JPH1079307A - Magnetic recording medium and magnetic recording reproduction device - Google Patents

Magnetic recording medium and magnetic recording reproduction device

Info

Publication number
JPH1079307A
JPH1079307A JP23340796A JP23340796A JPH1079307A JP H1079307 A JPH1079307 A JP H1079307A JP 23340796 A JP23340796 A JP 23340796A JP 23340796 A JP23340796 A JP 23340796A JP H1079307 A JPH1079307 A JP H1079307A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
film
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23340796A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yoshida
和悦 吉田
Yoshinori Hara
美紀 原
Yoshiyuki Hirayama
義幸 平山
Masaaki Futamoto
正昭 二本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23340796A priority Critical patent/JPH1079307A/en
Publication of JPH1079307A publication Critical patent/JPH1079307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce noise and to enhance reproduction output by a method wherein a magnetic thin film has a hexagonal system structure, c-axis is in almost vertical direction to the surface of the thin film or it is inclined to one direction from vertical direction, the Cr density in the grain boundary of the microscopic crystal grain of the magnetic thin film is higher than the average Cr density of the magnetic thin film. SOLUTION: A Ti-Cr alloy film is formed on a disc substrate, consisting of an Al-Mg alloy having a nickel/phosphorus alloy plated film, using a sputtering method, and a magnetic disc is formed by providing a Co-Cr alloy magnetic film and a carbon film as a protective film. The crystal structure of the Co-Cr alloy is hexagonal system, and c-axis is oriented in almost vertical or vertical direction to film surface. The Co density in crystal grain field is higher than the average density of the magnetic thin film and lower than 25 atomic %. The Co-Cr alloy, which is segregated to a grain boundary, has weak spontaneous magnification, a weak replacement interaction works between the adjacent particles, and reproduction output can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、垂直磁気異方性を
有する強磁性薄膜を記録層として用いた磁気記録媒体に
関し、高密度記録においても高い信号対雑音比(S/
N)を有する磁気記録媒体及びそれを用いた磁気記録再
生装置に関する。
The present invention relates to a magnetic recording medium using a ferromagnetic thin film having perpendicular magnetic anisotropy as a recording layer, and has a high signal-to-noise ratio (S / S) even in high-density recording.
N) and a magnetic recording / reproducing apparatus using the same.

【0002】[0002]

【従来の技術】近年の情報機器が扱う情報量の増大には
目覚ましいものがあり、ファイルメディアとして用いら
れる磁気ディスクやフロッピーディスク、磁気テープの
記憶容量の飛躍的な向上が強く望まれている。このよう
な情勢の中で、磁気記録媒体は微細な磁性粉を用いた塗
布型媒体から、強磁性金属薄膜を用いた薄膜型媒体へと
移行している。
2. Description of the Related Art In recent years, there has been a remarkable increase in the amount of information handled by information equipment, and there is a strong demand for a dramatic improvement in the storage capacity of magnetic disks, floppy disks, and magnetic tapes used as file media. Under such circumstances, the magnetic recording medium has shifted from a coating type medium using fine magnetic powder to a thin film type medium using a ferromagnetic metal thin film.

【0003】ところで、磁気記録においては、情報の記
録は記録媒体となる強磁性層の微小領域の磁化の向きを
反転させることによって行われる。現在、磁気記録媒体
としては、磁化の向きを媒体面に対して平行に書き込
む、いわゆる長手記録方式が広く用いられている。この
記録方式においては、その高記録密度化は媒体の保磁力
を高めるか、磁性層の厚さを薄くすることによって進め
られている。しかし、長手記録媒体の厚さは現在でも既
に40nm以下であり、さらに薄膜化するにはトライボ
ロジ的に強度があり、かつ欠陥の少ない膜を形成する高
度な製膜技術が必要となる。それに加えて、記録・再生
特性の面から見ても、さらなる薄膜化は再生出力の低下
及び信号対雑音比の劣化をもたらし、高密度化への大き
な障害となっている。
[0003] In magnetic recording, information is recorded by reversing the direction of magnetization in a minute region of a ferromagnetic layer serving as a recording medium. At present, as a magnetic recording medium, a so-called longitudinal recording method, in which the direction of magnetization is written in parallel to the medium surface, is widely used. In this recording method, the increase in recording density has been promoted by increasing the coercive force of the medium or reducing the thickness of the magnetic layer. However, the thickness of the longitudinal recording medium is already 40 nm or less even today, and further thinning requires an advanced film forming technique for forming a film having tribological strength and few defects. In addition, from the viewpoint of recording / reproducing characteristics, further thinning causes a decrease in reproduction output and a deterioration of a signal-to-noise ratio, which is a major obstacle to high density.

