JPH1085231A - Bone joint pin - Google Patents

Bone joint pin

Info

Publication number
JPH1085231A
JPH1085231A JP8269374A JP26937496A JPH1085231A JP H1085231 A JPH1085231 A JP H1085231A JP 8269374 A JP8269374 A JP 8269374A JP 26937496 A JP26937496 A JP 26937496A JP H1085231 A JPH1085231 A JP H1085231A
Authority
JP
Japan
Prior art keywords
pin
osteosynthesis
osteosynthesis pin
axial direction
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8269374A
Other languages
Japanese (ja)
Other versions
JP3263806B2 (en
Inventor
Hidekazu Bouya
英和 棒谷
Mitsugi Sasaki
貢 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP26937496A priority Critical patent/JP3263806B2/en
Publication of JPH1085231A publication Critical patent/JPH1085231A/en
Application granted granted Critical
Publication of JP3263806B2 publication Critical patent/JP3263806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin

Abstract

PROBLEM TO BE SOLVED: To provide a biodegradable absorbable bone joint pin that has a sufficient locking force to eliminate the fear of being unlocked from a pin hole or a marrow hole in a bone junction and further increase the strength of the pin while giving bondability to living bones. SOLUTION: In an approximately cylindrical bone joint pin A made from a biodegradable absorbable polymer, taper face parts 1 that taper toward one axial end and stepped parts 2 are formed alternately on the outer peripheral surface of the pin A. Since the outer peripheral end of each stepped part 2 bites into the inner surface of a pin hole or a marrow hole, the pin is held locked, with the locking force increased. The bone joint pin may be approximately prism-shaped, and inclined faces that slope diagonally inwards toward one axial end and stepped parts may be formed alternately on one of the outside surfaces of the pin. The strength of the pin is increased depending on the orientations of drawing and compression, and bioceramic powder is contained in the pin so that the pin can be given bondability to living bones.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生体内分解吸収性
の骨接合ピンに関する。
The present invention relates to a biodegradable and resorbable osteosynthesis pin.

【0002】[0002]

【従来の技術】従来より、金属製やセラミックス製の骨
接合ピンが多用されている。しかしながら、斯かる骨接
合ピンは弾性率が生体骨よりも遥かに高いため、治癒後
にストレス保護の現象によって周囲骨の強度を低下させ
るという問題がある。特に、金属製の骨接合ピンは、金
属イオンの溶出によって生体に悪影響を及ぼす恐れがあ
るため、骨折等が治癒した時点で早期に該ピンを体内か
ら取出すべく再手術をしなければならないという問題が
ある。
2. Description of the Related Art Conventionally, osteosynthesis pins made of metal or ceramic have been frequently used. However, since such an osteosynthesis pin has a much higher elastic modulus than that of a living bone, there is a problem that the strength of the surrounding bone is reduced by a phenomenon of stress protection after healing. In particular, since a metal osteosynthesis pin may adversely affect a living body due to elution of metal ions, it is necessary to perform a reoperation to remove the pin from the body as soon as a fracture or the like is healed. There is.

【0003】このような事情から、生体内分解吸収性の
ポリ乳酸よりなる再手術の不要な骨接合ピンが近年開発
され、注目を浴びている。
Under these circumstances, osteosynthesis pins made of biodegradable and absorbable polylactic acid, which do not require reoperation, have recently been developed and are receiving attention.

【0004】しかしながら、これらの骨接合ピンはいず
れも、単なる丸棒形状のピンであるか、又は、一端に皿
形の頭部を有する丸棒形状のピンであるため、次のよう
な問題があった。
However, these osteosynthesis pins are merely round bar-shaped pins or round bar-shaped pins having a dish-shaped head at one end, so that the following problems occur. there were.

【0005】[0005]

【発明が解決しようとする課題】即ち、上記の丸棒形状
の骨接合ピンは、骨折部にあけたピン挿入孔に挿入した
場合、ピン挿入孔の内面との引っ掛かりがなく滑りやす
いため、固定力に劣るという欠点がある。それ故、この
骨接合ピンで接合した骨接合箇所に分離方向の力が作用
すると、骨接合箇所に緩みや位置ずれが生じたり、極端
な場合には骨接合ピンがピン挿入孔から抜け出して骨接
合箇所が分離する恐れがあった。
That is, when the above-mentioned round bar-shaped osteosynthesis pin is inserted into the pin insertion hole formed in the fractured portion, the pin does not catch on the inner surface of the pin insertion hole and is easily slipped. There is a drawback of poor power. Therefore, when a force in the separating direction acts on the osteosynthesis site joined by the osteosynthesis pin, the osteosynthesis site may be loosened or misaligned, or in extreme cases, the osteosynthesis pin may fall out of the pin insertion hole and be removed. There was a risk that the joints would separate.

【0006】このような問題は、固定力の大きい骨接合
用のスクリューではあまり生じないが、スクリューの場
合はねじ切り加工が必要であるため、骨折した小さな骨
片の接合に適する長くて細いスクリューを製造すること
が困難である。
[0006] Such a problem does not occur so much with a screw for osteosynthesis having a large fixing force. However, in the case of a screw, since a screw cutting process is required, a long and thin screw suitable for joining a small broken bone fragment is used. Difficult to manufacture.

【0007】本発明は上記の問題に鑑みてなされたもの
で、その目的とするところは、充分な固定力を有し、骨
接合箇所のピン挿入孔から抜け出す恐れがない生体内分
解吸収性の骨接合ピンを提供することにある。そして、
望ましくは骨接合ピンの大幅な強度向上を図り、生体骨
との結合性を付与して固定力を一層高めることを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a biodegradable bioabsorbable material which has a sufficient fixing force and has no risk of falling out of a pin insertion hole at an osteosynthesis site. It is to provide an osteosynthesis pin. And
Desirably, the purpose of the present invention is to significantly improve the strength of the osteosynthesis pin, and to further increase the fixing force by imparting bonding to living bone.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の請求項1〜請求項12に係る骨接合ピンは
以下の特徴を有するものである。
In order to achieve the above object, an osteosynthesis pin according to claims 1 to 12 of the present invention has the following features.

【0009】即ち、請求項1の骨接合ピンは、生体内分
解吸収性ポリマーからなる略円柱状の骨接合ピンであっ
て、その外周面に、軸方向一端側に向かって先窄まりの
テーパー面部と、段差部とが交互に形成されていること
を特徴とする。
More specifically, the osteosynthesis pin according to the first aspect is a substantially columnar osteosynthesis pin made of a biodegradable and absorbable polymer, and has a tapered tapered outer peripheral surface toward one end in the axial direction. The surface portion and the step portion are alternately formed.

【0010】請求項2の骨接合ピンは、生体内分解吸収
性ポリマーからなる略角柱状の骨接合ピンであって、そ
の少なくとも一外側面に、軸方向一端側に向かって斜め
内方へ傾斜する斜面部と、段差部とが交互に形成されて
いることを特徴とする。
[0010] The osteosynthesis pin according to claim 2 is a substantially prismatic osteosynthesis pin made of a biodegradable and absorbable polymer, and has at least one outer surface inclined obliquely inward toward one end in the axial direction. The slope portion and the step portion are formed alternately.

【0011】請求項3の骨接合ピンは、請求項1又は請
求項2の骨接合ピンにおいて、軸方向他端に頭部が形成
されていることを特徴とする。
According to a third aspect of the present invention, there is provided the osteosynthesis pin according to the first or second aspect, wherein a head is formed at the other end in the axial direction.

【0012】請求項4の骨接合ピンは、生体内分解吸収
性ポリマーからなる略円柱状の骨接合ピンであって、ピ
ン中央部から軸方向一端側の外周面には、軸方向一端側
に向かって先窄まりのテーパー面部と、段差部とが交互
に形成されており、ピン中央部から軸方向他端側の外周
面には、軸方向他端側に向かって先窄まりのテーパー面
部と、段差部とが交互に形成されていることを特徴とす
る。
The osteosynthesis pin according to claim 4 is a substantially columnar osteosynthesis pin made of a biodegradable and absorbable polymer, and is disposed on the outer peripheral surface at one axial end from the center of the pin and at one axial end. A tapered surface portion and a step portion which are tapered toward the other end are formed alternately, and a tapered surface portion which is tapered toward the other end in the axial direction from the center of the pin to the outer peripheral surface at the other end in the axial direction. And step portions are alternately formed.

【0013】請求項5の骨接合ピンは、生体内分解吸収
性ポリマーからなる略角柱状の骨接合ピンであって、ピ
ン中央部から軸方向一端側の少なくとも一外側面には、
軸方向一端側に向かって斜め内方へ傾斜する斜面部と、
段差部とが交互に形成されており、ピン中央部から軸方
向他端側の少なくとも一外側面には、軸方向他端側に向
かって斜め内方へ傾斜する斜面部と、段差部とが交互に
形成されていることを特徴とする。
The osteosynthesis pin according to claim 5 is a substantially prismatic osteosynthesis pin made of a biodegradable and absorbable polymer, and has at least one outer surface at one axial end from the center of the pin.
A slope portion inclined obliquely inward toward one end in the axial direction,
Step portions are alternately formed, and at least one outer surface at the other end in the axial direction from the center of the pin has a slope portion inclined obliquely inward toward the other end in the axial direction, and a step portion. It is characterized by being formed alternately.

【0014】請求項6の骨接合ピンは、請求項1ないし
請求項5のいずれかの骨接合ピンにおいて、段差部の幅
が0.1〜1.0mmであり、段差部の相互間隔が0.
5〜3.0mmであることを特徴とする。
According to a sixth aspect of the present invention, there is provided the osteosynthesis pin according to any one of the first to fifth aspects, wherein the width of the step is 0.1 to 1.0 mm, and the interval between the steps is zero. .
It is characterized in that it is 5 to 3.0 mm.

【0015】請求項7の骨接合ピンは、請求項1ないし
請求項6のいずれかの骨接合ピンにおいて、軸方向に延
伸され、生体内分解吸収性ポリマーの分子鎖又は結晶が
軸方向に配向していることを特徴とする。
The osteosynthesis pin according to claim 7 is the osteosynthesis pin according to any one of claims 1 to 6, wherein the osteosynthesis pin is stretched in the axial direction, and the molecular chains or crystals of the biodegradable and absorbable polymer are oriented in the axial direction. It is characterized by doing.

【0016】請求項8の骨接合ピンは、請求項1ないし
請求項6のいずれかの骨接合ピンにおいて、圧縮され、
生体内分解吸収性ポリマーの分子鎖又は結晶が、骨接合
ピンの中心軸又はこれと平行な軸に向かって周囲から斜
めに配向していることを特徴とする。
The osteosynthesis pin according to claim 8 is compressed in the osteosynthesis pin according to any one of claims 1 to 6,
The molecular chains or crystals of the biodegradable and absorbable polymer are obliquely oriented from the periphery toward the central axis of the osteosynthesis pin or an axis parallel thereto.

【0017】請求項9の骨接合ピンは、請求項1ないし
請求項6のいずれかの骨接合ピンにおいて、圧縮され、
生体内分解吸収性ポリマーの分子鎖又は結晶が、骨接合
ピンをその軸方向と直角の方向に二等分する面又はこれ
と平行な面に向かって両側から斜めに配向していること
を特徴とする。
The osteosynthesis pin according to claim 9 is compressed in the osteosynthesis pin according to any one of claims 1 to 6,
The molecular chains or crystals of the biodegradable and absorbable polymer are obliquely oriented from both sides toward a plane that bisects the osteosynthesis pin in a direction perpendicular to the axial direction or a plane parallel thereto. And

【0018】請求項10の骨接合ピンは、請求項1ない
し請求項9のいずれかの骨接合ピンにおいて、バイオセ
ラミックス粉体が均一な濃度で含有されていることを特
徴とする。
According to a tenth aspect of the present invention, there is provided the osteosynthesis pin according to any one of the first to ninth aspects, wherein the bioceramic powder is contained at a uniform concentration.

【0019】請求項11の骨接合ピンは、請求項10の
骨接合ピンにおいて、バイオセラミックス粉体の均一な
含有濃度が10〜60重量%であることを特徴とする。
An osteosynthesis pin according to an eleventh aspect is the osteosynthesis pin according to the tenth aspect, wherein the bioceramic powder has a uniform concentration of 10 to 60% by weight.

【0020】請求項12の骨接合ピンは、請求項1ない
し請求項11のいずれかの骨接合ピンにおいて、ピン全
体が湾曲していることを特徴とする。
According to a twelfth aspect of the present invention, there is provided an osteosynthesis pin according to any one of the first to eleventh aspects, wherein the entire pin is curved.

