左
右倣い軸17を含めた各軸の制御は、各軸のドライバと
アンプからなるサーボモータ制御盤9により制御され
る。
That is, the molten pool portion 14 is imaged by the CCD camera 6, and both ends of the groove 5 and the insertion position of the welding wire 2 are image-processed by the image processing device 10 based on the shape of the molten pool 14. X L, determine the insertion position X W of the current of the welding wire 2 against X R, these from the following (1) obtaining a wire insertion position deviation ΔX by the formula. ΔX = X W - (X L + X R) / 2 ... (1) further obtains a difference [Delta] H of the molten pool wetting height positions of the left and right corner portions in the following formula (2), ΔH = H L -H R ... ( 2) From these deviations ΔX and ΔH, fuzzy inference is performed according to the fuzzy rule shown in FIG. 4, and the right and left scanning shaft 17 is moved based on the fuzzy inference result to perform welding line scanning. The control of each axis including the right and left scanning axes 17 is controlled by a servo motor control panel 9 including a driver and an amplifier for each axis.

【0018】このとき画像は、ウィービングを伴う溶接
の場合は、ウィービングの中央位置で画像を取り込む必
要があるため、ウィービング軸15に取り付けられたエ
ンコーダよりの検知信号、あるいはウィービング幅一定
の溶接法なら左右端に取り付けられたリミットスイッチ
よりの検知信号により、ウィービング左右端を検知しな
がら、演算で得たそのウィービング中央位置で、その瞬
間に同期(中央位置信号にランダムに同期)して取り込
めるランダムシャッタトリガ機能付きCCDカメラ6に
より画像を取り込む。
At this time, in the case of welding involving weaving, since it is necessary to capture the image at the center position of the weaving, a detection signal from an encoder attached to the weaving shaft 15 or a welding method with a constant weaving width is used. A random shutter that can be synchronized with the weaving center position obtained by calculation (randomly synchronized with the center position signal) at the moment while detecting the weaving left and right ends by the detection signal from the limit switches attached to the left and right ends. An image is captured by a CCD camera 6 with a trigger function.

【0019】即ち、通常のCCDカメラ6では1/30
秒ごとあるいは1/60秒ごとに一定のサイクルで同期
しており、この同期が合うまで、最大1/30もしくは
1/60秒待って、ずれた画像を撮り込むことになる。
これを、ランダムに同期するCCDカメラ6によればそ
の瞬間に画像を取り込むことが出来、全くずれない画像
を得ることが可能となる。尚、ウィービングを伴わない
溶接の場合は、溶融池やアークが移動しないことより、
通常のCCDカメラで撮像することが可能である。ま
た、さらに画像処理しやすい鮮明な画像を得るため、シ
ャッタ速度を溶接状況(電流や開先形状)に合わせて自
動設定するようにする。但し、この時、溶接条件が一定
であれば当然シャッタ速度も一定で良い。
That is, 1/30 in the ordinary CCD camera 6
Synchronization is performed at a constant cycle every second or every 1/60 second. Until this synchronization is achieved, a maximum of 1/30 or 1/60 second is waited and a shifted image is taken.
According to the CCD camera 6 that synchronizes this randomly, an image can be captured at that moment, and an image without any shift can be obtained. In the case of welding without weaving, since the molten pool and the arc do not move,
It is possible to take an image with a normal CCD camera. In addition, in order to obtain a clear image that can be easily processed, the shutter speed is automatically set in accordance with the welding condition (current or groove shape). However, at this time, if the welding conditions are constant, the shutter speed may be constant.

【0020】尚、絞りを操作することでも画像を調整で
きるが、絞りは機械的な移動を伴うため処理が遅くなる
が、シャッタ速度は電子シャッタで電気的に行うため、
高速に行える点が有利である。
The image can also be adjusted by operating the aperture, but the aperture is mechanically moved, which slows down processing. However, since the shutter speed is electrically controlled by an electronic shutter,
Advantageously, it can be performed at high speed.

