JPH1076144A - Membrane separator by hollow tubular membranes - Google Patents

Membrane separator by hollow tubular membranes

Info

Publication number
JPH1076144A
JPH1076144A JP23480796A JP23480796A JPH1076144A JP H1076144 A JPH1076144 A JP H1076144A JP 23480796 A JP23480796 A JP 23480796A JP 23480796 A JP23480796 A JP 23480796A JP H1076144 A JPH1076144 A JP H1076144A
Authority
JP
Japan
Prior art keywords
membrane
hollow tubular
water
gas
potting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23480796A
Other languages
Japanese (ja)
Inventor
Shigeki Sawada
繁樹 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP23480796A priority Critical patent/JPH1076144A/en
Publication of JPH1076144A publication Critical patent/JPH1076144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane separator by hollow tubular membranes in which an air lift circulating flow is generated while the bundle of hollow tubular membranes is filled into the whole inside of a module and which is effective and is of air lift circulating type having large membrane filling area. SOLUTION: This separator comprises a module outer cylinder 10 concentrically having a lower cylindrical part 11 of small diameter and a gas-liquid separation cylindrical part 12 of large diameter at the lower half part and the upper half part thereof and equipped with an annular water collecting seat 13 positioned above the lower cylindrical part and installed inside the gas-liquid separation cylindrical part, and a membrane element 20 having a potting part 21 fitted in the annular water collecting seat 13 and fixed, a partition 22 fixed to the potting part at the upper end thereof and hung down into the lower part of the inside of the lower cylindrical part and dividing the inside of the lower cylindrical part into two flow passages (a), (b), and a lot of external pressure type hollow tubular membranes 23 fixed to the potting part at the upper end thereof and opened to the upper surface of the potting part at the hollow upper end thereof and hung down into the two flow passages separated by the partition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、中空糸膜や、チ
ューブラー型管状膜など中空部を有する外圧型の多数本
の中空管状膜を有する膜エレメントを使用し、各膜の中
空部に吸引ポンプの吸引力を作用させ、その吸引力で膜
を透過して中空部に流入した透過水を採水する中空管状
膜による膜分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an external pressure type membrane element having a large number of hollow tubular membranes having a hollow portion such as a hollow fiber membrane or a tubular type tubular membrane, and suctions the hollow portion of each membrane. The present invention relates to a membrane separation device using a hollow tubular membrane that applies suction force of a pump and collects permeated water that has passed through the membrane and flowed into the hollow portion by the suction force.

【0002】[0002]

【従来の技術】本特許出願の発明者は、特願平7−22
2806号にて、縦型の円筒ケースの底部の少し上をポ
ッティング部で塞いでポッティング部の上を分離室とす
ると共に、このポッティング部に中空管状膜の下端を取
付けて膜の中空部の下端をポッティング部の下面に開口
させ、ポッティング部から下に離して円筒ケースの下端
を底板で閉じ、ポッティング部と底板との間に中空管状
膜を透過して中空部に流入した透過水の集水室を形成し
た膜エレメントを使用し、前記円筒ケースの、中空管状
膜を収容したポッティング部上の分離室に気泡を混合し
た原水を加圧して供給し、中空管状膜を透過して集水室
に流下した透過水を吸引ポンプで吸引して採水する中空
管状膜による膜分離装置を提案した。
2. Description of the Related Art The inventor of the present patent application has filed Japanese Patent Application No.
In No. 2806, a little above the bottom of the vertical cylindrical case is closed with a potting part, and the upper part of the potting part is used as a separation chamber, and the lower end of the hollow tubular membrane is attached to this potting part, and the lower end of the hollow part of the membrane is attached. The bottom of the cylindrical case is closed with the bottom plate away from the potting part, and the permeated water that has passed through the hollow tubular membrane and flowed into the hollow part between the potting part and the bottom plate. Using a membrane element having a chamber formed therein, raw water mixed with air bubbles is supplied under pressure to a separation chamber on a potting portion containing the hollow tubular membrane in the cylindrical case, and the water is collected through the hollow tubular membrane. We proposed a membrane separation device using a hollow tubular membrane that draws water by suctioning the permeated water flowing down to a suction pump.

【0003】[0003]

【発明が解決しようとする課題】上記膜分離装置は、透
過水の採水の点で所定の効果を達成するが、膜エレメン
トの円筒形のケースの中を気泡によるエアリフト作用で
上向流する濃縮水を円筒ケースの上端から溢流させて下
降流とし、再び分離室内に下から供給して循環させるた
め、円筒ケースを有する膜エレメントを、該円筒ケース
よりも上下方向に長く、且つ円筒ケースとの間に濃縮水
が下向する空間を保つため内径が大きいモジュール外筒
を使用し、そのモジュール外筒内に膜エレメントを同心
状に固定する必要があり、設置スペースが増大すると
か、中空管状膜は膜エレメントの円筒ケース内に設ける
ためモジュール体積当りの膜充填面積が小さいとかの問
題点を有する。
The above-mentioned membrane separation device achieves a predetermined effect in terms of sampling of permeated water, but flows upward in the cylindrical case of the membrane element by the air lift effect of air bubbles. In order to overflow the concentrated water from the upper end of the cylindrical case into a downward flow, and to supply and circulate again from below the separation chamber, the membrane element having the cylindrical case is vertically longer than the cylindrical case, and the cylindrical case is formed. It is necessary to use a module outer cylinder with a large inner diameter to keep the space where the concentrated water faces downward, and to fix the membrane element concentrically in the module outer cylinder, which increases the installation space or hollow Since the tubular membrane is provided in the cylindrical case of the membrane element, there is a problem that the membrane filling area per module volume is small.

