JPH1041241A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPH1041241A
JPH1041241A JP19740896A JP19740896A JPH1041241A JP H1041241 A JPH1041241 A JP H1041241A JP 19740896 A JP19740896 A JP 19740896A JP 19740896 A JP19740896 A JP 19740896A JP H1041241 A JPH1041241 A JP H1041241A
Authority
JP
Japan
Prior art keywords
oxygen
oxide film
hydrogen
heat treatment
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19740896A
Other languages
Japanese (ja)
Inventor
Takashi Ueda
多加志 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19740896A priority Critical patent/JPH1041241A/en
Publication of JPH1041241A publication Critical patent/JPH1041241A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce inter-lattice oxygen in an SOI layer by heat treating or plasma treating at a temp. higher than that causing a reductive reaction of this oxygen in a surface Si layer with H and lower than that causing a reductive reaction of oxygen in a buried oxide layer with hydrogen. SOLUTION: After forming an oxygen film 1 by oxidizing a Si substrate 1, oxygen ions are implanted. It is heat-treated in an Ar atmosphere to form a buried oxygen film 4 and recovers crystal defects in a surface Si layer 5, and annealed in an oxygen atmosphere. The oxide film 2 on the substrate is removed by an HF etchant, heat-treated in an H atmosphere at 950 deg. for 30 minutes to reduce the inter-lattice oxygen in the Si layer 5, using a diffusion furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、詳しくは、SOI(SiliconOn
Insulator)基板の表層シリコン層のプロセス
誘起欠陥発生の核となる格子間酸素を減少させる方法に
関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to an SOI (Silicon On).
The present invention relates to a method for reducing interstitial oxygen, which is a nucleus of generation of process-induced defects in a surface silicon layer of an insulator substrate.

【0002】[0002]

【従来の技術】現在、SOI基板は将来のULSI基板
として注目されている。このSOI基板の製造方法に
は、シリコン基板同士を絶縁膜を介し貼り合わせる方
法、絶縁性基板又は絶縁性薄膜を表面に有する基板の上
にシリコン薄膜を堆積させる方法、SIMOX(Sep
aration by Implanted Oxge
n)法などがある。このSIMOX法は、シリコン基板
の内部に絶縁層を埋め込む方法の1つであって、具体的
にはシリコン基板内部に高濃度の酸素イオンを注入した
後、高温でアニール処理して、このシリコン基板表面か
ら所定の深さに埋め込みシリコン酸化膜を形成し、その
表面側のシリコン層(SOI層)を活性領域とする方法
である。
2. Description of the Related Art At present, an SOI substrate is receiving attention as a future ULSI substrate. This SOI substrate manufacturing method includes a method of bonding silicon substrates together via an insulating film, a method of depositing a silicon thin film on an insulating substrate or a substrate having an insulating thin film on its surface, SIMOX (Sepox).
aration by Implanted Oxge
n) method. The SIMOX method is one of the methods of embedding an insulating layer in a silicon substrate. Specifically, after implanting high-concentration oxygen ions into the silicon substrate, the silicon substrate is annealed at a high temperature, In this method, a buried silicon oxide film is formed at a predetermined depth from the surface, and a silicon layer (SOI layer) on the surface side is used as an active region.

【0003】従来、この方法では、シリコンウエハに
0.4〜15×1018/cm2程度の高濃度の酸素イオ
ンを注入した後、1000〜1400℃で数時間熱処理
していた。この熱処理により、注入された酸素はシリコ
ンと反応してシリコン酸化膜となり、また、注入による
シリコン結晶のダメージは回復するが、雰囲気ガスによ
り、その他にこのシリコンウエハに対して種々の影響が
生じる。
Conventionally, in this method, a silicon wafer is implanted with oxygen ions at a high concentration of about 0.4 to 15 × 10 18 / cm 2 and then heat-treated at 1000 to 1400 ° C. for several hours. Due to this heat treatment, the implanted oxygen reacts with silicon to form a silicon oxide film, and the damage of the silicon crystal due to the implantation is recovered, but the atmosphere gas has various other effects on the silicon wafer.

