JPH1050982A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH1050982A
JPH1050982A JP20246796A JP20246796A JPH1050982A JP H1050982 A JPH1050982 A JP H1050982A JP 20246796 A JP20246796 A JP 20246796A JP 20246796 A JP20246796 A JP 20246796A JP H1050982 A JPH1050982 A JP H1050982A
Authority
JP
Japan
Prior art keywords
layer
channel
lattice
channel layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20246796A
Other languages
Japanese (ja)
Inventor
Yukihiko Maeda
就彦 前田
Takatomo Enoki
孝知 榎木
Yasunobu Ishii
康信 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20246796A priority Critical patent/JPH1050982A/en
Publication of JPH1050982A publication Critical patent/JPH1050982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a high performance lattice commensurate system (X=0.53) or lattice incommensurate system (X>0.53) InP base HEMT(high electron mobility transistor) by suppressing or reducing generation of kink, lowering of breakdown strength, increase of drain conductance, etc. SOLUTION: In a heterojunction field effect transistor having a double heterostructure channel layer of lattice commensurate system and lattice incommensurate system where a two-dimensional electron channel is formed by a gate voltage, spatial positions where electron and hole are present locally are superposed by inserting a semiconductor layer located above the valence band of the channel layer into a heterojunction interface on the side for forming the two-dimensional electron channel in the double heterostructure of the channel layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ダブル・へテロ構
造チャネルを有する超高速・超高周波用化合物半導体電
界効果トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor field-effect transistor for ultra-high speed and ultra-high frequency having a double heterostructure channel.

【0002】[0002]

【従来の技術】従来より、高電子移動度トランジスタ
(HEMT)の中でも、InP基板上に作製したヘテロ
接合電界効果トランジスタは、InXGa1-XAsチャネ
ルの高いIn組成(X≧0.53)によって高い電子移
動度が得られるため、GaAsベースHEMTに比べて
高速動作が可能である。しかしながら、In組成の高い
InXGa1-XAsチャネルは衝突イオン化率が高くなる
ため、デバイス動作において多くの正孔を発生し、これ
が原因となって、電流・電圧特性(I−V特性)におけ
るキンクの発生、耐圧の低下、ドレインコンダクタンス
の増大といったデバイス動作に好ましくない現象が発現
する。従って、InPベースHEMTの高性能化を行な
うためには、これらの現象を抑制・低減することが必要
とされていた。
2. Description of the Related Art Conventionally, among high electron mobility transistors (HEMTs), a heterojunction field effect transistor fabricated on an InP substrate has a high In composition (X ≧ 0.53) of an In x Ga 1 -x As channel. ) Provides high electron mobility, so that high-speed operation is possible as compared with GaAs-based HEMTs. However, the In x Ga 1 -x As channel having a high In composition has a high collision ionization rate, and thus generates many holes in the device operation. This causes current-voltage characteristics (IV characteristics). Phenomena unfavorable in device operation, such as generation of kink, reduction in breakdown voltage, and increase in drain conductance in the above. Therefore, in order to improve the performance of the InP-based HEMT, it is necessary to suppress or reduce these phenomena.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、格子
整合(X=0.53)および非格子整合系(X>0.5
3)のInPベースHEMTにおいて観察されるキンク
の発生、耐圧の低下、ドレインコンダクタンスの増大等
を抑制・低減し、InPベースHEMTの高性能化を行
なうことである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lattice-matched (X = 0.53) and non-lattice-matched system (X> 0.5).
It is an object of the present invention to improve and improve the performance of an InP-based HEMT by suppressing or reducing the occurrence of kinks, a decrease in breakdown voltage, an increase in drain conductance, and the like observed in the InP-based HEMT 3).

【0004】[0004]

【課題を解決するための手段】本発明は、格子整合(X
=0.53)および非格子整合系(X>0.53)にお
ける、従来のInPベースHEMTにおいて観察される
キンクの発生、耐圧の低下、ドレインコンダクタンスの
増大等を抑制・低減するため、下記手法により、素子内
の電子・正孔の再結合を促進することによって正孔濃度
を低下させ、上記の目的を実現するものである。
SUMMARY OF THE INVENTION The present invention provides a lattice matching (X
= 0.53) and non-lattice-matched systems (X> 0.53), the following methods are used to suppress or reduce the occurrence of kinks, reduction in breakdown voltage, increase in drain conductance, etc. observed in conventional InP-based HEMTs. Thereby, the recombination of electrons and holes in the device is promoted to lower the hole concentration, thereby realizing the above object.

