JPH1039350A - Hand shake correcting device for optical device - Google Patents

Hand shake correcting device for optical device

Info

Publication number
JPH1039350A
JPH1039350A JP21217796A JP21217796A JPH1039350A JP H1039350 A JPH1039350 A JP H1039350A JP 21217796 A JP21217796 A JP 21217796A JP 21217796 A JP21217796 A JP 21217796A JP H1039350 A JPH1039350 A JP H1039350A
Authority
JP
Japan
Prior art keywords
lens
axis
actuator
axis direction
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21217796A
Other languages
Japanese (ja)
Inventor
Masayuki Kamiyama
雅之 上山
Tetsuo Kanbara
哲郎 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP21217796A priority Critical patent/JPH1039350A/en
Publication of JPH1039350A publication Critical patent/JPH1039350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lens Barrels (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hand shake correcting device reduced in the number of parts and having simple structure. SOLUTION: An X-axis actuator 10 and a Y-axis actuator 20 are arranged on a base frame 1, to drive a lens barrel 2 for a correcting lens L in X-axis and Y-axis directions. The actuator 10 is constituted of a piezoelectric element 11, a driving shaft 13 and a moving member 14 frictionally fitted on the shaft 13 in a frictional fitting part. In the moving member 14, an extended part is formed. The actuator 20 has a similar constitution as well. In the base frame 1, a hole through which a focusing guide shaft is inserted is provided and the base frame 1 is supported to be movable in an optical axial direction, while being regulated in a position with respect to an optical axis, by the focusing guide shaft inserted through the hole. Thus, the number of the parts is reduced to simplify constitution and reduce an assembly man-hour.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電気機械変換装
置を用いたアクチエ−タを補正レンズの駆動に使用した
光学装置の手ぶれ補正装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a camera shake correction device for an optical device using an actuator using an electromechanical converter for driving a correction lens.

【0002】[0002]

【従来の技術】従来、写真撮影の際に生ずるカメラの手
ぶれによる結像面の像ぶれを補正する手段として、撮影
レンズの絞りの直後に配置される2枚の補正レンズを光
軸方向に対して直交する平面内で偏心駆動させる防振光
学系が知られている。この防振光学系を備えたレンズ装
置では、補正レンズを所定の方向に駆動する専用の駆動
機構がレンズ装置に組み込まれている。
2. Description of the Related Art Conventionally, as means for correcting image blur on an image forming surface due to camera shake caused during camera photographing, two correction lenses disposed immediately after a stop of a photographing lens are arranged in the optical axis direction. There is known an image stabilizing optical system that is driven eccentrically in a plane orthogonal to the plane. In the lens device provided with the vibration proof optical system, a dedicated driving mechanism for driving the correction lens in a predetermined direction is incorporated in the lens device.

【0003】前記した防振光学系の補正レンズを駆動す
る機構としては、従来直流モ−タと歯車減速機構からな
る駆動機構などが採用されてきたが、このような構成で
は、モ−タが大きいばかりでなく、歯車減速機構もバツ
クラツシュを排除する機構を組み込むなどのために大き
なスペ−スが占有され、どうしてもレンズ鏡筒が大型の
ものにならざるを得ず、また、歯車減速機構を使用する
ために作動時にノイズが発生して商品の品位を落とすと
いう不都合もあつたため、出願人は先に圧電素子を使用
したアクチエ−タを駆動源とする補正レンズ駆動機構を
提案した(特願平6−200269号参照)。
[0003] As a mechanism for driving the correction lens of the above-described vibration proof optical system, a drive mechanism including a DC motor and a gear reduction mechanism has conventionally been adopted. In such a configuration, the motor is used. Not only is it large, but also the gear reduction mechanism occupies a large space because it incorporates a mechanism that eliminates backlash. For this reason, there has been a disadvantage that noise is generated during operation and the quality of the product is degraded. Therefore, the applicant has previously proposed a correction lens driving mechanism using an actuator using a piezoelectric element as a driving source (Japanese Patent Application No. Hei 10-26138). 6-200269).

【0004】図13は上記した補正レンズ駆動機構の構
成を示す斜視図で、第1レンズ群L1 を偏心移動させる
アクチエ−タ122はX軸方向に平行に、また、第2レ
ンズ群L2 を偏心移動させるアクチエ−タ123はY軸
方向に平行に配置されている。アクチエ−タ122及び
アクチエ−タ123は同一構成のもので、圧電素子13
2(142)、駆動軸131(141)、レンズ保持枠
112(113)と一体に構成され駆動軸131(14
1)と摩擦結合する結合部112a(113a)、パツ
ド112c(113c)、摩擦結合力を調整する板ばね
112d(113d)などから構成される。
FIG. 13 is a perspective view showing the construction of the above-mentioned correction lens driving mechanism. The actuator 122 for eccentrically moving the first lens unit L1 is parallel to the X-axis direction, and the second lens unit L2 is eccentric. The actuator 123 to be moved is arranged parallel to the Y-axis direction. Actuator 122 and actuator 123 have the same configuration, and
2 (142), the drive shaft 131 (141), and the drive shaft 131 (14) integrally formed with the lens holding frame 112 (113).
It is composed of a coupling portion 112a (113a) that frictionally couples with 1), a pad 112c (113c), a leaf spring 112d (113d) for adjusting the friction coupling force, and the like.