【0004】特開昭64−72533号公報には、酸素
イオン注入後、1050℃、水素雰囲気で熱処理を行
い、不必要に注入された酸素を除去し、且つ、注入領域
を絶縁層へ変化させている。また、特開平8−4616
1号公報には、アルゴンと酸素との混合ガスでは表面シ
リコンの欠陥が消失しいくいので、表面に保護膜を形成
し、1350℃の高温で水素の熱処理を行っている。ま
た、酸素イオン注入の際、表面にパーチクルがついてい
ると、酸素イオンが注入されないか、或いは注入量が不
足して、埋め込み酸化膜の電気絶縁性が悪くなるのを改
良するため、特開平7−263538号公報では、13
50℃で、アルゴンと酸素との混合ガスで熱処理を行っ
た後に、酸素の雰囲気で熱処理を行い、埋め込み酸化膜
の厚さを増加させ、その電気絶縁性を改良している。こ
の酸素の熱処理は、埋め込み酸化膜の厚さを増加させる
ので酸素イオンの注入量を下げることもできるし、SO
I層と埋め込み酸化膜との界面の平坦性を向上させる利
点もある。
Japanese Patent Application Laid-Open No. 64-72533 discloses that after oxygen ion implantation, heat treatment is performed at 1050 ° C. in a hydrogen atmosphere to remove unnecessary implanted oxygen and change the implanted region to an insulating layer. ing. Also, JP-A-8-4616
According to Japanese Patent Publication No. 1 (1993), since a defect of surface silicon tends to disappear with a mixed gas of argon and oxygen, a protective film is formed on the surface and a heat treatment of hydrogen is performed at a high temperature of 1350 ° C. Also, when particles are attached to the surface during oxygen ion implantation, oxygen ions are not implanted or the amount of implantation is insufficient to improve the electrical insulation of the buried oxide film. In the publication No. 263538, 13
After heat treatment at 50 ° C. with a mixed gas of argon and oxygen, heat treatment is performed in an oxygen atmosphere to increase the thickness of the buried oxide film and improve its electrical insulation. Since the heat treatment of oxygen increases the thickness of the buried oxide film, the amount of implanted oxygen ions can be reduced.
There is also an advantage of improving the flatness of the interface between the I layer and the buried oxide film.

【0005】また、シリコンウエハを水素雰囲気中で熱
処理し、表面層の結晶品質の改善を行う技術は、Y.S
atoらによって、「Ext.Abst.18th I
nt.Conf.Solid State Devic
es and Materials,Jpn.Soc.
Appl.Phys.,Tokyo(1986)p52
9」に報告されている。この技術によれば、シリコンウ
エハを高温で水素でアニールすることにより、誘起欠陥
の核となる格子間酸素を外方拡散させ、酸素濃度を低減
させ、且つ、シリコン内部にゲッタリングサイトを形成
し、表層に分布する微小欠陥や不純物金属等を内部に捕
獲し、結晶品質を改質するものである。
[0005] A technique for improving the crystal quality of a surface layer by heat-treating a silicon wafer in a hydrogen atmosphere has been disclosed in Y. Yamamoto. S
ato et al., "Ext. Abst. 18th I.
nt. Conf. Solid State Device
es and Materials, Jpn. Soc.
Appl. Phys. , Tokyo (1986) p52
9 ". According to this technique, by annealing a silicon wafer with hydrogen at a high temperature, interstitial oxygen serving as a nucleus of induced defects is diffused outward, the oxygen concentration is reduced, and a gettering site is formed inside silicon. In addition, micro defects and impurity metals distributed in the surface layer are trapped inside to improve the crystal quality.

【0006】ところが、この技術をSOI構造のシリコ
ンウエハに適用するには、問題がある。それは、高温処
理で拡散した水素が表面シリコン層下の酸化膜を還元
し、表面シリコン層と酸化膜との界面特性が劣化する。
However, there is a problem in applying this technique to a silicon wafer having an SOI structure. That is, the hydrogen diffused by the high-temperature treatment reduces the oxide film under the surface silicon layer, and the interface characteristics between the surface silicon layer and the oxide film deteriorate.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、酸素イ
オン注入後、アルゴンで熱処理を行うと、イオン注入領
域は酸化膜となり、また、注入された酸素の一部は外方
拡散するが、SOI層の格子間、特に埋め込み膜の界面
近傍には注入された酸素の一部が残存する。この酸素は
以後の半導体装置に製造工程の熱処理で、欠陥の発生の
要因となる。また、酸素の場合、特開平7−26353
8号公報に示されるように、酸素イオン注入時に表面に
パーティクルがついていると酸素が注入されない、又は
注入量が不足し、埋め込み酸化膜の電気絶縁性が劣化す
る場合があるが、酸素雰囲気中によるアニールを行えば
埋め込み酸化膜の厚さの増加が見られる。
However, if heat treatment is performed with argon after oxygen ion implantation, the ion implanted region becomes an oxide film, and a part of the implanted oxygen diffuses outward, but the SOI layer has an oxide film. Part of the injected oxygen remains between the lattices, particularly near the interface of the buried film. This oxygen causes defects in the subsequent heat treatment in the manufacturing process of the semiconductor device. Further, in the case of oxygen, Japanese Patent Application Laid-Open No. 7-26353
As shown in Japanese Patent Publication No. 8 (1993), if particles are attached to the surface at the time of oxygen ion implantation, oxygen may not be implanted or the implantation amount may be insufficient, and the electrical insulation of the buried oxide film may be deteriorated. , An increase in the thickness of the buried oxide film is observed.