【0005】本発明の主たる構成は、格子整合系および
格子非整合系のダブルヘテロ構造のチャネル層を有し、
ゲート電圧によって2次元電子チャネルを形成させるヘ
テロ接合電界効果トランジスタにおいて、前記チャネル
層のダブルヘテロ構造のうち、2次元電子チャネルを形
成する側のヘテロ接合界面に、価電子帯の上端が前記チ
ャネル層の価電子帯より上部に位置する半導体層を挿入
することにより、電子とホール(正孔)との局在する空
間的位置を重ねたことを特徴とする。
The main structure of the present invention has a channel layer having a double hetero structure of a lattice-matched system and a lattice-mismatched system,
In a hetero-junction field-effect transistor in which a two-dimensional electron channel is formed by a gate voltage, the upper end of a valence band is formed at the hetero-junction interface on the side where a two-dimensional electron channel is formed in the double hetero structure of the channel layer. By inserting a semiconductor layer located above the valence band of, the spatial positions where electrons and holes (holes) are localized overlap each other.

【0006】ここで、前記挿入される半導体層の厚み
が、2nm以下であることを特徴とすることが好まし
い。
Here, the thickness of the inserted semiconductor layer is preferably 2 nm or less.

【0007】また、前記挿入される半導体層は、例え
ば、AlY1Ga1-Y1As1-Y2SbY2層、InY1Al1-Y1
As1-Y2SbY2層、InY1Ga1-Y1As1-Y2SbY2
(0<Y1,Y2<1)、GaAs1-Y3SbY3層(0.
2≦Y3≦0.4)あるいはSb層等のうちから選択さ
れることが好ましい。
The semiconductor layer to be inserted is, for example, an Al Y1 Ga 1 -Y 1 As 1 -Y 2 Sb Y 2 layer, an In Y 1 Al 1 -Y 1
As 1-Y2 Sb Y2 layer, In Y1 Ga 1-Y1 As 1-Y2 Sb Y2 layer (0 <Y1, Y2 <1 ), GaAs 1-Y3 Sb Y3 layer (0.
2 ≦ Y3 ≦ 0.4) or an Sb layer or the like.

【0008】さらに、前記2次元電子チャネルを形成す
る側のヘテロ接合が、InXGa1-XAsチャネル層とI
YAl1-YAs障壁層と、により構成されることが好ま
しい。
Further, the heterojunction on the side for forming the two-dimensional electron channel is formed of an In x Ga 1 -x As channel layer and an I.sub.x Ga.sub.1 -x As channel layer.
and n Y Al 1-Y As barrier layer.

【0009】[0009]

【発明の実施の形態】まず、図1および図2に本発明に
よるInPベースHEMTのポテンシャル構造の概念図
を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, FIGS. 1 and 2 show conceptual diagrams of a potential structure of an InP-based HEMT according to the present invention.

【0010】図1は、InXGa1-XAsチャネル層と基
板表面側のInYGa1-YAs障壁層との間に、AlY1
1-Y1As1-Y2SbY2層、InY1Al1-Y1As1-Y2Sb
Y2層(0<Y1,Y2<1)、GaAs1-Y3SbY3
(0.2≦Y3≦0.4)、あるいはSb単原子層が挿
入されているチャネル・ポテンシャル構造を示す図であ
る。
FIG. 1 shows a structure in which Al Y1 G is placed between an In x Ga 1 -x As channel layer and an In Y Ga 1 -Y As barrier layer on the substrate surface side.
a 1-Y1 As 1-Y2 Sb Y2 layer, In Y1 Al 1-Y1 As 1-Y2 Sb
FIG. 5 is a diagram showing a channel potential structure in which a Y2 layer (0 <Y1, Y2 <1), a GaAs 1 -Y3 Sb Y3 layer (0.2 ≦ Y3 ≦ 0.4), or a Sb monoatomic layer is inserted. .

【0011】図2は、InXGa1-XAsチャネル層と基
板表面側のInYAl1-YAs障壁層との間に、InY1
1-Y1As1-Y2SbY2層(0<Y1,Y2<1)が挿入
されているポテンシャル構造を示す図である。
FIG. 2 shows an In Y1 G layer between the In x Ga 1 -x As channel layer and the In Y Al 1 -Y As barrier layer on the substrate surface side.
a 1-Y1 As 1-Y2 Sb Y2 layer (0 <Y1, Y2 <1 ) is a diagram showing the potential structure is inserted.

【0012】これら本発明のポテンシャル構造を示した
図1および図2の本質的な特徴は、挿入層の価電子帯の
上端がInGaAsチャネル層の価電子帯の上端よりも
上に存在していることである。
The essential feature of FIGS. 1 and 2 showing the potential structure of the present invention is that the upper end of the valence band of the insertion layer exists above the upper end of the valence band of the InGaAs channel layer. That is.

【0013】ここで、図1および図2で示した本発明に
よるチャネル・ポテンシャル構造の作用を、図3〜図5
を用いて詳述する。
The operation of the channel potential structure according to the present invention shown in FIGS. 1 and 2 will now be described with reference to FIGS.
It will be described in detail with reference to FIG.