【0021】ファジィ推論は、図4に示したように、左
右位置ずれ量ΔX、前回のトーチ移動方向を伴った移動
速度V’、それに溶融池の濡れ高さの差ΔH、または、
溶融池左右のコーナの曲率の差Δρ、溶融池左右の隙間
面積の差ΔA、及び溶融池左右の隙間量の差ΔGを入
力、溶接トーチ1が取り付けられた左右倣い軸17の方
向を伴った左右倣い軸17の移動速度Vを出力する。
As shown in FIG. 4, the fuzzy inference is based on the amount of left and right positional deviation ΔX, the moving speed V ′ with the previous torch moving direction, and the difference ΔH in the wet height of the molten pool, or
The difference Δρ in the curvature of the left and right corners of the weld pool, the difference ΔA in the gap area between the left and right weld pools, and the difference ΔG in the gap amount between the left and right weld pools were input, with the direction of the right and left scanning shaft 17 to which the welding torch 1 was attached. The moving speed V of the right and left scanning shaft 17 is output.

【0022】ファジィ推論について、溶融池14の濡れ
高さの差ΔHをまず除いた図4(A)に基づいて説明す
る。図4(A)において、 1)左右ずれ量ΔXがZR(ZERO:ゼロ)で、前回のト
ーチ移動方向を伴った移動速度V’がZR(ゼロ)な
ら、トーチ移動方向を伴った移動速度VはZR(ゼロ)
としてトーチ1を停止させる。 2)次に、トーチ1の左右位置ずれ量ΔXがPL(Posi
tive Large:プラス方向に大)で、前回のトーチ移動方
向を伴った移動速度V’がZR(ゼロ)なら、トーチ移
動方向を伴った移動速度VをNM(Negative Medium :
マイナス方向に中間的な値)に設定してトーチ1が移動
制御される。 3)尚、トーチ1の左右位置ずれ量ΔXがPL(Positi
ve Large:プラス方向に大)で、前回のトーチ移動方向
を伴った移動速度V’がPL(Positive Large:プラス
方向に大)なら、トーチ移動方向を伴った移動速度Vを
NL(NegativeLarge:マイナス方向に大)に設定して
トーチ1が移動制御される。このように、トーチ軸がプ
ラスにずれているのに前回の移動速度がPMであっても
プラス方向に移動しているということは、ずれが大きく
なっている可能性があることから、反対側のマイナス方
向に速い速度で移動しろという命令NLになっている。
The fuzzy inference will be described with reference to FIG. 4A from which the difference ΔH in the wet height of the molten pool 14 is first removed. In FIG. 4 (A), 1) if the shift amount ΔX is ZR (ZERO: zero) and the moving speed V ′ with the previous torch moving direction is ZR (zero), the moving speed V with the torch moving direction is VR. Is ZR (zero)
To stop the torch 1. 2) Next, the left and right positional deviation amount ΔX of the torch 1 is PL (Posi
tive Large: large in the positive direction), and if the previous moving speed V ′ with the torch moving direction is ZR (zero), the moving speed V with the torch moving direction is set to NM (Negative Medium:
The movement of the torch 1 is controlled by setting an intermediate value in the minus direction). 3) It should be noted that the left and right positional deviation amount ΔX of the torch 1 is PL (Positi
ve Large: large in the plus direction), and if the previous moving speed V 'with the torch moving direction is PL (Positive Large: large in the plus direction), the moving speed V with the torch moving direction is NL (NegativeLarge: minus) And the torch 1 is controlled to move. As described above, the fact that the torch axis is moving in the plus direction even if the previous moving speed is PM although the torch axis is shifted in the plus direction means that the difference may be large, Command NL to move at a high speed in the minus direction.

【0023】次に溶融池14の濡れ高さずれΔHについ
ては、上記にプラスしてファジィ推論する。図4(B)
において、例えば左右ずれ量ΔXがZR(ZERO:ゼロ)
の場合でも、溶融池14の濡れ高さずれΔHが、NL
(Negative Large:マイナス方向に大)なら左の濡れ高
さが低いことから右より良く溶かしており、溶接トーチ
1を右に移動するようにPM(Positive Medium :プラ
ス方向に中間的な値)で、トーチ移動方向を伴った移動
速度Vを出力する。
Next, the wetting height deviation ΔH of the molten pool 14 is fuzzy inferred in addition to the above. FIG. 4 (B)
In, for example, the lateral shift ΔX is ZR (ZERO: zero)
, The wet height deviation ΔH of the molten pool 14 is NL
(Negative Large: large in the negative direction) because the left wet height is low, it melts better than the right, and PM (Positive Medium: an intermediate value in the positive direction) so that the welding torch 1 moves to the right. And the moving speed V with the torch moving direction.