【0004】一方、上記した欠点を解決する方法とし
て、記録磁化を媒体膜面に対して垂直方向に磁化する垂
直記録方式が提案されている。この方式では膜面垂直方
向に強い磁気異方性をもつ材料が必要であり、Co−C
r合金に代表される厚さ0.05〜0.5μmの比較的
厚めの合金磁性層が広く用いられている。この記録方式
の優れた点は、記録密度が高くなるほど記録された磁化
がエネルギー的に安定となり、本質的に高密度記録に向
いていることにある。しかも、この方式では長手記録方
式と異なり、記録密度を上げるために膜厚を薄くした
り、保磁力を高める必要がないという製造上の利点を持
っている。
On the other hand, as a method for solving the above-mentioned disadvantage, a perpendicular recording system in which recording magnetization is magnetized in a direction perpendicular to the medium film surface has been proposed. In this method, a material having strong magnetic anisotropy in the direction perpendicular to the film surface is required, and Co-C
A relatively thick alloy magnetic layer having a thickness of 0.05 to 0.5 μm typified by an r alloy is widely used. The advantage of this recording method is that the higher the recording density, the more stable the recorded magnetization becomes in terms of energy, and is essentially suitable for high-density recording. In addition, unlike the longitudinal recording method, this method has an advantage in manufacturing that it is not necessary to reduce the film thickness or increase the coercive force in order to increase the recording density.

【0005】[0005]

【発明が解決しようとする課題】この垂直記録用記録媒
体に対しては、特開昭57ー109127号公報、日本
応用磁気学会誌、9巻2号、57〜60ページ(198
5年)、あるいはIEEE Trans.,MAG−2
4,No.6,2706〜2708ページ(1988
年)等に示されているように、媒体を構成する微小粒子
の粒界に非磁性のCr原子を偏析させることが好ましい
とされている。これは、粒子表面にCr濃度の高い領域
を作ることによって、耐食性が向上すること、及び長手
記録媒体の場合と同様に非磁性のCr原子が粒界に偏析
することにより粒子間の磁気的な交換相互作用が断ち切
られ、磁区が微細化し媒体雑音が低減するためと考えら
れているからである。一般的には、交換相互作用を断ち
切るには、粒界におけるCr濃度をCo−Cr系合金の
自発磁化が消失する25at%以上にすることが望まし
いとされている。
The recording medium for perpendicular recording is disclosed in JP-A-57-109127, Journal of the Japan Society of Applied Magnetics, Vol. 9, No. 2, pp. 57-60 (198).
5 years), or IEEE Trans. , MAG-2
4, No. 6, 2706-2708 (1988
It is said that it is preferable to segregate non-magnetic Cr atoms at the grain boundaries of the fine particles constituting the medium, as shown in (1). This is because the corrosion resistance is improved by creating a region with a high Cr concentration on the particle surface, and magnetic separation between particles is caused by segregation of non-magnetic Cr atoms at the grain boundaries as in the case of the longitudinal recording medium. This is because it is considered that the exchange interaction is cut off, the magnetic domain becomes finer, and the medium noise is reduced. Generally, in order to break the exchange interaction, it is desirable that the Cr concentration at the grain boundary be 25 at% or more at which the spontaneous magnetization of the Co—Cr alloy disappears.

【0006】しかしながら、Cr原子の偏析が進行した
条件で垂直磁気記録媒体を作製したとしても、必ずしも
高い再生出力と記録密度特性が得られるわけではなく、
垂直記録の利点を完全に引き出すまでには至っていなか
った。
However, even if a perpendicular magnetic recording medium is manufactured under the condition that the segregation of Cr atoms has progressed, high reproduction output and recording density characteristics cannot always be obtained.
The advantages of perpendicular recording had not yet been fully exploited.

【0007】本発明の目的は、上記した垂直記録の問題
点を解決し、雑音が少なくかつ高い再生出力が得られる
垂直磁気記録媒体及びそれを用いた磁気記録再生装置を
提供することにある。
An object of the present invention is to solve the above-mentioned problems of perpendicular recording, and to provide a perpendicular magnetic recording medium capable of obtaining a high reproduction output with less noise and a magnetic recording / reproducing apparatus using the same.

【0008】[0008]

【課題を解決するための手段】本発明者等は、垂直磁気
記録媒体の磁気記録再生特性と媒体特性の関係について
実験を繰り返して鋭意検討した結果、Co−Cr合金を
構成する微小結晶の粒界におけるCr濃度が記録再生特
性に大きな影響を与え、その最適Cr濃度は従来考えら
れていたより低い範囲に存在し、Cr濃度を21〜24
at%もしくは21〜25at%として隣接する結晶粒
の間に弱い磁気的な交換相互作用を作用させることによ
って、再生出力が大幅に向上し、かつ信号対雑音比(S
/N)が大幅に改善されることを見いだし、本発明を完
成した。
Means for Solving the Problems The inventors of the present invention have repeatedly conducted experiments on the relationship between the magnetic recording / reproducing characteristics of a perpendicular magnetic recording medium and the characteristics of the medium, and as a result, have found that fine crystal grains constituting a Co-Cr alloy have been obtained. The Cr concentration in the field greatly affects the recording / reproducing characteristics, and the optimum Cr concentration is in a lower range than conventionally thought, and the Cr concentration is 21 to 24.
By applying a weak magnetic exchange interaction between adjacent crystal grains as at% or 21 to 25 at%, the reproduction output is greatly improved and the signal-to-noise ratio (S
/ N) is greatly improved, and the present invention has been completed.