【0021】次に、これらの骨接合ピンの作用を説明す
る。
Next, the operation of these osteosynthesis pins will be described.

【0022】請求項1の骨接合ピンの最大直径(段差部
の外径)より僅かに小さい孔径のピン挿入孔を骨折部に
穿孔し、請求項1の骨接合ピンをその軸方向一端からピ
ン挿入孔に圧入していくと、骨接合ピンの軸方向一端側
に向かって先窄まりのテーパー面部がピン挿入孔を弾性
的に押し広げて拡径するため、比較的簡単に骨接合ピン
の圧入作業を行うことができる。そして、骨接合ピンの
圧入を終えたときには、ピン挿入孔が元の状態に戻るた
め、骨接合ピンの段差部の外周端がピン挿入孔の内面に
食い込んだ状態となる。このように食い込むと、骨接合
ピンに抜け出し方向の力(軸方向一端側から他端側に向
かう力)が作用しても、段差部の外周端とピン挿入孔の
内面との引っ掛かりが強く摺動抵抗が大きいため、骨接
合ピンの抜け出しが阻止され、骨接合箇所を強固に固定
することができる。
A pin insertion hole having a diameter slightly smaller than the maximum diameter (outer diameter of the step) of the osteosynthesis pin according to the first aspect is drilled in the fracture part. As the osteosynthesis pin is pressed into the insertion hole, the tapered surface of the osteosynthesis pin elastically pushes and expands the pin insertion hole toward one axial end of the osteosynthesis pin. Pressing work can be performed. Then, when the press-fitting of the osteosynthesis pin is completed, the pin insertion hole returns to the original state, so that the outer peripheral end of the step portion of the osteosynthesis pin bites into the inner surface of the pin insertion hole. When the osteosynthesis pin is bitten in this way, even if a force in the pullout direction (a force from one axial end to the other end) acts on the osteosynthesis pin, the outer peripheral end of the step portion and the inner surface of the pin insertion hole are strongly slid. Since the dynamic resistance is large, the osteosynthesis pin is prevented from coming off, and the osteosynthesis site can be firmly fixed.

【0023】また、この骨接合ピンは生体内分解吸収性
ポリマーからなるものであり、段差部の内径部分が最も
細くなっているので、骨接合に必要な長さより長い場合
には、その段差部の内径部分で比較的簡単に切断するこ
とができる。
The osteosynthesis pin is made of a biodegradable and absorbable polymer. The inner diameter of the step is the narrowest. Can be cut relatively easily at the inner diameter portion of.

【0024】尚、このような生体内分解吸収性ポリマー
からなる骨接合ピンは、生体内で体液と接触して加水分
解され、最終的に生体内に吸収されるので、再手術が不
要であることは言うまでもない。
The osteosynthesis pin made of such a biodegradable and absorbable polymer is hydrolyzed by contact with a body fluid in a living body, and is finally absorbed in the living body. Needless to say.

【0025】請求項2の骨接合ピンは、少なくとも一外
側面に、軸方向一端側に向かって斜め内方へ傾斜する斜
面部と、段差部とが交互に形成されているので、この骨
接合ピンも斜面部でピン挿通孔を押し広げながら比較的
簡単に圧入することができる。そして、圧入を終えたと
きには段差部の先端がピン挿通孔の内面に食い込むの
で、抜け出し方向の力が作用してもピン挿通孔から抜け
出すことがなく、骨接合箇所を強固に固定することがで
きる。そして、請求項1の骨接合ピンと同様に段差部の
ところで比較的容易に切断でき、最終的に生体内で分
解、吸収されて消失する。
In the osteosynthesis pin according to the second aspect of the invention, at least one outer surface is formed with a slope portion inclined inwardly toward one end in the axial direction and a step portion, which are alternately formed. The pin can be relatively easily press-fitted while pushing and expanding the pin insertion hole at the slope. When the press-fitting is completed, the tip of the step portion bites into the inner surface of the pin insertion hole, so that even if a force in the removal direction acts, the tip does not come out of the pin insertion hole, and the osteosynthesis site can be firmly fixed. . Then, similarly to the osteosynthesis pin of the first aspect, it can be cut relatively easily at the stepped portion, and is eventually decomposed, absorbed and disappeared in the living body.

【0026】請求項3の骨接合ピンは、軸方向他端に形
成された頭部をたたいてピン挿通孔へ簡単に打ち込むこ
とができる。また、この頭部を治具で挟んで狭い部位に
設けたピン挿入孔に挿入することができる。
The osteosynthesis pin of the third aspect can be easily driven into the pin insertion hole by hitting the head formed at the other end in the axial direction. Further, the head can be inserted into a pin insertion hole provided in a narrow portion by sandwiching the head with a jig.

【0027】請求項4の骨接合ピンは、ピン中央部から
軸方向一端側の外周面に形成されたテーパー面部が軸方
向一端側に向かって先窄まりとなっており、ピン中央部
から軸方向他端側の外周面に形成されたテーパー面部が
軸方向他端側に向かって先窄まりとなっているので、ピ
ン中央部から軸方向一端側を骨折した一方の骨の髄孔や
ピン挿入孔に比較的簡単に圧入でき、ピン中央部から軸
方向他端側を他方の骨の髄孔やピン挿入孔に比較的簡単
に圧入できて、骨折部を接合することができる。このよ
うに接合すると、骨接合ピンの中央部から一端側も、中
央部から他端側も、段差部の外周端が髄孔やピン挿入孔
の内面に食い込んで抜け出しが阻止されるため、骨接合
箇所に緩みや位置ずれを生じることなく強固に固定でき
る。
In the osteosynthesis pin according to a fourth aspect of the present invention, a tapered surface portion formed on the outer peripheral surface at one end in the axial direction from the center of the pin is tapered toward one end in the axial direction. Since the tapered surface formed on the outer peripheral surface at the other end in the direction is tapered toward the other end in the axial direction, the medullary hole or the pin of one bone that has fractured one end in the axial direction from the center of the pin It is relatively easy to press-fit into the insertion hole, and the other end in the axial direction from the center of the pin can be relatively easily press-fitted into the medullary hole or pin insertion hole of the other bone, and the fracture can be joined. When joined in this manner, the outer peripheral end of the stepped portion cuts into the inner surface of the medullary canal or the pin insertion hole from both the center and one end of the osteosynthesis pin and the other end from the center to prevent the bone from coming out. It can be firmly fixed without loosening or displacement at the joint.

【0028】請求項5の骨接合ピンも、ピン中央部から
軸方向一端側の少なくとも一外側面に形成された斜面部
が軸方向一端側に向かって斜め内方へ傾斜し、ピン中央
部から軸方向他端側の少なくとも一外側面に形成された
斜面部が軸方向他端側に向かって斜め内方へ傾斜してい
るので、請求項4の骨接合ピンと同様にして骨折部を接
合することができ、段差部の先端がピン挿入孔や髄孔の
内面に食い込んで抜け出しが阻止されるため強固に固定
することができる。
In the osteosynthesis pin according to the fifth aspect, a slope formed on at least one outer side at one end in the axial direction from the center of the pin is inclined obliquely inward toward one end in the axial direction. Since the slope portion formed on at least one outer surface at the other end in the axial direction is inclined obliquely inward toward the other end in the axial direction, the fracture portion is joined in the same manner as the osteosynthesis pin according to claim 4. As a result, the tip of the step portion bites into the inner surface of the pin insertion hole or the medullary hole and is prevented from coming out, so that it can be firmly fixed.

【0029】請求項6の骨接合ピンのように、段差部の
幅が0.1〜1.0mmであると、ピン挿入孔の内面に
対する段差部の食い込みが良く、抜け出し方向の引っ掛
かり(摺動抵抗)が大きくなるので、抜け出し防止作用
が向上し、また、段差部の相互間隔が0.5〜3mmで
あると、骨接合ピン1cm当たりの段差部の数が20〜
3程度となり、抜け出し方向の大きい摺動抵抗が得られ
るので、抜け出し防止作用が更に向上する。断差部の幅
が0.1mm未満では食い込み不足となるので、骨接合
ピンの抜け出しを充分に防止することが難しくなる。逆
に、断差部の幅が1.0mmより大きくなっても、食い
込みの程度が殆ど変わらず、却ってピン挿通孔の内面と
骨接合ピンとの間に部分的な隙間ができるようになるの
で好ましくない。一方、段差部の相互間隔が3mmより
広くなると、段差部の数が少なくなるので摺動抵抗が低
下し、逆に0.5mmより狭くなると、個々の段差部の
食い込みが悪くなって摺動抵抗がやはり低下するので好
ましくない。
When the width of the step portion is 0.1 to 1.0 mm as in the osteosynthesis pin of the sixth aspect, the step portion has a good bite into the inner surface of the pin insertion hole and is caught in the exit direction (sliding). Resistance) is increased, so that the slip-out preventing action is improved, and if the gap between the step portions is 0.5 to 3 mm, the number of step portions per 1 cm of the osteosynthesis pin is 20 to
It is about 3 and a large sliding resistance in the exit direction can be obtained, so that the exit prevention action is further improved. If the width of the difference portion is less than 0.1 mm, the bite is insufficient, and it is difficult to sufficiently prevent the osteosynthesis pin from coming off. Conversely, even if the width of the gap is larger than 1.0 mm, the degree of bite hardly changes, and rather a partial gap is formed between the inner surface of the pin insertion hole and the osteosynthesis pin. Absent. On the other hand, if the distance between the step portions is larger than 3 mm, the sliding resistance decreases because the number of step portions decreases, and conversely, if the distance between the step portions becomes smaller than 0.5 mm, the bite of the individual step portions worsens and the sliding resistance decreases. Is also undesirably reduced.

【0030】請求項7の骨接合ピンのように軸方向に延
伸され、生体内分解吸収性ポリマーの分子鎖又は結晶が
軸方向に配向していると、無配向の骨接合ピンに比べて
強度(特に曲げ強度等)が向上する。しかし、この骨接
合ピンは、軸方向とこれに直角な方向との間における分
子鎖(結晶)配向の異方性が大きいので、種々の方向の
外力に対する強度を総体的に向上させることは難しい。
When the molecular chains or crystals of the biodegradable and absorbable polymer are oriented in the axial direction as in the osteosynthesis pin according to claim 7, the strength is higher than that of the non-oriented osteosynthesis pin. (Particularly, bending strength, etc.) is improved. However, since the osteosynthesis pin has a large anisotropy in the molecular chain (crystal) orientation between the axial direction and the direction perpendicular thereto, it is difficult to generally improve the strength against external forces in various directions. .

【0031】これに対し、請求項8の骨接合ピンのよう
に圧縮され、生体内分解吸収性ポリマーの分子鎖又は結
晶が、骨接合ピンの中心軸又はこれと平行な軸に向かっ
て周囲から斜めに配向していると、無配向の骨接合ピン
や延伸配向の骨接合ピンに比べて密度や表面硬度が向上
するだけでなく、軸方向とこれに直角な方向との間にお
ける分子鎖(結晶)配向の異方性が小さくなるので、圧
縮により緻密質になっていることと相俟って、種々の方
向の外力に対する強度が総体的に大幅に向上する。特
に、この骨接合ピンは、軸方向と直角な横断面におい
て、分子鎖(結晶)が中心軸又はこれに平行な軸の回り
に放射状の配列形態をとるため、捻り強度の向上が顕著
である。
On the other hand, the molecular chain or crystal of the biodegradable and absorbable polymer which is compressed like the osteosynthesis pin according to claim 8 is directed from the periphery toward the central axis of the osteosynthesis pin or an axis parallel thereto. The oblique orientation not only increases the density and surface hardness than non-oriented osteosynthesis pins or stretch-oriented osteosynthesis pins, but also increases the molecular chains between the axial direction and the direction perpendicular to this. Since the anisotropy of the (crystal) orientation is reduced, the strength against external forces in various directions is significantly improved as a whole, in combination with the fact that the material becomes dense by compression. In particular, in the osteosynthesis pin, in a cross section perpendicular to the axial direction, molecular chains (crystals) take a radial arrangement around the central axis or an axis parallel to the central axis, so that the torsional strength is remarkably improved. .

【0032】また、請求項9の骨接合ピンも圧縮されて
いるので密度や表面硬度が向上し、しかも、生体内分解
吸収性ポリマーの分子鎖又は結晶が骨接合ピンをその軸
方向と直角の方向に二等分する面又はこれと平行な面に
向かって両側から斜めに配向しているので、分子鎖(結
晶)配向の異方性が小さく、種々の方向の外力に対する
強度が総体的に大幅に向上する。
The osteosynthesis pin according to claim 9 is also compressed, so that the density and surface hardness are improved, and the molecular chains or crystals of the biodegradable and absorbable polymer make the osteosynthesis pin perpendicular to its axial direction. Since it is obliquely oriented from both sides toward a plane bisecting in the direction or a plane parallel thereto, the anisotropy of the molecular chain (crystal) orientation is small, and the strength against external force in various directions is generally higher. Significantly improved.