【0008】一方、水素雰囲気中での熱処理では、結晶
性向上のため、ダングリングボンドの終結や格子間にお
ける酸素の還元に有効であるが、酸素イオン注入後、水
素アニールを行うと、イオン注入によってアモルファス
状態になったSOI層では注入欠陥の回復の際に水素で
還元されて生じるH2Oに起因した結晶欠陥(OSF)
が発生すること、及び埋め込み酸化膜領域内は完全なシ
リコン酸化膜となっていないので、多数のSi−OH基
が存在することになり、埋め込み酸化膜の絶縁破壊耐圧
が低下する危惧が生じる。
On the other hand, a heat treatment in a hydrogen atmosphere is effective in terminating dangling bonds and reducing oxygen between lattices to improve crystallinity. However, when hydrogen annealing is performed after oxygen ion implantation, ion implantation is performed. In the SOI layer that has become amorphous due to the above, a crystal defect (OSF) caused by H 2 O generated by being reduced by hydrogen at the time of recovery of an implantation defect.
Occurs, and since the inside of the buried oxide film region is not a complete silicon oxide film, a large number of Si-OH groups are present, and there is a fear that the dielectric breakdown voltage of the buried oxide film is reduced.

【0009】また、1000℃付近の水素雰囲気中での
熱処理では結晶性の回復や埋め込み酸化膜の膜質向上に
対しては温度が低いので十分ではない。一方、高温で行
うと、上述したように、SOI層内の格子間酸素の還元
除去以外に、埋め込み酸化膜界面の酸化膜までが還元除
去され、埋め込み酸化膜の特性が悪くなる。
Further, the heat treatment in a hydrogen atmosphere at about 1000 ° C. is not sufficient for recovering crystallinity and improving the quality of the buried oxide film because the temperature is low. On the other hand, when performed at a high temperature, as described above, in addition to the reduction and removal of interstitial oxygen in the SOI layer, the oxide film at the interface of the buried oxide film is reduced and removed, and the characteristics of the buried oxide film deteriorate.

【0010】一方、アルゴンと酸素との混合ガス雰囲気
での熱処理後、酸素雰囲気で熱処理する方法でも、最後
の工程が酸素雰囲気である限り、格子間に酸素が残留
し、欠陥(主として、OSF(Oxidation−i
nduced Stacking Faults))の
発生源となる可能性がある。
On the other hand, even in the method of performing heat treatment in an oxygen atmosphere after performing heat treatment in a mixed gas atmosphere of argon and oxygen, oxygen remains between lattices and defects (mainly, OSF ( Oxidation-i
nduced Stacking Faults).

【0011】[0011]

【課題を解決するための手段】請求項1記載の半導体装
置の製造方法は、シリコン基板に酸素をイオン注入し、
不活性ガス雰囲気中で、所定の温度で熱処理することに
より、埋め込み酸化膜及び該埋め込み酸化膜上の表面シ
リコン層を形成する第1工程と、該第1工程後、水素雰
囲気中での熱処理での雰囲気温度、又は水素プラズマ処
理での基板温度を、上記表面シリコン層の格子間酸素が
水素と還元反応を起こす温度以上で、且つ、上記埋め込
み酸化膜の酸素が水素と還元反応を起こす温度より低い
温度にして、上記熱処理又はプラズマ処理を行う第2工
程とを有することを特徴とするものである。
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein oxygen is ion-implanted into a silicon substrate.
A first step of forming a buried oxide film and a surface silicon layer on the buried oxide film by performing a heat treatment at a predetermined temperature in an inert gas atmosphere; and a heat treatment in a hydrogen atmosphere after the first step. Atmosphere temperature, or the substrate temperature in the hydrogen plasma treatment is higher than the temperature at which the interstitial oxygen of the surface silicon layer causes a reduction reaction with hydrogen, and the temperature at which the oxygen of the buried oxide film causes a reduction reaction with hydrogen. And a second step of performing the heat treatment or the plasma treatment at a low temperature.

【0012】また、請求項2記載の半導体装置の製造方
法は、上記第1工程と第2工程との間に酸素雰囲気の熱
処理を行うことを特徴とする、請求項1記載の半導体装
置の製造方法である。
The method of manufacturing a semiconductor device according to claim 2 is characterized in that a heat treatment in an oxygen atmosphere is performed between the first step and the second step. Is the way.

