JPH1076264A - Sewage treatment apparatus using immersion type membrane separator - Google Patents

Sewage treatment apparatus using immersion type membrane separator

Info

Publication number
JPH1076264A
JPH1076264A JP23458696A JP23458696A JPH1076264A JP H1076264 A JPH1076264 A JP H1076264A JP 23458696 A JP23458696 A JP 23458696A JP 23458696 A JP23458696 A JP 23458696A JP H1076264 A JPH1076264 A JP H1076264A
Authority
JP
Japan
Prior art keywords
tank
flow path
upward flow
immersion type
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23458696A
Other languages
Japanese (ja)
Inventor
Yasuo Horii
安雄 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23458696A priority Critical patent/JPH1076264A/en
Publication of JPH1076264A publication Critical patent/JPH1076264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable operation under a small aeration strength, to suppress foaming in a tank to enhance the concn. of MLSS and to achieve cost reduction. SOLUTION: A sewage treatment apparatus is constituted by forming a circulating system consisting of ascending and descending passages 4, 5 to an immersion tank 1 and arranging an air diffuser 6 to the lower part of the ascending passage 4 and arranging an immersion type membrane separator 13 on the way of the ascending passage 4. In the immersion type membrane separator 13, a plurality of tubular membrane elements 15 are arranged along the ascending passage 4 in an up and down direction and water passing parts 18 permitting ascending streams to pass are formed to the header 16 allowing the respective membrane elements 15 to communicate with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浸出水処理装置、
有機性汚水処理装置、汚水中のダイオキシン類除去装置
等に利用する浸漬型膜分離装置を用いた汚水処理装置に
関する。
The present invention relates to a leachate treatment apparatus,
The present invention relates to a sewage treatment apparatus using an immersion type membrane separation apparatus used for an organic sewage treatment apparatus, an apparatus for removing dioxins in wastewater, and the like.

【0002】[0002]

【従来の技術】従来、たとえば生活系排水における窒
素、リンの除去法として、嫌気槽および好気槽において
原水を生物学的に処理する活性汚泥処理法がある。この
活性汚泥処理法では、嫌気槽において、系外から流入す
る原水に凝集剤を投入するとともに、後工程の好気槽か
ら汚泥を返送し、槽内の混合液を攪拌しており、好気槽
において、嫌気槽から流入する混合液に対して散気装置
から空気を曝気し、槽内で混合液を循環させるととも
に、槽内に浸漬した膜分離装置によって混合液を濾過
し、膜分離装置を透過した処理水を処理水槽へ取り出し
ている。
2. Description of the Related Art Conventionally, for example, as a method for removing nitrogen and phosphorus from domestic wastewater, there is an activated sludge treatment method in which raw water is biologically treated in an anaerobic tank and an aerobic tank. In this activated sludge treatment method, in an anaerobic tank, a coagulant is added to raw water flowing from outside the system, sludge is returned from an aerobic tank in a subsequent process, and the mixed liquid in the tank is stirred, In the tank, the mixed solution flowing from the anaerobic tank is aerated with air from a diffuser, the mixed solution is circulated in the tank, and the mixed solution is filtered by a membrane separator immersed in the tank. The treated water that has passed through is discharged to the treated water tank.

【0003】好気槽に配置した膜分離装置は、散気装置
の上方に位置し、曝気空気により生起する気液混相の上
向流に膜面を曝しており、槽内の混合液を膜面に対して
平行に流すクロスフロー方式(循環方式)の下に混合液
を濾過し、上向流が掃流となって膜面を洗うことによっ
て膜面に対する固形分の付着を抑制する。
[0003] A membrane separation device arranged in an aerobic tank is located above a diffuser and exposes the membrane surface to an upward flow of a gas-liquid mixed phase generated by aerated air. The mixture is filtered under a cross-flow method (circulation method) flowing parallel to the surface, and the upward flow serves as a scavenging flow to wash the film surface, thereby suppressing the adhesion of solids to the film surface.