【0033】請求項10の骨接合ピンのように、バイオ
セラミックス粉体が均一な濃度で含有されていると、生
体内分解吸収性ポリマーの加水分解に伴ってバイオセラ
ミックス粉体が骨組織をピン内部へ誘導形成するため、
比較的短期間のうちに骨接合ピンが生体骨と結合し、固
定力が一層向上する。そして、最終的には骨接合ピン全
体が生体骨と置換されて消失する。
When the bioceramic powder is contained in a uniform concentration as in the osteosynthesis pin of the tenth aspect, the bioceramic powder pins the bone tissue with the hydrolysis of the biodegradable and absorbable polymer. To guide formation inside,
In a relatively short time, the osteosynthesis pin is combined with the living bone, and the fixing force is further improved. Finally, the entire osteosynthesis pin is replaced by living bone and disappears.

【0034】バイオセラミックス粉体を含有させる場合
は、請求項11の骨接合ピンのように含有濃度を10〜
60重量%の範囲に設定することが望ましく、10重量
%未満ではバイオセラミックス粉体による骨組織の誘導
形成能が不充分となるため、短期間で強固に生体骨と結
合させて固定力を向上させることが困難となる。一方、
60重量%より多く含有させると、骨接合ピンの硬さは
向上するけれども、生体内分解吸収性ポリマー本来の靱
性が損なわれて脆くなるため、折れたり欠けたりしやす
くなる。
When the bioceramics powder is contained, the concentration is 10 to 10 as in the osteosynthesis pin according to the eleventh aspect.
It is desirable to set the content within the range of 60% by weight, and if it is less than 10% by weight, the ability to form and induce bone tissue by the bioceramics powder becomes insufficient. It will be difficult to do so. on the other hand,
When the content is more than 60% by weight, the hardness of the osteosynthesis pin is improved, but the inherent toughness of the biodegradable and absorbable polymer is impaired and the polymer becomes brittle, so that the polymer is easily broken or chipped.

【0035】更に、請求項12の骨接合ピンのようにピ
ン全体が湾曲していると、ピン挿入孔や髄孔に圧入した
ときの摺動抵抗が更に増大するので、骨接合ピンが一層
抜け出し難くなる。
Further, if the whole pin is curved as in the osteosynthesis pin according to the twelfth aspect, the sliding resistance when press-fitting into the pin insertion hole or the medullary canal further increases, so that the osteosynthesis pin comes out further. It becomes difficult.

【0036】[0036]

【発明の実施の形態】以下、図面を参照して本発明の具
体的な実施形態を詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

【0037】図1は本発明の一実施形態に係る骨接合ピ
ンAを示す斜視図、図2は同骨接合ピンAの縦断面にお
ける分子鎖(結晶)の配向状態を示す概念図である。
FIG. 1 is a perspective view showing an osteosynthesis pin A according to an embodiment of the present invention, and FIG. 2 is a conceptual view showing an orientation state of molecular chains (crystals) in a longitudinal section of the osteosynthesis pin A.

【0038】この骨接合ピンAは、生体内分解吸収性ポ
リマーからなる略円柱状のピンであり、その外周面を切
削加工することによって、軸方向一端側(図では下端
側)に向かって先窄まりのテーパー面部1と鍔状の段差
部2を交互に連ねて形成したものである。段差部2は軸
方向に対して略垂直な面を形成し、その段差は後述する
ように0.1〜1.0mmの幅を有している。
The osteosynthesis pin A is a substantially cylindrical pin made of a biodegradable and absorbable polymer, and is formed by cutting the outer peripheral surface thereof so as to be moved toward one axial end (the lower end in the figure). The tapered surface portion 1 of the constriction and the flange-shaped step portion 2 are alternately formed. The step 2 forms a surface substantially perpendicular to the axial direction, and the step has a width of 0.1 to 1.0 mm as described later.

【0039】材料の生体内分解収性ポリマーとしては、
高分子量で強度や靱性が大きく、無毒性で加水分解によ
り生体内に吸収される結晶性の熱可塑性ポリマーが全て
使用可能であるが、その中でも、初期の粘度平均分子量
が10〜70万、好ましくは15万〜60万程度のポリ
乳酸、乳酸−グリコール酸共重合体、乳酸−カプロラク
トン共重合体などが特に好適であり、これらは単独で又
は二種以上混合して使用される。上記のポリ乳酸などは
生体内での安全性が既に実証されたポリマーであり、し
かも、結晶性で直鎖状のポリマーであるため、後述する
ように延伸配向や圧縮配向によって強度を向上させるこ
とができる。
The biodegradable polymer of the material includes:
All high molecular weight strength and toughness, non-toxic, crystalline thermoplastic polymers that are absorbed in vivo by hydrolysis can be used, and among them, the initial viscosity average molecular weight is preferably 100,000 to 700,000, Particularly preferred are about 150,000 to 600,000 polylactic acid, lactic acid-glycolic acid copolymer, lactic acid-caprolactone copolymer and the like, and these are used alone or in combination of two or more. The above-mentioned polylactic acid is a polymer whose safety in vivo has already been proven, and since it is a crystalline and linear polymer, it is necessary to improve the strength by stretching orientation and compression orientation as described later. Can be.

【0040】図2に示すように、この骨接合ピンAは切
削加工前に軸Lの方向に延伸され、生体内分解吸収性ポ
リマーの分子鎖(結晶)Mが軸L方向に配向している。
そのため、無配向の骨接合ピンに比べると、曲げ強度や
曲げ弾性率などが向上して生体骨と同じ程度の強度を有
している。延伸の倍率は2〜10倍程度、好ましくは2
〜5倍程度に調整するのが良く、2倍未満では分子鎖
(結晶)Mの配向が不充分になり、5倍を越えるとポリ
マーのフィブリル化が進み、10倍を越えるとポリマー
がフィブリル化するため却って強度が低下する。
As shown in FIG. 2, the osteosynthesis pin A is stretched in the direction of the axis L before cutting, and the molecular chain (crystal) M of the biodegradable and absorbable polymer is oriented in the direction of the axis L. .
Therefore, as compared with a non-oriented osteosynthesis pin, the bending strength, the bending elastic modulus, and the like are improved, and the strength is almost the same as that of a living bone. The stretching magnification is about 2 to 10 times, preferably 2
It is preferable to adjust to about 5 times, and if it is less than 2 times, the orientation of the molecular chain (crystal) M is insufficient, and if it exceeds 5 times, the polymer becomes fibrillated, and if it exceeds 10 times, the polymer becomes fibrillated. Instead, the strength is reduced.

【0041】なお、本発明において上記のような延伸に
よる分子鎖(結晶)配向は必須でなく、無延伸、無配向
の骨接合ピンとしてもよい。また、上記の骨接合ピンA
は切削加工されているが、このように切削加工やその他
の手段で表面を粗面化していると、生体内での加水分解
速度が適度になる利点がある。
In the present invention, the molecular chain (crystal) orientation by stretching as described above is not essential, and a non-stretched, non-oriented osteosynthesis pin may be used. In addition, the above osteosynthesis pin A
Is cut, but if the surface is roughened by such cutting or other means, there is an advantage that the rate of hydrolysis in a living body becomes moderate.

【0042】図3は上記骨接合ピンAの一使用状態の説
明図であって、生体骨6の骨折部に骨接合ピンAの最大
直径(鍔状段差部2の外径)より僅かに小さい孔径のピ
ン挿入孔(不図示)を穿孔し、骨接合ピンAをその軸方
向一端(下端)からピン挿入孔に圧入して骨折部を接合
固定したところを示している。
FIG. 3 is an explanatory view of one use state of the osteosynthesis pin A. The fractured portion of the living bone 6 is slightly smaller than the maximum diameter of the osteosynthesis pin A (the outer diameter of the stepped flange 2). A pin insertion hole (not shown) having a hole diameter is pierced, and the osteosynthesis pin A is pressed into the pin insertion hole from one end (lower end) in the axial direction to fix the fracture portion.

【0043】このように骨接合ピンAで骨折部の接合を
行うと、骨接合ピンAの圧入時には、軸方向一端側(下
端側)に向かって先窄まりのテーパー面部1がピン挿入
孔を弾性的に押し広げて拡径するため、比較的簡単に骨
接合ピンAを圧入することができ、圧入が終ったときに
は、ピン挿入孔が元の状態に戻るため、骨接合ピンAの
鍔状段差部2の外周端がピン挿入孔の内面に食い込んだ
状態となる。従って、骨接合ピンAに抜け出し方向の力
Xが作用しても、鍔状段差部2の外周端とピン挿入孔の
内面との引っ掛かりが強く摺動抵抗が大きいため、骨接
合ピンAが簡単に抜け出すことがなくなり、骨折部を確
実に接合固定することが可能となる。そして、骨折が治
癒するまでの数ケ月の間は、生体内分解吸収性ポリマー
の加水分解による強度低下が少ないので、骨接合ピンA
は実用強度を維持して骨接合箇所を固定し続け、治癒後
は加水分解が更に進行して全てが生体内に吸収され、最
終的には生体骨と置換される。
When the fracture portion is joined with the osteosynthesis pin A in this manner, when the osteosynthesis pin A is press-fitted, the tapered surface portion 1 tapered toward one axial end (lower end) forms the pin insertion hole. The osteosynthesis pin A can be press-fitted relatively easily because it is elastically pushed and expanded, and when the press-in is completed, the pin insertion hole returns to its original state. The outer peripheral end of the stepped portion 2 is cut into the inner surface of the pin insertion hole. Therefore, even if the force X in the pull-out direction acts on the osteosynthesis pin A, the osteosynthesis pin A is simple because the outer peripheral end of the flanged step portion 2 and the inner surface of the pin insertion hole are strongly caught and the sliding resistance is large. The fractured part can be securely joined and fixed. Then, for several months until the fracture is healed, there is little decrease in strength due to hydrolysis of the biodegradable and absorbable polymer.
Keeps the osteosynthesis site fixed while maintaining the practical strength. After the healing, the hydrolysis proceeds further and all of the osteosynthesis is absorbed into the living body, and is finally replaced with the living bone.

【0044】この骨接合ピンAの摺動抵抗を大きくして
ピン挿入孔からの抜け出しを効果的に防止するために
は、図2に示すように鍔状段差部2の幅Wを0.1〜
1.0mmの範囲に設定すると共に、鍔状段差部2の相
互間隔Pを0.5〜3mmに設定することが望ましい。
その理由については既に詳述したので省略する。
In order to effectively prevent the osteosynthesis pin A from slipping out of the pin insertion hole by increasing the sliding resistance of the osteosynthesis pin A, as shown in FIG. ~
It is desirable to set the range of 1.0 mm and to set the interval P between the flange-shaped step portions 2 to 0.5 to 3 mm.
The reason has already been described in detail, and thus will not be described.

【0045】また、この骨接合ピンAのように鍔状段差
部2の内径部分が最も細くなっていると、骨接合ピンA
の全長が骨接合に必要な長さより長い場合に、その鍔状
段差部2の内径部分で比較的簡単に切断することができ
る。
If the inner diameter of the flanged step portion 2 is the thinnest like the osteosynthesis pin A, the osteosynthesis pin A
In the case where the total length is longer than the length required for osteosynthesis, it can be cut relatively easily at the inner diameter portion of the flange-shaped stepped portion 2.

【0046】以上のような骨接合ピンAは、例えば次の
方法で製造される。
The osteosynthesis pin A as described above is manufactured, for example, by the following method.

【0047】まず、材料の生体内分解吸収性ポリマー
を、その溶融温度以上、分解温度以下に加熱溶融して、
円柱状に押出成形する。そして、この円柱状の成形体を
60〜160℃に加温して軸方向に2〜10倍程度の倍
率で一軸延伸し、この延伸した円柱状成形体の外周面を
切削加工して、テーパー面部1と鍔状段差部2を交互に
形成すると、骨接合ピンAが得られる。
First, the biodegradable and absorbable polymer of the material is heated and melted at a temperature higher than its melting temperature and lower than its decomposition temperature.
Extruded into a cylindrical shape. Then, the columnar molded body is heated to 60 to 160 ° C. and uniaxially stretched in the axial direction at a magnification of about 2 to 10 times, and the outer peripheral surface of the stretched cylindrical molded body is cut and tapered. When the face portions 1 and the flange-shaped step portions 2 are alternately formed, the osteosynthesis pin A is obtained.

