JPH1066972A - Cleaning and regenerating method of separation membrane for water treatment - Google Patents

Cleaning and regenerating method of separation membrane for water treatment

Info

Publication number
JPH1066972A
JPH1066972A JP22707096A JP22707096A JPH1066972A JP H1066972 A JPH1066972 A JP H1066972A JP 22707096 A JP22707096 A JP 22707096A JP 22707096 A JP22707096 A JP 22707096A JP H1066972 A JPH1066972 A JP H1066972A
Authority
JP
Japan
Prior art keywords
cleaning
membrane
washing
water
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22707096A
Other languages
Japanese (ja)
Inventor
Shigeo Wakui
茂夫 和久井
Naomichi Yonekawa
直道 米川
Shuichi Chino
秀一 知野
Arihiro Nomura
有宏 野村
Masahiko Kogure
雅彦 木暮
Tsugi Abe
嗣 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP22707096A priority Critical patent/JPH1066972A/en
Publication of JPH1066972A publication Critical patent/JPH1066972A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To restore water permeating quantity by executing a 1st step for cleaning a separation membrane for water treatment with an acidic solution and a 2nd step for cleaning it with an alkaline solution containing formalin and an alkali assistant in this order to effectively remove a mixed soil stuck to the membrane without damaging the membrane. SOLUTION: At the time of cleaning a module 7, a cleaning solution is prepared in a cleaning tank 5 and fed to the module 7 with a cleaning pump 6. The 1st cleaning step for cleaning with the acidic solution and the 2nd step for cleaning with the alkaline solution containing formalin and the alkali assistant are successively executed. As a result, salts contained in the raw water, calcium salts and iron matter in a scale and an aluminum complex leaking from the pretreating device or the like are removed in the 1st step top facilitate the infiltration of the 2nd step cleaning solution in the coil. Next, in the 2nd step cleaning, the soil not removed with the acid cleaning is almost removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、純水や超純水など
の処理水を製造するために用いられている、逆浸透膜
(RO)、限外濾過膜(UF)、精密濾過膜(MF)等
の水処理用分離膜洗浄回生方法に係わり、特に、逆浸透
膜の洗浄回生に適した方法に関する。
The present invention relates to a reverse osmosis membrane (RO), an ultrafiltration membrane (UF), and a microfiltration membrane (RO) used for producing treated water such as pure water or ultrapure water. The present invention relates to a method for cleaning and regenerating a separation membrane for water treatment such as MF), and particularly to a method suitable for cleaning and regenerating a reverse osmosis membrane.

【0002】[0002]

【従来の技術】液晶パネルや超LSIなどを製造する電
子工業や、医薬製造工場等において、コロイド状物質及
びイオンの量をppbオーダーまで減少させたいわゆる
超純水を必要とする。このような超純水を製造する純水
製造プラントは、常圧脱気装置、逆浸透膜装置、フィル
タ装置、真空脱気装置、紫外線照射有機物分解装置、イ
オン交換装置、限外濾過膜装置などからなり、被処理水
の溶存成分や微粒子成分を除去して、比抵抗値18MΩ
・cm以上、TOC1ppb以下、0.05μm粒径の
微粒子数個/ml程度までに純度を高めることが行われて
いる。
2. Description of the Related Art In the electronics industry for manufacturing liquid crystal panels and ultra LSIs, pharmaceutical manufacturing plants, and the like, so-called ultrapure water in which the amounts of colloidal substances and ions are reduced to the order of ppb is required. Pure water production plants that produce such ultrapure water include atmospheric degassing equipment, reverse osmosis membrane equipment, filter equipment, vacuum deaeration equipment, ultraviolet irradiation organic matter decomposition equipment, ion exchange equipment, ultrafiltration membrane equipment, etc. From which the dissolved component and the fine particle component of the water to be treated are removed, and the specific resistance value is 18 MΩ.
The purity has been increased to not less than cm, not more than 1 ppb of TOC, and several particles / ml having a particle size of 0.05 μm.

【0003】このような純水製造プラントで用いられる
装置のうち逆浸透膜装置は、逆浸透膜に原水を溶解塩類
の浸透膜の浸透圧以上の加圧下で供給し、塩類の大半を
逆浸透膜で阻止して塩類を減少させた透過水を処理水と
して得るとともに、塩類を濃縮した被透過水を排出する
ものであるが、この処理中に原水に含まれているコロイ
ド状物質も逆浸透膜で阻止することができるので、前記
超純水の製造には好都合である。
[0003] Among the apparatuses used in such a pure water production plant, a reverse osmosis membrane apparatus supplies raw water to a reverse osmosis membrane under a pressure higher than the osmotic pressure of a dissolved salt osmosis membrane and reverse osmosis of most of the salts. The permeated water, which is reduced by salts by blocking with a membrane, is obtained as treated water, and the permeated water, which is concentrated with salts, is discharged.The colloidal substances contained in the raw water during this treatment are also reverse osmosis. This is advantageous for the production of the ultrapure water because it can be stopped by a membrane.

【0004】逆浸透膜は、以上のような操作で原水を処
理するものであるから、原水の濃縮倍率、換言すれば透
過水の回収率を大きくすればする程、一定の供給原水か
ら多量の透過水を得ることができ、コストの面で有利で
ある。
Since the reverse osmosis membrane treats raw water by the above-described operation, the larger the concentration ratio of raw water, in other words, the higher the recovery rate of permeated water, the larger the amount of raw water supplied from a certain amount. Permeated water can be obtained, which is advantageous in terms of cost.

【0005】しかしながら、カルシウム、マグネシウム
等の硬度成分、硫酸イオン、シリカなどが多量に含まれ
ている原水を逆浸透膜装置で処理する場合、透過水の回
収率を大きくすると、比較的溶解度の小さい硫酸カルシ
ウムやシリカ等の沈殿物が膜に析出して、圧力損失の増
大、透過水量の減少などの問題が生じる。
However, when a raw water containing a large amount of hardness components such as calcium and magnesium, sulfate ions, silica and the like is treated by a reverse osmosis membrane apparatus, if the recovery rate of permeated water is increased, the solubility is relatively small. Precipitates such as calcium sulfate and silica precipitate on the membrane, causing problems such as an increase in pressure loss and a decrease in the amount of permeated water.