【0014】図3は従来例であり、図6に示した従来型
のInPベースHEMTのポテンシャル構造において、
ゲート電圧を印加状態で基底状態の電子および正孔の波
動関数の二乗を、チャネル・ポテンシャル形状と共に模
式的に示した図である。波動関数の二乗はその量子状態
に存在する電子あるいは正孔の存在確率を示すもので、
形状は電子あるいは正孔の分布状態を示すものである。
図3においては、ゲート電圧印加によって生じた電界に
よって、電子の波動関数(二乗値)101は基板表面側
に、正孔の波動関数(二乗値)102は反基板表面側に
引き寄せられており、このため、両者(101及び10
2)の空間的な重なりが小さくなっていることがわか
る。
FIG. 3 shows a conventional example. In the potential structure of the conventional InP-based HEMT shown in FIG.
FIG. 4 is a diagram schematically showing the square of the wave function of electrons and holes in a ground state in a state where a gate voltage is applied, together with a channel potential shape. The square of the wave function indicates the probability of existence of electrons or holes in the quantum state.
The shape indicates the distribution state of electrons or holes.
In FIG. 3, the wave function (square value) 101 of electrons is attracted to the substrate surface side, and the wave function (square value) 102 of holes is attracted to the anti-substrate surface side by the electric field generated by the gate voltage application. For this reason, both (101 and 10)
It can be seen that the spatial overlap of 2) is small.

【0015】また、電子と正孔の再結合の確率は、両者
の波動関数(二乗値)の重なりに比例するので、図3の
状態は、このチャネル・ポテンシャル構造における再結
合の確率が小さく、したがって、高い濃度の正孔が素子
内に存在することがわかった。
Since the probability of recombination of electrons and holes is proportional to the overlap of the wave functions (square values) of the two, the state of FIG. 3 shows that the probability of recombination in this channel potential structure is small. Therefore, it was found that a high concentration of holes was present in the device.

【0016】ここで、図4は、図1に示した本発明のI
nPベースHEMTのポテンシャル構造におけるゲート
電圧印加状態での基底状態の電子の波動関数(二乗値)
201および正孔の波動関数(二乗値)202を、チャ
ネル・ポテンシャル形状と共に模式的に示したものであ
る。
Here, FIG. 4 is a diagram showing the I of the present invention shown in FIG.
Wave function (square value) of ground-state electrons in the potential structure of nP-based HEMT with gate voltage applied
20 schematically shows a wave function (square value) 202 of a hole and a hole potential shape together with a channel potential shape.

【0017】図4においては、InXGa1-XAsチャネ
ル層と基板表面側のInYAl1-YAs障壁層との間に、
AlY1Ga1-Y1As1-Y2SbY2層、InY1Al1-Y1
1-Y 2SbY2層(0<Y1,Y2<1)、GaAs1-Y3
SbY3層(0.2≦Y3≦0.4)あるいはSb単原子
層が挿入されているため、挿入層の価電子帯の上端がI
nGaAsチャネル層の価電子帯の上端よりも上に存在
し、その結果、正孔の波動関数(二乗値)202は電子
の波動関数(二乗値)201と同様に基板表面側に引き
寄せられている様子が示されている。
In FIG. 4, between the In x Ga 1 -x As channel layer and the In Y Al 1 -y As barrier layer on the substrate surface side,
Al Y1 Ga 1-Y1 As 1-Y2 Sb Y2 layer, InY 1 Al 1-Y1 A
s 1 -Y 2 Sb Y 2 layer (0 <Y 1, Y 2 <1), GaAs 1 -Y 3
Since the Sb Y3 layer (0.2 ≦ Y3 ≦ 0.4) or the Sb monoatomic layer is inserted, the upper end of the valence band of the insertion layer is I
It exists above the upper end of the valence band of the nGaAs channel layer, and as a result, the wave function (square value) 202 of the holes is drawn to the substrate surface side similarly to the wave function (square value) 201 of the electrons. The situation is shown.

【0018】したがって、本発明のチャネル・ポテンシ
ャル構造においては、電子と正孔との波動関数(二乗
値)の重なりが大きくなるため、再結合の確率が促進さ
れ、素子内の正孔濃度が低下しており、その結果、キン
クの発現、耐圧の低下、ドレインコンダクタンスの増加
といったデバイス動作に好ましくない現象が抑制・低減
される。
Therefore, in the channel potential structure of the present invention, since the overlap of the wave function (square value) of electrons and holes becomes large, the probability of recombination is promoted and the hole concentration in the device is reduced. As a result, phenomena unfavorable for device operation, such as the appearance of kink, a decrease in breakdown voltage, and an increase in drain conductance, are suppressed or reduced.

【0019】さらに、図5は、図2に示した本発明のI
nPベースHEMTにおけるゲート電圧印加状態での基
底状態の電子および正孔の波動関数の二乗を、チャネル
・ポテンシャル形状と共に模式的に示したものである。
FIG. 5 is a diagram showing the I of the present invention shown in FIG.
FIG. 9 schematically shows the square of the wave function of electrons and holes in the ground state in the nP-based HEMT when a gate voltage is applied, together with the channel potential shape.