【0004】[0004]

【課題を解決するための手段】そこで本発明は、膜エレ
メントの円筒ケースを廃し、モジュール外筒中に膜エレ
メントを構成する多数本の中空管状膜を収容することに
より上述した先行提案の問題点を解消したのである。
SUMMARY OF THE INVENTION Accordingly, the present invention eliminates the above-mentioned problems of the prior proposal by eliminating the cylindrical case of the membrane element and accommodating a large number of hollow tubular membranes constituting the membrane element in a module outer cylinder. It has been resolved.

【0005】[0005]

【発明の実施の形態】このため本発明の中空管状膜によ
る膜分離装置は、下半部に小径の下方筒部、上半部に大
径の気液分離筒部を同心状に有し、前記下方筒部の上方
に位置して前記気液分離筒部内に設けられた環状集水座
を備えたモジュール外筒と、上記環状集水座に嵌めて固
定されるポッティング部、該ポッティング部に上端を固
定されて前記下方筒部の内部下方まで垂下し、下方筒部
の内部を二つの流路に仕切る劃壁、及び上記ポッティン
グ部に上端を固定され、中空な上端がポッティング部の
上面に開口し、前記隔壁により仕切られた二つの各流路
の内部に垂下する多数本の外圧型中空管状膜を有する膜
エレメントとからなり、前記下方筒部の底部には原水の
供給口と、膜エレメントの隔壁で仕切られた二つの流路
に交互に圧縮空気を供給する二つの送気口とを設け、気
液分離筒部内の環状集水座には中空管状膜の中空部に透
過した透過水を吸引ポンプで採水する採水管を接続する
と共に、気液分離筒部には中空管状膜を透過しなかった
濃縮水の取出口を設けたことを特徴とする。この場合、
前記採水管は洗浄水の供給管、原水の供給口は洗浄排水
の排水口を兼ねることが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS For this reason, the membrane separation device using a hollow tubular membrane of the present invention has a small-diameter lower cylinder portion in the lower half and a large-diameter gas-liquid separation cylinder portion in the upper half concentrically. A module outer cylinder provided with an annular water collecting seat provided in the gas-liquid separation cylindrical part located above the lower cylindrical part, a potting portion fitted and fixed to the annular water collecting seat, The upper end is fixed and hangs down to the inside of the lower cylindrical part, the dividing wall dividing the inside of the lower cylindrical part into two flow paths, and the upper end is fixed to the potting part, and the hollow upper end is on the upper surface of the potting part. A membrane element having a large number of external pressure type hollow tubular membranes that are open and hang down inside each of the two flow paths partitioned by the partition, and a raw water supply port at the bottom of the lower cylindrical portion; Compressed air alternately passes through two flow paths separated by the partition of the element Two gas supply ports are provided for supply, and a water sampling pipe for sampling permeated water permeated through the hollow portion of the hollow tubular membrane with a suction pump is connected to the annular water collecting seat in the gas-liquid separation cylinder, and the gas-liquid The separation tube is provided with an outlet for concentrated water that has not passed through the hollow tubular membrane. in this case,
It is preferable that the water sampling pipe also serves as a washing water supply pipe, and the raw water supply port also serves as a drainage port for washing drainage.

【0006】[0006]

【実施例】図1〜3に示すとおり、10はプラスチック
で成形したモジュール外筒で、下半部に小径の下方筒部
11、上半部に大径の気液分離筒部12を同心状に有
し、気液分離筒部12は下端の下向きテーパ部12´で
下方筒部11に接続している。そして、気液分離筒部
は、その内部下方に、例えば前記下方筒部11と同径
で、該下方筒部の上方に位置する環状集水座13を備え
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIGS. 1 to 3, reference numeral 10 denotes a module outer cylinder molded of plastic. A lower cylinder 11 having a small diameter in the lower half and a gas-liquid separation cylinder 12 having a large diameter in the upper half are concentric. The gas-liquid separation cylinder 12 is connected to the lower cylinder 11 by a downward tapered portion 12 ′ at the lower end. Further, the gas-liquid separation tube portion includes an annular water collecting seat 13 which has the same diameter as the lower tube portion 11 and is located above the lower tube portion, for example, below the inside thereof.

【0007】20は膜エレメントで、上記環状集水座1
3の内周にOリングを介し嵌めて固定されるポッティン
グ部21と、該ポッティング部に上端を直径方向に固定
されて前記下方筒部の内部下方まで垂下し、下方筒部の
内部を2つの流路aとbに仕切る劃壁22と、上記ポッ
ティング部に上端を固定されて中空な上端がポッティン
グ部の上面に開口し、前記隔壁により仕切られた2つの
流路aとbの内部に垂下する多数本の中空管状膜23を
有する。各中空管状膜23は、図示の実施例では隔壁2
2の下方で上向きに折返し、折返した一半部は隔壁によ
り仕切られた一方の流路a内を上昇し、他半部は他方の
流路b内を上昇し、その各上端部をポッティング部に固
定されたU字形になっているが、ポッティング部に上端
を固定されてその一本宛が流路aと流路b内を垂下し、
その中空部の下端が閉じられたものであってもよい。
[0007] Reference numeral 20 denotes a membrane element.
3, a potting portion 21 fitted and fixed via an O-ring via an O-ring, an upper end fixed to the potting portion in a diametrical direction, and hanging down to below the inside of the lower tubular portion, thereby forming two insides of the lower tubular portion. A partition wall 22 for partitioning the flow passages a and b, and a hollow upper end fixed to the potting portion and having a hollow upper end opening to the upper surface of the potting portion, and drooping into two flow passages a and b partitioned by the partition wall And a large number of hollow tubular membranes 23. Each hollow tubular membrane 23 is a partition 2 in the illustrated embodiment.
The upper half is turned upward below the lower part 2, and one half of the turned up rises in one flow path a partitioned by the partition wall, and the other half rises in the other flow path b, and each upper end thereof is used as a potting part. Although it has a fixed U-shape, the upper end is fixed to the potting part, and one of them is drooping in the flow path a and the flow path b,
The lower end of the hollow portion may be closed.