【0024】従ってアーク3の偏向や溶接ビード4の下
地の影響があった場合、これまで、溶融池14の濡れ高
さΔHを求めて、ファジィ推論で制御することを説明し
たが、これ以外にも図3に示すように、溶融池左右のコ
ーナの曲率ρL、ρRや溶融池左右の隙間面積AL、AR
及び溶融池左右の隙間量GL、GRでもファジィ推論で制
御することも可能であり、同様な効果が得られる。即
ち、溶融池左のコーナの曲率ρLが右の曲率ρRに比較し
て小さい場合、溶融池左の隙間面積ALが右の隙間面積
Rに比較して大きい場合、及び溶融池左の隙間量GL
右の隙間量GRに比較して大きい場合はいずれも左側の
溶融池14が後退して右側の溶融池に比較して溶けてい
ないことを表している。
Therefore, in the case where the deflection of the arc 3 and the influence of the base of the weld bead 4 are affected, it has been described that the wet height ΔH of the molten pool 14 is obtained and controlled by fuzzy inference. Also, as shown in FIG. 3, the curvatures ρ L and ρ R of the left and right corners of the molten pool and the gap areas A L , A R ,
And molten pool left and right gap amounts G L, it is also possible to control by fuzzy inference even G R, the same effect can be obtained. That is, when the curvature ρ L of the left corner of the weld pool is smaller than the right curvature ρ R , when the gap area A L on the left side of the weld pool is larger than the gap area A R on the right, and when the weld pool left the gap amount G L of indicates that the undissolved compared both greater in comparison to the right of the gap amount G R is retracts molten pool 14 of the left side to the right side of the molten pool.

【0025】この場合、高精度・高信頼性のある監視を
実現するために、より鮮明に画像を得る必要がある。こ
れには、溶接ワイヤ2が溶融池14に短絡した際にその
画像を取り込むように構成することにより、溶接のアー
ク3を除外でき、溶融池14のみ写った画像を入力でき
る。これにより溶融池左右のコーナ曲率ρL、ρRや溶融
池左右の隙間面積AL、AR、及び溶融池左右の隙間量G
L、GR等の局部的な画像も精度よく測定出来る。この溶
接ワイヤ2が溶融池14に短絡したか否かの検知は、溶
接中の溶接電圧Vをモニタして溶接電圧Vが小さい時、
または、溶接機13から出て来る短絡信号がONの時、
溶接ワイヤ2が短絡したものとしてランダムにシャッタ
が切れる「ランダムシャッタトリガ機能付きCCDカメ
ラ6」を用いて画像を取り込むことにより精度よく測定
出来る。
In this case, it is necessary to obtain a clearer image in order to realize monitoring with high accuracy and high reliability. For this purpose, when the welding wire 2 is short-circuited to the molten pool 14, an image thereof is taken in, so that the welding arc 3 can be excluded, and an image showing only the molten pool 14 can be input. Thereby, the left and right corner curvatures ρ L and ρ R of the molten pool, the gap areas A L and A R on the left and right of the molten pool, and the gap amount G on the left and right of the molten pool.
L, local images, such as G R also accurately be measured. The detection of whether or not the welding wire 2 is short-circuited to the molten pool 14 is performed by monitoring the welding voltage V during welding and when the welding voltage V is small.
Or, when the short-circuit signal coming out of the welding machine 13 is ON,
The measurement can be accurately performed by capturing an image using a “CCD camera 6 with a random shutter trigger function” in which the shutter is randomly released as a short circuit of the welding wire 2.

【0026】また、溶接ワイヤの挿入位置の高さYW
求めることにより、溶接トーチ1の上下軸16の位置制
御も可能となる。
Further, by determining the height Y W of the welding wire insertion position, the position of the vertical shaft 16 of the welding torch 1 can be controlled.

【0027】[0027]

【発明の効果】以上記載のごとく本発明によれば、アー
クの偏向や溶接ビードの下地の影響があった場合に対し
ても傾きのないかつ開先壁を均等に溶かす溶接が可能な
溶接中の溶接線倣い方法を得ることが出来る。
As described above, according to the present invention, welding can be performed without inclination and capable of uniformly melting the groove wall even when there is an influence of the deflection of the arc or the base of the welding bead. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る溶接倣い装置の制御
ブロック図を示す。
FIG. 1 is a control block diagram of a welding copying apparatus according to an embodiment of the present invention.