【0013】更に、請求項3記載の半導体装置の製造方
法は、上記第2工程において、熱処理又はプラズマ処理
を、水素と不活性ガスとの混合ガスによる熱処理又は水
素と不活性ガスとの混合ガスのプラズマ処理とすること
を特徴とする、請求項1又は請求項2記載の半導体装置
の製造方法である。
Further, in the method of manufacturing a semiconductor device according to claim 3, in the second step, the heat treatment or the plasma treatment is performed by a heat treatment using a mixed gas of hydrogen and an inert gas or a mixed gas of hydrogen and an inert gas. 3. The method of manufacturing a semiconductor device according to claim 1, wherein the plasma processing is performed.

【0014】[0014]

【発明の実施の形態】以下、実施の形態に基づいて本発
明について詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments.

【0015】図1は本発明の一実施の形態の半導体装置
の製造工程図であり、図2は本発明の効果の説明に供す
る、本実施の形態の工程で作製したSOI基板の酸素濃
度をSIMS(Secondary Ion Mass
Spectrometry:二次イオン質量分析法)
で評価したデータを示す図である。図1において、1は
シリコン基板、2は熱酸化膜、3は注入された酸素イオ
ン、4は埋め込み酸化膜、5は表面シリコン層(SOI
層)を示す。
FIG. 1 is a view showing a manufacturing process of a semiconductor device according to an embodiment of the present invention. FIG. 2 is a graph for explaining the effects of the present invention. SIMS (Secondary Ion Mass
(Spectrometry: secondary ion mass spectrometry)
It is a figure which shows the data evaluated by. In FIG. 1, 1 is a silicon substrate, 2 is a thermal oxide film, 3 is implanted oxygen ions, 4 is a buried oxide film, 5 is a surface silicon layer (SOI
Layer).

【0016】本発明は、SOI基板の表面シリコン層の
格子間酸素を低減し、埋め込み酸化膜の特性を良くする
手段として、まず、高温(雰囲気温度1300〜140
0℃)でアルゴン等の不活性ガスの雰囲気による熱処理
を行うことにより、酸素注入領域を埋め込み酸化膜にす
るとともに、表面シリコン層の結晶性の回復を行う。次
に、同様の高温(雰囲気温度1300〜1400℃)で
酸素雰囲気の熱処理を行い、埋め込み酸化膜の界面及び
膜質の改良を行う。
According to the present invention, as means for reducing the interstitial oxygen of the surface silicon layer of the SOI substrate and improving the characteristics of the buried oxide film, first, a high temperature (an atmosphere temperature of 1300 to 140
By performing a heat treatment in an atmosphere of an inert gas such as argon at 0 ° C.), the oxygen implanted region becomes a buried oxide film and the crystallinity of the surface silicon layer is recovered. Next, heat treatment in an oxygen atmosphere is performed at a similar high temperature (atmospheric temperature of 1300 to 1400 ° C.) to improve the interface and film quality of the buried oxide film.

【0017】そしてその後、上述の熱処理温度より低い
雰囲気温度(800〜1000℃)で水素雰囲気の熱処
理を行い、さらに表面シリコン層の結晶性が回復される
ともに、表面シリコン層内に残存している固溶する格子
間酸素は、この熱エネルギーによって拡散し、表面シリ
コン層表面で水素による還元をうけてH2Oとなり、大
気中に放出される。
After that, a heat treatment in a hydrogen atmosphere is performed at an atmosphere temperature (800 to 1000 ° C.) lower than the above heat treatment temperature, and the crystallinity of the surface silicon layer is recovered, and the silicon layer remains in the surface silicon layer. The interstitial oxygen that forms a solid solution is diffused by this thermal energy, undergoes reduction by hydrogen on the surface silicon layer surface, becomes H 2 O, and is released into the atmosphere.

【0018】この際、表面シリコン層中に格子間酸素の
濃度勾配が生じて、格子間酸素の表面シリコン層表面へ
の拡散が加速され、還元除去され、更に濃度勾配が大き
くなるというループが繰り返し起きて、格子間酸素が減
少していくことになる。ここで、格子間酸素の拡散と表
面シリコン層中に拡散した水素による埋め込み酸化膜界
面の絶縁膜の還元が同時に生じるため、埋め込み酸化膜
の還元を抑制するため、水素の高温熱処理には問題があ
り、水素雰囲気中の熱処理の際の雰囲気温度は、800
〜1000℃が適当である。即ち、800℃以下では充
分な格子間酸素の還元が行われず、1000℃以上で
は、埋め込み酸化膜の還元が生じる。
At this time, a loop in which a concentration gradient of interstitial oxygen is generated in the surface silicon layer, diffusion of interstitial oxygen to the surface silicon layer surface is accelerated, reduced and removed, and the concentration gradient is further increased is repeated. Wake up and the interstitial oxygen will decrease. Here, since the diffusion of interstitial oxygen and the reduction of the insulating film at the interface of the buried oxide film by the hydrogen diffused into the surface silicon layer occur simultaneously, there is a problem in the high-temperature heat treatment of hydrogen to suppress the reduction of the buried oxide film. Atmosphere temperature at the time of heat treatment in a hydrogen atmosphere is 800
~ 1000 ° C is appropriate. That is, at 800 ° C. or less, sufficient reduction of interstitial oxygen is not performed, and at 1000 ° C. or more, reduction of the buried oxide film occurs.