【0008】図4に示すとおり、劃壁22の両側部と、
下方筒部11の内面の、上記劃壁の両側部が摺接する直
径方向の相対向した部分の一方には上下方向の凹溝、他
方には上下方向の突条からなるスライド係合装置19を
設け、劃壁22を下方筒部の内部に上下方向にスライド
可能に支持する。劃壁22の上部は図2に示したように
大径の気液分離筒部12の下方内部に位置するので、劃
壁により仕切られた下方筒部内の2つの流路a,bは、
劃壁の両側上端部と気液分離筒部の下方の内周との間に
形成される2つの空間c,dで連なる。
[0008] As shown in FIG.
A sliding engagement device 19 composed of a vertical groove is provided on one of the diametrically opposed portions of the inner surface of the lower cylindrical portion 11 on which both side portions of the above-mentioned dividing wall are in sliding contact, and a vertical ridge is provided on the other. The partition wall 22 is slidably supported in a vertical direction inside the lower cylindrical portion. Since the upper part of the dividing wall 22 is located below the large-diameter gas-liquid separation cylindrical part 12 as shown in FIG. 2, the two flow paths a and b in the lower cylindrical part partitioned by the dividing wall are:
Two spaces c and d are formed between the upper ends on both sides of the dividing wall and the inner periphery below the gas-liquid separation tube.

【0009】モジュール外筒の下方筒部の底部には原水
の供給口14と、流路aに下から空気を供給する給気口
15a、流路bに下から空気を供給する給気口15bと
が設けてある。又、気液分離筒部12の開放した上端部
の近くには濃縮水の取出口16が設けてある。
At the bottom of the lower cylindrical portion of the module outer cylinder, a supply port 14 for raw water, an air supply port 15a for supplying air to the flow path a from below, and an air supply port 15b for supplying air to the flow path b from below. Are provided. An outlet 16 for concentrated water is provided near the open upper end of the gas-liquid separation tube 12.

【0010】図1〜4の実施例では、環状集水座13を
気液分離筒部12内に同心状に支持するために、環状集
水座13を下に取付けた支持体17を気液分離筒部内に
直径方向に設け、膜エレメントのポッティング部を内周
に嵌めた環状集水座の内周上部を上向きのテーパ付き集
水室13´とし、該集水室13´の頂部に下端が連通
し、支持体17中を半径方向に貫通して上記濃縮水の取
出口16の下方で気液分離筒の側面に開口する逆L形の
採水管18を設ける。
In the embodiment shown in FIGS. 1 to 4, in order to support the annular water collecting seat 13 concentrically inside the gas-liquid separation cylinder 12, a support 17 having the annular water collecting seat 13 attached below is provided with a gas-liquid support. A water collecting chamber 13 ′ having an upward taper is provided at an upper portion of an inner periphery of an annular water collecting seat in which a potting portion of a membrane element is fitted on an inner periphery, and a lower end is provided at a top of the water collecting chamber 13 ′. And an inverted L-shaped water sampling pipe 18 which penetrates through the support 17 in the radial direction and opens on the side surface of the gas-liquid separation cylinder below the outlet 16 for the concentrated water.

【0011】透過水を採水する採水運転を行うには、採
水管18に接続した吸引管31の吸引ポンプP2 を運転
し、全部の中空管状膜23の中空部に吸引力を作用させ
ると共に、原水の供給口14に接続した給水管32の給
水ポンプP1 を運転し、下方筒部11内に下から原水を
供給し、同時にブロワー、エアコンプレッサーなど圧縮
空気源33を運転し、給気口15aと15bとに接続し
た分岐給気管34a,34bの弁V1 ,V2 のどちら
か、例えば34aのV1 を開にし、給気管34aから給
気口15aを経て劃壁22で仕切られた一方の流路a内
に下から空気を供給する。
In order to perform a water sampling operation for sampling permeated water, the suction pump P2 of the suction pipe 31 connected to the water sampling pipe 18 is operated to apply a suction force to all the hollow portions of the hollow tubular membrane 23, and By operating the water supply pump P1 of the water supply pipe 32 connected to the raw water supply port 14, the raw water is supplied into the lower cylindrical portion 11 from below, and at the same time, the compressed air source 33 such as a blower and an air compressor is operated to supply air. One of the valves V1 and V2 of the branch supply pipes 34a and 34b connected to 15a and 15b, for example, the valve V1 of 34a is opened, and one of the flows separated from the supply pipe 34a by the partition wall 22 via the supply port 15a. Air is supplied into the passage a from below.