【0006】また、原水中の微生物による膜分離装置汚
染は、処理水中の微粒子として超純水の水質を悪化させ
たり、膜上に菌体が繁殖し微生物及びその代謝物等から
なる有機性物質が付着し、膜の水透過性を低下させるな
どの問題が生じる。
[0006] Contamination of a membrane separation device by microorganisms in raw water deteriorates the quality of ultrapure water as fine particles in treated water, or organic substances consisting of microorganisms and metabolites of microorganisms due to the propagation of bacteria on the membrane. Is attached, and problems such as a decrease in water permeability of the membrane occur.

【0007】このため、こうした膜汚染物を効率よく除
去することが膜分離装置の実使用において大きな課題と
なっている。
[0007] For this reason, efficient removal of such membrane contaminants has become a major problem in practical use of membrane separators.

【0008】膜汚染物を除去する膜洗浄方法としては、
大きく物理的方法と化学的方法とがある。物理的方法と
しては温水、脈動、気水混合洗浄方法等があるが、装置
及び操作が複雑となる上に、十分な洗浄が発揮されない
場合が多い。このため、種々の洗浄剤を使用した化学的
洗浄方法が一般的に行われている。洗浄剤としては、界
面活性剤、酸、アルカリ、酸化・還元剤、キレート剤、
酵素等が用いられており、これらを単独ないし併用して
使用している。
[0008] As a membrane cleaning method for removing membrane contaminants,
There are physical and chemical methods. As a physical method, there are hot water, pulsation, and a mixture method of steam and water. However, the apparatus and operation are complicated, and sufficient cleaning is often not performed. For this reason, chemical cleaning methods using various cleaning agents are generally performed. Detergents include surfactants, acids, alkalis, oxidizing / reducing agents, chelating agents,
Enzymes and the like are used, and these are used alone or in combination.

【0009】しかしながら、従来の洗浄方法では、硫酸
カルシウムやシリカ等のスケール物質と微生物及びその
代謝物等の有機性物質とからなる混合汚染物質の除去に
は適当なものがなく、膜性能の回復は十分とは言えなか
った。
However, in the conventional cleaning method, there is no method suitable for removing mixed contaminants composed of scale substances such as calcium sulfate and silica and organic substances such as microorganisms and metabolites thereof. Was not enough.

【0010】このため、膜透過水量を維持するために洗
浄頻度を多くしなければならず、膜の寿命を短くする結
果となっていた。
Therefore, the frequency of washing must be increased in order to maintain the amount of water permeated through the membrane, resulting in a shortened life of the membrane.

【0011】一方、膜自体について見ると、従来の非対
称酢酸セルロース膜に代わって、ポリスルホン多孔性支
持膜等に、膜性能を司る活性層を被覆した高性能の複合
逆浸透膜やポリアミド製の非対称膜が出現し、近年工業
的に利用されている。
On the other hand, when looking at the membrane itself, instead of the conventional asymmetric cellulose acetate membrane, a high-performance composite reverse osmosis membrane in which a polysulfone porous support membrane or the like is coated with an active layer that controls membrane performance, or a polyamide asymmetric cellulose acetate membrane is used. Membranes have emerged and have been used industrially in recent years.

【0012】しかし、このような新たに開発された逆浸
透膜は、非対称酢酸セルロース膜に比較して耐塩素性が
劣るためこれまでのように塩素による常時殺菌・洗浄を
行うことができないという問題があった。
However, such a newly developed reverse osmosis membrane is inferior in chlorine resistance as compared with an asymmetric cellulose acetate membrane, and thus cannot be constantly sterilized and washed with chlorine as before. was there.

【0013】以上のように、超純水の製造工程のような
水処理工程に用いる水処理用分離膜においては、硫酸カ
ルシウムやシリカ等のスケール物質と微生物及びその代
謝物等の有機性物質とからなる混合汚染物質の除去には
適当なものがなく、膜透過水量を維持するために洗浄頻
度が多くなり、膜の寿命を短くするという問題があっ
た。また、複合逆浸透膜や非対称膜逆浸透膜のような高
性能の水処理用分離膜では耐塩素性が劣るため塩素によ
る常時殺菌・洗浄を行うことができず膜の高性能を生か
した運転がなされていないという問題があった。
As described above, in a separation membrane for water treatment used in a water treatment step such as a step of producing ultrapure water, scale substances such as calcium sulfate and silica and organic substances such as microorganisms and metabolites thereof are used. There is no suitable method for removing mixed contaminants consisting of, and there is a problem that the frequency of cleaning is increased in order to maintain the amount of water permeated through the membrane, thereby shortening the life of the membrane. In addition, high-performance separation membranes for water treatment, such as composite reverse osmosis membranes and asymmetric membrane reverse osmosis membranes, have poor chlorine resistance and cannot be constantly sterilized and washed with chlorine. There was a problem that was not done.

【0014】[0014]

【発明が解決しようとする課題】本発明は、上記従来の
問題を解決すべくなされたもので、膜に付着した混合汚
染物質を、膜を損傷することなく効果的に除去し、透過
水量を回生させる、逆浸透膜のような水処理用分離膜の
洗浄回生方法を提供することを目的としている。また、
第2の目的は、高性能であるが、耐塩性に欠ける水処理
用分離膜の能力を最大限に利用すべく塩素を使用せずに
効果的に混合汚染物質を除去する逆浸透膜の洗浄回生方
法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and effectively removes mixed contaminants adhering to a membrane without damaging the membrane, thereby reducing the amount of permeated water. It is an object of the present invention to provide a method for regenerating and washing and regenerating a separation membrane for water treatment such as a reverse osmosis membrane. Also,
The second objective is to clean reverse osmosis membranes that effectively remove mixed contaminants without using chlorine in order to maximize the performance of water treatment separation membranes that have high performance but lack salt resistance. It is to provide a regeneration method.

【0015】[0015]

【課題を解決するための手段】本発明者らは、従来技術
の欠点を解決すべく鋭意研究した結果、逆浸透膜に沈着
した前記混合汚染物質の除去に対しては、ホルマリンと
アルカリ助剤若しくはホルマリンとアルカリ助剤と界面
活性剤とを含有するアルカリ性溶液で洗浄するのが有効
であるとの知見を得た。しかし、ホルマリンとアルカリ
助剤若しくはホルマリンとアルカリ助剤と界面活性剤と
を含有するアルカリ性溶液を単に前記混合汚染物質に接
触させただけでは、必ずしも十分とはいいがたく、実用
的には、なお改良が望まれる。
Means for Solving the Problems The present inventors have made intensive studies to solve the disadvantages of the prior art, and as a result, it has been found that formalin and an alkali auxiliary are used for removing the mixed contaminants deposited on the reverse osmosis membrane. Alternatively, it was found that washing with an alkaline solution containing formalin, an alkaline auxiliary agent and a surfactant is effective. However, simply contacting an alkaline solution containing formalin and an alkaline auxiliary or a formalin and an alkaline auxiliary and a surfactant with the mixed contaminant is not always sufficient, but in practice, it is still difficult Improvement is desired.