【0048】尚、上記の製法において延伸工程を省略
し、溶融押出成形した円柱状成形体を切削加工すれば、
無延伸で無配向の骨接合ピンが得られる。
In the above manufacturing method, if the stretching step is omitted and the melt-extruded columnar molded body is cut,
An unstretched, non-oriented osteosynthesis pin is obtained.

【0049】図4は本発明の他の実施形態に係る骨接合
ピンBの側面図である。
FIG. 4 is a side view of an osteosynthesis pin B according to another embodiment of the present invention.

【0050】この骨接合ピンBは、軸方向他端(図では
上端)に皿形の頭部3が形成されている。その他の構成
は前記の骨接合ピンAと同様であるので、図4において
同一部分に同一符号を付し、説明を省略する。
The osteosynthesis pin B has a dish-shaped head 3 formed at the other axial end (upper end in the figure). Other configurations are the same as those of the osteosynthesis pin A described above, and therefore, the same reference numerals are given to the same portions in FIG. 4 and the description will be omitted.

【0051】このように頭部3を形成した骨接合ピンB
は、頭部3をハンマー等でたたいてピン挿通孔へ簡単に
打ち込むことができ、緩みなく固定することができる。
また治具で頭部3を掴むことができるので、狭い場所し
かない部位での骨接合ピンBの挿入は、先の細い治具等
を用いることで容易に可能となる。
The osteosynthesis pin B having the head 3 thus formed
Can be easily driven into the pin insertion hole by hitting the head 3 with a hammer or the like, and can be fixed without loosening.
In addition, since the head 3 can be grasped by the jig, the insertion of the osteosynthesis pin B at a site where there is only a narrow space can be easily performed by using a jig or the like having a small taper.

【0052】図5は本発明の更に他の実施形態に係る骨
接合ピンCの斜視図である。
FIG. 5 is a perspective view of an osteosynthesis pin C according to still another embodiment of the present invention.

【0053】この骨接合ピンCは、生体内分解吸収性ポ
リマーからなる略角柱状の骨接合ピンであり、全外側面
を切削加工等して角柱状にし、更に相対向する両側の外
側面を切削加工することによって、軸方向一端側(図で
は下端側)に向かって斜め内方へ傾斜する斜面部4と、
矩形状の段差部5とを交互に連ねて形成したものであ
る。
This osteosynthesis pin C is a substantially prismatic osteosynthesis pin made of a biodegradable and absorbable polymer. The entire outer surface is cut into a prism by cutting or the like, and the opposing outer surfaces on both sides are further cut. By performing a cutting process, a slope portion 4 that is inclined obliquely inward toward one axial end (the lower end in the figure);
It is formed by alternately connecting rectangular step portions 5.

【0054】そして、矩形状段差部5の幅Wを0.1〜
1.0mmに設定すると共に、矩形状段差部5の相互間
隔Pを0.5〜3mmに設定し、骨接合ピンCをピン挿
入孔に圧入したときの抜け出し方向の摺動抵抗を高めて
いる。
The width W of the rectangular step 5 is set to 0.1 to
In addition to the setting of 1.0 mm, the mutual interval P of the rectangular step portions 5 is set to 0.5 to 3 mm to increase the sliding resistance in the exit direction when the osteosynthesis pin C is pressed into the pin insertion hole. .

【0055】また、前記の骨接合ピンA,Bと同様、切
削加工前に軸方向に2〜10倍程度、好ましくは2〜5
倍程度延伸することによって分子鎖(結晶)を軸方向に
配向させ、強度の向上を図っている。
As in the case of the osteosynthesis pins A and B, before the cutting process, about 2 to 10 times, preferably 2 to 5 times in the axial direction.
By stretching about twice, the molecular chains (crystals) are oriented in the axial direction to improve the strength.

【0056】この実施形態の骨接合ピンCは、相対向す
る両側の外側面に斜面部4と矩形状段差部5とを形成し
ているが、少なくとも一外側面を切削加工して斜面部4
と矩形状段差部5を交互に形成すれば、目的とする抜け
出し難い骨接合ピンとなる。
In the osteosynthesis pin C of this embodiment, the inclined surface 4 and the rectangular step 5 are formed on the outer surfaces on both sides facing each other, but at least one outer surface is cut to form the inclined surface 4.
If the rectangular step portions 5 are alternately formed, a desired osteosynthesis pin that is difficult to come out is obtained.

【0057】このような略角柱状の骨接合ピンCは、生
体内分解吸収性ポリマーを板状に溶融押出成形し、この
板状成形体を一軸方向に延伸した後、延伸方向に沿って
角柱状に切断し、その外側面を切削加工すれば製造でき
る。また、生体内分解吸収性ポリマーを最初から角柱状
に溶融押出成形し、一軸延伸した後、外側面を切削加工
して製造してもよい。
Such a substantially prismatic osteosynthesis pin C is formed by melt-extruding a biodegradable and absorbable polymer into a plate, stretching this plate-like molded body in a uniaxial direction, and then stretching the plate along the stretching direction. It can be manufactured by cutting into a column shape and cutting the outer surface. Alternatively, the biodegradable and absorbable polymer may be melt-extruded into a prism shape from the beginning, uniaxially stretched, and then the outer surface may be cut to produce the polymer.

【0058】図6は本発明の更に他の実施形態に係る骨
接合ピンDを示す側面図である。
FIG. 6 is a side view showing an osteosynthesis pin D according to still another embodiment of the present invention.

【0059】この骨接合ピンDは、生体内分解吸収性ポ
リマーからなる略円柱状の骨接合ピンであって、その外
周面が切削加工され、ピン中央部から軸方向一端側(下
端側)においては、一端側(下端側)に向かって先窄ま
りのテーパー面部1aと鍔状の段差部2が交互に形成さ
れており、ピン中央部から軸方向他端側(上端側)にお
いては、他端側(上端側)に向かって先窄まりのテーパ
ー面部1bと、鍔状の段差部2が交互に形成されてい
る。
The osteosynthesis pin D is a substantially columnar osteosynthesis pin made of a biodegradable and absorbable polymer, the outer peripheral surface of which is cut, and one end (lower end) in the axial direction from the center of the pin. Has a tapered surface portion 1a tapered toward the one end (lower end) and a stepped portion 2 in the form of a collar, which are alternately formed, and the other end (upper end) in the axial direction from the center of the pin. Tapered surface portions 1b tapering toward the end (upper end side) and step portions 2 having a flange shape are alternately formed.

【0060】この骨接合ピンDの鍔状段差部2の幅、ピ
ッチ間隔、分子鎖(結晶)配向などは、前記の骨接合ピ
ンAと同様であるので、説明を省略する。
The width, pitch interval, molecular chain (crystal) orientation, and the like of the flanged step portion 2 of the osteosynthesis pin D are the same as those of the above-described osteosynthesis pin A, and a description thereof will be omitted.

【0061】この骨接合ピンDは、図7に示すように、
ピン中央部から一端側を骨折した一方の骨6aの髄孔又
はピン挿入孔に圧入し、ピン中央部から他端側を他方の
骨6bの髄孔又はピン挿入孔に圧入することによって、
骨折部を接合するものであり、このように接合すると、
骨接合ピンDの一端側も他端側も、鍔状段差部2の外周
端が髄孔やピン挿入孔の内面に食い込んで抜け出しが阻
止されるため、骨接合箇所に緩みや位置ずれを生じるこ
となく強固に固定することが可能となる。
This osteosynthesis pin D is, as shown in FIG.
By press-fitting one end of the bone from the center of the pin into the medullary canal or pin insertion hole of one bone 6a having a fracture, and pressing the other end from the center of the pin into the medullary canal or pin insertion hole of the other bone 6b,
It is to join the fractured part, and when joined in this way,
At both the one end side and the other end side of the osteosynthesis pin D, the outer peripheral end of the flange-shaped stepped portion 2 bites into the inner surface of the medullary canal or the pin insertion hole and is prevented from coming out, so that the osteosynthesis site becomes loose or misaligned. It becomes possible to fix firmly without.

【0062】図8は本発明の更に他の実施形態に係る骨
接合ピンEを示す側面図である。
FIG. 8 is a side view showing an osteosynthesis pin E according to still another embodiment of the present invention.

【0063】この骨接合ピンEは、生体内分解吸収性ポ
リマーからなる湾曲した円柱状の骨接合ピンであって、
その外周面が切削加工され、ピン中央部から湾曲した軸
1方向一端側(下端側)においては、軸L1方向一端側
に向かって先窄まりのテーパー面部1aと、鍔状の段差
部2が交互に形成されており、ピン中央部から軸L1
向他端側(上端側)においては、他軸L1 方向端側に向
かって先窄まりのテーパー面部1bと、鍔状の段差部2
が交互に形成されている。
The osteosynthesis pin E is a curved cylindrical osteosynthesis pin made of a biodegradable and absorbable polymer.
Its outer peripheral surface is machined, in the axial L 1 direction end side curved from the pin center portion (lower end side), and the tapered surface portion 1a of the tapered-off toward the axis L 1 direction one end side, a flange-shaped step portion 2 are formed alternately in the axial L 1 direction other end side (upper side) from the pin center portion, and the tapered surface portion 1b of the tapered-off toward the other axis L 1 direction end side, a flange-shaped step Part 2
Are formed alternately.

【0064】この骨接合ピンEも上記の骨接合ピンDと
同様に、ピン中央部から一端側を骨折した一方の髄孔な
どに圧入し、ピン中央部から他端側を他方の骨の髄孔な
どに圧入することによって、骨折部を接合するものであ
り、鍔状段差部2の先端の食い込みによって抜け出しを
防止し、強固に固定できるものである。
Similarly to the above-mentioned osteosynthesis pin D, this osteosynthesis pin E is press-fitted into one medullary cavity having one end fractured from the center of the pin, and the other end from the center of the pin to the other bone marrow. The fractured portion is joined by press-fitting into a hole or the like, so that the flange-shaped stepped portion 2 is prevented from coming off by biting at the tip thereof and can be firmly fixed.

【0065】特に、この骨接合ピンEはピン全体が湾曲
しているため、直状の骨接合ピンよりも抜け出し防止効
果が大きく、また、肋骨のように湾曲している骨を接合
する場合には極めて好都合である。
In particular, since the osteosynthesis pin E is curved as a whole, it has a greater effect of preventing the osteosynthesis pin from slipping out than a straight osteosynthesis pin, and is also used when joining a curved bone such as a rib. Is very convenient.

【0066】抜け出し防止効果を向上させる観点から
は、骨接合ピンEの曲率半径(湾曲した軸L1の曲率半
径)を20〜200mmの範囲に設定することが望まし
い。200mmより大きい曲率半径では抜け出し防止効
果を顕著に向上させ難くなり、20mmより小さい曲率
半径では髄孔やピン挿入孔への圧入がし辛くなる。ま
た、肋骨などを接合する場合には、予め肋骨と略同一の
曲率半径にしておくことが望ましい。
[0066] From the viewpoint of improving the effect of preventing escape, it is preferable to set the radius of curvature of the bone pin E (curved radius of curvature of the axis L 1) in the range of 20 to 200 mm. If the radius of curvature is larger than 200 mm, it is difficult to significantly improve the slip-out preventing effect, and if the radius of curvature is smaller than 20 mm, it is difficult to press into the medullary canal or the pin insertion hole. When joining ribs or the like, it is desirable that the radius of curvature is approximately the same as that of the ribs in advance.

【0067】このような骨接合ピンEは、生体内分解吸
収性ポリマーの円柱状成形体を所定の曲率半径に曲げ、
その外周面を切削加工すれば製造できる。
The osteosynthesis pin E is formed by bending a columnar molded body of a biodegradable and absorbable polymer to a predetermined radius of curvature.
It can be manufactured by cutting the outer peripheral surface.

【0068】図9は本発明の更に他の実施形態に係る骨
接合ピンFの縦断面における分子鎖(結晶)の配向状態
を示す概念図、図10は骨接合ピンFの横断面における
分子鎖(結晶)の配向状態を示す概念図である。
FIG. 9 is a conceptual diagram showing the orientation of molecular chains (crystals) in a longitudinal section of a osteosynthesis pin F according to still another embodiment of the present invention, and FIG. It is a conceptual diagram which shows the orientation state of (crystal).

【0069】この骨接合ピンFの形状は、既述した骨接
合ピンAの形状と同一であり、外周面の切削加工によっ
て、軸方向一端側(下端側)に向かって先窄まりのテー
パー面部1と鍔状の段差部2が交互に形成されている。
The shape of the osteosynthesis pin F is the same as the shape of the osteosynthesis pin A described above. By cutting the outer peripheral surface, the tapered surface portion is tapered toward one end (lower end) in the axial direction. 1 and flange-shaped steps 2 are formed alternately.