【0009】すなわち、本発明は、非磁性基体上に直
接、又は非磁性の金属膜もしくは強磁性金属膜からなる
中間層を介して、Co及びCrを主成分とするCo−C
r系合金磁性薄膜を設けた磁気記録媒体において、磁性
薄膜は結晶構造が六方晶であって、そのc軸が薄膜面に
対して略垂直方向もしくは垂直方向から一方向に傾いて
おり、該磁性薄膜の構成単位となる微結晶粒の粒界にお
けるCr濃度が該磁性薄膜の平均Cr濃度より高く、2
5at%より低いことを特徴とする。
That is, the present invention provides a method for producing a Co—C containing Co and Cr as main components directly on a nonmagnetic substrate or via an intermediate layer made of a nonmagnetic metal film or a ferromagnetic metal film.
In a magnetic recording medium provided with an r-based alloy magnetic thin film, the magnetic thin film has a hexagonal crystal structure, and its c-axis is inclined substantially perpendicular to the thin film surface or in one direction from the perpendicular direction. The Cr concentration at the grain boundaries of the microcrystal grains, which are the constituent units of the thin film, is higher than the average Cr concentration of the magnetic thin film.
It is characterized by being lower than 5 at%.

【0010】粒界のCr濃度は、21〜24at%の範
囲とすることができる。
[0010] The Cr concentration at the grain boundary can be in the range of 21 to 24 at%.

【0011】また、Co−Cr系磁性薄膜を、Ta,P
t,Ni,Nd,B,Siの群から選択された少なくと
も1種類の元素を添加したCo−Cr系合金薄膜とし、
粒界におけるCrと第3元素とを合わせた濃度を21〜
25at%の範囲とすることができる。
A Co—Cr-based magnetic thin film is made of Ta, P
a Co—Cr-based alloy thin film to which at least one element selected from the group consisting of t, Ni, Nd, B, and Si is added;
The combined concentration of Cr and the third element in the grain boundary is 21 to
It can be in the range of 25 at%.

【0012】中間層を構成する非磁性の金属膜は、T
i,Ge,Cr−Ti合金、Zn等とすることができ、
強磁性金属膜はパーマロイ等とすることができる。
The non-magnetic metal film constituting the intermediate layer is made of T
i, Ge, Cr-Ti alloy, Zn, etc.,
The ferromagnetic metal film can be made of permalloy or the like.

【0013】本発明の磁気記録媒体は、磁気記録媒体を
回転する駆動部、記録再生用の磁気ヘッド、磁気ヘッド
を磁気記録媒体に対して相対運動させる手段、磁気ヘッ
ドの出力から信号再生を行う手段等を備える磁気記録再
生装置に組み込んで使用される。
The magnetic recording medium of the present invention includes a driving unit for rotating the magnetic recording medium, a magnetic head for recording and reproduction, means for moving the magnetic head relative to the magnetic recording medium, and signal reproduction from the output of the magnetic head. It is used by being incorporated in a magnetic recording / reproducing apparatus having means and the like.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施例を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】[0015]

【実施例】【Example】

〔実施例1〕ニッケル(Ni)と燐(P)合金めっき膜
が施された、Al−Mg合金からなるディスク基板上
に、スパッタリング法を用いて厚さ0.2μmのTi−
10at%Cr合金膜を形成した後、Co−19at%
Crの組成を持つ厚さ0.05μmのCo−Cr合金磁
性薄膜を基板温度150℃で形成した。さらに、保護膜
として、厚さ0.015μmのカーボン膜を形成した。
このような方法で作製した試料を磁気ディスクS1とす
る。なお、作製された合金磁性薄膜の結晶構造は六方晶
であり、そのc軸が膜面に対して垂直方向に配向してい
ることをX線回折装置により確認した。
[Example 1] On a disk substrate made of an Al-Mg alloy coated with a nickel (Ni) and phosphorus (P) alloy plating film, a Ti-
After forming a 10 at% Cr alloy film, Co-19 at%
A 0.05 μm thick Co—Cr alloy magnetic thin film having a Cr composition was formed at a substrate temperature of 150 ° C. Further, a carbon film having a thickness of 0.015 μm was formed as a protective film.
A sample manufactured by such a method is referred to as a magnetic disk S1. The crystal structure of the manufactured alloy magnetic thin film was hexagonal, and it was confirmed by an X-ray diffraction apparatus that the c-axis was oriented in a direction perpendicular to the film surface.

【0016】さらに、Co−Cr膜をスパッタリング形
成する時の基板温度を200℃あるいは250℃、30
0℃としたこと以外は同じ条件で試料を作製し、各試料
をそれぞれディスクS2、S3、S4とした。
Further, the substrate temperature at the time of forming a Co—Cr film by sputtering is set to 200 ° C. or 250 ° C.
Samples were prepared under the same conditions except that the temperature was set to 0 ° C., and the samples were used as disks S2, S3, and S4, respectively.

【0017】このようにして作製した試料の磁気特性
を、振動試料型磁力計(VSM)で測定し、飽和磁化
(Ms)、保磁力(Hc)を求めた。なお磁界の印加方
向は膜面垂直方向とした。その結果を図2にまとめた。
The magnetic properties of the sample thus prepared were measured with a vibrating sample magnetometer (VSM) to determine the saturation magnetization (Ms) and the coercive force (Hc). The direction of application of the magnetic field was perpendicular to the film surface. The results are summarized in FIG.