【0019】また、水素のプラズマ処理を行っても同様
の効果が得られる。この場合、SOI層は水素プラズマ
にさらされて温度が上昇するので、SOI基板の基板温
度を700〜1000℃とする。理由は、上述の雰囲気
温度の限定理由と同じである。
The same effect can be obtained by performing a hydrogen plasma treatment. In this case, the temperature of the SOI substrate is set to 700 to 1000 ° C. because the temperature of the SOI layer rises due to exposure to hydrogen plasma. The reason is the same as the above-mentioned reason for limiting the ambient temperature.

【0020】次に、図1を用いて、本発明の第1の実施
の形態の半導体装置の製造工程を説明する。
Next, a manufacturing process of the semiconductor device according to the first embodiment of the present invention will be described with reference to FIG.

【0021】まず、シリコン基板1を酸化して50nm
の酸化膜2を形成後、酸素イオン(16+)を注入エネ
ルギーを140kev、ドーズ量を4×1017cm-2
イオン注入する(図1(a))。この際の酸素イオンの
平均飛程Rpは、シリコン基板中の表面から295nm
の箇所になる。
First, the silicon substrate 1 is oxidized to 50 nm
After the oxide film 2 is formed, oxygen ions ( 16 O + ) are implanted at an implantation energy of 140 keV and a dose of 4 × 10 17 cm −2 (FIG. 1A). At this time, the average range Rp of oxygen ions is 295 nm from the surface in the silicon substrate.
Part.

【0022】次に、アルゴン雰囲気中で、雰囲気温度を
1350℃で4時間の熱処理をおこなって、注入酸素を
反応させて埋め込み酸化膜4を形成するとともに、表面
シリコン層5の結晶欠陥を回復させる。これにより、埋
め込み酸化膜4の厚さが70nm、表面シリコン層5の
厚さが260nmのSIMOX法によるSOI基板が形
成される。(図1(b))。
Next, a heat treatment is performed in an argon atmosphere at an atmosphere temperature of 1350 ° C. for 4 hours to react implanted oxygen to form a buried oxide film 4 and to recover crystal defects of the surface silicon layer 5. . As a result, an SOI substrate by the SIMOX method in which the thickness of the buried oxide film 4 is 70 nm and the thickness of the surface silicon layer 5 is 260 nm is formed. (FIG. 1 (b)).

【0023】次に、酸素雰囲気中で、雰囲気温度を13
50℃で引き続き4時間の酸化アニールを行い、埋め込
み酸化膜4の特性を改善させた。即ち、この酸素による
熱処理工程では、アルゴンによる熱処理工程で減少した
格子間酸素は1018cm-3オーダーへ増加するが、埋め
込み酸化膜4の膜厚は105nmと少し増加して、埋め
込み酸化膜4の電気的特性や界面状態は向上する。表面
の酸化膜2の厚さは310nmとなり、表面シリコン層
5の厚さは130nmとなる(図1(c))。
Next, in an oxygen atmosphere, the atmosphere temperature is set to 13
Oxidation annealing was continued at 50 ° C. for 4 hours to improve the characteristics of the buried oxide film 4. That is, in the heat treatment step using oxygen, the interstitial oxygen decreased in the heat treatment step using argon increases to the order of 10 18 cm −3 , but the thickness of the buried oxide film 4 slightly increases to 105 nm, The electrical characteristics and the interface state of are improved. The thickness of the oxide film 2 on the surface becomes 310 nm, and the thickness of the surface silicon layer 5 becomes 130 nm (FIG. 1C).

【0024】次に、このシリコン基板1の表面の酸化膜
2をHF系エッチャントで除去し、拡散炉を用いて、水
素雰囲気中で、雰囲気温度を950℃で30分間の熱処
理を行い、表面シリコン層5の格子間酸素の還元除去を
行った(図1(d))。
Next, the oxide film 2 on the surface of the silicon substrate 1 is removed with an HF-based etchant, and a heat treatment is performed in a hydrogen atmosphere at a temperature of 950 ° C. for 30 minutes using a diffusion furnace. The interstitial oxygen of the layer 5 was reduced and removed (FIG. 1D).

【0025】上記熱処理工程は最後に水素による熱処理
を行っているが、先に水素による熱処理を行うことは、
酸素注入や酸素アニールで、格子間酸素が再び増加する
ことになり、好ましくない。
In the above heat treatment step, the heat treatment with hydrogen is performed last.
Oxygen implantation and oxygen annealing increase interstitial oxygen again, which is not preferable.