【図2】アークの偏向を伴う溶融池の処理画像を表した
説明図で、特に溶融池先端からの左右のコーナ部の溶融
池の濡れ高さHL、HRを示す。
FIG. 2 is an explanatory view showing a processed image of a molten pool accompanied by arc deflection, and particularly shows the wet heights H L and H R of the molten pool at the left and right corners from the molten pool tip.

【図3】アークの偏向を伴う溶融池の処理画像を表した
説明図で、特に、溶融池左右のコーナ曲率ρL、ρRや溶
融池左右の隙間面積AL、AR、及び溶融池左右の隙間量
L、GRを示す。
FIG. 3 is an explanatory view showing a processing image of a molten pool accompanied by arc deflection. In particular, corner curvatures ρ L , ρ R on the left and right of the molten pool, gap areas A L , A R on the left and right of the molten pool, and the molten pool. left and right gap amount G L, showing a G R.

【図4】(A)(B)は開先線倣いに関するファジィ推
論を行うためのルールを表した表図の一例である。
FIGS. 4A and 4B are examples of tables showing rules for performing fuzzy inference regarding groove line tracing.

【図5】従来の画像処理手法による開先線倣いの溶融池
を表した説明図である。
FIG. 5 is an explanatory diagram showing a weld pool following a groove line by a conventional image processing method.

【符号の説明】[Explanation of symbols]