【0018】さらに、各試料の微視領域における組成分
布を調べるために、高分解能のエネルギー分散X線分光
検出器(EDX;Energy Dispersive X-ray Spectrosco
py)を用いて結晶粒界及び結晶内部におけるCr元素と
Co元素の濃度を測定した。測定に使用したEDX装置
の電子線径は約1.5nmであり、直径2nm程度の微
小領域の組成を測定することが出来る。図3に、ディス
クS1〜S4の粒界におけるCr濃度と基板温度の関係
を示した。
Further, in order to examine the composition distribution in the microscopic region of each sample, a high-resolution energy dispersive X-ray spectrometer (EDX) is used.
py) was used to measure the concentrations of the Cr element and the Co element at the crystal grain boundaries and inside the crystal. The electron beam diameter of the EDX device used for the measurement is about 1.5 nm, and the composition of a minute region having a diameter of about 2 nm can be measured. FIG. 3 shows the relationship between the Cr concentration at the grain boundaries of the disks S1 to S4 and the substrate temperature.

【0019】図2から分かるように、基板温度を上げる
につれて保磁力が増大する。特に、200℃〜250℃
の範囲で急激な変化を示している。一方、図3から分か
るように粒界におけるCr濃度は、基板温度の上昇につ
れて高くなる。200℃以上の基板温度で作製したディ
スクでは粒界におけるCr濃度は21at%以上とな
り、試料を溶解して化学的分析法で求めた膜の全体的な
平均組成19at%より高くなっており、Co−Cr膜
の製膜過程において組成の偏析が進行し、粒子の表面部
(粒界)においてCr濃度の高い領域が形成されること
を示している。また、保磁力の基板温度依存性は、非磁
性のCr原子の偏析による粒子間の磁気的な相互作用の
低減により、保磁力が向上することを示している。
As can be seen from FIG. 2, the coercive force increases as the substrate temperature increases. In particular, 200 ° C to 250 ° C
Shows a rapid change in the range. On the other hand, as can be seen from FIG. 3, the Cr concentration at the grain boundary increases as the substrate temperature increases. In a disk manufactured at a substrate temperature of 200 ° C. or higher, the Cr concentration at the grain boundary was 21 at% or higher, and the sample was dissolved and the overall average composition of the film determined by chemical analysis was higher than 19 at%. This indicates that the segregation of the composition progresses in the process of forming the Cr film, and a region having a high Cr concentration is formed at the surface portion (grain boundary) of the particle. The dependence of the coercive force on the substrate temperature indicates that the coercive force is improved by reducing the magnetic interaction between particles due to segregation of nonmagnetic Cr atoms.

【0020】次に、作製したディスクの記録再生特性
を、磁気ディスク記録再生テスターを用いて評価した。
記録と再生に用いた磁気ヘッドは、ギャップ長0.2μ
m、トラック幅4.5μm、コイル巻数30ターンの薄
膜ヘッドである。ヘッドの媒体対向面と媒体表面の距
離、浮上高さを0.06μm、周速10m/sとし、線
記録密度160kFCIの条件で、‘オール1’の信号
を記録した時の再生出力と媒体雑音を測定した。その結
果を図1に示した。
Next, the recording and reproducing characteristics of the manufactured disk were evaluated using a magnetic disk recording and reproducing tester.
The magnetic head used for recording and reproduction has a gap length of 0.2μ.
m, a track width of 4.5 μm, and a coil turn of 30 turns. Reproduction output and medium noise when "all 1" signals were recorded under the conditions of a distance between the medium facing surface of the head and the medium surface, a flying height of 0.06 μm, a peripheral speed of 10 m / s, and a linear recording density of 160 kFCI. Was measured. The result is shown in FIG.

【0021】図1中横軸は、エネルギー分散X線分光検
出器から求めた結晶粒界におけるCr濃度である。図か
ら明らかなように、再生出力はCr濃度23.5at%
近傍において最大値を示している。この値は従来最適と
されていた25at%より低い値である。一方媒体雑音
は、Cr濃度が高くなると急激に減少するがCr濃度が
22at%以上では、それほど大きな違いが無くなるこ
とが分かる。
The horizontal axis in FIG. 1 is the Cr concentration at the crystal grain boundaries obtained from the energy dispersive X-ray spectrometer. As is clear from the figure, the reproduction output was a Cr concentration of 23.5 at%.
The maximum value is shown in the vicinity. This value is lower than 25 at%, which was conventionally determined to be optimal. On the other hand, it can be seen that the medium noise sharply decreases as the Cr concentration increases, but that the difference is not so large when the Cr concentration is 22 at% or more.

【0022】以上の結果は、信号対雑音比(S/N)の
観点からは、Cr濃度の最適範囲は概略21〜24at
%の範囲にあることを示している。この濃度範囲では粒
界に偏析したCo−Cr合金はまだ弱い自発磁化を持っ
ており、隣接した粒子の間で弱い交換相互作用が働いて
いる。この相互作用が出力を向上させる上で有効に作用
しているものと推定される。これに対して、従来最適と
されていた粒界でのCr濃度25at%以上となるディ
スクS4では、Co−Cr合金は非磁性となり交換相互
作用は生じない。このことが、媒体雑音は低いが再生出
力を劣化させる原因になっているものと考えられる。
The above results show that, from the viewpoint of the signal-to-noise ratio (S / N), the optimum range of the Cr concentration is approximately 21 to 24 at.
%. In this concentration range, the Co—Cr alloy segregated at the grain boundaries still has a weak spontaneous magnetization, and a weak exchange interaction is acting between adjacent grains. It is presumed that this interaction works effectively in improving the output. On the other hand, in the disk S4 in which the Cr concentration at the grain boundary is 25 at% or more, which has been conventionally optimized, the Co-Cr alloy is non-magnetic, and no exchange interaction occurs. This is considered to be a cause of deterioration of the reproduction output although the medium noise is low.