【0026】尚、上記実施例での酸素雰囲気の熱処理で
は、表面シリコン層5の減少が生じるが、埋め込み酸化
膜の特性が完全で無くての良い場合は、酸素雰囲気によ
る熱処理を行わなくてもよい。
In the heat treatment in the oxygen atmosphere in the above embodiment, the surface silicon layer 5 is reduced. However, if the characteristics of the buried oxide film need not be perfect, the heat treatment in the oxygen atmosphere is not required. Good.

【0027】この処理によって、図2に示すように、表
面シリコン層中の格子間酸素濃度を1020cm-3オーダ
ーからおよそ2桁小さい1018cm-3オーダーに低減で
きた。
[0027] By this process, as shown in FIG. 2, it could be reduced interstitial oxygen concentration of the surface silicon layer to 10 20 cm -3 from the order of approximately two orders of magnitude smaller 10 18 cm -3 order.

【0028】次に、本発明の第2の実施の形態について
説明する。
Next, a second embodiment of the present invention will be described.

【0029】この実施の形態は、第1の実施の形態にお
ける水素雰囲気中熱処理をプラズマ処理で行うものであ
る。即ち、埋め込み酸化膜が形成されたSOI基板をプ
ラズマ処理装置内に装填し、水素ガス(流量10〜30
sccm)を流しながら、圧力が10Torrになるよ
うに排気した。続いて、基板を900℃(700〜10
00℃の範囲で適用可能。)まで加熱し、1分間保持し
た後、周波数を2.45GHz、パワーを1kW程度の
マイクロ波によって励起した水素プラズマに該SOI基
板を2分間程度さらした後、プラズマ発生を停止し、そ
の温度のまま、ガスをアルゴンに換えて、5分間保持し
た。このアルゴンによる熱処理で、H2プラズマによる
ダメージは、アニールされ、表面シリコン層(〜300
Å)の結晶性は回復することになる。
In this embodiment, the heat treatment in the hydrogen atmosphere in the first embodiment is performed by plasma processing. That is, the SOI substrate on which the buried oxide film is formed is loaded into a plasma processing apparatus, and hydrogen gas (flow rate 10 to 30) is supplied.
The pressure was evacuated while the pressure was 10 Torr while flowing (sccm). Subsequently, the substrate is heated at 900 ° C. (700 to 10
Applicable in the range of 00 ° C. ), And after holding for 1 minute, exposing the SOI substrate to a hydrogen plasma excited by a microwave having a frequency of 2.45 GHz and a power of about 1 kW for about 2 minutes, stopping the plasma generation, and stopping the temperature. The gas was replaced with argon and kept for 5 minutes. In this heat treatment with argon, damage due to H 2 plasma is annealed, and the surface silicon layer ((300
The crystallinity of (ii) will be restored.

【0030】この処理によって、第1の実施の形態とほ
ぼ同様に、表面シリコン層中の格子間酸素濃度を1020
cm-3オーダーからおよそ2桁小さい1018cm-3オー
ダーに低減できた。
By this treatment, the interstitial oxygen concentration in the surface silicon layer is reduced to 10 20 , almost in the same manner as in the first embodiment.
It could be reduced from cm -3 orders approximately 2 orders of magnitude less 10 18 cm -3 order.

【0031】尚、上述の第1の実施の形態における水素
雰囲気中の熱処理を水素と不活性ガスとの混合ガス雰囲
気中での熱処理に換える、又は、第2の実施の形態にお
ける水素プラズマ処理を水素と不活性ガスとの混合ガス
のプラズマ処理に換えることにより、水素の分圧を小さ
くし(具体的には、分圧は(H2/不活性ガス)=0.
01〜0.5が適当である。)、さらなる埋め込み酸化
膜の膜厚の低減の抑制に効果があり、埋め込み酸化膜の
膜厚が薄い場合には、膜厚低減量が小さくても影響があ
るので特に効果がある。
The heat treatment in the hydrogen atmosphere in the first embodiment is replaced with the heat treatment in a mixed gas atmosphere of hydrogen and an inert gas, or the hydrogen plasma treatment in the second embodiment is replaced with the hydrogen plasma treatment in the second embodiment. The partial pressure of hydrogen is reduced by replacing the plasma treatment with a mixed gas of hydrogen and an inert gas (specifically, the partial pressure is (H 2 / inert gas) = 0.
01 to 0.5 is appropriate. This is effective for further suppressing the reduction in the thickness of the buried oxide film. When the thickness of the buried oxide film is small, there is an effect even if the amount of reduction in the film thickness is small.