【0005】第1のレンズ群L1 のX軸方向の位置はレ
ンズ保持枠112に取り付けられたX軸方向位置センサ
135で検出され、また、第2のレンズ群L2 のY軸方
向の位置はレンズ保持枠113に取り付けられたY軸方
向位置センサ145で検出される。X軸方向位置センサ
135、Y軸方向位置センサ145は、公知の位置セン
サ、例えば図示しないレンズ鏡筒の延長部に、所定間隔
で着磁した着磁ロツド136(146)を駆動軸131
(141)に平行して配置し、着磁ロツド136(14
6)の磁気をレンズ保持枠112(113)に取り付け
られた磁気抵抗素子からなるセンサ135(145)で
検出する磁気抵抗式センサなどが利用できる。そのほか
各種の位置センサを利用することができる。
The position of the first lens unit L1 in the X-axis direction is detected by an X-axis position sensor 135 attached to the lens holding frame 112, and the position of the second lens unit L2 in the Y-axis direction is a lens. It is detected by a Y-axis direction position sensor 145 attached to the holding frame 113. The X-axis direction position sensor 135 and the Y-axis direction position sensor 145 include a known position sensor, for example, a magnetized rod 136 (146) magnetized at a predetermined interval on an extension of a lens barrel (not shown).
(141) and the magnetized rod 136 (14
A magnetoresistive sensor that detects the magnetism of 6) with a sensor 135 (145) made of a magnetoresistive element attached to the lens holding frame 112 (113) can be used. In addition, various position sensors can be used.

【0006】次に、図13を参照してアクチエ−タ12
2による第1のレンズ群L1 、及びアクチエ−タ123
による第2のレンズ群L2 の駆動について説明する。
Next, referring to FIG.
2, the first lens unit L1 and the actuator 123
Will be described for driving the second lens unit L2.

【0007】図示しない手ぶれセンサ、例えばカメラの
X軸及びY軸方向の加速度を検出する手ぶれセンサの出
力から演算した手ぶれ量と、前記位置センサで検出した
レンズ位置に基づいて補正レンズの駆動量を演算し、演
算された駆動量に基づいてアクチエ−タの圧電素子に駆
動パルスを印加し、補正レンズを駆動する。
The amount of camera shake calculated from the output of a camera shake sensor (not shown), for example, the camera shake sensor for detecting the acceleration in the X-axis and Y-axis directions of the camera, and the amount of drive of the correction lens based on the lens position detected by the position sensor are determined. Calculate and apply a driving pulse to the piezoelectric element of the actuator based on the calculated driving amount to drive the correction lens.

【0008】例えば、図14に示すような緩やかな立ち
上がり部とこれに続く急速な立ち下がり部からなる波形
の駆動パルスをアクチエ−タ122の圧電素子132に
印加すると、駆動パルスの緩やかな立ち上がり部では圧
電素子132が緩やかに厚み方向の伸び変位を生じ、駆
動軸131は矢印aで示す方向に変位する。このため駆
動軸131に結合部112aで摩擦結合しているレンズ
保持枠112も矢印a方向へ移動し、第1のレンズ群L
1 は矢印aで示すX軸正方向に変位する。
For example, when a drive pulse having a waveform consisting of a gentle rising portion as shown in FIG. 14 and a rapid falling portion following it is applied to the piezoelectric element 132 of the actuator 122, a gentle rising portion of the driving pulse is obtained. In this case, the piezoelectric element 132 gradually expands in the thickness direction, and the drive shaft 131 is displaced in the direction indicated by the arrow a. Therefore, the lens holding frame 112 frictionally coupled to the drive shaft 131 at the coupling portion 112a also moves in the direction of arrow a, and the first lens unit L
1 is displaced in the positive X-axis direction indicated by arrow a.

【0009】駆動パルスの急速な立ち下がり部では、圧
電素子132が急速に厚み方向の縮み変位を生じ、駆動
軸131も矢印aと反対方向へ変位する。このとき、駆
動軸131に結合部112aで摩擦結合しているレンズ
保持枠112は、その慣性力により駆動軸131との間
の摩擦結合力に打ち勝つて実質的にその位置に留まるの
で、第1のレンズ群L1 は移動しない。
At the rapid falling portion of the drive pulse, the piezoelectric element 132 rapidly contracts in the thickness direction, and the drive shaft 131 is also displaced in the direction opposite to the arrow a. At this time, the lens holding frame 112 frictionally coupled to the drive shaft 131 at the coupling portion 112a overcomes the frictional coupling force with the drive shaft 131 due to its inertial force and substantially stays at that position. Does not move.