【0023】このように、粒界のCr濃度を調整するこ
とにより再生出力が向上するのは次のような理由による
ものと考えられる。垂直記録においては、記録ビットの
境界となる磁気遷移領域の近傍では、静磁気的なエネル
ギーより交換相互作用によるエネルギーの方が支配的と
なる。そのため交換相互作用によるエネルギーを下げる
ために磁化遷移領域の長さが短くなった方が有利とな
る。すなわち、磁化遷移領域がジグザグに乱れるより、
直線的になった方がエネルギー的に安定しやすい。この
ことは、磁気記録的には再生出力を向上させることにな
る。ただし、過剰な交換相互作用が存在すると、磁区サ
イズが大きくなり、高密度の記録ができなくなるととも
に、媒体ノイズを増大させる原因となり好ましくない。
It is considered that the reproduction output is improved by adjusting the Cr concentration in the grain boundary as described above for the following reason. In perpendicular recording, in the vicinity of a magnetic transition region that is a boundary between recording bits, energy due to exchange interaction is dominant over magnetostatic energy. Therefore, it is more advantageous to shorten the length of the magnetization transition region in order to reduce the energy due to the exchange interaction. That is, rather than the magnetization transition region being disturbed zigzag,
It is easier for energy to be stable if it is linear. This improves the reproduction output in terms of magnetic recording. However, if an excessive exchange interaction is present, the magnetic domain size becomes large, so that high-density recording cannot be performed and media noise increases, which is not preferable.

【0024】以上の実施例から明かなように、垂直記録
用Co−Cr合金薄膜においては、粒子の表面(粒界)
におけるCr濃度を21〜24at%に設定すること
が、再生出力とS/N比の点から好ましい。
As is clear from the above examples, in the Co—Cr alloy thin film for perpendicular recording, the surface (grain boundary) of the particles is used.
Is preferably set at 21 to 24 at% in view of reproduction output and S / N ratio.

【0025】〔実施例2〕次に、Co−Cr2元合金に
Taを添加した磁性薄膜においても、結晶粒の境界にお
けるCr濃度を実施例1と同様に従来の25at%より
低い21〜25at%未満にすることにより、媒体雑音
を増大させることなく、高い再生出力を得ることができ
ることを示す。
[Embodiment 2] Next, also in a magnetic thin film obtained by adding Ta to a Co-Cr binary alloy, the Cr concentration at the boundary of the crystal grain was made 21 to 25 at% lower than the conventional 25 at% as in the first embodiment. This indicates that by setting the value to less than the above, a high reproduction output can be obtained without increasing the medium noise.

【0026】試料の作製法は、実施例1と同じである
が、Taを添加したディスクにおいては、Co−17a
t%Cr−3at%Taの組成を持つスパッタリングタ
ーゲットを用いた。他の作製条件は同じにして、実施例
1と同じく基板温度を170℃、200℃、250℃、
300℃と変化させて試料を作製した。Taを添加した
試料ディスクを基板温度の低い順番にT1、T2、T
3、T4とする。
The preparation method of the sample is the same as that of the first embodiment, except that the Co-17a
A sputtering target having a composition of t% Cr-3at% Ta was used. The other manufacturing conditions were the same, and the substrate temperature was 170 ° C., 200 ° C., 250 ° C., as in Example 1.
A sample was prepared by changing the temperature to 300 ° C. The sample disks to which Ta was added were placed in the order of T1, T2, T
3, T4.

【0027】上記した方法で作製した試料ディスクT
1、T2、T3、T4の粒界におけるCr濃度と記録再
生特性を、実施例1と同じ方法で測定した。結果を図4
に示す。粒界におけるCr濃度と再生出力、及び媒体雑
音の関係は実施例1とは異なった曲線上にのっている
が、図から明らかなように、実施例1と同じ傾向が確認
出来る。すなわち、粒界におけるCr濃度が21〜25
at%の範囲において、媒体雑音が低くかつ出力が高く
なり、Co−Cr2元系媒体より優れたS/N特性が得
られる。
The sample disk T manufactured by the above method
The Cr concentration and recording / reproducing characteristics at the grain boundaries of 1, T2, T3, and T4 were measured in the same manner as in Example 1. Fig. 4 shows the results.
Shown in The relationship between the Cr concentration at the grain boundary, the reproduction output, and the medium noise is on a curve different from that in Example 1, but the same tendency as in Example 1 can be confirmed as is clear from the figure. That is, the Cr concentration at the grain boundary is 21 to 25.
In the range of at%, the medium noise is low and the output is high, and an S / N characteristic superior to that of the Co—Cr binary medium is obtained.

【0028】このように、Taを添加することによりC
o−Cr2元系に比較してより好ましい結果が得られる
のは、結晶粒界におけるCrの偏析状態が均一になり、
局所的な交換相互作用の揺らぎが減少するためと推定さ
れる。
As described above, by adding Ta, C
More preferable results are obtained as compared with the o-Cr binary system because the segregation state of Cr at the crystal grain boundaries becomes uniform,
It is presumed that the fluctuation of the local exchange interaction is reduced.