【0012】これにより原水の供給口14から供給され
て流路a内に入っている水は、流路内に下から供給され
る空気の気泡によるエアリフト作用で流路a中を上向流
し、流路の上端に達すると、劃壁の両側上端部と、気液
分離筒部12の下方の内周との間に形成される2つの空
間c,dを通じ他方の流路bの上端部に流入して流路b
中を下向流した後、劃壁の下を潜って流路aの下端に流
入し、かくして下方筒部内に劃壁で形成された流路aと
bの間に循環流が生じ、流路a内を上昇した気泡は気液
分離筒12の液面に浮上する。こうして流路aとbの間
を循環流する原水のうち、一部は中空管状膜の中空部に
作用する吸引力で膜を外から内に透過し、透過水として
中空部に流入して中空部中を上昇し、環状集水座のテー
パ付き集水室13´で合流して採水管18,吸引管3
1、吸引ポンプP2 を経て採水される。一方、流路a中
を気液分離筒の液面に向かって浮上する気泡は、流路a
内に垂下する中空管状膜23の束の隙間を上昇し、膜の
外面に剪断力を作用させ、膜の外面に付着するゲル層を
剥離する。下向流する流路b中の中空管状膜の外面には
ゲル層が付着する。
As a result, the water supplied from the raw water supply port 14 and entering the flow channel a flows upward in the flow channel a by the air lift effect of the air bubbles supplied from below into the flow channel. When reaching the upper end of the flow path, the upper end of the other flow path b is passed through two spaces c and d formed between the upper ends on both sides of the partition wall and the inner periphery below the gas-liquid separation cylinder 12. Inflowing channel b
After flowing downward in the inside, it flows under the partition wall and flows into the lower end of the flow path a, and thus a circulating flow is generated between the flow paths a and b formed by the partition wall in the lower cylinder portion, The bubble rising inside a floats on the liquid surface of the gas-liquid separation cylinder 12. In this way, a part of the raw water circulating between the flow channels a and b permeates the membrane from the outside to the inside by a suction force acting on the hollow portion of the hollow tubular membrane, flows into the hollow portion as permeated water, and becomes hollow. The water collecting pipe 13 and the suction pipe 3
1. Water is collected via the suction pump P2. On the other hand, air bubbles that float in the flow path a toward the liquid surface of the gas-liquid separation cylinder are
The gap between the bundles of the hollow tubular membranes 23 hanging down is raised, a shearing force is applied to the outer surface of the membrane, and the gel layer attached to the outer surface of the membrane is peeled off. A gel layer adheres to the outer surface of the hollow tubular membrane in the channel b flowing downward.

【0013】圧縮空気源からの空気の供給を給気口15
aに所定時間(例えば30分)行ったら、分岐給気管3
4a,34bの弁V1 ,V2 の開閉を切換え、弁V2 を
開にして給気口15bに空気を供給する。
The supply of air from the compressed air source is supplied to the air supply port 15.
a for a predetermined time (for example, 30 minutes), the branch air supply pipe 3
The valves V1 and V2 of the valves 4a and 34b are opened and closed, and the valve V2 is opened to supply air to the air supply port 15b.

【0014】これにより原水の供給口14から供給され
て流路b内に入っている水は、流路内に下から供給され
る空気の気泡によるエアリフト作用で流路b中を上向流
し、流路の上端に達すると、劃壁の両側上端部と、気液
分離筒部12の下方の内周との間に形成される2つの空
間c,dを通じ他方の流路aの上端部に流入して流路a
中を下向流した後、劃壁の下を潜って流路bの下端に流
入し、かくして下方筒部内に劃壁で形成された流路bと
aの間に循環流が生じ、流路b内を上昇した気泡は気液
分離筒12の液面に浮上する。こうして流路bとaの間
を循環流する原水のうち、一部は中空管状膜の中空部に
作用する吸引力で膜を外から内に透過し、透過水として
中空部に流入して中空部中を上昇し、環状集水座のテー
パ付き集水室13´で合流して採水管18,吸引管3
1、吸引ポンプP2 を経て採水される。一方、流路b中
を気液分離筒の液面に向かって浮上する気泡は、流路b
内に垂下する中空管状膜23の束の隙間を上昇し、膜の
外面に剪断力を作用させ、膜の外面に付着するゲル層を
剥離する。尚、原水が下向流する流路a中の中空管状膜
の外面にはゲル層が付着する。
As a result, the water supplied from the raw water supply port 14 and entering the flow path b flows upward in the flow path b by the air lift effect of the air bubbles supplied from below into the flow path. When reaching the upper end of the flow path, the upper end of the other flow path a is passed through two spaces c and d formed between the upper ends on both sides of the partition wall and the inner periphery below the gas-liquid separation tube 12. Inflowing channel a
After flowing downward through the inside, it flows under the partition wall and flows into the lower end of the flow path b, and thus a circulating flow is generated between the flow paths b and a formed by the partition wall in the lower cylindrical portion, and the flow path The bubble rising inside b rises to the liquid surface of the gas-liquid separation tube 12. In this way, a part of the raw water circulating between the flow paths b and a is partially permeated through the membrane from outside to outside by the suction force acting on the hollow part of the hollow tubular membrane, and flows into the hollow part as permeated water and becomes hollow. The water collecting pipe 13 and the suction pipe 3
1. Water is collected via the suction pump P2. On the other hand, air bubbles that float in the flow channel b toward the liquid surface of the gas-liquid separation cylinder are
The gap between the bundles of the hollow tubular membranes 23 hanging down is raised, a shearing force is applied to the outer surface of the membrane, and the gel layer attached to the outer surface of the membrane is peeled off. Note that a gel layer adheres to the outer surface of the hollow tubular membrane in the flow path a through which the raw water flows downward.