【0004】[0004]

【発明が解決しようとする課題】ところで、窒素、リ
ン、BODの栄養バランスの崩れた有機性汚水の場合に
は、その性状に起因して曝気時に発泡が多くなるため
に、MLSS濃度が上げられず、BOD除去効率が不安
定となる問題があった。因に、栄養バランスの適正値
は、BOD:N:P=100 :5:1であるが、埋立地浸
出水の場合には、BOD:N:P=5:5:0.1 となっ
ており、適正なMLSS濃度は10,000〜12,000mg/l で
あるが、上述のような有機性汚水の場合には、MLSS
濃度が2,000〜4,000mg/l となっている。
In the case of organic sewage in which the nutritional balance of nitrogen, phosphorus, and BOD is lost, the MLSS concentration is increased because foaming increases during aeration due to its properties. However, there was a problem that the BOD removal efficiency became unstable. The appropriate value of the nutritional balance is BOD: N: P = 100: 5: 1, but in the case of landfill leachate, BOD: N: P = 5: 5: 0.1, The appropriate MLSS concentration is 10,000 to 12,000 mg / l, but in the case of organic wastewater as described above, the MLSS
The concentration is between 2,000 and 4,000 mg / l.

【0005】また、曝気により生起する上向流が膜表面
に付着する汚泥の固形分の洗浄機能を果たすために、こ
の洗浄に必要な曝気強度が律速となり、10〜12m3/m3
hr程度の曝気を行っているが、これは槽内の微生物が必
要とする酸素量に比べて数倍の量である。このために、
発泡が生じ易くなるばかりか、大きなブロワ設備を要し
てコストが高くなるとともに、電気代等のランニングコ
ストが高くなる問題があった。
[0005] In order to upward flow arising by aeration fulfill cleaning function of the solids content of the sludge adhering to the membrane surface, aeration intensity required for this washing is the rate-limiting, 10~12m 3 / m 3 /
Aeration of about hr is performed, which is several times the amount of oxygen required by microorganisms in the tank. For this,
Not only is foaming easy to occur, but also large blower equipment is required, resulting in high costs and running costs such as electricity costs.

【0006】本発明は上記した課題を解決するものであ
り、小さな曝気強度での運転を可能となし、槽内におけ
る発泡を抑制してMLSS濃度を高めるとともに、低コ
スト化を図ることができる浸漬型膜分離装置を用いた汚
水処理装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and enables operation with a small aeration intensity, suppresses foaming in a tank, increases the MLSS concentration, and reduces the cost. An object of the present invention is to provide a sewage treatment apparatus using a type membrane separation device.

【0007】[0007]

【課題を解決するための手段】上記した課題を解決する
ために、本発明の浸漬型膜分離装置を用いた汚水処理装
置は、浸漬槽内に上向流路と下向流路とからなる槽内循
環系を形成し、上向流路の下部に散気装置を配置し、上
向流路の途中に浸漬型膜分離装置を配置する汚水処理装
置であって、浸漬型膜分離装置は、管状をなす複数の膜
エレメントを上向流路に沿って上下方向に配置するとと
もに、各膜エレメントを連通するヘッダーに上向流が通
過するための通水部を形成したものである。
In order to solve the above-mentioned problems, a sewage treatment apparatus using the immersion type membrane separation device of the present invention comprises an upward flow path and a downward flow path in an immersion tank. A sewage treatment apparatus that forms a circulation system in the tank, arranges a diffuser at the lower part of the upward flow path, and arranges an immersion type membrane separation apparatus in the middle of the upward flow path. In addition, a plurality of tubular membrane elements are vertically arranged along an upward flow path, and a water passage portion for an upward flow to pass through a header communicating each membrane element is formed.

【0008】この構成により、浸漬槽内では、散気装置
から供給する曝気空気によって気液混相の上向流が上向
流路内に生起することにより、浸漬槽の底部に滞留する
槽内混合液が上向流路を通りヘッダーの通水部を通過し
て槽上部に移動し、槽上部の槽内混合液が下向流路を通
って槽底部に移動し、槽内混合液が槽内循環系を循環移
動する。
[0008] With this configuration, in the immersion tank, the upward flow of the gas-liquid mixed phase is generated in the upward flow channel by the aerated air supplied from the diffuser, so that the mixing in the tank stagnating at the bottom of the immersion tank is performed. The liquid passes through the upward flow path, passes through the water passage section of the header, moves to the upper part of the tank, the mixed liquid in the tank at the upper part of the tank moves to the bottom of the tank through the downward flow path, and the mixed liquid in the tank moves to the lower part of the tank. Circulates through the internal circulation system.