【0016】本発明者等は、実験を重ねた結果、膜にホ
ルマリンとアルカリ助剤若しくはホルマリンとアルカリ
助剤と界面活性剤とを含有するアルカリ性溶液で洗浄す
るに先立って、酸性溶液で洗浄を行うことにより前記混
合汚染物質が効果的に除去できることを見出だし本発明
に到達した。
As a result of repeated experiments, the present inventors found that the membrane was washed with an acidic solution prior to washing the membrane with an alkaline solution containing formalin and an alkali assistant or formalin, an alkali assistant and a surfactant. The present inventors have found that the mixed contaminants can be effectively removed by performing the method, and have reached the present invention.

【0017】なお、本発明は、非対称膜や複合膜の逆浸
透膜を用いたスパイラル型モジュールや中空糸型モジュ
ールなどの洗浄回生に適しているが、逆浸透膜に限ら
ず、限外濾過膜や精密濾過膜等の洗浄回生方法について
も有効である。
The present invention is suitable for washing and regenerating a spiral type module or a hollow fiber type module using an asymmetric membrane or a composite membrane reverse osmosis membrane. It is also effective for a method for washing and regenerating a microfiltration membrane or the like.

【0018】したがって、本願発明は、少なくとも二つ
の洗浄段階を含む水処理用分離膜の洗浄回生方法におい
て、水処理用分離膜の膜に酸性溶液で洗浄する第1の洗
浄段階と、前記膜にホルマリンとアルカリ助剤とを含有
するアルカリ性溶液で洗浄する第2の洗浄段階を順に行
うことを特徴としている。
Therefore, the present invention provides a method for washing and regenerating a separation membrane for water treatment comprising at least two washing steps, wherein a first washing step of washing the membrane of the separation membrane for water treatment with an acidic solution, It is characterized in that a second washing step of washing with an alkaline solution containing formalin and an alkali auxiliary is performed in order.

【0019】第2の洗浄工程に使用するアルカリ性溶液
には、界面活性剤を添加することもできる。
A surfactant may be added to the alkaline solution used in the second washing step.

【0020】アルカリ性溶液で洗浄した後には、例え
ば、予め貯留しておいた逆浸透膜の処理水などを用い
て、溶解成分が抽出されなくなるまで洗浄する。
After washing with an alkaline solution, washing is carried out using, for example, treated water of a reverse osmosis membrane stored in advance until dissolved components are no longer extracted.

【0021】第1の洗浄段階は、pHを低くし酸性で溶
解する沈着物質を除去する工程である。
The first washing step is a step of lowering the pH and removing the acidicly soluble deposits.

【0022】第1の洗浄段階に使用可能な酸としては、
洗浄溶液のpHを下げるものであれば、無機酸、有機酸
を問わず用いることができる。
The acids that can be used in the first washing step include:
Any inorganic acid or organic acid can be used as long as it lowers the pH of the washing solution.

【0023】本発明に使用可能な無機酸としては、塩
酸、硫酸、硝酸、リン酸、フッ化水素、三酸化クロムな
どが例示され、有機酸としては、ギ酸、酢酸、プロピオ
ン酸、乳酸のようなモノカルボン酸、シュウ酸、酒石
酸、コハク酸、リンゴ酸のようなジカルボン酸、クエン
酸のようなトリカルボン酸などが例示される。本発明に
は、例えばショウ酸、クエン酸が好適に使用される。使
用する酸溶液の濃度は、酸の種類や汚染物質の成分等に
より実験的に適宜決められるが、通常酸濃度で0.01
〜10重量%、pHで1〜5の範囲のものが使用され
る。最も好ましい酸溶液は、酸としてシュウ酸、クエン
酸、酒石酸を用いたもの、また、酸濃度としては、0.
1〜10重量%の範囲のもの、さらに、pHでは2〜4
の範囲のものである。
The inorganic acids usable in the present invention include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrogen fluoride, chromium trioxide and the like, and the organic acids include formic acid, acetic acid, propionic acid and lactic acid. Monocarboxylic acids, oxalic acid, tartaric acid, succinic acid, dicarboxylic acids such as malic acid, and tricarboxylic acids such as citric acid. In the present invention, for example, oxalic acid and citric acid are preferably used. The concentration of the acid solution to be used is appropriately determined experimentally depending on the type of the acid, the components of the contaminants, and the like.
Those having a pH of 10 to 10% by weight and a pH of 1 to 5 are used. The most preferred acid solution uses oxalic acid, citric acid, or tartaric acid as the acid.
In the range of 1 to 10% by weight, and at pH 2 to 4
Of the range.

【0024】濃度とpHの好適範囲は、水酸化ナトリウ
ムの添加で調整することができる。第2の洗浄段階に使
用されるホルマリンの濃度は、通常0.1〜10重量%
程度が適しており、好ましくは0.5〜3重量%であ
る。ホルマリンの濃度が低過ぎると本発明の効果が少な
く、濃度高過ぎると膜を損傷するおそれがあるばかりで
なく脱薬に要する水洗時間が長時間になってしまう。
The preferred range of concentration and pH can be adjusted by adding sodium hydroxide. The concentration of formalin used in the second washing step is usually 0.1 to 10% by weight.
The degree is suitable, preferably 0.5 to 3% by weight. If the concentration of formalin is too low, the effect of the present invention is small. If the concentration is too high, not only may the membrane be damaged, but also the washing time required for drug removal becomes long.