【0020】図5においては、InXGa1-XAsチャネ
ル層と基板表面側のInYGa1-YAs障壁層との間に、
InY1Ga1-Y1As1-Y2SbY2層(0<Y1,Y2<
1)が挿入されているため、挿入層の価電子帯の上端が
InGaAsチャネル層の価電子帯の上端よりも上に存
在し、その結果、正孔の波動関数(二乗値)302は電
子の波動関数(二乗値)301と同様に基板表面側に引
き寄せられている様子が示されている。
In FIG. 5, between the In X Ga 1 -X As channel layer and the In Y Ga 1 -Y As barrier layer on the substrate surface side,
In Y1 Ga 1-Y1 As 1-Y2 Sb Y2 layer (0 <Y1, Y2 <
1) is inserted, the upper end of the valence band of the insertion layer exists above the upper end of the valence band of the InGaAs channel layer. As a result, the hole wave function (square value) 302 As in the case of the wave function (square value) 301, a state of being drawn to the substrate surface side is shown.

【0021】この状況は、図4の状況と基本的に同じで
あり、本発明のチャネル・ポテンシャル構造において
も、キンクの発現、耐圧の低下、ドレインコンダクタン
スの増加といったデバイス動作に好ましくない現象が抑
制・低減される。
This situation is basically the same as the situation shown in FIG. 4. Even in the channel potential structure of the present invention, phenomena unfavorable for device operation such as occurrence of kink, reduction in breakdown voltage, and increase in drain conductance are suppressed.・ It is reduced.

【0022】なお、本発明の図4および図5いずれの場
合においても、挿入層の厚さを2nm以下とすると、下
記実施例に示す範囲の元素組成においては挿入層の格子
不整合は問題とはならない。
In both cases of FIGS. 4 and 5 of the present invention, if the thickness of the insertion layer is set to 2 nm or less, the lattice mismatch of the insertion layer is a problem in the element composition shown in the following examples. Not be.

【0023】[0023]

【実施例】本発明は、以下の実施例に限定されないこと
はいうまでもない。
EXAMPLES It goes without saying that the present invention is not limited to the following examples.

【0024】(実施例1)図1の構造において、挿入層
をGaAs1-Y2SbY2とし、0.2≦Y2≦0.4とし
た構造。Y2をこのように変化させる時、図1における
ΔEhは0.2eV≦ΔEh≦0.5eVのように変化
し、図4に示す状況が作りだされた。なお、ΔEeはΔ
Ee〜0.1eV程度であった。
Example 1 In the structure of FIG. 1, the insertion layer is made of GaAs 1 -Y 2 Sb Y 2 and 0.2 ≦ Y 2 ≦ 0.4. When Y2 is changed in this manner, ΔEh in FIG. 1 changes as 0.2 eV ≦ ΔEh ≦ 0.5 eV, and the situation shown in FIG. 4 is created. Note that ΔEe is Δ
Ee was about 0.1 eV.

【0025】(実施例2)実施例1において、InX
1-XAsチャネル層のIn組成Xが0.53≦X≦0
である非格子整合チャネルを含む構造。InXGa1-X
sの価電子帯上端はXが変化しても大きくは変化しない
ので、この構造においても図4に示す状況が作りだされ
た。
(Example 2) In Example 1, In X G
a 1-x In channel composition X of the As channel layer is 0.53 ≦ X ≦ 0
A structure comprising a non-lattice matched channel that is: In X Ga 1-X A
Since the upper end of the valence band of s does not change significantly even when X changes, the situation shown in FIG. 4 was also created in this structure.

【0026】(実施例3)実施例1において、InX
1-XAsチャネル層のIn組成Xがチャネル層内で変
化させられている組成変調非格子整合チャネルを含む構
造。ここで、Xは0.53≦X≦1とする。例えば、X
を基板表面側から反基板表面側に、X=1.0→0.5
3のように段階的にあるいは連続的に変化させたチャネ
ル構造がその例である。
(Embodiment 3) In the first embodiment, In X G
a 1-x As channel structure in which the In composition X of the channel layer includes a compositionally modulated non-lattice matched channel in which the In composition X is changed in the channel layer. Here, X is set to 0.53 ≦ X ≦ 1. For example, X
From the substrate surface side to the opposite substrate surface side, X = 1.0 → 0.5
An example is a channel structure changed stepwise or continuously as shown in FIG.

【0027】(実施例4)図1の構造において、挿入層
をAlY1Ga1-Y1As1-Y2SbY2層とし、0<Y1≦
0.5、0.4≦Y2≦0.7とした構造。本実施例の
構造においては、図1におけるΔEhおよびΔEeは、
0.2eV≦ΔEh≦0.6eV、0.1eV≦ΔEe
≦0.3eV程度であった。かかるΔEhによって図4
に示す状況が作りだされた。本実施例4は実施例1に比
べてΔEeが大きく、より多くの電子をチャネルに閉じ
込めるのに有利な構造であった。
(Embodiment 4) In the structure of FIG. 1, the insertion layer is an Al Y1 Ga 1-Y1 As 1-Y2 Sb Y2 layer, and 0 <Y1 ≦
A structure in which 0.5, 0.4 ≦ Y2 ≦ 0.7. In the structure of this embodiment, ΔEh and ΔEe in FIG.
0.2 eV ≦ ΔEh ≦ 0.6 eV, 0.1 eV ≦ ΔEe
It was about ≦ 0.3 eV. FIG.
The situation shown in was created. In the fourth embodiment, ΔEe is larger than that in the first embodiment, and the structure is advantageous for confining more electrons in the channel.