1 溶接トーチ 2 溶接ワイヤ 3 アーク 4 溶接ビード 5 開先 6 CCDカメラ 7 遮光フィルタ 8 カメラ制御盤 9 サーボモータ制御盤 10 画像処理装置 11 全体制御装置 12 TVモニタ 13 溶接機 14 溶融池 15 ウィービング軸 16 上下軸 17 左右倣い軸 REFERENCE SIGNS LIST 1 welding torch 2 welding wire 3 arc 4 welding bead 5 groove 6 CCD camera 7 light shielding filter 8 camera control panel 9 servo motor control panel 10 image processing device 11 overall control device 12 TV monitor 13 welding machine 14 weld pool 15 weaving shaft 16 Vertical axis 17 Horizontal scanning axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶接中のアーク直下の溶接状況をCCD
カメラでモニタし、画像処理装置にて溶接中の溶融池形
状などの特徴量を認識してリアルタイムに溶接線倣いを
行なう溶接線倣い方法において、 溶接中における溶接ワイヤ挿入位置を含む溶融池の画像
をCCDカメラにより取り込み、これを画像処理して、
その溶融池形状から開先左右端に対する溶接ワイヤ挿入
位置ずれΔXを演算すると共に、さらに溶融池の左右の
濡れ高さの差ΔH、左右の溶融池の曲率の差Δρ、左右
溶融池の端のコーナ部分の隙間の面積差ΔA、左右溶融
池の隙間の量の差ΔG等の相関信号より左右の開先壁の
溶融状態判別信号を得、前記溶接ワイヤ挿入位置ずれ信
号と左右の開先壁の溶融状態判別信号とにより、左右倣
い軸の中心位置をファジィ推論等の演算手段を用いてリ
アルタイムに制御し、溶接線倣いを行うことを特徴とす
る溶接線倣い方法。
1. A CCD camera for detecting a welding situation immediately below an arc during welding.
In a welding line profiling method that monitors a camera and recognizes features such as the shape of the weld pool during welding with an image processing device and performs welding line profiling in real time, an image of the weld pool including the welding wire insertion position during welding Is captured by a CCD camera, and this is image-processed.
From the shape of the weld pool, a welding wire insertion position shift ΔX with respect to the left and right edges of the groove is calculated, and further, a difference ΔH between the left and right wet heights of the weld pool, a difference Δρ between the curvatures of the left and right weld pools, From the correlation signals such as the area difference ΔA of the gap at the corner portion and the difference ΔG of the amount of the gap between the left and right molten pools, a melting state determination signal of the left and right groove walls is obtained, and the welding wire insertion position shift signal and the left and right groove walls are obtained. A welding line profiling method in which the center position of the left and right tracing axes is controlled in real time using arithmetic means such as fuzzy inference or the like in accordance with the molten state discrimination signal.
【請求項2】 ウィービングを伴う溶接中のアーク直下
の溶接状況をCCDカメラでモニタし、画像処理装置に
て溶接中の溶融池形状などの特徴量を認識してリアルタ
イムに溶接線倣いを行なう溶接線倣い方法において、 溶接中にウィービングの中央にウィーバが到達したこと
を検知手段で検知し、ウィービング中央の溶融池の画像
をCCDカメラにより取り込み、これを画像処理して、
その溶融池形状から開先左右端に対する溶接ワイヤ挿入
位置ずれΔXを演算すると共に、さらに溶融池の左右の
濡れ高さの偏差ΔH、左右の溶融池の曲率の差Δρ、左
右溶融池の端のコーナ部分の隙間の面積差ΔA、左右溶
融池の隙間の量の差ΔG等の相関信号より左右の開先壁
の溶融状態判別信号を得、前記溶接ワイヤ挿入位置ずれ
信号と左右の開先壁の溶融状態判別信号とにより、左右
倣い軸の中心位置をファジィ推論等の演算手段を用いて
リアルタイムに制御し、溶接線倣いを行うことを特徴と
する溶接線倣い方法。
2. A welding process in which a welding condition immediately below an arc during welding with weaving is monitored by a CCD camera, a feature amount such as a molten pool shape being welded is recognized by an image processing device, and a welding line is traced in real time. In the line scanning method, the detection means detects that the weaver has reached the center of the weaving during welding, captures an image of the weld pool at the center of the weaving with a CCD camera, and processes this image.
From the shape of the molten pool, the welding wire insertion position deviation ΔX with respect to the left and right ends of the groove is calculated, and further, the deviation ΔH of the left and right wet heights of the molten pool, the difference Δρ in the curvature of the left and right molten pools, From the correlation signals such as the area difference ΔA of the gap at the corner portion and the difference ΔG of the amount of the gap between the left and right molten pools, a melting state determination signal of the left and right groove walls is obtained. A welding line profiling method characterized in that the center position of the left and right tracing axes is controlled in real time using arithmetic means such as fuzzy inference or the like to perform welding line profiling in accordance with the molten state discrimination signal.
【請求項3】 溶接中のアーク直下の溶接状況をCCD
カメラでモニタし、画像処理装置にて溶接中の溶融池形
状などの特徴量を認識してリアルタイムに溶接線倣いを
行なう溶接線倣い方法において、 溶接ワイヤが溶融池に短絡したことを検知手段で検知
し、短絡後の溶融池の画像をCCDカメラに取込み、こ
れを画像処理して、その溶融池形状から開先左右端に対
する溶接ワイヤ挿入位置ずれΔXを演算すると共に、さ
らに溶融池の左右の濡れ高さの偏差ΔH、左右の溶融池
の曲率の差Δρ、左右溶融池の端のコーナ部分の隙間の
面積差ΔA、左右溶融池の隙間の量の差ΔG等の相関信
号より左右の開先壁の溶融状態判別信号を得、前記溶接
ワイヤ挿入位置ずれ信号と左右の開先壁の溶融状態判別
信号とにより、左右倣い軸の中心位置をファジィ推論等
の演算手段を用いてリアルタイムに制御し、溶接線倣い
を行うことを特徴とする溶接線倣い方法。
3. The state of welding immediately below the arc during welding is measured by a CCD.
In the welding line profiling method, which monitors with a camera and recognizes features such as the shape of the weld pool during welding with an image processing device and performs welding line profiling in real time, the detection means detects that the welding wire has short-circuited to the weld pool. The image of the weld pool after the short circuit is detected and taken into a CCD camera, and the image processing is performed to calculate the welding wire insertion position deviation ΔX with respect to the left and right ends of the groove from the shape of the weld pool. The difference between the wetness height ΔH, the curvature difference Δρ between the left and right weld pools, the area difference ΔA between the corners at the ends of the left and right weld pools, the difference ΔG in the gap amount between the left and right weld pools, etc. The melting position determination signal of the front wall is obtained, and the center position of the left and right scanning axes is controlled in real time by using a calculating means such as fuzzy inference based on the welding wire insertion position shift signal and the melting state determination signal of the left and right groove walls. And melt A welding line copying method characterized by performing tangential copying.
JP28774297A 1997-10-03 1997-10-03 Welding line copying method during welding Expired - Fee Related JP3322617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28774297A JP3322617B2 (en) 1997-10-03 1997-10-03 Welding line copying method during welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28774297A JP3322617B2 (en) 1997-10-03 1997-10-03 Welding line copying method during welding

Publications (2)