【0032】[0032]

【発明の効果】以上、詳細に説明したように、本発明を
用いることにより、従来の高温水素アニールでは、達成
できなかったSOI層中の格子間酸素を低減することが
できる。 具体的には、図2に示すように、酸素はSI
MSプロファイル中の破線のように分布していたが、9
50℃の水素還元処理により、デバイス活性領域である
表面シリコン層の格子間酸素濃度を2桁以上低減でき
た。
As described above, by using the present invention, interstitial oxygen in the SOI layer, which cannot be achieved by the conventional high-temperature hydrogen annealing, can be reduced. Specifically, as shown in FIG.
Although it was distributed like a broken line in the MS profile, 9
By the hydrogen reduction treatment at 50 ° C., the interstitial oxygen concentration of the surface silicon layer as the device active region could be reduced by two digits or more.

【0033】そして、従来技術の水素アニール法で発生
するゲッタリングサイトのような欠陥網はSOI層内部
には発生せず、また、比較的低温で且つ短時間で処理す
るため、埋め込み酸化膜とSOI層との界面が還元され
ることがない。
A defect network such as a gettering site generated by the conventional hydrogen annealing method does not occur inside the SOI layer, and is processed at a relatively low temperature in a short time. The interface with the SOI layer is not reduced.

【0034】したがって、本発明を用いることによっ
て、SOI層中の格子間酸素濃度を低減できるために、
トランジスタ製造工程における熱ストレスやCVD膜等
の応力ストレス又は、それらが集中する部分によって誘
発される酸素誘起欠陥の発生格が減少し、結果として誘
起欠陥が減少することになる。また、欠陥に対するマー
ジンが増え、プロセスの安定化が図れる。
Therefore, by using the present invention, the interstitial oxygen concentration in the SOI layer can be reduced.
Occurrence of oxygen-induced defects induced by thermal stress or stress stress such as a CVD film in a transistor manufacturing process or a portion where the stress is concentrated is reduced, and as a result, induced defects are reduced. In addition, the margin for defects increases, and the process can be stabilized.

【0035】また、請求項2記載の本発明を用いること
により、更に埋め込み酸化膜の特性が向上する。更に、
請求項3記載の本発明を用いることにより、更に埋め込
み酸化膜の膜減りを抑制することができる。
The characteristics of the buried oxide film are further improved by using the present invention. Furthermore,
By using the present invention, it is possible to further suppress the reduction of the buried oxide film.

【0036】以上より、ジャンクションリーク電流低減
やライフタイムの増加、ゲート酸化膜の信頼性が向上
し、デバイスの低消費電力化、高速化、歩留まりの増加
等に寄与できる。
As described above, the junction leak current can be reduced, the lifetime can be increased, the reliability of the gate oxide film can be improved, and the power consumption of the device can be reduced, the operation speed can be increased, and the yield can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の半導体装置の製造
工程図である。
FIG. 1 is a manufacturing process diagram of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の効果の説明に供する図である。FIG. 2 is a diagram provided for describing effects of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 熱酸化膜 3 注入された酸素イオン 4 埋め込み酸化膜 5 表面シリコン層 Reference Signs List 1 silicon substrate 2 thermal oxide film 3 implanted oxygen ions 4 buried oxide film 5 surface silicon layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板に酸素をイオン注入し、不
活性ガス雰囲気中で、所定の温度で熱処理することによ
り、埋め込み酸化膜及び該埋め込み酸化膜上の表面シリ
コン層を形成する第1工程と、 該第1工程後、水素雰囲気中での熱処理での雰囲気温
度、又は水素プラズマ処理での基板温度を、上記表面シ
リコン層の格子間酸素が水素と還元反応を起こす温度以
上で、且つ、上記埋め込み酸化膜の酸素が水素と還元反
応を起こす温度より低い温度にして、上記熱処理又はプ
ラズマ処理を行う第2工程とを有することを特徴とす
る、半導体装置の製造方法。
A first step of forming a buried oxide film and a surface silicon layer on the buried oxide film by ion-implanting oxygen into a silicon substrate and performing a heat treatment at a predetermined temperature in an inert gas atmosphere; After the first step, the temperature of the atmosphere in the heat treatment in the hydrogen atmosphere or the temperature of the substrate in the hydrogen plasma treatment is equal to or higher than the temperature at which the interstitial oxygen of the surface silicon layer causes a reduction reaction with hydrogen, and A second step of performing the heat treatment or the plasma treatment at a temperature lower than a temperature at which oxygen of the buried oxide film causes a reduction reaction with hydrogen.
【請求項2】 上記第1工程と第2工程との間に酸素雰
囲気の熱処理を行うことを特徴とする、請求項1記載の
半導体装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein a heat treatment in an oxygen atmosphere is performed between the first step and the second step.
【請求項3】 上記第2工程において、熱処理又はプラ
ズマ処理を、水素と不活性ガスとの混合ガスによる熱処
理又は水素と不活性ガスとの混合ガスのプラズマ処理と
することを特徴とする、請求項1又は請求項2記載の半
導体装置の製造方法。
3. The heat treatment or the plasma treatment in the second step is a heat treatment with a mixed gas of hydrogen and an inert gas or a plasma treatment of a mixed gas of hydrogen and an inert gas. 3. The method for manufacturing a semiconductor device according to claim 1 or 2.
JP19740896A 1996-07-26 1996-07-26 Manufacturing method of semiconductor device Pending JPH1041241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19740896A JPH1041241A (en) 1996-07-26 1996-07-26 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19740896A JPH1041241A (en) 1996-07-26 1996-07-26 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JPH1041241A true JPH1041241A (en) 1998-02-13