【0028】(実施例5)実施例4において、InX
1-XAsチャネル層のIn組成Xが0.53≦X≦
0.8である非格子整合チャネルを含む構造。InX
1-XAsの価電子帯上端はXが変化しても大きくは変
化せず、この構造においても図4に示す状況が作りださ
れた。
(Example 5) In Example 4, In X G
a 1-x In composition X of the As channel layer is 0.53 ≦ X ≦
Structure including a non-lattice matched channel that is 0.8. In X G
The upper end of the valence band of a 1 -X As did not change significantly even when X changed, and the situation shown in FIG. 4 was created in this structure as well.

【0029】(実施例6)実施例4において、InX
1-XAsチャネル層のIn組成Xがチャネル層内で変
化させられている組成変調非格子整合チャネルを含む構
造。ここで、Xは0.53≦X≦1.0とする。例え
ば、Xを基板表面側から反基板表面側に、X=1.0→
0.53のように段階的にあるいは連続的に変化させた
チャネル構造がその例である。
(Embodiment 6) In the embodiment 4, the In X G
a 1-x As channel structure in which the In composition X of the channel layer includes a compositionally modulated non-lattice matched channel in which the In composition X is changed in the channel layer. Here, X is set to 0.53 ≦ X ≦ 1.0. For example, when X is moved from the substrate surface side to the opposite substrate surface side, X = 1.0 →
An example is a channel structure changed stepwise or continuously as in 0.53.

【0030】(実施例7)図1の構造において、挿入層
をInY1Al1-Y1As1-Y2SbY2層とし、Y1=0.5
2、0.2≦Y2≦0.4とした構造。Y2をこのよう
に変化させる時、図1におけるΔEhは0.2eV≦Δ
Eh≦0.5eVのように変化し、図4に示す状況とな
った。なお、ΔEeはΔEe〜0.1eV程度であっ
た。
(Embodiment 7) In the structure of FIG. 1, the insertion layer is an In Y1 Al 1 -Y 1 As 1 -Y 2 Sb Y 2 layer, and Y 1 = 0.5.
2. Structure in which 0.2 ≦ Y2 ≦ 0.4. When Y2 is changed in this manner, ΔEh in FIG. 1 is 0.2 eV ≦ Δ
It changed as Eh ≦ 0.5 eV, and the situation shown in FIG. 4 was obtained. Note that ΔEe was about ΔEe to about 0.1 eV.

【0031】(実施例8)実施例7において、InX
1-XAsチャネル層のIn組成Xが0.53≦X≦
0.8である非格子整合チャネルを含む構造。InX
1-XAsの価電子帯上端はXが変化しても大きくは変
化せず、この構造においても図4に示す状況となった。
(Embodiment 8) In the embodiment 7, the In X G
a 1-x In composition X of the As channel layer is 0.53 ≦ X ≦
Structure including a non-lattice matched channel that is 0.8. In X G
The upper end of the valence band of a 1 -X As did not change significantly even when X changed, and the structure shown in FIG. 4 was obtained even with this structure.

【0032】(実施例9)実施例7において、InX
1-XAsチャネル層のIn組成Xがチャネル層内で変
化させられている組成変調非格子整合チャネルを含む構
造。ここで、Xは0.53≦X≦1.0とする。例え
ば、Xを基板表面側から反基板表面側に、X=1.0→
0.53のように段階的にあるいは連続的に変化させた
チャネル構造がその例である。
(Embodiment 9) In the embodiment 7, the In X G
a 1-x As channel structure in which the In composition X of the channel layer includes a compositionally modulated non-lattice matched channel in which the In composition X is changed in the channel layer. Here, X is set to 0.53 ≦ X ≦ 1.0. For example, when X is moved from the substrate surface side to the opposite substrate surface side, X = 1.0 →
An example is a channel structure changed stepwise or continuously as in 0.53.

【0033】(実施例10)図1の構造において、挿入
層をSb単原子層とした構造。挿入界面の価電子帯上端
が上昇し、図4に示す状況が作りだされた。
(Embodiment 10) A structure in which the insertion layer is a single atomic layer of Sb in the structure of FIG. The top of the valence band at the insertion interface rose, creating the situation shown in FIG.

【0034】(実施例11)実施例10において、In
XGa1-XAsチャネル層のIn組成Xが0.53≦X≦
0.8である非格子整合チャネルを含む構造。InX
1-XAsの価電子帯上端はXが変化しても大きくは変
化しないので、この構造においても図4に示す状況が作
りだされた。
(Embodiment 11)
When the In composition X of the X Ga 1-x As channel layer is 0.53 ≦ X ≦
Structure including a non-lattice matched channel that is 0.8. In X G
Since the upper end of the valence band of a 1-X As does not change significantly even when X changes, the situation shown in FIG. 4 was created in this structure as well.