【0009】この状態において、浸漬型膜分離装置は上
向流路内を流通する槽内混合液を濾過し、膜エレメント
の膜を透過した膜透過液は膜エレメントの内部流路を通
ってヘッダー内に流入して後に、ヘッダーに連通する処
理水管路を通って槽外へ流れ出る。一方、各膜エレメン
トの間を流れる上向流は掃流となって各膜エレメントの
膜面を洗うことにより膜面に対する固形分の付着を抑制
する。
In this state, the immersion type membrane separation apparatus filters the mixed solution in the tank flowing in the upward flow path, and the membrane permeated liquid permeating the membrane of the membrane element passes through the internal flow path of the membrane element to the header. After flowing into the tank, it flows out of the tank through a treated water pipe communicating with the header. On the other hand, the upward flow flowing between the membrane elements becomes a scavenging flow to wash the membrane surface of each membrane element, thereby suppressing the adhesion of solids to the membrane surface.

【0010】このとき、各膜エレメントは上向流路に沿
って上下方向に配置してあるので、膜エレメントに起因
する流路抵抗は従来に比べて十分に小さくなり、膜エレ
メントの膜面洗浄に要する上向流の流速を小さな曝気強
度の下で得ることができる。しかも、上向流が膜エレメ
ントの軸心方向に沿って流れることにより、その掃流作
用が膜エレメントの全長にわたって作用し、単位動力当
たりの洗浄効率が向上する。
At this time, since each of the membrane elements is arranged vertically along the upward flow path, the flow path resistance caused by the membrane element becomes sufficiently smaller than in the prior art, and the membrane surface of the membrane element is cleaned. Can be obtained under a small aeration intensity. In addition, since the upward flow flows along the axial direction of the membrane element, the sweeping action acts on the entire length of the membrane element, and the cleaning efficiency per unit power is improved.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1〜図3において、浸漬槽1は、
有機性汚水や浸出水等の原水を流入管2を通して導き、
活性汚泥により生物学的に処理する生物処理槽をなすも
のであり、浸漬槽1の内部には仕切壁3によって仕切ら
れた上向流路4と下向流路5とからなる槽内循環系が形
成してあり、槽中央に位置する下向流路5の周囲に放射
状に上向流路4が位置している。上向流路4と下向流路
5の形態は、上述したものに限られるものではなく、上
向流路4と下向流路5とを逆に配置することも可能であ
るし、各流路の断面形状は円筒形、扇形、矩形など種々
の形状が考えられる。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3, the immersion tank 1 is
Raw water such as organic wastewater or leachate is led through the inflow pipe 2,
The immersion tank 1 forms a biological treatment tank for biological treatment with activated sludge. Inside the immersion tank 1, an in-tank circulation system including an upward flow path 4 and a downward flow path 5 partitioned by a partition wall 3. Are formed, and the upward flow path 4 is located radially around the downward flow path 5 located at the center of the tank. The forms of the upward flow path 4 and the downward flow path 5 are not limited to those described above, and the upward flow path 4 and the downward flow path 5 can be arranged in reverse. Various shapes such as a cylindrical shape, a fan shape, and a rectangular shape can be considered as the cross-sectional shape of the flow path.

【0012】上向流路4の下部には散気装置6が配置し
てあり、散気装置6は曝気空気供給管7および第1バル
ブ8を介してブロワ9に接続してある。また、ブロワ9
は第2バルブ10および逆洗空気供給管11を介して後
述する処理水管路12に接続してある。
An air diffuser 6 is arranged below the upward flow path 4, and the air diffuser 6 is connected to a blower 9 via an aeration air supply pipe 7 and a first valve 8. Also, blower 9
Is connected through a second valve 10 and a backwash air supply pipe 11 to a treated water pipe 12 described later.