Publication Number Publication Date
JPH11104833A true JPH11104833A (en) 1999-04-20
JP3322617B2 JP3322617B2 (en) 2002-09-09

Family

ID=17721177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28774297A Expired - Fee Related JP3322617B2 (en) 1997-10-03 1997-10-03 Welding line copying method during welding

Country Status (1)

Country Link
JP (1) JP3322617B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193277A (en) * 2004-01-07 2005-07-21 Kawasaki Heavy Ind Ltd Method and apparatus for arc welding
JP2007185700A (en) * 2006-01-16 2007-07-26 Jfe Koken Corp Welding control method and welding device
US20120267349A1 (en) * 2009-10-06 2012-10-25 Bayerische Motoren Werke Ag Joining device for non-positive joining by means of a filler material using sensors
US20140017642A1 (en) * 2012-07-10 2014-01-16 Lincoln Global Inc. Virtual reality pipe welding simulator and setup
US9691299B2 (en) 2008-08-21 2017-06-27 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9754509B2 (en) 2008-08-21 2017-09-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9836994B2 (en) 2009-07-10 2017-12-05 Lincoln Global, Inc. Virtual welding system
US9911359B2 (en) 2009-07-10 2018-03-06 Lincoln Global, Inc. Virtual testing and inspection of a virtual weldment
US9928755B2 (en) 2008-08-21 2018-03-27 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
JP2019195811A (en) * 2018-05-07 2019-11-14 株式会社神戸製鋼所 Weld monitoring device, weld monitoring method, and program
USRE47918E1 (en) 2009-03-09 2020-03-31 Lincoln Global, Inc. System for tracking and analyzing welding activity
CN111242001A (en) * 2020-01-09 2020-06-05 深圳市瑞凌实业股份有限公司 Vertical electro-gas welding control method and device, electronic equipment and storage medium
US10878591B2 (en) 2016-11-07 2020-12-29 Lincoln Global, Inc. Welding trainer utilizing a head up display to display simulated and real-world objects
US10913125B2 (en) 2016-11-07 2021-02-09 Lincoln Global, Inc. Welding system providing visual and audio cues to a welding helmet with a display
US10930174B2 (en) 2013-05-24 2021-02-23 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
CN112489010A (en) * 2020-11-27 2021-03-12 桂林电子科技大学 Method and device for quickly identifying welding line and storage medium
US10997872B2 (en) 2017-06-01 2021-05-04 Lincoln Global, Inc. Spring-loaded tip assembly to support simulated shielded metal arc welding
CN112894206A (en) * 2021-01-16 2021-06-04 佛山市广凡机器人有限公司 Intelligent control system of automatic welding robot
CN115365610A (en) * 2022-08-27 2022-11-22 湘潭大学 Tube plate splicing weld joint tracking method based on magnetic control swinging GTAW arc sensing