【0070】しかし、この骨接合ピンFは切削加工前に
圧縮され、図9に示すように生体内分解吸収性ポリマー
の分子鎖(結晶)Mが骨接合ピンの中心軸Lに向かって
周囲から斜め下方に配向しており、図10に示すように
横断面においては分子鎖(結晶)Mが中心軸Lの回りに
放射状の配向状態となっている。そのため、無配向の骨
接合ピンや、延伸による一軸配向の前記骨接合ピンAに
比べると、密度や表面硬度が大きく、また、中心軸L方
向とこれに直角な方向との間における分子鎖(結晶)配
向の異方性が小さいので、圧縮により緻密質になってい
ることと相俟って、種々の方向の外力に対する強度が総
体的に向上しており、特に、放射状の配向状態によって
捻り強度が大きくなっている。
However, this osteosynthesis pin F is compressed before cutting, and as shown in FIG. 9, the molecular chains (crystals) M of the biodegradable and absorbable polymer move from the periphery toward the central axis L of the osteosynthesis pin. The molecular chains (crystals) M are in a radially oriented state around the central axis L in the cross section as shown in FIG. Therefore, compared with the non-oriented osteosynthesis pin or the uniaxially oriented osteosynthesis pin A by stretching, the density and the surface hardness are large, and the molecular chains between the direction of the central axis L and the direction perpendicular to this direction ( Since the anisotropy of the crystal) orientation is small, the strength against external force in various directions is generally improved in combination with the fact that the material becomes dense by compression. Strength is increasing.

【0071】分子鎖(結晶)Mの中心軸Lに対する配向
角は10〜60°の範囲に調整することが望ましく、1
0°未満では分子鎖(結晶)配向の異方性の改善が不充
分となり、60°を越えるものは製造が容易でなくクラ
ック等が発生しやすくなる。更に好ましい配向角の範囲
は10〜35°である。
The orientation angle of the molecular chain (crystal) M with respect to the central axis L is preferably adjusted within a range of 10 to 60 °.
If it is less than 0 °, the improvement of the anisotropy of the molecular chain (crystal) orientation becomes insufficient, and if it exceeds 60 °, the production is not easy and cracks and the like tend to occur. A more preferred range of the orientation angle is 10 to 35 °.

【0072】この骨接合ピンFでは、分子鎖(結晶)M
が中心軸Lに向かって周囲から斜め下方に配向している
が、中心軸Lと平行な偏心した軸に向かって周囲から斜
め下方に配向するようにしても、ほぼ同様の強度改善効
果が得られる。
In this osteosynthesis pin F, the molecular chain (crystal) M
Are oriented obliquely downward from the periphery toward the central axis L. However, even if they are oriented obliquely downward from the periphery toward an eccentric axis parallel to the central axis L, almost the same strength improving effect can be obtained. Can be

【0073】上記のような骨接合ピンFは、例えば次の
方法で製造される。
The osteosynthesis pin F as described above is manufactured, for example, by the following method.

【0074】まず、材料の生体内分解吸収性ポリマーを
溶融押出成形して円柱状のビレット8を造る。そして、
図11に示すような成形型7、即ち、横断面の開口面積
が大きい大径円筒形の収容キャビティ7aと、横断面の
開口面積が小さい小径円筒形の有底の成形キャビティ7
cとの間に、内周面が下窄まりのテーパー面とされた絞
り部7bを同軸的に設けた成形型7を使用し、その収容
キャビティ7aに上記のビレット8を収容して、加圧用
の雄型7dによりビレット8を生体内分解吸収性ポリマ
ーの結晶化可能な温度(ガラス転移温度以上、溶融温度
以下)で図12に示すように成形キャビティ7cへ連続
的又は断続的に圧入充填する。
First, the biodegradable and absorbable polymer of the material is melt-extruded to form a cylindrical billet 8. And
A molding die 7 as shown in FIG. 11, that is, a large-diameter cylindrical housing cavity 7a having a large cross-sectional opening area, and a small-diameter cylindrical bottomed cavity 7 having a small cross-sectional opening area.
a molding die 7 coaxially provided with a constricted portion 7b whose inner peripheral surface is a tapered surface with a downward constriction, and accommodates the billet 8 in its accommodation cavity 7a. As shown in FIG. 12, the billet 8 is continuously or intermittently press-filled into the molding cavity 7c at a temperature at which the biodegradable and absorbable polymer can be crystallized (above the glass transition temperature and below the melting temperature) by the pressing male mold 7d. I do.

【0075】このように圧入充填すると、ビレット8が
絞り部7bを通過する際に、テーパー面との間に摩擦抵
抗による大きな剪断力が生じ、これが分子鎖(結晶)を
配向させる材料進行方向(MD)及び横方向(TD)の
外力として作用するため、分子鎖(結晶)が成形型7の
中心軸Lm(換言すればビレット8の中心軸)に向かっ
て周囲から斜め下方に配向しつつ圧縮され、結晶化が進
行する。そして、成形キャビティ7cに充填された後
も、成形キャビティ7cの内面及び底面により背圧を受
けて、上記の分子鎖(結晶)配向及び圧縮状態を維持し
たまま固定化され、円柱状の圧縮配向成形体80が得ら
れる。
When the billet 8 passes through the constricted portion 7b, a large shear force due to frictional resistance is generated between the billet 8 and the tapered surface when the billet 8 passes through the narrowed portion 7b. MD) and lateral force (TD), the molecular chains (crystals) are compressed while being oriented obliquely downward from the periphery toward the central axis Lm of the mold 7 (in other words, the central axis of the billet 8). And crystallization proceeds. Then, even after filling in the molding cavity 7c, the inner surface and the bottom surface of the molding cavity 7c receive a back pressure, and are fixed while maintaining the molecular chain (crystal) orientation and the compressed state, thereby forming a columnar compression orientation. A molded body 80 is obtained.

【0076】この圧縮配向成形体80を成形型7から取
り出し、最終的にその外周面を切削加工してテーパー面
部1と鍔状段差部2を交互に形成すると、骨接合ピンF
が得られる。
When the compression-oriented molded body 80 is taken out of the molding die 7 and the outer peripheral surface thereof is finally cut to form the tapered surface portion 1 and the flange-shaped step portion 2 alternately, the osteosynthesis pin F
Is obtained.

【0077】上記の製法において、成形型7の中心軸L
mに対する分子鎖(結晶)の配向角は、絞り部7bのテ
ーパー面の傾斜角θ、及び、収容キャビティ7aと成形
キャビティ7cとの開口面積の比によって近似的に定ま
るので、傾斜角θと開口面積の比を変えることによっ
て、分子鎖(結晶)の配向角を前述した10〜60°の
範囲に調整することが望ましい。その場合、変形比(ビ
レット8の断面積/圧縮配向成形体80の断面積)が実
質的に1.5〜6.0の範囲となるように、収容キャビ
ティ7aと成形キャビティ7cとの開口面積比を1.5
〜6.0の範囲内で変えることが望ましい。変形比が
1.5未満では、分子鎖(結晶)配向が不充分な圧縮配
向成形体となり、6.0を越えると配向が過度になって
フィブリル化した圧縮配向成形体となるからである。
In the above manufacturing method, the center axis L of the molding die 7
The orientation angle of the molecular chain (crystal) with respect to m is approximately determined by the inclination angle θ of the tapered surface of the narrowed portion 7b and the ratio of the opening area between the receiving cavity 7a and the molding cavity 7c. It is desirable to adjust the orientation angle of the molecular chain (crystal) to the above-mentioned range of 10 to 60 ° by changing the area ratio. In this case, the opening area between the housing cavity 7a and the molding cavity 7c is set so that the deformation ratio (cross-sectional area of the billet 8 / cross-sectional area of the compression-oriented molded body 80) is substantially in the range of 1.5 to 6.0. Ratio 1.5
It is desirable to change within the range of -6.0. If the deformation ratio is less than 1.5, a compression-oriented molded product having insufficient molecular chain (crystal) orientation is obtained, and if it exceeds 6.0, the orientation becomes excessive and a fibrillated compression-oriented molded product is obtained.

【0078】また、圧縮配向成形体80の結晶化度は、
収容キャビティ7aと成形キャビティ7cとの開口面積
比、ビレット8の圧入温度、圧力、圧入速度などをコン
トロールすることによって、30〜60%の範囲に調節
することが望ましい。このように結晶化度を調節した圧
縮配向成形体80を切削加工して得られる骨接合ピンF
は、結晶相と非晶相の比率のバランスが良く、結晶相に
よる強度及び硬度の向上と、非晶相による柔軟性とが良
く調和されているため、結晶相のみの場合のような脆さ
がなく、非晶相のみの場合のような強度のない弱い性質
も現れない。そのため、靱性があり、総合的に強度が充
分高い骨接合ピンFとなる。
The crystallinity of the compression-orientation molded product 80 is as follows:
It is desirable to control the opening area ratio between the housing cavity 7a and the molding cavity 7c, the press-fitting temperature, the pressure, the press-fitting speed, and the like of the billet 8 so as to be adjusted in the range of 30 to 60%. The osteosynthesis pin F obtained by cutting the compression-oriented molded body 80 having the crystallinity adjusted in this manner.
Has a good balance of the ratio of the crystalline phase and the amorphous phase, and the improvement in strength and hardness by the crystalline phase and the flexibility by the amorphous phase are well coordinated. There is no weak property without strength as in the case of only an amorphous phase. Therefore, the osteosynthesis pin F which is tough and has a sufficiently high strength overall is obtained.

【0079】更に、前記の製法において、絞り部7bの
テーパー面の傾斜角を、テーパー面の全周に亘って若し
くは任意の部分で漸次変化させた成形型7を使用し、前
記と同様にビレット8を圧入充填すると、中心軸と平行
な偏心した軸に向かって分子鎖(結晶)が周囲から斜め
下方に配向した円柱状の圧縮配向成形体80が得られる
ので、この圧縮配向成形体80の外周面を切削加工して
テーパー面部1と鍔状段差部2を交互に形成すれば、分
子鎖(結晶)が中心軸と平行な軸に向かって周囲から斜
めに配向する圧縮された骨接合ピンを得ることができ
る。
Further, in the above-described manufacturing method, a billet 7 was used in the same manner as described above by using a molding die 7 in which the inclination angle of the tapered surface of the narrowed portion 7b was gradually changed over the entire circumference of the tapered surface or at an arbitrary portion. 8 is press-filled to obtain a columnar compression-oriented molded body 80 in which molecular chains (crystals) are oriented obliquely downward from the periphery toward an eccentric axis parallel to the central axis. If the outer peripheral surface is cut to form the tapered surface portion 1 and the flange-shaped step portion 2 alternately, the compressed osteosynthesis pin in which the molecular chains (crystals) are obliquely oriented from the periphery toward an axis parallel to the central axis. Can be obtained.

【0080】また、前記の製法において、開口面積の大
きい角筒状の収容キャビティと、開口面積の小さい角筒
状の成形キャビティとの間に、四側面が傾斜面とされた
絞り部を同軸的に設けた成形型を使用し、生体内分解吸
収性ポリマーを角柱状に溶融成形したビレットを収容キ
ャビティに収容して、成形キャビティへ圧入充填する
と、分子鎖(結晶)が中心軸に向かって周囲から斜め下
方に配向した角柱状の圧縮配向成形体が得られるので、
この圧縮配向成形体を切削加工して、その少なくとも一
外側面に斜面部4と矩形状の段差部5を形成すれば、図
5の形状を有し、且つ分子鎖(結晶)が中心軸に向かっ
て周囲から斜めに配向した高強度で抜け出しにくい略角
柱状の骨接合ピンを得ることができる。
In the above-mentioned manufacturing method, a throttle portion having four inclined surfaces is coaxially provided between the rectangular cylindrical receiving cavity having a large opening area and the rectangular cylindrical forming cavity having a small opening area. When the billet obtained by melting and molding the biodegradable and absorbable polymer into a prismatic shape is housed in the housing cavity using the mold provided in the above, and the mold cavity is press-filled, the molecular chains (crystals) move toward the central axis. From which a prismatic compression-oriented molded body oriented diagonally downward is obtained,
If this compression-oriented molded body is cut to form a slope portion 4 and a rectangular step portion 5 on at least one outer surface thereof, it has the shape of FIG. 5 and the molecular chains (crystals) are aligned with the central axis. A substantially prismatic osteosynthesis pin that is obliquely oriented from the periphery toward the outside and has a high strength and is difficult to come out can be obtained.