【0013】上向流路4の途中には浸漬型膜分離装置1
3が配置してあり、浸漬型膜分離装置13は外圧浸漬型
膜分離モジュール14を有している。外圧浸漬型膜分離
モジュール14は、管状をなす複数の膜エレメント15
を上向流路4に沿って上下方向に配置するものであり、
各膜エレメント15を上端側においてヘッダー16で連
結保持するとともに、ヘッダー16の内部流路が各膜エ
レメント15に連通しており、膜エレメント15を下端
側において連結板17で連結保持している。ヘッダー1
6および連結板17には上向流が通過するための通水部
18が形成してある。
In the middle of the upward flow path 4, the immersion type membrane separation device 1 is provided.
The immersion type membrane separation device 13 has an external pressure immersion type membrane separation module 14. The external pressure immersion type membrane separation module 14 includes a plurality of tubular membrane elements 15.
Are arranged vertically along the upward flow path 4,
Each membrane element 15 is connected and held by the header 16 on the upper end side, and the internal flow passage of the header 16 communicates with each membrane element 15, and the membrane element 15 is connected and held by the connection plate 17 on the lower end side. Header 1
6 and the connecting plate 17 are formed with a water passage 18 through which the upward flow passes.

【0014】ヘッダー16は内部流路が処理水管路12
および第3バルブ19を介して処理水ポンプ20に連通
し、処理水ポンプ20に接続した送水管21は処理水槽
22に連通している。処理水槽22と処理水管路12の
間には逆洗水系23が設けてあり、逆洗水系23は逆洗
水管24と逆洗ポンプ25と第4バルブ26とを有して
いる。浸漬槽1は底部に余剰汚泥排出系27が接続して
あり、余剰汚泥排出系27は第5バルブ28と汚泥引抜
管29と汚泥ポンプ30を有している。
The header 16 has an internal flow path of the treated water pipe 12.
A third water supply pipe 21 communicates with a treated water pump 20 via a third valve 19, and a water supply pipe 21 connected to the treated water pump 20 communicates with a treated water tank 22. A backwash water system 23 is provided between the treated water tank 22 and the treated water pipe 12, and the backwash water system 23 has a backwash water pipe 24, a backwash pump 25, and a fourth valve 26. The surplus sludge discharge system 27 is connected to the bottom of the immersion tank 1, and the surplus sludge discharge system 27 has a fifth valve 28, a sludge extraction pipe 29, and a sludge pump 30.

【0015】以下、上記構成における作用を説明する。
浸漬槽1の内部においては、散気装置6から供給する曝
気空気によって気液混相の上向流が上向流路4の内部に
生起し、この上向流を駆動力として、浸漬槽1の底部に
滞留する槽内混合液が上向流路4を通り連結板17およ
びヘッダー16の通水部18を通過して槽上部に移動
し、槽上部の槽内混合液が下向流路5を通って槽底部に
移動し、槽内混合液が槽内循環系を循環移動し、この間
に槽内混合液を生物学的に活性汚泥処理する。
The operation of the above configuration will be described below.
Inside the immersion tank 1, the aerated air supplied from the diffuser 6 causes an upward flow of the gas-liquid mixed phase to occur inside the upward flow path 4. The mixed liquid in the tank staying at the bottom passes through the upward flow path 4, passes through the connecting plate 17 and the water passage section 18 of the header 16, moves to the upper part of the tank, and the mixed liquid in the upper tank becomes the lower flow path 5. To the bottom of the tank through which the mixture in the tank circulates and moves in the circulation system in the tank, during which the mixture in the tank is biologically activated sludge treated.

【0016】この状態において、浸漬型膜分離装置13
は処理水ポンプ20の吸引圧を受けて上向流路4を流通
する槽内混合液を濾過する。膜エレメント15の膜を透
過した膜透過液は膜エレメント15の内部流路を通って
ヘッダー16の内部流路に流入して後に、ヘッダー16
に連通する処理水管路12、第3バルブ19、処理水ポ
ンプ20、送水管21を通って処理水槽へ流れ出る。
In this state, the immersion type membrane separation device 13
Receives the suction pressure of the treated water pump 20 and filters the mixture in the tank flowing through the upward flow path 4. The membrane permeated liquid that has passed through the membrane of the membrane element 15 flows through the internal flow path of the membrane element 15 into the internal flow path of the header 16 and then flows through the header 16.
Through the treated water pipe 12, the third valve 19, the treated water pump 20, and the water supply pipe 21 to the treated water tank.