【0025】第2の洗浄段階に使用されるアルカリ助剤
としては、アンモニア、ヒドラジン、チオ硫酸ナトリウ
ム、水酸化ナトリウム、炭酸ナトリウム、メタケイ酸ナ
トリウム、セスキケイ酸ナトリウム、オルトケイ酸ナト
リウム、オルトリン酸ナトリウム、ピロリン酸ナトリウ
ム、重炭酸ナトリウム、セスキ炭酸ナトリウム、トリポ
リリン酸ナトリウム、テトラリン酸ナトリウム、ヘキサ
メタリン酸ナトリウム等が例示される。本発明には、ア
ンモニア、ヒドラジン、水酸化ナトリウムが好適してお
り、pHの調整が容易に行える点で水酸化ナトリウムが
より好適している。 本発明に使用されるアルカリ助剤
には、それ自体では全く、またはほとんど洗浄力をもた
ないものもあるが、本発明のアルカリ性溶液において
は、著しい洗浄力増強作用を示す。
The alkaline auxiliaries used in the second washing step include ammonia, hydrazine, sodium thiosulfate, sodium hydroxide, sodium carbonate, sodium metasilicate, sodium sesquisilicate, sodium orthosilicate, sodium orthophosphate, pyrroline Sodium acid, sodium bicarbonate, sodium sesquicarbonate, sodium tripolyphosphate, sodium tetraphosphate, sodium hexametaphosphate and the like are exemplified. In the present invention, ammonia, hydrazine, and sodium hydroxide are preferable, and sodium hydroxide is more preferable in that the pH can be easily adjusted. Some of the alkaline auxiliaries used in the present invention by themselves have little or no detergency, but the alkaline solution of the present invention shows a remarkable detergency-enhancing action.

【0026】アルカリ性溶液のpHは9〜11が使用で
き、特に、pH10〜11の範囲がより好ましい。pH
が9未満であると洗浄効果が少なくなり、pHが11を
越えると膜を損傷するおそれがある。
The pH of the alkaline solution can be from 9 to 11, and the pH is more preferably from 10 to 11. pH
If the pH is less than 9, the cleaning effect is reduced, and if the pH exceeds 11, the membrane may be damaged.

【0027】アルカリ性溶液に添加可能な界面活性剤と
しては合成洗剤系、石鹸系、複合石鹸系を用いることが
でき、陰イオン性で、界面活性作用がある物質であれば
いずれも用いることができる。具体的には、アルキルベ
ンゼンスルホン酸ナトリウム、高級アルコール硫酸エス
テルナトリウム、アルキル硫酸エステルナトリウム、ア
ルキルスルホン酸ナトリウム、アルキルスルホコハク酸
ナトリウム、脂肪酸ナトリウム石鹸、アルキル硫酸ナト
リウム、ポリオキシエテレンアルキルエーテル硫酸ナト
リウム、アルキルリン酸ナトリウムなどが例示される。
As the surfactant that can be added to the alkaline solution, a synthetic detergent system, a soap system, and a complex soap system can be used, and any of anionic and surfactant materials can be used. . Specifically, sodium alkylbenzene sulfonate, sodium higher alcohol sulfate, sodium alkyl sulfate, sodium alkyl sulfonate, sodium alkyl sulfosuccinate, sodium fatty acid soap, sodium alkyl sulfate, sodium polyoxyetherene alkyl ether sulfate, alkyl phosphorus sodium Examples thereof include sodium acid.

【0028】界面活性剤の濃度は、逆浸透膜の種類によ
って、0.001〜10重量%の範囲で適宜調節するこ
とが望ましく、特に、0.2〜0.5重量%の範囲がよ
り好ましい。
The concentration of the surfactant is preferably adjusted appropriately in the range of 0.001 to 10% by weight, and more preferably in the range of 0.2 to 0.5% by weight, depending on the type of the reverse osmosis membrane. .

【0029】最適な条件は、界面活性剤としてアルキル
ベンゼンスルホン酸ナトリウム、アルキルスルホン酸ナ
トリウム、ポリオキシエチレンアルキルエーテル硫酸ナ
トリウムの少なくとも1種、濃度では0.2〜0.3重
量%の範囲である。
The optimum condition is that the surfactant is at least one of sodium alkylbenzene sulfonate, sodium alkyl sulfonate and sodium polyoxyethylene alkyl ether sulfate, and the concentration is in the range of 0.2 to 0.3% by weight.

【0030】前記のアニオン系界面活性剤は単独もしく
は複数併用して使用することになんら問題はない。さら
に、界面活性剤濃度が規定の範囲に調整できれば、添加
剤を含有する市販の界面活性剤を用いても差し支えな
い。
There is no problem in using the above-mentioned anionic surfactants alone or in combination of two or more. Further, as long as the surfactant concentration can be adjusted within a specified range, a commercially available surfactant containing an additive may be used.

【0031】このような添加剤としては、 (1) 洗浄力増強剤、具体的にはアルミノケイ酸塩、炭酸
塩、ケイ酸塩 (2) ビルダー(分散剤)、具体的には重合リン酸塩、天
然ゼオライト、カルボキシメチルセルロース (3) 金属イオン封鎖剤、具体的にはエチレンジアミン四
酢酸(EDTA)、クエン酸、グルコン酸、ヒドロキシ
酢酸、これらの塩 などがある。
Examples of such additives include (1) detergency enhancers, specifically, aluminosilicates, carbonates, and silicates. (2) builders (dispersants), specifically, polymerized phosphates. , Natural zeolite, carboxymethylcellulose (3) sequestering agents, specifically ethylenediaminetetraacetic acid (EDTA), citric acid, gluconic acid, hydroxyacetic acid, and salts thereof.

【0032】本発明においては、第1段階の洗浄によっ
て、原水に含有された塩類やスケール中のカルシウム
塩、鉄分、前処理装置からリークするアルミニウム錯体
等が除かれて、第2段階の洗浄液が膜上の汚染物質中へ
浸透しやすい状態になる。
In the present invention, the first-stage washing removes salts contained in raw water, calcium salts and iron in the scale, aluminum complexes leaking from the pretreatment device, and the like. It becomes easy to penetrate into contaminants on the membrane.

【0033】次いで、ホルマリンとアルカリ助剤を含有
するアルカリ性溶液、または、さらに界面活性剤を添加
したアルカリ性溶液を用いて第2段階の洗浄を行う。第
2段階の洗浄によって、酸洗浄では除去し得なかった汚
染物質のほとんどが除去される。
Next, the second-stage washing is performed using an alkaline solution containing formalin and an alkaline auxiliary, or an alkaline solution further containing a surfactant. The second stage of cleaning removes most of the contaminants that could not be removed by acid cleaning.