【0015】こうして、圧縮空気源からの空気の供給
を、30分毎に流路aとbに切換え、原水が下向流する
流路中の中空管状膜の外面に付着したゲル層を交互に剥
離しながら採水運転を行っても、ゲル層の完全剥離は不
可能なため、両流路中の中空管状膜の外面には剥離でき
なかったゲル層が少量ながら付着して残り、それの蓄積
により損失水頭は次第に上昇する。損失水頭が所定値以
上に高まったら給水ポンプP1 による原水の供給と、吸
引ポンプP2 の運転、圧縮空気源による給気を停め、採
水管18にポンプP3 、洗浄水供給管35で洗浄水を加
圧して供給して洗浄を行う。この洗浄水は、採水運転時
に採水した透過水を使用する。これにより洗浄水は、集
水室13´から中空管状膜23の1本宛の中空部に加圧
注入され、膜を内から外に透過する際に膜の外面に付着
したゲル層を剥離する。そして、剥離したゲル層を含む
洗浄廃水は、原水の供給口14に接続した排水管36か
ら排水する。排水管36から排出される液中にゲル層が
認められなかったらポンプP3 の運転を停めて洗浄工程
を終り、前述の透過水の採水運転を再開する。
In this way, the supply of air from the compressed air source is switched to the flow paths a and b every 30 minutes, and the gel layer adhering to the outer surface of the hollow tubular membrane in the flow path in which the raw water flows downward alternately. Even if the water collecting operation is performed while separating, it is impossible to completely separate the gel layer.Therefore, a small amount of the gel layer that cannot be separated adheres to the outer surfaces of the hollow tubular membranes in both flow paths, and the gel layer remains. The head loss gradually rises due to accumulation. When the head loss exceeds a predetermined value, the supply of raw water by the water supply pump P1, the operation of the suction pump P2, and the supply of air by the compressed air source are stopped, and the washing water is added by the pump P3 to the water sampling pipe 18 and the washing water supply pipe 35. Cleaning is performed by supplying under pressure. As this washing water, permeated water collected during the water sampling operation is used. As a result, the washing water is injected under pressure from the water collecting chamber 13 ′ into the hollow portion of the hollow tubular membrane 23, and the gel layer attached to the outer surface of the membrane is removed when the membrane permeates from the inside to the outside. . The washing wastewater containing the separated gel layer is drained from a drain pipe 36 connected to the raw water supply port 14. If no gel layer is found in the liquid discharged from the drain pipe 36, the operation of the pump P3 is stopped to end the washing step, and the above-described operation of collecting permeated water is resumed.

【0016】この場合、図1に示したように、採水管1
8には開閉弁V3 を有する吸引管31と、開閉弁V4 を
有する洗浄水供給管35を分岐して接続し、又、原水の
供給口14には開閉弁V5 を有する原水の給気管32
と、開閉弁V6 を有する洗浄排水の排水管36を分岐し
て接続しておけば、透過水の採水運転時は開閉弁V4 ,
V6 を閉にし、洗浄工程の際は開閉弁V3 ,V5 を閉に
すればよく、吸引管31と洗浄水供給管35を個々に採
水管18に接続したり、原水の給水管32と、洗浄水の
排水管36を個々に原水口14に接続する手数が省け
る。
In this case, as shown in FIG.
8, a suction pipe 31 having an on-off valve V3 and a washing water supply pipe 35 having an on-off valve V4 are branched and connected, and a raw water supply pipe 14 having an on-off valve V5 is connected to the raw water supply port 14.
And the drainage pipe 36 of the cleaning drain having the on-off valve V6 is branched and connected, so that the on-off valve V4,
V6 may be closed, and the on-off valves V3 and V5 may be closed during the cleaning process. The suction pipe 31 and the cleaning water supply pipe 35 may be individually connected to the water sampling pipe 18 or the raw water supply pipe 32 and the cleaning water supply pipe 32 may be closed. The trouble of individually connecting the water drain pipes 36 to the raw water outlets 14 can be omitted.

【0017】又、気液分離筒部12を環状集水座13の
下面付近のレベルで、図示の如くフランジ接合12aで
上下に分離可能にしておくと、膜エレメント20の交換
の際、フランジ接合を外し、劃壁22の両側部を下方筒
部のスライド係合装置19内を上向きに摺動して膜エレ
メント毎、上部12bを上方に外し、膜及び隔壁の下端
が下部から上に出たら膜エレメントのポッティング部2
1を集水座13から下に抜き、新しい膜エレメントを上
述の操作を逆に行って容易に交換できる。又、このこと
は装置の完成当初に膜エレメントを組込む作業をも容易
にする。
Further, if the gas-liquid separation tube portion 12 can be vertically separated at the level near the lower surface of the annular water collecting seat 13 by the flange joint 12a as shown in the figure, the flange joint can be replaced when the membrane element 20 is replaced. Is removed, the upper side 12b of the membrane element and the upper end 12b are disengaged upward by sliding the both sides of the partition wall 22 upward in the slide engagement device 19 of the lower cylindrical part, and the lower ends of the membrane and the partition wall come out from the lower part. Potting part 2 of membrane element
1 can be withdrawn from the catchment 13 and a new membrane element can be easily replaced by reversing the above operation. This also facilitates the work of assembling the membrane element when the device is completed.