【0081】図13は本発明の更に他の実施形態にかか
る骨接合ピンGの縦断面における分子鎖(結晶)の配向
状態を示す概念図、図14は骨接合ピンGの横断面にお
ける分子鎖(結晶)の配向状態を示す概念図である。
FIG. 13 is a conceptual diagram showing the orientation of molecular chains (crystals) in a longitudinal section of an osteosynthesis pin G according to still another embodiment of the present invention, and FIG. It is a conceptual diagram which shows the orientation state of (crystal).

【0082】この骨接合ピンGは、既述した骨接合ピン
Cと同じ略角柱状のピンであるが、切削加工前に圧縮さ
れ、生体内分解吸収性ポリマーの分子鎖(結晶)Mが、
骨接合ピンGをその軸方向と直角の方向に二等分する面
Nに向かって両側から斜めに配向している。そのため、
無配向の骨接合ピンや、延伸による一軸配向の骨接合ピ
ンに比べると、密度や表面硬度が大きく、また、分子鎖
(結晶)配向の異方性が小さいので、圧縮により緻密質
になっていることと相俟って、種々の方向の外力に対す
る強度が総体的に向上している。
The osteosynthesis pin G is a substantially prismatic pin similar to the osteosynthesis pin C described above, but is compressed before cutting, and the molecular chain (crystal) M of the biodegradable and absorbable polymer is
The osteosynthesis pin G is obliquely oriented from both sides toward a surface N bisecting in a direction perpendicular to its axial direction. for that reason,
Compared to non-oriented osteosynthesis pins and uniaxially oriented osteosynthesis pins by stretching, the density and surface hardness are high, and the anisotropy of molecular chain (crystal) orientation is small, so that they become dense by compression. In combination with this, the strength against external forces in various directions is generally improved.

【0083】このような骨接合ピンGは、例えば次の方
法で製造される。
The osteosynthesis pin G is manufactured, for example, by the following method.

【0084】まず、材料の生体内分解吸収性ポリマーを
溶融押出成形して厚肉板状のビレットを造る。そして、
成形型として、横断面の開口面積が大きい広幅長方形の
収容キャビティと、横断面の開口面積が小さい狭幅長方
形の有底の成形キャビティとの間に、両側内面(相対向
する両長辺側の内面)が等しい傾斜角の斜面とされた絞
り部を同軸的に設けた成形型を使用し、その収容キャビ
ティに上記のビレットを収容して、加圧用の雄型でビレ
ットを結晶化可能な温度で成形キャビティへ圧入充填す
る。
First, a biodegradable and absorbable polymer as a material is melt-extruded to form a thick plate-shaped billet. And
As a molding die, between the wide rectangular accommodating cavity having a large cross-sectional opening area and the narrow rectangular bottomed cavity having a small cross-sectional opening area, inner surfaces on both sides (on both long sides facing each other). Using a molding die having a constricted portion with an inclined surface having the same inclination angle, the above-mentioned billet is accommodated in its accommodation cavity, and the temperature at which the billet can be crystallized by a male mold for pressurization. And press-fit into the molding cavity.

【0085】このように圧入充填すると、厚み方向に二
等分する面に向かって分子鎖(結晶)が両側から斜め下
方に配向する板状圧縮配向成形体が得られるので、これ
を角柱状に切断し切削加工すれば、上記の骨接合ピンG
を得ることができる。その場合、前記の骨接合ピンFと
同様に、分子鎖(結晶)の配向角を10〜60°に調整
し、結晶化度を30〜60%に調整することが望まし
い。
By press-filling as described above, a plate-shaped compression-orientation molded body in which molecular chains (crystals) are oriented obliquely downward from both sides toward a plane bisected in the thickness direction is obtained. By cutting and cutting, the above osteosynthesis pin G
Can be obtained. In this case, similarly to the osteosynthesis pin F, it is desirable to adjust the orientation angle of the molecular chain (crystal) to 10 to 60 ° and to adjust the crystallinity to 30 to 60%.

【0086】また、絞り部の両側の斜面の傾斜角が異な
る成形型を用いて同様に圧入充填すると、厚み方向の二
等分面と平行な偏位した面に向かって分子鎖(結晶)が
両側から斜めに配向する板状圧縮配向成形体が得られる
ので、これを角柱状に切断し切削加工すれば、分子鎖
(結晶)が二等分面と平行な面に向かって両側から斜め
に配向する略角柱状の骨接合ピンを得ることができる。
When the molds are similarly press-filled using molds having different slope angles on both sides of the narrowed portion, the molecular chains (crystals) are shifted toward the plane displaced parallel to the bisecting plane in the thickness direction. A plate-shaped compression-orientation compact that is obliquely oriented from both sides can be obtained. If this is cut into a prism and cut, the molecular chains (crystals) will be oblique from both sides toward a plane parallel to the bisecting plane. A substantially prismatic osteosynthesis pin that is oriented can be obtained.

【0087】図15は本発明の更に他の実施形態に係る
骨接合ピンHの部分断面図である。
FIG. 15 is a partial sectional view of an osteosynthesis pin H according to still another embodiment of the present invention.

【0088】この骨接合ピンHは、バイオセラミックス
粉体9を均一な濃度で含有した生体内分解吸収性ポリマ
ーからなる略円柱状の骨接合ピンであり、その外周面を
切削加工することによって、軸方向一端側(下端側)に
向かって先窄まりのテーパー面部1と鍔状段差部2を交
互に形成したものである。そして、前述した骨接合ピン
Fと同様に切削加工前の圧縮により、分子鎖(結晶)を
骨接合ピンの中心軸Lに向かって周囲から斜め下方に配
向させ、密度や表面硬度を向上させると共に、種々の方
向の外力に対する強度を総体的に向上させたものであ
る。
The osteosynthesis pin H is a substantially columnar osteosynthesis pin made of a biodegradable and absorbable polymer containing a bioceramic powder 9 at a uniform concentration. A tapered surface portion 1 and a flange-shaped step portion 2 which are tapered toward one end (lower end) in the axial direction are formed alternately. Then, similarly to the osteosynthesis pin F described above, the molecular chains (crystals) are oriented obliquely downward from the periphery toward the central axis L of the osteosynthesis pin by compression before cutting, thereby improving the density and surface hardness. The strength against external forces in various directions is improved as a whole.

【0089】バイオセラミックス粉体9は、生体骨との
結合性を骨接合ピンHに付与する目的で含有されてお
り、切削加工により外周面にも露出している。
The bioceramics powder 9 is contained for the purpose of imparting bonding property to living bone to the osteosynthesis pin H, and is also exposed on the outer peripheral surface by cutting.

【0090】好ましいバイオセラミックス粉体9として
は、表面生体活性な焼結ハイドロキシアパタイト、バイ
オガラス系もしくは結晶化ガラス系の生体用ガラス、生
体内吸収性の湿式ハイドロキシアパタイト、ジカルシウ
ムホスフェート、トリカルシウムホスフェート、テトラ
カルシウムホスフェート、オクタカルシウムホスフェー
ト、カルサイト、ジオプサイトなどの粉体が挙げられ、
これらは単独で又は二種以上混合して使用される。特
に、骨組織の誘導形成能が高い湿式ハイドロキシアパタ
イトの粉体は最適である。これらのバイオセラミックス
粉体9は、その粒径が0.2〜50μm程度のものが好
適であり、より好ましくは数μm〜数十μmの粒径を有
するものが使用される。
Preferred bioceramic powders 9 include sintered hydroxyapatite having bioactivity on the surface, bioglass or crystallized glass for living body, wet-type hydroxyapatite which can be absorbed in vivo, dicalcium phosphate, tricalcium phosphate. , Powders such as tetracalcium phosphate, octacalcium phosphate, calcite, diopsite,
These may be used alone or as a mixture of two or more. In particular, a powder of wet hydroxyapatite having a high ability to induce and form bone tissue is optimal. The bioceramic powder 9 preferably has a particle size of about 0.2 to 50 μm, and more preferably has a particle size of several μm to several tens μm.

【0091】このような骨接合ピンHを用いて骨折部を
接合固定すると、バイオセラミックス粉体9を含有する
生体内分解吸収性ポリマーの見掛け上の加水分解が速く
なり、バイオセラミックス粉体9の生体活性によって骨
組織が外周面表層部へ速やかに誘導形成されるため、骨
接合ピンHが短期間で生体骨と強固に結合し、固定力が
大幅に向上する。バイオセラミックス粉体9の含有濃度
は10〜60重量%の範囲であることが好ましい。10
重量%未満ではバイオセラミックス粉体9による骨組織
の誘導形成能が不充分となるため、短期間で強固に生体
骨と結合させて固定力を向上させることが困難となり、
一方、60重量%より多く含有させると、骨接合ピンの
硬さは向上するけれども、生体内分解吸収性ポリマー本
来の靱性が損なわれて脆くなり、折れたり欠けたりしや
すくなるからである。そのため、この骨接合ピンHは、
治癒に必要な数ケ月の間、充分な実用強度を維持し、折
損等の恐れが皆無に等しい。そして、治癒後は加水分解
が進行し、最終的に骨接合ピンH全体が生体骨と置換し
て消失する。
When the fracture portion is joined and fixed using such an osteosynthesis pin H, the apparent hydrolysis of the biodegradable and absorbable polymer containing the bioceramic powder 9 is accelerated, and the bioceramic powder 9 Since the bone activity is rapidly induced and formed on the outer peripheral surface by bioactivity, the osteosynthesis pin H is firmly connected to the living bone in a short period of time, and the fixing force is greatly improved. The concentration of the bioceramic powder 9 is preferably in the range of 10 to 60% by weight. 10
If the content is less than 10% by weight, the ability to form and induce bone tissue by the bioceramics powder 9 becomes insufficient, so that it becomes difficult to firmly bind to the living bone in a short period of time to improve the fixation force.
On the other hand, if the content is more than 60% by weight, although the hardness of the osteosynthesis pin is improved, the inherent toughness of the biodegradable and absorbable polymer is impaired, and the polymer becomes brittle and easily breaks or breaks. Therefore, this osteosynthesis pin H
Maintains sufficient practical strength for several months necessary for healing, and has almost no risk of breakage. After the healing, the hydrolysis proceeds, and finally the entire osteosynthesis pin H is replaced by living bone and disappears.

【0092】上記のような骨接合ピンHは、例えば次の
方法で製造される。
The osteosynthesis pin H as described above is manufactured, for example, by the following method.

【0093】まず、生体内分解吸収性ポリマーを溶剤に
溶かした溶液中に、バイオセラミックス粉体を生体内分
解吸収性ポリマーの非溶剤に懸濁させた懸濁液を加えて
撹拌し、バイオセラミックス粉体を凝集させることなく
均一に分散させる。そして、撹拌しながら更に非溶剤を
加えて、生体内分解吸収性ポリマーとバイオセラミック
ス粉体を同時に沈殿させ、これを濾過、乾燥して、内部
にバイオセラミックス粉体が均一に分散している生体内
分解吸収性ポリマーの顆粒を得る。
First, a suspension of a bioceramic powder in a non-solvent of a biodegradable and absorbable polymer is added to a solution of the biodegradable and absorbable polymer in a solvent, and the mixture is stirred. Disperse the powder uniformly without agglomeration. Then, a non-solvent is further added with stirring to simultaneously precipitate the biodegradable and absorbable polymer and the bioceramic powder, which is filtered and dried, and the bioceramic powder having the bioceramic powder uniformly dispersed therein is uniformly dispersed therein. Obtain granules of the biodegradable and absorbable polymer.

【0094】次いで、該顆粒を用いて溶融成形、例えば
押出成形やプレス成形により、バイオセラミックス粉体
9を均一に含有するビレットを得る。
Next, a billet containing the bioceramics powder 9 uniformly is obtained by melt molding, for example, extrusion molding or press molding using the granules.

【0095】次に、このビレットを図11に示す成形型
7の収容キャビティ7aに収容し、既述したように加圧
用の雄型7dで該ビレットを成形キャビティ7cに圧入
充填することによって、分子鎖(結晶)が中心軸に向か
って周囲から斜め下方に配向した円柱状の圧縮配向成形
体を得る。そして、この圧縮配向成形体の外周面を切削
加工することにより、テーパー面部1と鍔状段差部2を
交互に形成すると、骨接合ピンHが得られる。
Next, this billet is housed in the housing cavity 7a of the molding die 7 shown in FIG. 11, and the billet is press-filled into the molding cavity 7c with the male mold 7d for pressurization as described above, whereby the molecular A columnar compression-oriented molded body in which chains (crystals) are oriented obliquely downward from the periphery toward the central axis is obtained. The osteosynthesis pin H is obtained by cutting the outer peripheral surface of the compression-oriented molded body so that the tapered surface portions 1 and the flange-shaped step portions 2 are alternately formed.