【0034】第1段階の洗浄は、あらかじめ必要最終濃
度になるように調整した酸性溶液を、30分〜48時
間、好ましくは60分〜24時間通液することにより行
う。
The first stage of washing is carried out by passing an acidic solution, which has been adjusted to the required final concentration, for 30 minutes to 48 hours, preferably 60 minutes to 24 hours.

【0035】また、第2段階の洗浄は、あらかじめ必要
最終濃度になるように調整したアルカリ性溶液を、30
分〜48時間、好ましくは60分〜24時間通液するこ
とにより行う。
In the second washing step, an alkaline solution previously adjusted to the required final concentration is washed with 30% of the alkaline solution.
It is carried out by passing the solution for minutes to 48 hours, preferably 60 minutes to 24 hours.

【0036】この後、被処理水を通水して膜からの抽出
が認められなくなったところで洗浄回生が完了する。
Thereafter, when the water to be treated is passed and extraction from the membrane is no longer recognized, the washing regeneration is completed.

【0037】なお、水温は5〜40℃が適しており、好
ましくは15℃〜30℃である。
The water temperature is suitably from 5 to 40 ° C, preferably from 15 to 30 ° C.

【0038】本発明によれば、従来の洗浄方法では除去
困難であった硫酸カルシウムやシリカ等のスケール物質
と微生物及びその代謝物等の有機性物質とからなる混合
汚染物質を膜の劣化を生じることなく効率よく除去でき
る。
According to the present invention, a mixed contaminant consisting of scale substances such as calcium sulfate and silica and organic substances such as microorganisms and metabolites thereof, which is difficult to remove by the conventional cleaning method, causes deterioration of the film. It can be removed efficiently without the need.

【0039】[0039]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0040】図1は、本発明を実施するために用いたモ
ジュール洗浄試験装置を説明するための図である。
FIG. 1 is a diagram for explaining a module cleaning test apparatus used for carrying out the present invention.

【0041】図示の装置では、原水は原水タンク1に貯
留された後、移送ポンプ2により膜前処理装置((株)
クラレ・ML−7101(0602))3に供給され、
原水中の濁質成分が除去されてから、透過水タンク4に
貯留される。モジュールを洗浄する際には、クリーニン
グタンク5に洗浄液を調整し、クリーニングポンプ6に
よりモジュール7に供給する。洗浄液を除去する際には
透過水タンク4より、透過水をRO(逆浸透)ポンプ8
と高圧ポンプ9によりモジュール7に供給する。
In the illustrated apparatus, raw water is stored in a raw water tank 1 and then transferred by a transfer pump 2 to a membrane pretreatment device (Co., Ltd.).
Kuraray ML-7101 (0602)) 3
After the turbid components in the raw water are removed, the raw water is stored in the permeated water tank 4. When cleaning the module, the cleaning liquid is adjusted in the cleaning tank 5 and supplied to the module 7 by the cleaning pump 6. When removing the cleaning liquid, the permeated water is supplied from a permeated water tank 4 to an RO (reverse osmosis) pump 8.
And supplied to the module 7 by the high pressure pump 9.

【0042】[0042]

【実施例】上述のモジュール洗浄試験装置を用いて本発
明方法と従来方法による洗浄効果の比較試験を行った。
なお、実施例における膜洗浄の効果を示す混合汚染物質
の除去率は、次式により求めたものである。
EXAMPLE A comparative test of the cleaning effect of the method of the present invention and the conventional method was conducted using the above-described module cleaning test apparatus.
The removal rate of the mixed contaminants showing the effect of the film cleaning in the examples was obtained by the following equation.

【0043】除去率(%)=(1−膜透過液中の導電率
/膜供給液中の導電率)×100実施例1 原水に工業用水を用い、この水を原水中の濁質成分を除
去するための凝集濾過装置に通水し、逆浸透膜装置(東
レ(株)、SU−720,スパイラル型逆浸透膜)に供
給した。凝集濾過装置は、濾過機の上に撹拌槽を設けた
装置であり、凝集剤としてPAC(ポリ塩化アルミニウ
ム)等を添加した原水が撹拌槽で撹拌され、マイクロフ
ロックを形成する。マイクロフロックを生成した原水は
下部のアンスラサイトと砂の二層構造濾過機に流入しこ
こで濾過操作が行われ濁質のない、きれいな水となる。
Removal rate (%) = (1−conductivity in membrane permeate / conductivity in membrane feed solution) × 100 Example 1 Industrial water was used as raw water, and this water was used to remove turbid components in the raw water. Water was passed through a coagulation filtration device for removal, and supplied to a reverse osmosis membrane device (Toray Industries, Ltd., SU-720, spiral type reverse osmosis membrane). The coagulation filtration device is a device in which a stirring tank is provided on a filter, and raw water to which PAC (polyaluminum chloride) or the like is added as a coagulant is stirred in the stirring tank to form micro flocs. The raw water that has produced the microfloc flows into the lower anthracite-sand filter having a two-layer structure, where the filtration operation is performed, and the water becomes clear without turbidity.

【0044】逆浸透膜に使用したSU−720は、スパ
イラル型逆浸透膜モジュールであり、逆浸透膜を平膜に
成形し、織布の流路剤を挟んで袋状に加工し、メッシュ
スペーサー部分を重ねて、外周に沢山の孔を開けた管の
周りに海苔巻き状に巻いたものである。円柱状に巻かれ
た逆浸透膜を通過した水だけが中心の管に集まり、濃縮
された水は円柱の一端から排出される。
SU-720 used for the reverse osmosis membrane is a spiral type reverse osmosis membrane module. The reverse osmosis membrane is formed into a flat membrane, processed into a bag shape with a woven fabric flow path agent interposed therebetween, and mesh spacers are formed. The parts are overlapped and wrapped around a tube with a number of holes on the outer periphery in a nori roll. Only water that has passed through the column-wound reverse osmosis membrane collects in the central tube, and the concentrated water is discharged from one end of the column.

【0045】当該逆浸透膜装置への平均供給水温は20
℃、運転圧力は15kg/cm2 、水の回収率を60%
とし、24時間連続運転を行った。運転開始一週間後の
原水と膜透過水の水質は表1の通りであった。
The average supply water temperature to the reverse osmosis membrane device is 20
° C, operating pressure 15 kg / cm 2 , water recovery rate 60%
And the continuous operation was performed for 24 hours. The water quality of the raw water and the membrane permeated water one week after the start of the operation was as shown in Table 1.