【0018】図5,6の第2実施例は、環状集水座13
の外周に複数の放射状の腕37を突設し、気液分離筒部
12の内周には上記腕37を下から支える環状の支持棚
38を設け、環状の支持棚38上に放射状の腕37を支
持することにより膜エレメント20を内周に取付けた環
状集水座を気液分離筒部12の内部に同心状に支持して
劃壁22と、中空管状膜23を下方筒部11の内部下方
まで垂下させると共に、環状集水座13の集水室13´
の頂部に下端が開口した集水管18を環状集水座の上面
に立設してその上端を気液分離筒部12の開放した上面
から上に位置させ、その上端に吸引ポンプP2 を有する
吸引管31と、ポンプP3 を有する洗浄水供給管35を
接続した点で、図1〜4の第1実施例と構成が相違する
が、第1実施例と同様にして透過水の採水運転と、中空
管状膜の洗浄が行える。
The second embodiment shown in FIGS.
A plurality of radial arms 37 protrude from the outer periphery of the cylinder, and an annular support shelf 38 for supporting the arm 37 from below is provided on the inner periphery of the gas-liquid separation tube portion 12. By supporting the 37, the annular water collecting seat having the membrane element 20 mounted on the inner periphery thereof is concentrically supported inside the gas-liquid separation tube portion 12, and the partition wall 22 and the hollow tubular film 23 of the lower tube portion 11 are supported. The water collecting chamber 13 ′ of the annular water collecting seat 13 hangs down to the inside.
A suction pipe P2 having a suction pump P2 at the upper end thereof is provided with a water collecting pipe 18 having an open lower end at the top of the annular water collecting seat, the upper end of which is positioned above the open upper surface of the gas-liquid separation tube 12. Although the configuration is different from that of the first embodiment shown in FIGS. 1 to 4 in that a pipe 31 and a washing water supply pipe 35 having a pump P3 are connected, the operation of collecting permeated water is the same as in the first embodiment. In addition, the hollow tubular membrane can be washed.

【0019】第1実施例では気液分離筒部12の内部を
直径方向に横切る支持体17を設け、採水管18を上記
支持体17に半径方向に設けるため、気液分離筒部の上
部は、その下部や下方筒部11と別体に成形してフラン
ジ接合12aで組立てゝモジュール外筒10にしたが、
この第2実施例では、複数の放射状の腕37を気液分離
部の内周の環状の支持棚38上に受止めて環状集水座1
3を気液分離部12内に同心状に支持し、採水管18は
環状集水座13の上面中央に立設したのでモジュール外
筒10はプラスチックで一体成形することができる。
In the first embodiment, a support 17 is provided which crosses the inside of the gas-liquid separation tube 12 in the diameter direction, and a water sampling pipe 18 is provided in the support 17 in the radial direction. , Formed separately from the lower or lower cylindrical portion 11 and assembled with a flange joint 12a.
In the second embodiment, a plurality of radial arms 37 are received on an annular support shelf 38 on the inner periphery of the gas-liquid separation unit, and
3 is concentrically supported in the gas-liquid separation section 12, and the water sampling pipe 18 is provided upright at the center of the upper surface of the annular water collecting seat 13, so that the module outer cylinder 10 can be integrally formed of plastic.

【0020】従って、この第2実施例の場合は、環状集
水座13を膜エレメント20毎、気液分離筒部12の上
端から上に抜き出し、ポッティング部を環状集水座から
抜いて古い膜エレメントを外し、新しい膜エレメントの
ポッティング部を環状集水座の内周に嵌めて取替え、環
状集水座を新しい膜エレメント毎、気液分離筒の内部に
上端から挿入し、環状集水座の外周から突出する腕37
を気液分離筒の内周の環状の支持棚38上に同心状に受
止めさせればよい。これにより新しい膜エレメントを容
易に交換できると共に、装置の完成当初に膜エレメント
を組込む作業も容易になる。
Accordingly, in the case of the second embodiment, the annular water collecting seat 13 is pulled out from the upper end of the gas-liquid separation cylinder 12 for each membrane element 20, and the potting portion is pulled out of the annular water collecting seat to remove the old membrane. Remove the element, replace the potting part of the new membrane element with the inner circumference of the annular water collecting seat, and insert the annular water collecting seat with the new membrane element inside the gas-liquid separation tube from the upper end. Arm 37 protruding from the outer circumference
May be concentrically received on the annular support shelf 38 on the inner periphery of the gas-liquid separation cylinder. This facilitates replacement of a new membrane element and facilitates the work of installing the membrane element at the beginning of the device.

【0021】尚、上記第1、第2の実施例では中空管状
膜を中空糸膜として説明したが、中空管状膜がチューブ
ラー膜の場合は、膜の上端部をポッティング部21に固
定して中空部の上端をポッティング部の上面に開口さ
せ、一部のチューブラー膜を流路a、残部のチューブラ
ー膜を流路bに垂下させ、各チューブラー膜の下端を塞
いだり、ポッティングにより固定して塞げばよい。
In the first and second embodiments, the hollow tubular membrane is described as a hollow fiber membrane. However, when the hollow tubular membrane is a tubular membrane, the upper end of the membrane is fixed to the potting portion 21. The upper end of the hollow part is opened on the upper surface of the potting part, a part of the tubular membrane is dripped down to the flow path a, and the remaining tubular membrane is drooped to the flow path b, and the lower end of each tubular membrane is closed or fixed by potting. And close it.