Family

ID=16374025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19740896A Pending JPH1041241A (en) 1996-07-26 1996-07-26 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPH1041241A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210811A (en) * 1999-11-17 2001-08-03 Denso Corp Method for manufacturing semiconductor substrate
US6313014B1 (en) 1998-06-18 2001-11-06 Canon Kabushiki Kaisha Semiconductor substrate and manufacturing method of semiconductor substrate
JP2005285963A (en) * 2004-03-29 2005-10-13 Sumco Corp Method for manufacturing soi substrate
JP2006156973A (en) * 2004-10-25 2006-06-15 Toyota Motor Corp Manufacturing method of metal insulator semiconductor device
EP1840957A1 (en) * 2006-03-27 2007-10-03 SUMCO Corporation Method of producing simox wafer
KR101007987B1 (en) 2004-11-11 2011-01-14 주식회사 하이닉스반도체 Method for protecting gate oxide by using ion implantation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313014B1 (en) 1998-06-18 2001-11-06 Canon Kabushiki Kaisha Semiconductor substrate and manufacturing method of semiconductor substrate
JP2001210811A (en) * 1999-11-17 2001-08-03 Denso Corp Method for manufacturing semiconductor substrate
JP2005285963A (en) * 2004-03-29 2005-10-13 Sumco Corp Method for manufacturing soi substrate
JP2006156973A (en) * 2004-10-25 2006-06-15 Toyota Motor Corp Manufacturing method of metal insulator semiconductor device
KR101007987B1 (en) 2004-11-11 2011-01-14 주식회사 하이닉스반도체 Method for protecting gate oxide by using ion implantation
EP1840957A1 (en) * 2006-03-27 2007-10-03 SUMCO Corporation Method of producing simox wafer
JP2007266055A (en) * 2006-03-27 2007-10-11 Sumco Corp Method of manufacturing simox wafer
KR100878732B1 (en) * 2006-03-27 2009-01-14 가부시키가이샤 사무코 Method of producing simox wafer

Similar Documents

Publication Publication Date Title
US6372609B1 (en) Method of Fabricating SOI wafer by hydrogen ION delamination method and SOI wafer fabricated by the method
JP3911901B2 (en) SOI wafer and method for manufacturing SOI wafer
KR100776381B1 (en) Production method for bonding wafer and bonding wafer produced by this method
US8623740B2 (en) Method of detaching semi-conductor layers at low temperature
KR100890792B1 (en) Thermal treatment for bonding interface stabilization
JP4419147B2 (en) Manufacturing method of bonded wafer
US7947571B2 (en) Method for fabricating a semiconductor on insulator substrate with reduced Secco defect density
JPH07153769A (en) Manufacture of semiconductor integrated circuit device and its manufacturing equipment
TW200816368A (en) Method of producing simox wafer
KR101380514B1 (en) Method for manufacturing semiconductor substrate
JP2856157B2 (en) Method for manufacturing semiconductor device
JP2010098167A (en) Method of manufacturing laminated wafer
JPH1041241A (en) Manufacturing method of semiconductor device
US7799660B2 (en) Method for manufacturing SOI substrate
JP4609026B2 (en) Manufacturing method of SOI wafer
JPH10214844A (en) Manufacturing method of semiconductor substrate
JPH1074922A (en) Manufacturing method of sot substrate
JP4598241B2 (en) SIMOX substrate manufacturing method
KR100545990B1 (en) How to remove metal impurities in silicon wafer
JPH02237033A (en) Manufacture of semiconductor substrate
JPH07335847A (en) Manufacture of silicon substrate having embedded oxide film
JPH1140512A (en) Manufacture of semiconductor substrate
JPH08279475A (en) Forming method of active layer in compound semiconductor device
JPH10214843A (en) Manufacturing method of semiconductor substrate
JP4531339B2 (en) Manufacturing method of semiconductor substrate