【0096】この骨接合ピンHは略円柱状のピンである
が、上記と略同様の方法で略角柱状の骨接合ピンを製造
することもできる。即ち、溶融成形により角柱状の押出
成形品にするか、或は厚肉の板状押出品を切断して角柱
状にするか等して、角柱状のビレットを造る。そして、
既述した角筒状の収容キャビティと成形キャビティを有
する成形型の該収容キャビティに上記のビレットを収容
し、成形キャビティへ圧入充填することによって角柱状
の圧縮配向成形体を造り、この成形体を切削加工して少
なくとも一外側面に斜面部4と矩形状段差部5を形成す
れば、バイオセラミックス粉体を均一に含有し、且つ分
子鎖(結晶)が中心軸に向かって周囲から斜めに配向す
る略角柱状の抜け出し難い骨接合ピンHを得ることがで
きる。
Although the osteosynthesis pin H is a substantially cylindrical pin, a substantially prismatic osteosynthesis pin can also be manufactured by a method substantially similar to the above. That is, a prismatic billet is produced by melt molding into a prismatic extruded product or by cutting a thick plate-like extruded product into a prismatic shape. And
The billet is housed in the housing cavity of the mold having the above-described square cylindrical housing cavity and the molding cavity, and a prismatic compression-oriented molded body is produced by press-fitting and filling the molding cavity. If the slope 4 and the rectangular step 5 are formed on at least one outer surface by cutting, the bioceramics powder is uniformly contained, and the molecular chains (crystals) are oriented obliquely from the periphery toward the central axis. It is possible to obtain a substantially prismatic osteosynthesis pin H which does not easily come off.

【0097】[0097]

【発明の効果】以上の説明から明らかなように、本発明
の骨接合ピンは、生体骨の骨折部にあけたピン挿入孔や
髄腔に圧入して骨折部を接合すると、ピン挿入孔や髄腔
から抜け出すことがないため、骨接合箇所に緩みや位置
ずれを生じることなく確実に固定することができ、長す
ぎる場合には段差部のところで比較的簡単に切断するこ
ともでき、生体内分解吸収性であるため生体内から取り
出す再手術も不要であるといった顕著な効果を奏する。
As is clear from the above description, the osteosynthesis pin of the present invention can be inserted into a pin insertion hole formed in a fractured part of a living bone or into a medullary cavity to join the fractured part. Since it does not fall out of the medullary canal, it can be fixed securely at the osteosynthesis site without loosening or displacement, and if it is too long, it can be cut relatively easily at the stepped portion, Since it is decomposable and absorptive, there is a remarkable effect that reoperation for removing from the living body is unnecessary.

【0098】そして、延伸により分子鎖(結晶)を配向
させた骨接合ピンは強度が向上し、殊に、圧縮により特
定の分子鎖(結晶)配向を与えた骨接合ピンは、分子鎖
(結晶)配向の異方性が少ないことと、圧縮により緻密
質になっていることから、種々の方向の力に対する強度
が総体的に顕著に向上するといった効果を合わせて奏す
る。
[0098] The osteosynthesis pin in which the molecular chains (crystals) are oriented by stretching has improved strength, and in particular, the osteosynthesis pin in which a specific molecular chain (crystal) orientation is given by compression has the molecular chains (crystals). ) Since the anisotropy of the orientation is small and the material is dense due to compression, the strength against various directions of forces is significantly improved as a whole.

【0099】更に、バイオセラミックス粉体を含有させ
た骨接合ピンは、比較的短期間のうちに生体骨と結合
し、固定力が一層向上するといった効果を奏する。
Furthermore, the osteosynthesis pin containing the bioceramics powder has an effect that the osteosynthesis pin is combined with the living bone in a relatively short period of time and the fixing force is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る骨接合ピンAの斜視
図である。
FIG. 1 is a perspective view of an osteosynthesis pin A according to an embodiment of the present invention.

【図2】同骨接合ピンAの縦断面における分子鎖(結
晶)の配向状態を示す概念図である。
FIG. 2 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a longitudinal section of the osteosynthesis pin A.

【図3】同骨接合ピンAの一使用例の説明図である。FIG. 3 is an explanatory diagram of one usage example of the osteosynthesis pin A.

【図4】本発明の他の実施形態に係る骨接合ピンBの側
面図である。
FIG. 4 is a side view of an osteosynthesis pin B according to another embodiment of the present invention.

【図5】本発明の更に他の実施形態に係る骨接合ピンC
の斜視図である。
FIG. 5 shows an osteosynthesis pin C according to still another embodiment of the present invention.
It is a perspective view of.

【図6】本発明の更に他の実施形態に係る骨接合ピンD
の側面図である。
FIG. 6 shows an osteosynthesis pin D according to still another embodiment of the present invention.
FIG.

【図7】同骨接合ピンDの一使用例の説明図である。FIG. 7 is an explanatory diagram of one usage example of the osteosynthesis pin D.

【図8】本発明の更に他の実施形態に係る骨接合ピンE
の側面図である。
FIG. 8 shows an osteosynthesis pin E according to still another embodiment of the present invention.
FIG.

【図9】本発明の更に他の実施形態に係る骨接合ピンF
の縦断面における分子鎖(結晶)の配向状態を示す概念
図である。
FIG. 9 shows an osteosynthesis pin F according to still another embodiment of the present invention.
FIG. 3 is a conceptual diagram showing an orientation state of a molecular chain (crystal) in a vertical cross section of FIG.

【図10】同骨接合ピンFの横断面における分子鎖(結
晶)の配向状態を示す概念図である。
FIG. 10 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a cross section of the osteosynthesis pin F.

【図11】同骨接合ピンFの製法を説明するもので、成
形型の収容キャビティにビレットを収容したところを示
す断面図である。
FIG. 11 is a cross-sectional view illustrating a method of manufacturing the osteosynthesis pin F and showing a billet housed in a housing cavity of a molding die.

【図12】同骨接合ピンFの製法を説明するもので、ビ
レットを成形型の成形キャビティに圧入充填したところ
を示す断面図である。
FIG. 12 is a cross-sectional view illustrating a method of manufacturing the osteosynthesis pin F and showing a state where a billet is press-fitted into a molding cavity of a molding die.

【図13】本発明の更に他の実施形態に係る骨接合ピン
Gの縦断面における分子鎖(結晶)の配向状態を示す概
念図である。
FIG. 13 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a longitudinal section of an osteosynthesis pin G according to still another embodiment of the present invention.

【図14】同骨接合ピンGの横断面における分子鎖(結
晶)の配向状態を示す概念図である。
FIG. 14 is a conceptual diagram showing an orientation state of molecular chains (crystals) in a cross section of the osteosynthesis pin G.

【図15】本発明の更に他の実施形態に係る骨接合ピン
Hの部分断面図である。
FIG. 15 is a partial sectional view of an osteosynthesis pin H according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A,B,C,D,E,F,G,H 骨接合ピン 1,1a,1b テーパー面部 2 鍔状の段差部 3 頭部 4 斜面部 5 矩形状の段差部 6 生体骨 9 バイオセラミックス粉体 L 骨接合ピンの中心軸 N 骨接合ピンを中心軸と直角方向に二等分する面 M 分子鎖(結晶) P 段差部の相互間隔 W 断差部の幅 A, B, C, D, E, F, G, H Osteosynthesis pins 1, 1a, 1b Tapered surface part 2 Flange-shaped step part 3 Head 4 Slope part 5 Rectangular step part 6 Living bone 9 Bioceramic powder Body L Central axis of osteosynthesis pin N Surface that bisects osteosynthesis pin in the direction perpendicular to the central axis M Molecular chain (crystal) P Spacing between step portions W Width of shear portion

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】生体内分解吸収性ポリマーからなる略円柱
状の骨接合ピンであって、その外周面に、軸方向一端側
に向かって先窄まりのテーパー面部と、段差部とが交互
に形成されていることを特徴とする骨接合ピン。
1. A substantially cylindrical osteosynthesis pin made of a biodegradable and absorbable polymer, wherein a tapered surface portion tapered toward one end in an axial direction and a step portion are alternately formed on an outer peripheral surface thereof. An osteosynthesis pin characterized by being formed.
【請求項2】生体内分解吸収性ポリマーからなる略角柱
状の骨接合ピンであって、その少なくとも一外側面に、
軸方向一端側に向かって斜め内方へ傾斜する斜面部と、
段差部とが交互に形成されていることを特徴とする骨接
合ピン。
2. A substantially prismatic osteosynthesis pin made of a biodegradable and absorbable polymer, wherein at least one outer surface of the pin has:
A slope portion inclined obliquely inward toward one end in the axial direction,
An osteosynthesis pin characterized in that step portions are alternately formed.
【請求項3】軸方向他端に頭部が形成されていることを
特徴とする請求項1又は請求項2に記載の骨接合ピン。
3. The osteosynthesis pin according to claim 1, wherein a head is formed at the other end in the axial direction.
【請求項4】生体内分解吸収性ポリマーからなる略円柱
状の骨接合ピンであって、ピン中央部から軸方向一端側
の外周面には、軸方向一端側に向かって先窄まりのテー
パー面部と、段差部とが交互に形成されており、ピン中
央部から軸方向他端側の外周面には、軸方向他端側に向
かって先窄まりのテーパー面部と、段差部とが交互に形
成されていることを特徴とする骨接合ピン。
4. A substantially cylindrical osteosynthesis pin made of a biodegradable and absorbable polymer, wherein the outer peripheral surface at one axial end from the center of the pin has a tapered taper toward one axial end. The surface portion and the step portion are formed alternately, and the tapered surface portion tapered toward the other end side in the axial direction and the step portion are alternately formed on the outer peripheral surface from the center of the pin to the other end in the axial direction. An osteosynthesis pin characterized by being formed in a osteosynthesis pin.
【請求項5】生体内分解吸収性ポリマーからなる略角柱
状の骨接合ピンであって、ピン中央部から軸方向一端側
の少なくとも一外側面には、軸方向一端側に向かって斜
め内方へ傾斜する斜面部と、段差部とが交互に形成され
ており、ピン中央部から軸方向他端側の少なくとも一外
側面には、軸方向他端側に向かって斜め内方へ傾斜する
斜面部と、段差部とが交互に形成されていることを特徴
とする骨接合ピン。
5. A substantially prismatic osteosynthesis pin made of a biodegradable and absorbable polymer, wherein at least one outer surface at one axial end from the center of the pin is obliquely inward toward one axial end. The slope portion and the step portion that are inclined to are formed alternately, and the slope that is inclined inward toward the other end in the axial direction on at least one outer surface at the other end in the axial direction from the center of the pin. An osteosynthesis pin, wherein the portions and the step portions are alternately formed.
【請求項6】段差部の幅が0.1〜1.0mmであり、
段差部の相互間隔が0.5〜3.0mmであることを特
徴とする請求項1ないし請求項5のいずれかに記載の骨
接合ピン。
6. The step portion has a width of 0.1 to 1.0 mm,
The osteosynthesis pin according to any one of claims 1 to 5, wherein an interval between the steps is 0.5 to 3.0 mm.
【請求項7】軸方向に延伸され、生体内分解吸収性ポリ
マーの分子鎖又は結晶が軸方向に配向していることを特
徴とする請求項1ないし請求項6のいずれかに記載の骨
接合ピン。
7. The osteosynthesis according to claim 1, wherein the osteosynthesis is stretched in the axial direction, and the molecular chains or crystals of the biodegradable and absorbable polymer are oriented in the axial direction. pin.
【請求項8】圧縮され、生体内分解吸収性ポリマーの分
子鎖又は結晶が、骨接合ピンの中心軸又はこれと平行な
軸に向かって周囲から斜めに配向していることを特徴と
する請求項1ないし請求項6のいずれかに記載の骨接合
ピン。
8. The method according to claim 1, wherein the molecular chains or crystals of the compressed bioerodible resorbable polymer are oriented obliquely from the periphery toward the central axis of the osteosynthesis pin or an axis parallel thereto. An osteosynthesis pin according to any one of claims 1 to 6.
【請求項9】圧縮され、生体内分解吸収性ポリマーの分
子鎖又は結晶が、骨接合ピンをその軸方向と直角の方向
に二等分する面又はこれと平行な面に向かって両側から
斜めに配向していることを特徴とする請求項1ないし請
求項6のいずれかに記載の骨接合ピン。
9. The compressed, biodegradable and absorbable polymer molecular chains or crystals are inclined from both sides toward a plane bisecting or parallel to the osteosynthesis pin in a direction perpendicular to the axial direction thereof. The osteosynthesis pin according to any one of claims 1 to 6, wherein the osteosynthesis pin is oriented in a direction.
【請求項10】バイオセラミックス粉体が均一な濃度で
含有されていることを特徴とする請求項1ないし請求項
9のいずれかに記載の骨接合ピン。
10. The osteosynthesis pin according to claim 1, wherein the bioceramic powder is contained at a uniform concentration.
【請求項11】バイオセラミックス粉体の均一な含有濃
度が10〜60重量%であることを特徴とする請求項1
0に記載の骨接合ピン。
11. The method according to claim 1, wherein the uniform concentration of the bioceramics powder is 10 to 60% by weight.
The osteosynthesis pin according to 0.
【請求項12】ピン全体が湾曲していることを特徴とす
る請求項1ないし請求項11のいずれかに記載の骨接合
ピン。
12. The osteosynthesis pin according to claim 1, wherein the entire pin is curved.
JP26937496A 1996-09-18 1996-09-18 Osteosynthesis pin Expired - Lifetime JP3263806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26937496A JP3263806B2 (en) 1996-09-18 1996-09-18 Osteosynthesis pin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26937496A JP3263806B2 (en) 1996-09-18 1996-09-18 Osteosynthesis pin