【0022】[0022]

【発明の効果】以上で明らかなように、本発明は、モジ
ュール外筒の下半部を小径の下方筒部、上半部を大径の
気液分離筒部にし、この気液分離筒部内に同心状に設け
た環状集水座に、膜エレメントの上端のポッティングを
嵌めて固定し、ポッティング部に上端を固定した多数本
の中空管状膜を下方筒部内に垂下させたので、モジュー
ル体積当りの膜充填面積を、中空環状膜を膜エレメント
の円筒ケースに設ける場合よりも、著しく大にできる。
そして、ポッティング部に上端を固定されて垂下する劃
壁が下方筒部の内部を、底部を除いて二つの流路a,b
に仕切り、前記管状中空膜の半分は流路a、他の半分は
流路bに位置させ、流路aとbに下から交互に空気を供
給することにより、空気のエアリフト作用で流路aを上
向流、流路bを下向流する循環流と、流路bを上向流、
流路aを下向流する循環流を形成でき、そのどちらの循
環流を行う原水からも透過水を採水することができると
共に、原水を上向流させるための気泡の剪断力によって
中空管状膜の外面に付着するゲル層を剥離することがで
きる。そして、流路a、又はb中で原水を上向流させた
気泡は膜エレメントの上方の気液分離筒の内部で分離さ
れて浮上するので、気泡が流路を下向流する水に巻込ま
れることはなく、気泡のエアリフト作用による循環流を
効率よく生じさせることができる。
As is apparent from the above description, the present invention has a structure in which the lower half of the module outer cylinder is a small-diameter lower cylinder and the upper half is a large-diameter gas-liquid separation cylinder. The potting at the upper end of the membrane element was fitted and fixed to the annular water collecting seat provided concentrically with the hollow collecting membrane, and a number of hollow tubular membranes with the upper end fixed to the potting portion were suspended in the lower cylindrical portion. Can be significantly larger than the case where the hollow annular membrane is provided in the cylindrical case of the membrane element.
A partition wall whose upper end is fixed to the potting portion and hangs down is formed into two passages a and b except for the bottom portion inside the lower tubular portion.
The half of the tubular hollow membrane is positioned in the flow path a, and the other half is positioned in the flow path b. By supplying air to the flow paths a and b alternately from below, the flow path a The upward flow, the circulating flow flowing downward in the flow path b, and the upward flow flowing in the flow path b.
A circulating flow that flows downward in the flow path a can be formed, and permeated water can be collected from raw water that performs either of the circulating flows, and a hollow tubular shape is formed by the shearing force of bubbles for causing the raw water to flow upward. The gel layer adhering to the outer surface of the membrane can be peeled off. Then, the bubbles having the raw water flowing upward in the flow path a or b are separated and float inside the gas-liquid separation cylinder above the membrane element, so that the bubbles are entrained in the water flowing down the flow path. Therefore, a circulating flow due to the air lift action of the bubbles can be efficiently generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による膜分離装置の一実施例の縦断側面
図である。
FIG. 1 is a vertical sectional side view of one embodiment of a membrane separation device according to the present invention.

【図2】図1のII−II線での断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】図1のIII−III線での断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 1;

【図4】図1のIV−IV線での断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG.

【図5】本発明による膜分離装置の他の一実施例の縦断
側面図である。
FIG. 5 is a vertical sectional side view of another embodiment of the membrane separation device according to the present invention.

【図6】図5のVI−VI線での断面図である。FIG. 6 is a sectional view taken along line VI-VI in FIG. 5;

【符号の説明】[Explanation of symbols]

10 モジュール外筒 11 モジュール外筒の下方筒部 12 モジュール外筒の気液分離筒部 13 モジュール外筒の環状集水座 13´ モジュール外筒の集水室 14 原水の供給口 15a 給気口 15b 給気口 16 濃縮水の取出口 18 採水管 20 膜エレメント 21 膜エレメントのポッティング部 22 膜エレメントの隔壁 23 膜エレメントの中空管状膜 31 透過水の吸引管 32 原水の給水管 33 圧縮空気源 35 洗浄水の供給管 36 洗浄排水の排水管 37 腕 38 支持棚 a 劃壁により仕切られた下方筒部内の一方の流路 b 劃壁により仕切られた下方筒部内の他方の流路 C 劃壁の上部で流路a,bを連通する空間 D 劃壁の上部で流路a,bを連通する空間 P1 原水の供給ポンプ P2 透過水の吸引ポンプ P3 洗浄水の供給ポンプ DESCRIPTION OF SYMBOLS 10 Module outer cylinder 11 Lower cylinder part of module outer cylinder 12 Gas-liquid separation cylinder part of module outer cylinder 13 Annular water collecting seat of module outer cylinder 13 'Water collecting chamber of module outer cylinder 14 Raw water supply port 15a Air supply port 15b Supply port 16 Concentrated water outlet 18 Sampling tube 20 Membrane element 21 Potting portion of membrane element 22 Partition wall of membrane element 23 Hollow tubular membrane of membrane element 31 Suction pipe for permeated water 32 Raw water supply pipe 33 Compressed air source 35 Cleaning Water supply pipe 36 Cleaning drainage pipe 37 Arm 38 Support shelf a One flow path in the lower cylinder part partitioned by the partition wall b The other flow path in the lower cylinder part partitioned by the partition wall C Upper part of the partition wall A space connecting the flow paths a and b in the space D A space connecting the flow paths a and b in the upper part of the partition wall P1 Supply pump for raw water P2 Suction pump for permeated water P3 Supply pump for washing water