【0029】なお、ここでは磁性膜にTaを添加する例
について説明したが、磁性膜に添加する元素をTa,P
t,Ni,Nd,B,Siの群から選択された少なくと
も1種類の元素としても同様の効果が得られた。
Although the example in which Ta is added to the magnetic film has been described here, the elements to be added to the magnetic film are Ta, P
Similar effects were obtained with at least one element selected from the group consisting of t, Ni, Nd, B, and Si.

【0030】〔実施例3〕次に、磁気記録層となるCo
−Cr系2元合金磁性薄膜の下地として、パーマロイ層
を用いたいわゆる2層膜媒体においても、実施例1、2
と同じく結晶粒の境界におけるCr濃度を21〜25a
t%未満とすることにより、媒体雑音を増大させること
なく高い再生出力が得られることを示す。
[Embodiment 3] Next, Co to be a magnetic recording layer
Examples 1 and 2 also apply to a so-called two-layer film medium using a permalloy layer as an underlayer for a Cr-based binary alloy magnetic thin film.
In the same manner as in
By setting it to less than t%, it is shown that a high reproduction output can be obtained without increasing the medium noise.

【0031】試料は、非磁性基板上に、下地層として実
施例1及び実施例2で用いたTi−Cr膜の代わりに厚
さ0.3μmのパーマロイ(Ni−20at%Fe)の
強磁性膜をスパッタリング法で設け、その上にCo−1
7at%Cr−3at%Taの組成を有するCo−Cr
−Ta膜をスパッタリング法で形成することで作製し
た。パーマロイ膜作製時の基板温度は200℃で一定と
し、Co−Cr−Ta膜形成時の基板温度を170℃、
200℃、250℃、300℃と変化させて4種類の試
料ディスクを作製した。
The sample was a 0.3 μm thick ferromagnetic film of permalloy (Ni-20 at% Fe) on a non-magnetic substrate instead of the Ti—Cr film used in Examples 1 and 2 as an underlayer. Is provided by a sputtering method, and Co-1
Co-Cr having a composition of 7 at% Cr-3 at% Ta
-It was produced by forming a Ta film by a sputtering method. The substrate temperature at the time of forming the permalloy film was constant at 200 ° C., and the substrate temperature at the time of forming the Co—Cr—Ta film was 170 ° C.
Four types of sample discs were prepared by changing the temperature to 200 ° C., 250 ° C., and 300 ° C.

【0032】上記した方法で作製した試料ディスクの粒
界におけるCrとTa元素濃度と記録再生特性を、実施
例1と同じ方法で測定した結果、実施例2の図4に示し
たのと同様な粒界におけるCr,Ta濃度と再生出力、
及び媒体雑音の関係が得られた。すなわち、粒界におけ
るCrとTa元素の和を21at%以上にすると媒体雑
音が急減すること、また再生出力は24at%近傍で最
大値を示した。ただし、本実施例における再生出力と媒
体雑音の絶対値はパーマロイ下地層の効果により、実施
例1、2の場合より約1.5倍高かった。
The Cr and Ta element concentrations and the recording / reproducing characteristics at the grain boundaries of the sample disk manufactured by the above method were measured by the same method as in Example 1. As a result, the same result as that shown in FIG. Cr and Ta concentrations at grain boundaries and reproduction output,
And the relationship between media noise. That is, when the sum of the Cr and Ta elements at the grain boundaries was set to 21 at% or more, the medium noise was sharply reduced, and the reproduction output showed the maximum value near 24 at%. However, the absolute values of the reproduction output and the medium noise in this embodiment were about 1.5 times higher than those in the first and second embodiments due to the effect of the permalloy underlayer.

【0033】なお、Taに代えてPt,Ni,Nd,B
又はSiを添加したCo−Cr系磁性膜においても、ま
たこれらの元素を2種類以上添加したCo−Cr系磁性
膜においても同様の効果が得られた。
In place of Ta, Pt, Ni, Nd, B
The same effect was obtained in a Co—Cr-based magnetic film to which Si was added or in a Co—Cr-based magnetic film to which two or more of these elements were added.

【0034】〔実施例4〕図5は、本発明による磁気記
録再生装置の一例の模式図である。ヘッド・ディスク・
アッセンブリ4中に、複数枚の磁気ディスク1がスピン
ドル軸に取り付けられており、媒体駆動系(モータ)5
により高速回転される。この磁気ディスク1として、上
記の実施例で作製したディスクを用いた。この磁気ディ
スク1の磁気記録面に対して信号を記録・再生する磁気
ヘッド2が配置されており、そのうちの1個はサーボヘ
ッドとして作用する。磁気ヘッド2は、ヘッド駆動系6
によりアクチュエータ3を介して磁気ディスク1の略半
径方向に移動される。さらに、本装置には、データの記
録再生を行う記録再生系7、その信号を処理する信号処
理系8、これら及び上記駆動系を制御するための制御系
9、上位装置とのデータのやり取りを行う装置I/F部
10等が設けられている。
[Embodiment 4] FIG. 5 is a schematic view showing an example of a magnetic recording / reproducing apparatus according to the present invention. Head disk
A plurality of magnetic disks 1 are mounted on a spindle shaft in an assembly 4 and a medium drive system (motor) 5
Is rotated at high speed. As the magnetic disk 1, the disk manufactured in the above embodiment was used. A magnetic head 2 for recording / reproducing a signal on / from a magnetic recording surface of the magnetic disk 1 is arranged, and one of them functions as a servo head. The magnetic head 2 includes a head drive system 6
Accordingly, the magnetic disk 1 is moved in a substantially radial direction via the actuator 3. The apparatus further includes a recording / reproducing system 7 for recording / reproducing data, a signal processing system 8 for processing the signals, a control system 9 for controlling these and the driving system, and exchange of data with a host device. A device I / F section 10 for performing the operation is provided.