【0035】(実施例12)実施例10において、In
XGa1-XAsチャネル層のIn組成Xがチャネル層内で
変化させられている組成変調非格子整合チャネルを含む
構造。ここで、Xは0.53≦X≦1.0とする。例え
ば、Xを基板表面側から反基板表面側に、X=1.0→
0.53のように段階的にあるいは連続的に変化させた
チャネル構造がその例である。
(Embodiment 12)
A structure including a compositionally modulated non-lattice-matched channel in which the In composition X of the X Ga 1-X As channel layer is changed in the channel layer. Here, X is set to 0.53 ≦ X ≦ 1.0. For example, when X is moved from the substrate surface side to the opposite substrate surface side, X = 1.0 →
An example is a channel structure changed stepwise or continuously as in 0.53.

【0036】(実施例13)図2の構造の挿入層InY1
Ga1-Y1As1-Y2SbY2層(0<Y1,Y2<1)にお
いて、Y1=X1、0.2≦Y2≦0.4とした構造。
ただし、X1はIn XGa1-XAsチャネル層のIn組成
X=X1であり、0.53≦X1≦0.8とする。Y2
をこのように変化させる時、本実施例の図2におけるΔ
Ehは0.2eV≦ΔEh≦0.6eVであり、図5に
示す状況が作りだされた。なお、ΔEeはΔEe<0.
1eVであった。
(Embodiment 13) Insertion layer In having the structure of FIG.Y1
Ga1-Y1As1-Y2SbY2Layer (0 <Y1, Y2 <1)
And Y1 = X1, 0.2 ≦ Y2 ≦ 0.4.
Where X1 is In XGa1-XIn composition of As channel layer
X = X1, and 0.53 ≦ X1 ≦ 0.8. Y2
Is changed in this manner, Δ in FIG.
Eh is 0.2 eV ≦ ΔEh ≦ 0.6 eV, and FIG.
The situation shown was created. Note that ΔEe is ΔEe <0.
It was 1 eV.

【0037】(実施例l4)実施例13において、In
XGa1-XAsチャネル層のIn組成Xがチャネル層内で
変化させられている組成変調非格子整合チャネルを含む
構造。ここで、Xは0.53≦X≦0.8とする。この
場合のInY1Ga1-Y1As1-Y2SbY2層(0<Y1,Y
2<1)におけるY1は、Xの最大値に等しくするもの
とする。
(Example 14) In Example 13, In
A structure including a compositionally modulated non-lattice-matched channel in which the In composition X of the X Ga 1-X As channel layer is changed in the channel layer. Here, X is set to 0.53 ≦ X ≦ 0.8. In this case, the In Y1 Ga 1-Y1 As 1-Y2 Sb Y2 layer (0 <Y1, Y
It is assumed that Y1 in 2 <1) is equal to the maximum value of X.

【0038】[0038]

【発明の効果】本発明によれば、InGaAsチャネル
層における電子・正孔の再結合速度を促進するため、素
子内の正孔濃度を低下することが可能になる。その結
果、従来より解決が困難であった、キンクの発現、耐圧
の低下、ドレインコンダクタンスの増加等のInGaA
sチャネルにおいて発現するデバイス動作に好ましくな
い現象を抑制・低減することが可能となる。
According to the present invention, since the recombination speed of electrons and holes in the InGaAs channel layer is promoted, the hole concentration in the device can be reduced. As a result, InGaAs such as kink, reduced withstand voltage, increased drain conductance, etc., which had been more difficult to solve than in the past.
It is possible to suppress and reduce a phenomenon that is unfavorable for device operation that occurs in the s channel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるInPベースHEMTのポテンシ
ャル構造を示す図である。
FIG. 1 is a diagram showing a potential structure of an InP-based HEMT according to the present invention.

【図2】本発明によるInPベースHEMTのポテンシ
ャル構造を示す図である。
FIG. 2 is a diagram showing a potential structure of an InP-based HEMT according to the present invention.

【図3】本発明の作用を示すための説明図である。FIG. 3 is an explanatory diagram showing the operation of the present invention.

【図4】本発明の作用を示すための説明図である。FIG. 4 is an explanatory diagram showing the operation of the present invention.

【図5】本発明の作用を示すための説明図である。FIG. 5 is an explanatory diagram showing the operation of the present invention.