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下半部に小径の下方筒部、上半部に大径
の気液分離筒部を同心状に有し、前記下方筒部の上方に
位置して前記気液分離筒部内に設けられた環状集水座を
備えたモジュール外筒と、上記環状集水座に嵌めて固定
されるポッティング部、該ポッティング部に上端を固定
されて前記下方筒部の内部下方まで垂下し、下方筒部の
内部を二つの流路に仕切る劃壁、及び上記ポッティング
部に上端を固定され、中空な上端がポッティング部の上
面に開口し、前記隔壁により仕切られた二つの各流路の
内部に垂下する多数本の外圧型中空管状膜を有する膜エ
レメントとからなり、前記下方筒部の底部には原水の供
給口と、膜エレメントの隔壁で仕切られた二つの流路に
交互に圧縮空気を供給する二つの送気口とを設け、気液
分離筒部内の環状集水座には中空管状膜の中空部に透過
した透過水を吸引ポンプで採水する採水管を接続すると
共に、気液分離筒部には中空管状膜を透過しなかった濃
縮水の取出口を設けたことを特徴とする中空管状膜によ
る膜分離装置。
1. A lower-diameter lower cylinder portion in a lower half portion and a large-diameter gas-liquid separation cylinder portion in a upper half portion concentrically, and located above the lower cylinder portion in the gas-liquid separation cylinder portion. A module outer cylinder provided with an annular water collecting seat provided in, a potting portion fitted and fixed to the annular water collecting seat, the upper end is fixed to the potting portion and hangs down to the lower inside of the lower cylindrical portion, A partition wall dividing the inside of the lower cylindrical portion into two flow paths, and an upper end fixed to the potting portion, a hollow upper end is opened on the upper surface of the potting portion, and the inside of each of the two flow paths partitioned by the partition wall A membrane element having a large number of external pressure type hollow tubular membranes hanging down to the bottom of the lower cylindrical portion, and a compressed air is alternately supplied to a raw water supply port and two flow paths separated by a partition of the membrane element. Two gas supply ports for supplying A water sampling pipe is connected to the water seat for sampling permeated water permeated through the hollow portion of the hollow tubular membrane with a suction pump, and an outlet for concentrated water that has not passed through the hollow tubular membrane is connected to the gas-liquid separation cylinder. A membrane separation device using a hollow tubular membrane, provided.
JP23480796A 1996-09-05 1996-09-05 Membrane separator by hollow tubular membranes Pending JPH1076144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23480796A JPH1076144A (en) 1996-09-05 1996-09-05 Membrane separator by hollow tubular membranes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23480796A JPH1076144A (en) 1996-09-05 1996-09-05 Membrane separator by hollow tubular membranes

Publications (1)

Publication Number Publication Date
JPH1076144A true JPH1076144A (en) 1998-03-24

Family

ID=16976707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23480796A Pending JPH1076144A (en) 1996-09-05 1996-09-05 Membrane separator by hollow tubular membranes

Country Status (1)

Country Link
JP (1) JPH1076144A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513785A (en) * 1999-11-18 2003-04-15 ゼノン、エンバイロンメンタル、インコーポレーテッド Immersion type membrane filtration system and overflow treatment method
EP1799334A1 (en) * 2004-09-14 2007-06-27 Siemens Water Technologies Corp. Methods and apparatus for removing solids from a membrane module
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513785A (en) * 1999-11-18 2003-04-15 ゼノン、エンバイロンメンタル、インコーポレーテッド Immersion type membrane filtration system and overflow treatment method
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
EP1799334A1 (en) * 2004-09-14 2007-06-27 Siemens Water Technologies Corp. Methods and apparatus for removing solids from a membrane module
EP1799334A4 (en) * 2004-09-14 2009-05-06 Siemens Water Tech Corp Methods and apparatus for removing solids from a membrane module
AU2005284677B2 (en) * 2004-09-14 2010-12-23 Evoqua Water Technologies Llc Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US11884701B2 (en) 2008-09-02 2024-01-30 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US10981949B2 (en) 2008-09-02 2021-04-20 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10195567B2 (en) 2011-05-17 2019-02-05 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10874990B2 (en) 2011-05-17 2020-12-29 Merck Millipore Ltd. Layered tubular membranes for chromatography, and methods of use thereof
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
JPH1076144A (en) Membrane separator by hollow tubular membranes
CN101287538B (en) An assembly for water filtration using a tube manifold to minimise backwash
JPS6342704A (en) Reverse osmosis apparatus
KR100812187B1 (en) Cartridge module of hollow fiber membranes
JP2003024751A (en) Hollow fiber membrane cartridge
JPS62237908A (en) Filter module for hollow yarn type membrane separation equipment
JP3536466B2 (en) Membrane separation device with hollow tubular membrane
US6383385B1 (en) Filter unit for the physical elimination of microbes, suspended matter and solids from water
JP2000343095A (en) Activated sludge treating device
EA013949B1 (en) A filter unit and methods for organizing the operation thereof
JP3562066B2 (en) Membrane separation device with hollow tubular membrane
JPH09131517A (en) Hollow fiber membrane module and method for using the same
JP4433553B2 (en) Cleaning method for spiral membrane module
JPH08229362A (en) Method for cleaning membrane with liquid chemical in immersion-type membrane filter and device therefor
JP4017262B2 (en) Tank type filtration device using hollow fiber membrane module
JP6692701B2 (en) Hollow fiber membrane filtration device and cleaning method thereof
JPH11253936A (en) Water purifier
JP2566499Y2 (en) External pressure type hollow fiber membrane module
JPH07153733A (en) Bubble removing device and its using method
KR200338958Y1 (en) structure for air vent of water main direct connection in water clean machine
JPH05212254A (en) Hollow-fiber membrane module filter
JP4020510B2 (en) Tank type filtration device
JPH0630260Y2 (en) External pressure full filtration hollow fiber membrane module
JP2001347268A (en) Water treatment equipment
JPS61254207A (en) Filtering tower using hollow yarn module