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193277A (en) * 2004-01-07 2005-07-21 Kawasaki Heavy Ind Ltd Method and apparatus for arc welding
JP2007185700A (en) * 2006-01-16 2007-07-26 Jfe Koken Corp Welding control method and welding device
US9965973B2 (en) 2008-08-21 2018-05-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9779635B2 (en) 2008-08-21 2017-10-03 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US11715388B2 (en) 2008-08-21 2023-08-01 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US11521513B2 (en) 2008-08-21 2022-12-06 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9754509B2 (en) 2008-08-21 2017-09-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10249215B2 (en) 2008-08-21 2019-04-02 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US11030920B2 (en) 2008-08-21 2021-06-08 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10204529B2 (en) 2008-08-21 2019-02-12 Lincoln Global, Inc. System and methods providing an enhanced user Experience in a real-time simulated virtual reality welding environment
US9779636B2 (en) 2008-08-21 2017-10-03 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9792833B2 (en) 2008-08-21 2017-10-17 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9818312B2 (en) 2008-08-21 2017-11-14 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9818311B2 (en) 2008-08-21 2017-11-14 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9836995B2 (en) 2008-08-21 2017-12-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10916153B2 (en) 2008-08-21 2021-02-09 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9858833B2 (en) 2008-08-21 2018-01-02 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10803770B2 (en) 2008-08-21 2020-10-13 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10629093B2 (en) 2008-08-21 2020-04-21 Lincoln Global Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9928755B2 (en) 2008-08-21 2018-03-27 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US9761153B2 (en) 2008-08-21 2017-09-12 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10056011B2 (en) 2008-08-21 2018-08-21 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9691299B2 (en) 2008-08-21 2017-06-27 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
USRE47918E1 (en) 2009-03-09 2020-03-31 Lincoln Global, Inc. System for tracking and analyzing welding activity
US10643496B2 (en) 2009-07-10 2020-05-05 Lincoln Global Inc. Virtual testing and inspection of a virtual weldment
US10134303B2 (en) 2009-07-10 2018-11-20 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9911360B2 (en) 2009-07-10 2018-03-06 Lincoln Global, Inc. Virtual testing and inspection of a virtual weldment
US9911359B2 (en) 2009-07-10 2018-03-06 Lincoln Global, Inc. Virtual testing and inspection of a virtual weldment
US9836994B2 (en) 2009-07-10 2017-12-05 Lincoln Global, Inc. Virtual welding system
US20120267349A1 (en) * 2009-10-06 2012-10-25 Bayerische Motoren Werke Ag Joining device for non-positive joining by means of a filler material using sensors
US20140017642A1 (en) * 2012-07-10 2014-01-16 Lincoln Global Inc. Virtual reality pipe welding simulator and setup
US9767712B2 (en) * 2012-07-10 2017-09-19 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
CN104620304A (en) * 2012-07-10 2015-05-13 林肯环球股份有限公司 Virtual reality pipe welding simulator and setup
US10930174B2 (en) 2013-05-24 2021-02-23 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US10878591B2 (en) 2016-11-07 2020-12-29 Lincoln Global, Inc. Welding trainer utilizing a head up display to display simulated and real-world objects
US10913125B2 (en) 2016-11-07 2021-02-09 Lincoln Global, Inc. Welding system providing visual and audio cues to a welding helmet with a display
US10997872B2 (en) 2017-06-01 2021-05-04 Lincoln Global, Inc. Spring-loaded tip assembly to support simulated shielded metal arc welding
JP2019195811A (en) * 2018-05-07 2019-11-14 株式会社神戸製鋼所 Weld monitoring device, weld monitoring method, and program
CN111242001A (en) * 2020-01-09 2020-06-05 深圳市瑞凌实业股份有限公司 Vertical electro-gas welding control method and device, electronic equipment and storage medium
CN112489010A (en) * 2020-11-27 2021-03-12 桂林电子科技大学 Method and device for quickly identifying welding line and storage medium
CN112894206A (en) * 2021-01-16 2021-06-04 佛山市广凡机器人有限公司 Intelligent control system of automatic welding robot
CN115365610A (en) * 2022-08-27 2022-11-22 湘潭大学 Tube plate splicing weld joint tracking method based on magnetic control swinging GTAW arc sensing
CN115365610B (en) * 2022-08-27 2023-07-25 湘潭大学 Tube plate splicing weld joint tracking method based on magnetic control swing GTAW (gas-arc-welding) arc sensing

Also Published As

Publication number Publication date
JP3322617B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
JP3322617B2 (en) Welding line copying method during welding
WO1988000508A1 (en) Method of detecting position data in arc welding
JP5679912B2 (en) Welding abnormality detection method and welding abnormality detection device
JPH06344167A (en) Laser beam machine
JPS6233064A (en) Automatic multi-layer welding equipment
JP3787401B2 (en) Control method for multilayer prime welding and multilayer prime welding apparatus
JP3463142B2 (en) Welding equipment
JP3408749B2 (en) Automatic welding equipment
JPH09295146A (en) Welding seam copying method in weaving welding
JP2989384B2 (en) Arc status judgment method
JP3174722B2 (en) Automatic upward welding equipment
JP2000351071A (en) Automatic welding system
JP2895289B2 (en) Automatic welding copying machine
JP2891593B2 (en) TIG welding electrode shape detector
JP3712572B2 (en) Plasma welding equipment
JPS6348638B2 (en)
JPH06344144A (en) Method for measuring groove shape of member to be welded
JP3029954B2 (en) Welding line automatic copying method and apparatus
JPH1177307A (en) Automatic welding method and its equipment
JPH07214322A (en) Method for controlling groove profile in welding member
JP3464902B2 (en) Groove copying machine
JP3720939B2 (en) Laser automatic welding equipment and welding method
JPS63154263A (en) Control method for automatic welding machine
JP3077931B2 (en) Welding method
JP2003033874A (en) Automatic-welding-profiling controller

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020528

LAPS Cancellation because of no payment of annual fees