【図6】従来型のInPベースHEMTのポテンシャル
構造を示す図である。
FIG. 6 is a diagram showing a potential structure of a conventional InP-based HEMT.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 格子整合系および格子非整合系のダブル
ヘテロ構造のチャネル層を有し、ゲート電圧によって2
次元電子チャネルを形成させるヘテロ接合電界効果トラ
ンジスタにおいて、 前記チャネル層の前記ダブルヘテロ構造のうち、前記2
次元電子チャネルを形成する側のヘテロ接合界面に、価
電子帯の上端が前記チャネル層の価電子帯より上部に位
置する半導体層を挿入することにより、電子とホールの
局在する空間的位置を重ねたことを特徴とする半導体装
置。
1. A semiconductor device having a channel layer having a double-hetero structure of a lattice-matching system and a lattice-mismatching system.
A heterojunction field-effect transistor for forming a two-dimensional electron channel, wherein the double heterostructure of the channel layer is
By inserting a semiconductor layer in which the upper end of the valence band is located above the valence band of the channel layer at the heterojunction interface on the side where a two-dimensional electron channel is formed, the spatial position where electrons and holes are localized can be changed. A semiconductor device characterized by being stacked.
【請求項2】 前記半導体層の厚みが、2nm以下であ
ることを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein said semiconductor layer has a thickness of 2 nm or less.
【請求項3】 前記半導体層が、AlY1Ga1-Y1As
1-Y2SbY2層、InY1Al1-Y1As1-Y2SbY2層(0<
Y1,Y2<1)、InY1Ga1-Y1As1-Y2SbY2
(0<Y1,Y2<1)、GaAs1-Y3SbY3層(0.
2≦Y3≦0.4)、あるいはSb層から選択されるこ
とを特徴とする請求項1又は2記載の半導体装置。
3. The method according to claim 1, wherein the semiconductor layer is Al Y1 Ga 1 -Y1 As.
1-Y2 Sb Y2 layer, In Y1 Al 1-Y1 As 1-Y2 Sb Y2 layer (0 <
Y1, Y2 <1), In Y1 Ga 1-Y1 As 1-Y2 Sb Y2 layer (0 <Y1, Y2 <1), GaAs 1-Y3 Sb Y3 layer (0.
3. The semiconductor device according to claim 1, wherein the semiconductor device is selected from the group consisting of 2 ≦ Y3 ≦ 0.4) and an Sb layer.
【請求項4】 前記2次元電子チャネルを形成する側の
ヘテロ接合が、In XGa1-XAsチャネル層とInY
1-YAs障壁層とにより構成されることを特徴とする
請求項1乃至3のいずれか1項に記載の半導体装置。
4. The side on which the two-dimensional electron channel is formed
The heterojunction is In XGa1-XAs channel layer and InYA
l1-YAnd an As barrier layer.
The semiconductor device according to claim 1.
JP20246796A 1996-07-31 1996-07-31 Semiconductor device Pending JPH1050982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20246796A JPH1050982A (en) 1996-07-31 1996-07-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20246796A JPH1050982A (en) 1996-07-31 1996-07-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH1050982A true JPH1050982A (en) 1998-02-20