【0035】この磁気記録再生装置を用い、上記のいず
れかの実施例で作製した磁気ディスクにより読み出しを
行ったところ、いずれも十分に高い再生出力と、低い媒
体雑音を得ることができた。
Using this magnetic recording / reproducing apparatus, data was read out from the magnetic disk produced in any of the above-mentioned embodiments. As a result, a sufficiently high reproduction output and low medium noise could be obtained in each case.

【0036】[0036]

【発明の効果】本発明によれば、垂直磁気記録用Co−
Cr系薄膜媒体において、磁性薄膜を構成する微結晶粒
の粒界におけるCr濃度を21〜24at%もしくは2
1〜25at%の範囲にすることにより、媒体雑音を増
加させることなく再生出力が向上し、信号対雑音比(S
/N)の大幅な改善が可能となる。また、本発明による
磁気ディスクを用いた磁気記録再生装置は、高い再生出
力とS/N比を有している。
According to the present invention, according to the present invention, Co-
In a Cr-based thin film medium, the Cr concentration at the grain boundaries of the fine crystal grains constituting the magnetic thin film is 21 to 24 at% or 2 at%.
By setting it in the range of 1 to 25 at%, the reproduction output is improved without increasing the medium noise, and the signal-to-noise ratio (S
/ N) can be greatly improved. Further, the magnetic recording / reproducing apparatus using the magnetic disk according to the present invention has a high reproduction output and an S / N ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Co−Crスパッタディスクの粒界におけるC
r濃度と再生出力、媒体雑音の依存性を示す図。
FIG. 1 shows C at a grain boundary of a Co—Cr sputter disk.
FIG. 7 is a diagram showing the dependence of r density, reproduction output, and medium noise.

【図2】Co−Crスパッタ膜の保磁力と飽和磁化の基
板温度依存性を示す図。
FIG. 2 is a diagram showing the substrate temperature dependence of the coercive force and saturation magnetization of a Co—Cr sputtered film.

【図3】Co−Crスパッタ膜の粒界におけるCr濃度
と基板温度依存性を示す図。
FIG. 3 is a diagram showing the Cr concentration and the substrate temperature dependence at the grain boundaries of a Co—Cr sputtered film.

【図4】Co−Cr−Taスパッタディスクの粒界にお
けるCr濃度と再生出力、媒体雑音の依存性を示す図。
FIG. 4 is a diagram showing the dependence of Cr concentration at a grain boundary of a Co—Cr—Ta sputter disk, reproduction output, and medium noise.

【図5】本発明による磁気記録再生装置の一例の模式
図。
FIG. 5 is a schematic view of an example of a magnetic recording / reproducing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1…磁気ディスク、2…磁気ヘッド、3…アクチュエー
タ、4…ヘッド・ディスク・アッセンブリ、5…媒体駆
動系、6…ヘッド駆動系、7…記録再生系、8…信号処
理系、9…制御系、10…装置I/F部
DESCRIPTION OF SYMBOLS 1 ... Magnetic disk, 2 ... Magnetic head, 3 ... Actuator, 4 ... Head disk assembly, 5 ... Medium drive system, 6 ... Head drive system, 7 ... Recording / reproducing system, 8 ... Signal processing system, 9 ... Control system , 10 ... Device I / F section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二本 正昭 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaaki Nihon 1-280 Higashi Koigabo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基体上に直接、又は非磁性の金属
膜もしくは強磁性金属膜からなる中間層を介して、Co
及びCrを主成分とするCo−Cr系合金磁性薄膜を設
けた磁気記録媒体において、 前記磁性薄膜は結晶構造が六方晶であって、そのc軸が
薄膜面に対して略垂直方向もしくは垂直方向から一方向
に傾いており、該磁性薄膜の構成単位となる微結晶粒の
粒界におけるCr濃度が該磁性薄膜の平均Cr濃度より
高く、25at%より低いことを特徴とする磁気記録媒
体。
1. The method according to claim 1, wherein the coating is performed directly on the non-magnetic substrate or via an intermediate layer made of a non-magnetic metal film or a ferromagnetic metal film.
And a magnetic recording medium provided with a Co—Cr-based alloy magnetic thin film containing Cr and Cr as a main component, wherein the magnetic thin film has a hexagonal crystal structure, and its c-axis is substantially perpendicular to or perpendicular to the thin film surface. A magnetic recording medium, which is inclined in one direction from the magnetic thin film and has a Cr concentration at a grain boundary of fine crystal grains which is a constituent unit of the magnetic thin film, higher than an average Cr concentration of the magnetic thin film and lower than 25 at%.
【請求項2】 粒界のCr濃度が21〜24at%の範
囲にあることを特徴とする請求項1記載の磁気記録媒
体。
2. The magnetic recording medium according to claim 1, wherein the Cr concentration at the grain boundary is in the range of 21 to 24 at%.
【請求項3】 前記Co−Cr系磁性薄膜は、Ta,P
t,Ni,Nd,B,Siの群から選択された少なくと
も1種類の元素を添加したCo−Cr系合金薄膜であ
り、前記粒界におけるCrと前記第3元素とを合わせた
濃度が21〜25at%未満の範囲にあることを特徴と
する請求項1記載の磁気記録媒体。
3. The Co—Cr-based magnetic thin film is made of Ta, P
A Co—Cr-based alloy thin film to which at least one element selected from the group consisting of t, Ni, Nd, B, and Si is added, wherein the combined concentration of Cr and the third element at the grain boundary is 21 to 21. 2. The magnetic recording medium according to claim 1, wherein the content is less than 25 at%.
【請求項4】 請求項1、2又は3に記載の磁気記録媒
体と、前記磁気記録媒体を回転する駆動部と、記録再生
用の磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体
に対して相対運動させる手段と、前記磁気ヘッドの出力
から信号再生を行う手段を含むことを特徴とする磁気記
録再生装置。
4. A magnetic recording medium according to claim 1, 2 or 3, a drive unit for rotating the magnetic recording medium, a magnetic head for recording and reproduction, and a magnetic head for moving the magnetic head with respect to the magnetic recording medium. A magnetic recording / reproducing apparatus comprising: means for causing relative movement; and means for reproducing a signal from an output of the magnetic head.
JP23340796A 1996-09-03 1996-09-03 Magnetic recording medium and magnetic recording reproduction device Pending JPH1079307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23340796A JPH1079307A (en) 1996-09-03 1996-09-03 Magnetic recording medium and magnetic recording reproduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23340796A JPH1079307A (en) 1996-09-03 1996-09-03 Magnetic recording medium and magnetic recording reproduction device