【0046】[0046]

【表1】 運転開始2200時間頃より膜透過水量が減少しはじ
め、約5000時間の運転により膜透過水量が初期膜透
過水量に比べて32%減少したため、当該逆浸透膜装置
より先頭に充填されていたモジュールを引き抜き、次の
条件で前記モジュールの洗浄試験を行った。
[Table 1] The amount of membrane permeated water began to decrease from about 2200 hours after the start of operation, and the amount of membrane permeated water was reduced by 32% compared to the initial membrane permeated water amount by about 5000 hours of operation. The module was pulled out and subjected to a washing test of the module under the following conditions.

【0047】第1段階洗浄 水酸化ナトリウムを用いてpH2に調整した0.2重量
%のシュウ酸水溶液100 lをクリーニングタンク5
に調整し、当該逆浸透膜装置より引き抜いたモジュール
7に供給した。この際、モジュールの透過側と濃縮側よ
り流出するクリーニング液は前記タンク5に戻し、30
分間循環運転を行った。循環運転後、ポンプ6を停止
し、60分間静置した。この間にクリーニングタンク5
内の洗浄液を排出した。この第1段階の洗浄を省略した
ものを比較例1とし、効果を比較した。
First stage cleaning 100 l of a 0.2% by weight aqueous solution of oxalic acid adjusted to pH 2 using sodium hydroxide was placed in a cleaning tank 5
And supplied to the module 7 pulled out from the reverse osmosis membrane device. At this time, the cleaning liquid flowing out from the permeation side and the concentration side of the module is returned to the tank 5,
The circulation operation was performed for a minute. After the circulation operation, the pump 6 was stopped and allowed to stand for 60 minutes. During this time the cleaning tank 5
The washing liquid in the inside was discharged. A sample in which the first-stage cleaning was omitted was designated as Comparative Example 1, and the effects were compared.

【0048】第2段階洗浄 水酸化ナトリウムを用いてpH12に調整した1.0重
量%のホルマリン水溶液100 lをクリーニングタン
ク5に調整し、前記モジュール7に供給した。この際、
モジュールの透過側と濃縮側より流出するクリーニング
液は前記タンク5に戻し、30分間供給し、さらにポン
プ8、9により透過水を供給し、水洗水中のホルマリン
濃度が0ppmになり、かつpHが中性になるまで水洗
を行った。上記洗浄方法の効果を確認するため、上記洗
浄の前後において、水温25℃に調節した1500pp
m塩化ナトリウム水溶液を用いて、当該モジュールの評
価を行った。新品時(メーカーの出荷時)のモジュール
性能との比較結果を表2(実施例1)、表3(比較例
1)に示す。
Second stage cleaning 100 l of a 1.0% by weight aqueous formalin solution adjusted to pH 12 using sodium hydroxide was adjusted in the cleaning tank 5 and supplied to the module 7. On this occasion,
The cleaning liquid flowing out from the permeating side and the concentrating side of the module is returned to the tank 5 and supplied for 30 minutes. Further, permeated water is supplied by the pumps 8 and 9 so that the formalin concentration in the washing water becomes 0 ppm and the pH is medium. Washing was carried out until it became sexual. In order to confirm the effect of the washing method, before and after the washing, the water temperature was adjusted to 25 ° C. and 1500 pp.
The module was evaluated using an aqueous sodium chloride solution. Table 2 (Example 1) and Table 3 (Comparative Example 1) show the results of comparison with the module performance when new (when shipped from the manufacturer).

【0049】[0049]

【表2】 [Table 2]

【表3】 表2および表3から明らかなように、第1段階の洗浄を
行った場合の膜透過水量は新品時以上の回生をしている
のに対し、第1段階の酸性溶液での洗浄を省略した比較
例1の洗浄方法では除去率には大差はないが、膜透過水
量が新品時の約80%にまでしか回生していない。これ
により、第1段階の酸性溶液による洗浄は第2段階の洗
浄効果をより高める上で必要であることがいえる。
[Table 3] As is clear from Tables 2 and 3, the membrane permeated water amount in the case of performing the first-stage cleaning is regenerating more than when new, but the first-stage washing with the acidic solution is omitted. Although there is no great difference in the removal rate in the cleaning method of Comparative Example 1, the amount of permeated water is regenerated only up to about 80% of that of a new product. Thus, it can be said that the first-stage cleaning with the acidic solution is necessary to further enhance the cleaning effect in the second stage.

【0050】実施例2 実施例1と同様の約5000時間運転後の逆浸透膜装置
よりモジュールを引き抜き、下記の条件によって洗浄試
験を行った。
Example 2 A module was pulled out of the reverse osmosis membrane device after the same operation as in Example 1 for about 5000 hours, and a washing test was performed under the following conditions.

【0051】第1段階洗浄 水酸化ナトリウムを用いてpH2に調整した0.2重量
%のシュウ酸水溶液100 lを30分間循環後、60
分間静置し、排出した。
First stage washing 100 l of a 0.2% by weight aqueous oxalic acid solution adjusted to pH 2 using sodium hydroxide was circulated for 30 minutes,
Allowed to stand for minutes and drained.

【0052】第2段階洗浄 水酸化ナトリウムを用いてpH10(比較例2はpH
8)に調整した1.0重量%のドデシルベンゼンスルホ
ン酸ナトリウムを含有する水溶液100 lを30分間
循環後、120分間静置し、排出した。引き続き水洗を
行い、水洗水の発泡がなくなり、水洗水中のホルマリン
濃度が0ppmになり、かつpHが中性になるまで水洗
を行った。上記洗浄方法の効果を確認するため、上記洗
浄の前後において、水温25℃に調整した1500pp
m塩化ナトリウム水溶液を用いて、モジュールの評価を
行った。新品時(メーカー出荷時)のモジュールの性能
との比較結果を表4(実施例2)、表5(比較例2)に
示す。
Second stage washing pH 10 using sodium hydroxide (Comparative Example 2
100 l of an aqueous solution containing 1.0% by weight of sodium dodecylbenzenesulfonate adjusted in 8) was circulated for 30 minutes, allowed to stand for 120 minutes, and discharged. Subsequently, washing with water was performed until the bubbling of the washing water disappeared, the formalin concentration in the washing water became 0 ppm, and the pH became neutral. In order to confirm the effect of the washing method, before and after the washing, 1500 pp adjusted to a water temperature of 25 ° C.
The module was evaluated using an aqueous sodium chloride solution. Table 4 (Example 2) and Table 5 (Comparative Example 2) show the results of comparison with the performance of the module when new (when shipped from the manufacturer).