【0017】一方、各膜エレメント15の相互間の流路
を流れる上向流は、掃流となって各膜エレメント15の
膜面を洗うことにより膜面に対する固形分の付着を抑制
する。このとき、各膜エレメント15は上向流路4に沿
って上下方向に配置してあるので、膜エレメント15に
起因する流路抵抗は従来に比べて十分に小さくなり、膜
エレメント15の膜面洗浄に要する上向流の流速を小さ
な曝気強度の下で得ることができる。しかも、上向流が
膜エレメント15の軸心方向に沿って流れることによ
り、その掃流作用が膜エレメント15の全長にわたって
作用し、単位動力当たりの洗浄効率が向上する。
On the other hand, the upward flow flowing in the flow path between the membrane elements 15 becomes a sweeping flow to wash the membrane surface of each membrane element 15 to suppress the adhesion of solids to the membrane surface. At this time, since each of the membrane elements 15 is arranged in the up-down direction along the upward flow path 4, the flow path resistance caused by the membrane element 15 becomes sufficiently smaller than in the past, and the membrane surface of the membrane element 15 is reduced. The upward flow velocity required for cleaning can be obtained under a small aeration intensity. In addition, since the upward flow flows along the axial direction of the membrane element 15, the sweeping action acts on the entire length of the membrane element 15, and the cleaning efficiency per unit power is improved.

【0018】図4は本発明の他の実施の形態を示すもの
であり、ヘッダー31を格子状に形成したものであり、
骨材32の内部に膜透過液の流れる流路を形成したもの
である。この構成においても、先に図1〜図3により示
した実施の形態と同様の作用効果を得ることができる。
FIG. 4 shows another embodiment of the present invention, in which a header 31 is formed in a lattice shape.
The flow path of the membrane permeable liquid is formed inside the aggregate 32. Also in this configuration, the same functions and effects as those of the embodiment shown in FIGS. 1 to 3 can be obtained.

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば、各
膜エレメントを上向流路に沿って上下方向に配置するこ
とにより、膜エレメントに起因する流路抵抗を十分に小
さくし、膜エレメントの膜面洗浄に要する上向流の流速
を小さな曝気強度の下で得ることができる。しかも、上
向流が膜エレメントの軸心方向に沿って流れることによ
り、その掃流作用が膜エレメントの全長にわたって作用
し、単位動力当たりの洗浄効率が向上する。よって、膜
エレメントの膜面の洗浄に要する必要曝気強度を低減し
て発泡を抑制し、MLSS濃度を高めてBOD除去効率
を安定化することができるとともに、設備費および動力
費を低減することができる。
As described above, according to the present invention, by arranging each of the membrane elements vertically along the upward flow path, the flow path resistance caused by the membrane element can be sufficiently reduced. The upward flow velocity required for cleaning the membrane surface of the membrane element can be obtained with a small aeration intensity. In addition, since the upward flow flows along the axial direction of the membrane element, the sweeping action acts on the entire length of the membrane element, and the cleaning efficiency per unit power is improved. Therefore, the required aeration intensity required for cleaning the membrane surface of the membrane element can be reduced to suppress foaming, the MLSS concentration can be increased, the BOD removal efficiency can be stabilized, and the equipment cost and power cost can be reduced. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における浸漬型膜分離装置
を用いた汚水処理装置を示す全体構成図である。
FIG. 1 is an overall configuration diagram showing a sewage treatment apparatus using a submerged membrane separation device according to an embodiment of the present invention.

【図2】図1のA−A矢視図である。FIG. 2 is a view as viewed in the direction of arrows AA in FIG. 1;

【図3】同実施の形態における浸漬型膜分離装置の断面
図である。
FIG. 3 is a cross-sectional view of the immersion type membrane separation device in the embodiment.