Publications (2)

Publication Number Publication Date
JPH1085231A true JPH1085231A (en) 1998-04-07
JP3263806B2 JP3263806B2 (en) 2002-03-11

Family

ID=17471518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26937496A Expired - Lifetime JP3263806B2 (en) 1996-09-18 1996-09-18 Osteosynthesis pin

Country Status (1)

Country Link
JP (1) JP3263806B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070278A (en) * 1998-08-31 2000-03-07 Takiron Co Ltd Screw for fixing artificial joint and joining bone
KR100365162B1 (en) * 2000-03-30 2002-12-16 (주)아미티에 A process for preparing the biodegradable bone fixing device
WO2007105600A1 (en) 2006-03-10 2007-09-20 Takiron Co., Ltd. Composite implant material
JP2009525833A (en) * 2006-02-09 2009-07-16 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and instrument for fracture fixation
JP2016190065A (en) * 2004-08-09 2016-11-10 マーク エー. レイリー, Systems and methods for fixation or fusion of bone
US9662128B2 (en) 2004-08-09 2017-05-30 Si-Bone Inc. Systems and methods for the fusion of the sacral-iliac joint
US9675394B2 (en) 2004-08-09 2017-06-13 Si-Bone Inc. Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
US9839448B2 (en) 2013-10-15 2017-12-12 Si-Bone Inc. Implant placement
US9936983B2 (en) 2013-03-15 2018-04-10 Si-Bone Inc. Implants for spinal fixation or fusion
US9949843B2 (en) 2004-08-09 2018-04-24 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
US9956013B2 (en) 2004-08-09 2018-05-01 Si-Bone Inc. Systems and methods for the fixation or fusion of bone
US10166033B2 (en) 2014-09-18 2019-01-01 Si-Bone Inc. Implants for bone fixation or fusion
US10194962B2 (en) 2014-09-18 2019-02-05 Si-Bone Inc. Matrix implant
US10201427B2 (en) 2012-03-09 2019-02-12 Si-Bone Inc. Integrated implant
US10363140B2 (en) 2012-03-09 2019-07-30 Si-Bone Inc. Systems, device, and methods for joint fusion
US10376206B2 (en) 2015-04-01 2019-08-13 Si-Bone Inc. Neuromonitoring systems and methods for bone fixation or fusion procedures
US10426533B2 (en) 2012-05-04 2019-10-01 Si-Bone Inc. Fenestrated implant
US11116519B2 (en) 2017-09-26 2021-09-14 Si-Bone Inc. Systems and methods for decorticating the sacroiliac joint
US11147688B2 (en) 2013-10-15 2021-10-19 Si-Bone Inc. Implant placement
US11234830B2 (en) 2019-02-14 2022-02-01 Si-Bone Inc. Implants for spinal fixation and or fusion
US11369419B2 (en) 2019-02-14 2022-06-28 Si-Bone Inc. Implants for spinal fixation and or fusion
US11571245B2 (en) 2019-11-27 2023-02-07 Si-Bone Inc. Bone stabilizing implants and methods of placement across SI joints
US11633292B2 (en) 2005-05-24 2023-04-25 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
US11752011B2 (en) 2020-12-09 2023-09-12 Si-Bone Inc. Sacro-iliac joint stabilizing implants and methods of implantation
US11980399B2 (en) 2021-03-30 2024-05-14 Si-Bone Inc. Implants for spinal fixation or fusion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329663A (en) * 1989-06-28 1991-02-07 Takiron Co Ltd In vivo decomposable and absorptive molded product for surgical use
JPH0363901B2 (en) * 1986-09-11 1991-10-03 Gunze Kk
JPH05200050A (en) * 1991-07-22 1993-08-10 Synthes Ag Absorbable fixture with rigidity con- trolled for treating hominal substance in vivo and inserter therefor
JPH08206121A (en) * 1994-10-04 1996-08-13 Synthes Ag Expanding type sewing thread anchor
JPH09149907A (en) * 1995-11-29 1997-06-10 Terumo Corp Bone fixing tool, and bone fixing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363901B2 (en) * 1986-09-11 1991-10-03 Gunze Kk
JPH0329663A (en) * 1989-06-28 1991-02-07 Takiron Co Ltd In vivo decomposable and absorptive molded product for surgical use
JPH05200050A (en) * 1991-07-22 1993-08-10 Synthes Ag Absorbable fixture with rigidity con- trolled for treating hominal substance in vivo and inserter therefor
JPH08206121A (en) * 1994-10-04 1996-08-13 Synthes Ag Expanding type sewing thread anchor
JPH09149907A (en) * 1995-11-29 1997-06-10 Terumo Corp Bone fixing tool, and bone fixing system

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070278A (en) * 1998-08-31 2000-03-07 Takiron Co Ltd Screw for fixing artificial joint and joining bone
KR100365162B1 (en) * 2000-03-30 2002-12-16 (주)아미티에 A process for preparing the biodegradable bone fixing device
US10004547B2 (en) 2004-08-09 2018-06-26 Si-Bone Inc. Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
JP2016190065A (en) * 2004-08-09 2016-11-10 マーク エー. レイリー, Systems and methods for fixation or fusion of bone
US9662128B2 (en) 2004-08-09 2017-05-30 Si-Bone Inc. Systems and methods for the fusion of the sacral-iliac joint
US9675394B2 (en) 2004-08-09 2017-06-13 Si-Bone Inc. Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
US9743969B2 (en) 2004-08-09 2017-08-29 Si-Bone Inc. Systems and methods for the fixation or fusion of bone
US9820789B2 (en) 2004-08-09 2017-11-21 Si-Bone Inc. Systems and methods for the fixation or fusion of bone
US9949843B2 (en) 2004-08-09 2018-04-24 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
US9956013B2 (en) 2004-08-09 2018-05-01 Si-Bone Inc. Systems and methods for the fixation or fusion of bone
US11633292B2 (en) 2005-05-24 2023-04-25 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
JP2013031688A (en) * 2006-02-09 2013-02-14 Synthes Gmbh Method and apparatus for bone fracture fixation
US8740903B2 (en) 2006-02-09 2014-06-03 DePuy Synthes Products, LLC Method and apparatus for bone fracture fixation
JP2009525833A (en) * 2006-02-09 2009-07-16 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and instrument for fracture fixation
WO2007105600A1 (en) 2006-03-10 2007-09-20 Takiron Co., Ltd. Composite implant material
US11672664B2 (en) 2012-03-09 2023-06-13 Si-Bone Inc. Systems, devices, and methods for joint fusion
US11471286B2 (en) 2012-03-09 2022-10-18 Si-Bone Inc. Systems, devices, and methods for joint fusion
US11337821B2 (en) 2012-03-09 2022-05-24 Si-Bone Inc. Integrated implant
US10201427B2 (en) 2012-03-09 2019-02-12 Si-Bone Inc. Integrated implant
US10363140B2 (en) 2012-03-09 2019-07-30 Si-Bone Inc. Systems, device, and methods for joint fusion
US11446069B2 (en) 2012-05-04 2022-09-20 Si-Bone Inc. Fenestrated implant
US10426533B2 (en) 2012-05-04 2019-10-01 Si-Bone Inc. Fenestrated implant
US11478287B2 (en) 2012-05-04 2022-10-25 Si-Bone Inc. Fenestrated implant
US11291485B2 (en) 2012-05-04 2022-04-05 Si-Bone Inc. Fenestrated implant
US10959758B2 (en) 2013-03-15 2021-03-30 Si-Bone Inc. Implants for spinal fixation or fusion
US9936983B2 (en) 2013-03-15 2018-04-10 Si-Bone Inc. Implants for spinal fixation or fusion
US9839448B2 (en) 2013-10-15 2017-12-12 Si-Bone Inc. Implant placement
US11147688B2 (en) 2013-10-15 2021-10-19 Si-Bone Inc. Implant placement
US10166033B2 (en) 2014-09-18 2019-01-01 Si-Bone Inc. Implants for bone fixation or fusion
US11071573B2 (en) 2014-09-18 2021-07-27 Si-Bone Inc. Matrix implant
US10194962B2 (en) 2014-09-18 2019-02-05 Si-Bone Inc. Matrix implant
US11684378B2 (en) 2014-09-18 2023-06-27 Si-Bone Inc. Implants for bone fixation or fusion
US10376206B2 (en) 2015-04-01 2019-08-13 Si-Bone Inc. Neuromonitoring systems and methods for bone fixation or fusion procedures
US11877756B2 (en) 2017-09-26 2024-01-23 Si-Bone Inc. Systems and methods for decorticating the sacroiliac joint
US11116519B2 (en) 2017-09-26 2021-09-14 Si-Bone Inc. Systems and methods for decorticating the sacroiliac joint
US11234830B2 (en) 2019-02-14 2022-02-01 Si-Bone Inc. Implants for spinal fixation and or fusion
US11678997B2 (en) 2019-02-14 2023-06-20 Si-Bone Inc. Implants for spinal fixation and or fusion
US11369419B2 (en) 2019-02-14 2022-06-28 Si-Bone Inc. Implants for spinal fixation and or fusion
US11672570B2 (en) 2019-11-27 2023-06-13 Si-Bone Inc. Bone stabilizing implants and methods of placement across SI Joints
US11571245B2 (en) 2019-11-27 2023-02-07 Si-Bone Inc. Bone stabilizing implants and methods of placement across SI joints
US11752011B2 (en) 2020-12-09 2023-09-12 Si-Bone Inc. Sacro-iliac joint stabilizing implants and methods of implantation
US11980399B2 (en) 2021-03-30 2024-05-14 Si-Bone Inc. Implants for spinal fixation or fusion

Also Published As

Publication number Publication date
JP3263806B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
JP3263806B2 (en) Osteosynthesis pin
JP3223346B2 (en) Osteosynthesis screw washers
US6908582B2 (en) Method for adjusting the shape of a biodegradable and bioabsorbable implant material
CA2239776C (en) Under tissue conditions degradable material and a method for its manufacturing
US7708767B2 (en) Polymer-based orthopedic screw and driver system with increased insertion torque tolerance and associated method for making and using same
EP0525352B1 (en) Resorbable fixation device with controlled stiffness for treating bodily material in vivo and introducer therefor
JP2002325832A (en) High strength complex implant material and manufacture thereof
EP0815878A3 (en) High strength internal bone fixation devices and process for forming same
US5529736A (en) Process of making a bone healing device
EP1031323B1 (en) Method of manufacturing a bone connecting device
JP3239127B2 (en) Composite high-strength implant material and method for producing the same
JP3215047B2 (en) Manufacturing method of osteosynthesis material
JP3861229B2 (en) Implant material for bone and joint fixation
JPH06142182A (en) Internal fixing material for joining bone
JP6408966B2 (en) Ligament fixture
JP6393211B2 (en) Insertable bone anchor
JP2000189436A (en) Device for joining bone
JP2005066354A (en) Composite osteosynthesis material
JP2000070278A (en) Screw for fixing artificial joint and joining bone
JP2000308680A (en) Medical treatment material having high searing strength and manufacture thereof
JP2002017760A (en) Shank/vertebra healing implant material
JPH08284942A (en) Screw fixing system
JP2002253665A (en) Screw for fixing artificial hip joint
JPH09135892A (en) Bone joint material
JPH09239758A (en) Compression oriented molded object and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term