【表4】 [Table 4]

【表5】 ここでは、第2段階の洗浄溶液のpHを変化させて比較
をした。表4、表5より明らかなように洗浄溶液のpH
が8である比較例2(表5)では、除去率には実施例と
の相違はないが、膜透過水量に大きな差がある。すなわ
ち、実施例2の洗浄方法ではほぼ新品時の膜透過水量に
まで回生しているのに対し、比較例2では回生率が新品
時の約77%しかない。これにより、膜に付着した汚染
物質を効果的に除去するには、第2段階の洗浄溶液のp
Hを9〜10以上にする必要があるといえる。
[Table 5] Here, the comparison was performed by changing the pH of the second-stage cleaning solution. As is clear from Tables 4 and 5, the pH of the washing solution
Is 8 in Comparative Example 2 (Table 5), although there is no difference in the removal rate from the example, but a large difference in the amount of water permeated through the membrane. That is, in the cleaning method of the second embodiment, regeneration is performed almost up to the amount of membrane permeated water at the time of a new article, whereas in the comparative example 2, the regeneration rate is only about 77% of that at the time of a new article. Accordingly, in order to effectively remove the contaminants attached to the film, the p of the cleaning solution in the second stage is required.
It can be said that H needs to be 9 to 10 or more.

【0053】以上の実施例から明らかなように、本発明
によれば、従来の洗浄方法では除去困難であった硫酸カ
ルシウムやシリカ等のスケール物質と微生物及びその代
謝物等の有機性物質とからなる混合汚染物質を、膜の劣
化を生じることなく効率良く除去できるといえる。
As can be seen from the above examples, according to the present invention, it is possible to remove scale substances such as calcium sulfate and silica and organic substances such as microorganisms and metabolites thereof, which are difficult to remove by the conventional washing method. It can be said that mixed contaminants can be efficiently removed without causing deterioration of the film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の洗浄試験を行うモジュール洗浄試験
装置のフローチャートを説明するための図。
FIG. 1 is a view for explaining a flowchart of a module cleaning test apparatus for performing a cleaning test according to the present invention.

【符号の説明】[Explanation of symbols]

1……原水タンク、2……移送ポンプ、3……膜前処理
装置、4……濾過水タンク、5……クリーニングタン
ク、6……クリーニングポンプ、7……モジュール、8
……RO(逆浸透)ポンプ、9……高圧ポンプ
1 ... raw water tank, 2 ... transfer pump, 3 ... membrane pretreatment device, 4 ... filtered water tank, 5 ... cleaning tank, 6 ... cleaning pump, 7 ... module, 8
…… RO (reverse osmosis) pump, 9 …… High pressure pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 有宏 神奈川県厚木市岡田2丁目9番8号 野村 マイクロ・サイエンス株式会社内 (72)発明者 木暮 雅彦 神奈川県厚木市岡田2丁目9番8号 野村 マイクロ・サイエンス株式会社内 (72)発明者 阿部 嗣 神奈川県厚木市岡田2丁目9番8号 野村 マイクロ・サイエンス株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukihiro Nomura 2-9-8 Okada, Atsugi-shi, Kanagawa Prefecture Nomura MicroScience Co., Ltd. (72) Masahiko Kogure 2- 9-8 Okada, Atsugi-shi, Kanagawa Prefecture No. Nomura Micro Science Co., Ltd. (72) Inventor Tsutomu Abe 2-9-8 Okada, Atsugi-shi, Kanagawa Nomura Micro Science Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも二つの洗浄段階を含む水処理
用分離膜の洗浄回生方法において、水処理用分離膜の膜
に酸性溶液で洗浄する第1の洗浄段階と、前記膜にホル
マリンとアルカリ助剤とを含有するアルカリ性溶液で洗
浄する第2の洗浄段階を順に行うことを特徴とする逆浸
透膜の洗浄回生方法。
1. A method for washing and regenerating a separation membrane for water treatment comprising at least two washing steps, wherein a first washing step of washing the membrane of the separation membrane for water treatment with an acidic solution, A method for cleaning and regenerating a reverse osmosis membrane, comprising sequentially performing a second washing step of washing with an alkaline solution containing an agent.
【請求項2】 少なくとも二つの洗浄段階を含む水処理
用分離膜の洗浄回生方法において、水処理用分離膜の膜
に酸性溶液で洗浄する第1の洗浄段階と、前記膜にホル
マリンとアルカリ助剤と界面活性剤とを含有するアルカ
リ性溶液で洗浄する第2の洗浄段階を順に行うことを特
徴とする水処理用分離膜の洗浄回生方法。
2. A method for cleaning and regenerating a separation membrane for water treatment comprising at least two washing steps, wherein a first washing step of washing the membrane of the separation membrane for water treatment with an acidic solution, A method for washing and regenerating a separation membrane for water treatment, comprising sequentially performing a second washing step of washing with an alkaline solution containing an agent and a surfactant.
【請求項3】前記水処理用分離膜が逆浸透膜であること
を特徴とする請求項1乃至2記載の水処理用分離膜の洗
浄回生方法。
3. The method for cleaning and regenerating a separation membrane for water treatment according to claim 1, wherein the separation membrane for water treatment is a reverse osmosis membrane.
【請求項4】 前記第1段階の洗浄に用いる酸性溶液に
含まれる酸は有機酸であることを特徴とする請求項1乃
至3のいずれか1記載の水処理用分離膜の洗浄回生方
法。
4. The method for cleaning and regenerating a separation membrane for water treatment according to claim 1, wherein the acid contained in the acidic solution used for the first-stage cleaning is an organic acid.
【請求項5】 前記第1段階の洗浄に使用する酸性溶液
のpHは6以下であることを特徴とする請求項1乃至4
のいずれか1記載の水処理用分離膜の洗浄回生方法。
5. The pH of the acidic solution used for the first-stage washing is 6 or less.
The method for washing and regenerating a separation membrane for water treatment according to any one of the above.
【請求項6】 前記第2段階の洗浄に使用するアルカリ
性溶液のpHは9以上であることを特徴とする請求項1
乃至5のいずれか1記載の水処理用分離膜の洗浄回生方
法。
6. The pH of the alkaline solution used for the second-stage cleaning is 9 or more.
6. The method for washing and regenerating a separation membrane for water treatment according to any one of items 1 to 5.
JP22707096A 1996-08-28 1996-08-28 Cleaning and regenerating method of separation membrane for water treatment Withdrawn JPH1066972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22707096A JPH1066972A (en) 1996-08-28 1996-08-28 Cleaning and regenerating method of separation membrane for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22707096A JPH1066972A (en) 1996-08-28 1996-08-28 Cleaning and regenerating method of separation membrane for water treatment