Family

ID=16458016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20246796A Pending JPH1050982A (en) 1996-07-31 1996-07-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH1050982A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681885A (en) * 1985-01-28 1987-07-21 Godecke Aktiengesellschaft 5-oxo-pyrido[4,3-]pyrimidine derivatives
US4681881A (en) * 1985-01-26 1987-07-21 Godecke Aktiengesellschaft 5-alkoxy-pyrido[4,3-d]pyrimidine derivatives
JP2001044417A (en) * 1999-07-26 2001-02-16 Fujitsu Ltd Semiconductor device
US6777278B2 (en) 2000-12-01 2004-08-17 Cree, Inc. Methods of fabricating aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
US6982204B2 (en) 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US7030428B2 (en) 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
US7045404B2 (en) 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7084441B2 (en) 2004-05-20 2006-08-01 Cree, Inc. Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same
US7161194B2 (en) 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
US7170111B2 (en) 2004-02-05 2007-01-30 Cree, Inc. Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
JP2007073659A (en) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> Field-effect transistor
US7238560B2 (en) 2004-07-23 2007-07-03 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
US7355215B2 (en) 2004-12-06 2008-04-08 Cree, Inc. Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies
US7432142B2 (en) 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US7456443B2 (en) 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7465967B2 (en) 2005-03-15 2008-12-16 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
US7544963B2 (en) 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
US7615774B2 (en) 2005-04-29 2009-11-10 Cree.Inc. Aluminum free group III-nitride based high electron mobility transistors
US7626217B2 (en) 2005-04-11 2009-12-01 Cree, Inc. Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices
US7901994B2 (en) 2004-01-16 2011-03-08 Cree, Inc. Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers
US8575651B2 (en) 2005-04-11 2013-11-05 Cree, Inc. Devices having thick semi-insulating epitaxial gallium nitride layer
US8946777B2 (en) 2004-07-26 2015-02-03 Cree, Inc. Nitride-based transistors having laterally grown active region and methods of fabricating same
US9035354B2 (en) 2004-02-05 2015-05-19 Cree, Inc. Heterojunction transistors having barrier layer bandgaps greater than channel layer bandgaps and related methods
US9331192B2 (en) 2005-06-29 2016-05-03 Cree, Inc. Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same
US9984881B2 (en) 2006-11-06 2018-05-29 Cree, Inc. Methods of fabricating semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681881A (en) * 1985-01-26 1987-07-21 Godecke Aktiengesellschaft 5-alkoxy-pyrido[4,3-d]pyrimidine derivatives
US4681885A (en) * 1985-01-28 1987-07-21 Godecke Aktiengesellschaft 5-oxo-pyrido[4,3-]pyrimidine derivatives
JP2001044417A (en) * 1999-07-26 2001-02-16 Fujitsu Ltd Semiconductor device
US6777278B2 (en) 2000-12-01 2004-08-17 Cree, Inc. Methods of fabricating aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
US7030428B2 (en) 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
US8153515B2 (en) 2001-12-03 2012-04-10 Cree, Inc. Methods of fabricating strain balanced nitride heterojunction transistors
US6982204B2 (en) 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US7550784B2 (en) 2002-07-16 2009-06-23 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US7045404B2 (en) 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US11316028B2 (en) 2004-01-16 2022-04-26 Wolfspeed, Inc. Nitride-based transistors with a protective layer and a low-damage recess
US8481376B2 (en) 2004-01-16 2013-07-09 Cree, Inc. Group III nitride semiconductor devices with silicon nitride layers and methods of manufacturing such devices
US7906799B2 (en) 2004-01-16 2011-03-15 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess
US7901994B2 (en) 2004-01-16 2011-03-08 Cree, Inc. Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers
US7170111B2 (en) 2004-02-05 2007-01-30 Cree, Inc. Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
US9035354B2 (en) 2004-02-05 2015-05-19 Cree, Inc. Heterojunction transistors having barrier layer bandgaps greater than channel layer bandgaps and related methods
US7479669B2 (en) 2004-05-20 2009-01-20 Cree, Inc. Current aperture transistors and methods of fabricating same
US7084441B2 (en) 2004-05-20 2006-08-01 Cree, Inc. Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same
US7432142B2 (en) 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US9666707B2 (en) 2004-07-23 2017-05-30 Cree, Inc. Nitride-based transistors with a cap layer and a recessed gate
US7678628B2 (en) 2004-07-23 2010-03-16 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
US7238560B2 (en) 2004-07-23 2007-07-03 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
US8946777B2 (en) 2004-07-26 2015-02-03 Cree, Inc. Nitride-based transistors having laterally grown active region and methods of fabricating same
US9166033B2 (en) 2004-11-23 2015-10-20 Cree, Inc. Methods of passivating surfaces of wide bandgap semiconductor devices
US7456443B2 (en) 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7355215B2 (en) 2004-12-06 2008-04-08 Cree, Inc. Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies
US7161194B2 (en) 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
US8212289B2 (en) 2005-03-15 2012-07-03 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
US8803198B2 (en) 2005-03-15 2014-08-12 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
US7465967B2 (en) 2005-03-15 2008-12-16 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
US8575651B2 (en) 2005-04-11 2013-11-05 Cree, Inc. Devices having thick semi-insulating epitaxial gallium nitride layer
US9224596B2 (en) 2005-04-11 2015-12-29 Cree, Inc. Methods of fabricating thick semi-insulating or insulating epitaxial gallium nitride layers
US7626217B2 (en) 2005-04-11 2009-12-01 Cree, Inc. Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices
US7615774B2 (en) 2005-04-29 2009-11-10 Cree.Inc. Aluminum free group III-nitride based high electron mobility transistors
US7544963B2 (en) 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
US9331192B2 (en) 2005-06-29 2016-05-03 Cree, Inc. Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same
JP2007073659A (en) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> Field-effect transistor
US9984881B2 (en) 2006-11-06 2018-05-29 Cree, Inc. Methods of fabricating semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices

Similar Documents

Publication Publication Date Title
JPH1050982A (en) Semiconductor device
JP3645233B2 (en) Semiconductor element
JP2676442B2 (en) Heterojunction field effect transistor and manufacturing method thereof
US5907159A (en) Hot electron device and a resonant tunneling hot electron device
US20060076577A1 (en) High electron mobility transistors with Sb-based channels
JPH06236898A (en) Field-effect transistor
US7244968B2 (en) GaN-based semiconductor junction structure
EP0397148B1 (en) Heterostructure device and production method thereof
JP2004200433A (en) Semiconductor device
JP2539268B2 (en) Semiconductor device
JP2004241778A (en) Semiconductor heterojunction having intermediate layer
JP2004247450A (en) Semiconductor device
JPH088353B2 (en) Two-dimensional heterojunction device
US6797996B1 (en) Compound semiconductor device and method for fabricating the same
JP2004088107A (en) Heterojunction bipolar transistor(hbt) having improved emitter/base grading structure
JP2003332353A (en) Semiconductor device for communication equipment, and equipment for communication system
JP3180734B2 (en) Method for manufacturing field effect transistor
EP1553618A1 (en) Production method for thin-film crystal wafer, semiconductor device using it and production method therefor
JP2994863B2 (en) Heterojunction semiconductor device
JPH03241840A (en) Semiconductor device and manufacture thereof
JP3271619B2 (en) Field effect transistor
JPH09260643A (en) High-electron mobility transistor
JPH09246529A (en) Field effect transistor and its manufacture
JPH11111964A (en) Semiconductor device
JPH1098177A (en) Semiconductor device