Publications (1)

Publication Number Publication Date
JPH1079307A true JPH1079307A (en) 1998-03-24

Family

ID=16954593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23340796A Pending JPH1079307A (en) 1996-09-03 1996-09-03 Magnetic recording medium and magnetic recording reproduction device

Country Status (1)

Country Link
JP (1) JPH1079307A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143388A (en) * 1997-11-24 2000-11-07 International Business Machines Corporation Thin film disk with onset layer
US6528149B2 (en) 2000-05-29 2003-03-04 Hitachi, Ltd. Perpendicular-magnetic recording media and magnetic recording apparatus
EP1600952A2 (en) * 2004-05-19 2005-11-30 Hitachi Global Storage Technologies B. V. Thermally assisted recording system
US7799447B2 (en) 2004-10-27 2010-09-21 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium having grain boundary layer containing ferromagnetic element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143388A (en) * 1997-11-24 2000-11-07 International Business Machines Corporation Thin film disk with onset layer
US6528149B2 (en) 2000-05-29 2003-03-04 Hitachi, Ltd. Perpendicular-magnetic recording media and magnetic recording apparatus
US6641901B2 (en) 2000-05-29 2003-11-04 Hitachi, Ltd. Perpendicular-magnetic recording media and magnetic recording apparatus
US6852398B2 (en) 2000-05-29 2005-02-08 Hitachi, Ltd. Perpendicular-magnetic recording media and magnetic recording apparatus
EP1600952A2 (en) * 2004-05-19 2005-11-30 Hitachi Global Storage Technologies B. V. Thermally assisted recording system
EP1600952A3 (en) * 2004-05-19 2006-12-27 Hitachi Global Storage Technologies B. V. Thermally assisted recording system
US7446969B2 (en) 2004-05-19 2008-11-04 Hitachi Global Storage Technologies Netherlands B.V. Thermally assisted recording system
US7813071B2 (en) 2004-05-19 2010-10-12 Hitachi Global Storage Technologies Netherlands B.V. Thermally assisted recording system
US7799447B2 (en) 2004-10-27 2010-09-21 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium having grain boundary layer containing ferromagnetic element

Similar Documents

Publication Publication Date Title
CN101377928B (en) Perpendicular magnetic recording medium and magnetic recording and reproducing apparatus using the same
US7070870B2 (en) Magnetic media with improved exchange coupling
US9728216B2 (en) Feromagnetically coupled magnetic recording media
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US6071607A (en) Magnetic recording medium and magnetic disk device
JP3686929B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2005056551A (en) Laminated magnetic thin film in which magnetic anisotropy for magnetic recording is adjusted
US6129981A (en) Magnetic recording medium and magnetic recording disk device
JPH1079307A (en) Magnetic recording medium and magnetic recording reproduction device
KR890003038B1 (en) Magnetic recording carrier
WO1998006093A1 (en) Magnetic recording medium and magnetic storage device using the medium
JP2002074639A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3030279B2 (en) Magnetic recording medium and magnetic recording / reproducing device
US6462916B1 (en) Magnetic disc apparatus
JPH06243451A (en) Magnetic recording medium and magnetic recorder
JP2991688B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP3204548B2 (en) In-plane magnetic storage medium and method of manufacturing the same
US7115329B1 (en) Magnetic recording medium and magnetic storage device
JPH0770037B2 (en) Metal thin film magnetic recording medium for in-plane magnetization recording
JPS63148411A (en) Magnetic recording medium
JP2749046B2 (en) Magnetic recording medium for longitudinal recording and magnetic recording apparatus for longitudinal recording using the same
JP2001344726A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3394108B2 (en) Magnetic storage device and multilayer magnetic layer magnetic recording medium
JP2000222715A (en) Magnetic recording medium
JP3204655B2 (en) Magnetic disk storage