Publications (1)

Publication Number Publication Date
JPH1066972A true JPH1066972A (en) 1998-03-10

Family

ID=16855065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22707096A Withdrawn JPH1066972A (en) 1996-08-28 1996-08-28 Cleaning and regenerating method of separation membrane for water treatment

Country Status (1)

Country Link
JP (1) JPH1066972A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102634A (en) * 2004-10-05 2006-04-20 Hitachi Plant Eng & Constr Co Ltd Method for washing hollow fiber membrane and water treatment facilities
JP2010058120A (en) * 2004-12-24 2010-03-18 Siemens Water Technologies Corp Cleaning in membrane filtration system
US20120080058A1 (en) * 2010-10-04 2012-04-05 Saudi Arabian Oil Company Application of Rejection Enhancing Agents (REAs) that do not have Cloud Point Limitations on Desalination Membranes
CN102489160A (en) * 2011-12-10 2012-06-13 安徽环球药业股份有限公司 Cleaning method for calcium scale of reverse osmosis membrane
WO2013047398A1 (en) 2011-09-29 2013-04-04 東レ株式会社 Composite semipermeable membrane
CN103041710A (en) * 2013-01-11 2013-04-17 北京碧水源膜科技有限公司 Acidic film cleaning reagent and application thereof
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
JP2016185514A (en) * 2015-03-27 2016-10-27 栗田工業株式会社 Cleaning method of permeable membrane, and cleaner
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9966390B2 (en) 2002-05-13 2018-05-08 Semicondutcor Energy Laboratory Co., LTD. Display device
WO2018198679A1 (en) 2017-04-28 2018-11-01 東レ株式会社 Semipermeable composite membrane and method for producing same
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
WO2021246025A1 (en) * 2020-06-02 2021-12-09 栗田工業株式会社 Method for cleaning separation membrane

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966390B2 (en) 2002-05-13 2018-05-08 Semicondutcor Energy Laboratory Co., LTD. Display device
JP4548081B2 (en) * 2004-10-05 2010-09-22 株式会社日立プラントテクノロジー Cleaning method of hollow fiber membrane
JP2006102634A (en) * 2004-10-05 2006-04-20 Hitachi Plant Eng & Constr Co Ltd Method for washing hollow fiber membrane and water treatment facilities
JP2010058120A (en) * 2004-12-24 2010-03-18 Siemens Water Technologies Corp Cleaning in membrane filtration system
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9216385B2 (en) * 2010-10-04 2015-12-22 Saudi Arabian Oil Company Application of rejection enhancing agents (REAs) that do not have cloud point limitations on desalination membranes
US20120080058A1 (en) * 2010-10-04 2012-04-05 Saudi Arabian Oil Company Application of Rejection Enhancing Agents (REAs) that do not have Cloud Point Limitations on Desalination Membranes
KR20140082644A (en) 2011-09-29 2014-07-02 도레이 카부시키가이샤 Composite semipermeable membrane
WO2013047398A1 (en) 2011-09-29 2013-04-04 東レ株式会社 Composite semipermeable membrane
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
CN102489160A (en) * 2011-12-10 2012-06-13 安徽环球药业股份有限公司 Cleaning method for calcium scale of reverse osmosis membrane
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
CN103041710A (en) * 2013-01-11 2013-04-17 北京碧水源膜科技有限公司 Acidic film cleaning reagent and application thereof
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
JP2016185514A (en) * 2015-03-27 2016-10-27 栗田工業株式会社 Cleaning method of permeable membrane, and cleaner
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
KR20190128241A (en) 2017-04-28 2019-11-15 도레이 카부시키가이샤 Composite Semipermeable Membrane and Manufacturing Method Thereof
WO2018198679A1 (en) 2017-04-28 2018-11-01 東レ株式会社 Semipermeable composite membrane and method for producing same
JP2021186779A (en) * 2020-06-02 2021-12-13 栗田工業株式会社 Method of washing separation membrane
WO2021246025A1 (en) * 2020-06-02 2021-12-09 栗田工業株式会社 Method for cleaning separation membrane
CN115916384B (en) * 2020-06-02 2024-03-19 栗田工业株式会社 Method for cleaning separation membrane
CN115916384A (en) * 2020-06-02 2023-04-04 栗田工业株式会社 Method for cleaning separation membrane

Similar Documents

Publication Publication Date Title
JPH1066972A (en) Cleaning and regenerating method of separation membrane for water treatment
TWI421132B (en) A process for producing cleaning water containing dissolved gas,an apparatus for the process and an apparatus for cleaning
JP2007130523A (en) Membrane washing method for water treatment system
KR20080012888A (en) Membrane filtration of a product
JPWO2012098969A1 (en) Membrane module cleaning method, fresh water generation method and fresh water generation device
JP2017113729A (en) Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane
JP3788145B2 (en) Water treatment method and water treatment apparatus
JP6540154B2 (en) Reverse osmosis membrane cleaning method
JP3200314B2 (en) Organic wastewater treatment equipment
JP4580589B2 (en) Cleaning method of separation membrane
JP2007090249A (en) Method for cleaning membrane deaerator
WO2007029291A1 (en) Separation membrane cleaning composition
JP2827877B2 (en) Membrane separation device and cleaning method thereof
JP2005238135A (en) Washing method of membrane separation device
JP3944973B2 (en) Reverse osmosis membrane treatment method
JP2011104504A (en) Washing method of water treatment facility
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP3817799B2 (en) Wastewater membrane treatment equipment
JPS6111108A (en) Process for washing membrane module
JPH05247868A (en) Treatment of waste water in production of pulp
JP2002113336A (en) Method of cleaning membrane filtration device and water treatment apparatus
WO2005049501A1 (en) Method of treating waste water containing organic substance and treating apparatus
JPH04244290A (en) Method for circulating and treating washing water
JPH0142726B2 (en)
JP7236313B2 (en) Membrane deaerator cleaning method and ultrapure water production system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104