【図4】本発明の他の実施の形態におけるヘッダーを示
す平面図である。
FIG. 4 is a plan view showing a header according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 浸漬槽 4 上向流路 5 下向流路 6 散気装置 12 処理水管路 13 浸漬型膜分離装置 15 膜エレメント 16 ヘッダー 18 通水部 Reference Signs List 1 immersion tank 4 upward flow path 5 downward flow path 6 air diffuser 12 treated water pipeline 13 immersion type membrane separation device 15 membrane element 16 header 18 water passage section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 浸漬槽内に上向流路と下向流路とからな
る槽内循環系を形成し、上向流路の下部に散気装置を配
置し、上向流路の途中に浸漬型膜分離装置を配置する汚
水処理装置であって、浸漬型膜分離装置は、管状をなす
複数の膜エレメントを上向流路に沿って上下方向に配置
するとともに、各膜エレメントを連通するヘッダーに上
向流が通過するための通水部を形成したことを特徴とす
る浸漬型膜分離装置を用いた汚水処理装置。
1. An in-tank circulation system comprising an upward flow path and a downward flow path is formed in an immersion tank, and an air diffuser is disposed below the upward flow path. A sewage treatment apparatus in which an immersion type membrane separation device is arranged, wherein the immersion type membrane separation device arranges a plurality of tubular membrane elements in an up-down direction along an upward flow path and communicates each membrane element. A sewage treatment apparatus using an immersion type membrane separation device, wherein a water passage portion for passing an upward flow through the header is formed.
JP23458696A 1996-09-05 1996-09-05 Sewage treatment apparatus using immersion type membrane separator Pending JPH1076264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23458696A JPH1076264A (en) 1996-09-05 1996-09-05 Sewage treatment apparatus using immersion type membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23458696A JPH1076264A (en) 1996-09-05 1996-09-05 Sewage treatment apparatus using immersion type membrane separator

Publications (1)

Publication Number Publication Date
JPH1076264A true JPH1076264A (en) 1998-03-24

Family

ID=16973351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23458696A Pending JPH1076264A (en) 1996-09-05 1996-09-05 Sewage treatment apparatus using immersion type membrane separator

Country Status (1)

Country Link
JP (1) JPH1076264A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7938966B2 (en) * 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7938966B2 (en) * 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
JPH1076264A (en) Sewage treatment apparatus using immersion type membrane separator
KR100254089B1 (en) Apparatus and method for purifying polluted water
JPH07303895A (en) Water treatment apparatus
US11731891B2 (en) Organic wastewater treatment apparatus
US11643345B2 (en) Method for treating organic wastewater, and device for treating organic wastewater
JPH07155758A (en) Waste water treating device
JPH0665371B2 (en) Organic wastewater biological treatment equipment
JP4666902B2 (en) MLSS control method
JP2003001293A (en) Method for removing nitrogen in membrane separation type oxidation ditch and device therefor
JPH0813359B2 (en) Wastewater treatment equipment containing nitrogen
JP2003053378A (en) Method and device for treating water by using separation membrane
KR101192174B1 (en) Plants for advanced treatment of wastewater
JP3408699B2 (en) Sewage treatment equipment using immersion type membrane separation equipment
JP3278560B2 (en) Water treatment equipment
JPH1076262A (en) Sewage treatment apparatus using immersion type membrane separator
KR100313222B1 (en) Combined purification apparatus and method using submerged membrane process for use in advanced treatment
CN207903981U (en) A kind of efficient up-flow biological reaction apparatus
JP2003275546A (en) Apparatus for treating membrane separated waste water
CN210030173U (en) Leachate short-range biochemical system
CN115353206B (en) Biochemical reaction equipment and sewage treatment method
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
CN220703411U (en) MBR membrane sewage treatment plant
JP2001246390A (en) Two bed juxtaposition type aerobic filter bed tank, septic tank and operation method thereof
JP2001009490A (en) Treating device for organic sewage and its assembly method
JPH03284396A (en) Device for treating organic waste water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

A131 Notification of reasons for refusal

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017