【0010】なお、ここでいう実質的とは、矢印a方向
と、これと反対方向のいずれにおいてもレンズ保持枠1
12の結合部112aと駆動軸131との間に滑りを生
じつつ追動し、駆動時間の差によつて全体として矢印a
方向に移動するものも含むことを意味している。どのよ
うな移動形態になるかは、与えられた摩擦条件に応じて
決定される。
[0010] The term "substantially" used herein means that the lens holding frame 1 is located in both the direction of arrow a and the direction opposite thereto.
12 and slides between the drive shaft 131 and the drive shaft 131, and as a whole, the arrow a
It is meant to include those that move in the direction. The type of movement is determined according to a given friction condition.

【0011】上記波形の駆動パルスを連続して圧電素子
132に印加することにより、第1のレンズ群L1 をX
軸正方向へ連続して移動させることができる。
By continuously applying the driving pulse having the above-mentioned waveform to the piezoelectric element 132, the first lens unit L1
It can be moved continuously in the positive axis direction.

【0012】第1のレンズ群L1 をX軸の負方向、即ち
矢印aと反対方向へ移動させるときは、急速な立ち上が
り部とこれに続く緩やかな立ち下がり部からなる波形の
駆動パルスを圧電素子132に印加することで達成でき
る。
When the first lens unit L1 is moved in the negative direction of the X axis, that is, in the direction opposite to the arrow a, a drive pulse having a waveform consisting of a rapid rising portion and a gentle falling portion following the rising portion is applied to the piezoelectric element. 132 can be achieved.

【0013】アクチエ−タ123による第2のレンズ群
L2 の駆動も全く同様で、駆動パルスをアクチエ−タ1
23の圧電素子142に印加することで、第2のレンズ
群L2 を矢印bで示すY軸方向(正負方向)に変位させ
ることができる。
The driving of the second lens unit L2 by the actuator 123 is exactly the same.
By applying the voltage to the 23 piezoelectric elements 142, the second lens unit L2 can be displaced in the Y-axis direction (positive / negative direction) indicated by the arrow b.

【0014】[0014]

【発明が解決しようとする課題】前記した圧電素子を使
用したアクチユエ−タを駆動源とする補正レンズ駆動機
構は、直流モ−タと歯車減速機構からなる駆動機構など
のように大きなスペ−スを占有されることがなく、レン
ズ鏡筒を小型で軽量なものに纏めることができ、作動時
にノイズが発生することもないなど優れた性能を備えて
いるが、なお、より一層部品点数が少なく、さらに小型
なものが求められていた。この発明は上記課題を解決す
ることを目的とする。
The above-described correction lens driving mechanism using an actuator using a piezoelectric element as a driving source has a large space such as a driving mechanism including a DC motor and a gear reduction mechanism. The lens barrel can be made compact and lightweight without occupation of the lens, and it has excellent performance such as no noise generated during operation, but the number of parts is further reduced There was a demand for a smaller one. An object of the present invention is to solve the above problems.

【0015】[0015]

【課題を解決するための手段】この発明は上記課題を解
決するもので、光学装置の手ぶれ量に対応するレンズ位
置補正情報に基づいてレンズ駆動手段を駆動し、光軸に
対して垂直な面で移動可能に配置された補正レンズの位
置を制御する光学装置の手ぶれ補正装置において、前記
レンズ駆動手段は、光軸に対して垂直な面を有する台枠
と、台枠上に配置された補正レンズをX軸方向及びY軸
方向に移動させる2組のレンズ駆動機構から構成され、
前記台枠は、光軸に平行に配置されたフオ−カスガイド
軸により光軸方向に移動可能に支持されていることを特
徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and drives a lens driving means based on lens position correction information corresponding to the amount of camera shake of an optical device, thereby obtaining a surface perpendicular to the optical axis. In a camera shake correction apparatus for an optical device that controls the position of a correction lens movably disposed in a frame, the lens driving unit includes: an underframe having a surface perpendicular to an optical axis; and a correction unit disposed on the underframe. It comprises two sets of lens driving mechanisms for moving the lens in the X-axis direction and the Y-axis direction,
The underframe is movably supported in the optical axis direction by a focus guide shaft arranged parallel to the optical axis.

【0016】そして、前記台枠はフオ−カスガイド軸が
貫通する穴を備え、前記台枠は前記穴を貫通するフオ−
カスガイド軸により光軸に対する位置が規制されつつ光
軸方向に移動可能に支持するとよい。
The underframe has a hole through which the focus guide shaft passes, and the underframe has a hole through the hole.
It is preferable that the position with respect to the optical axis is controlled by the waste guide shaft so as to be movable in the optical axis direction.

【0017】[0017]

【発明の実施の形態】この発明の実施の形態としての防
振光学系は、レンズ系の直後に1枚の補正レンズLを配
置し、この補正レンズLを光軸方向に対して垂直な平面
上で偏心させる構成を採用している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An anti-vibration optical system according to an embodiment of the present invention has one correction lens L disposed immediately after a lens system, and the correction lens L is disposed on a plane perpendicular to the optical axis direction. The eccentric configuration is adopted.

【0018】補正レンズLの駆動装置を説明する。図1
乃至図6に示すように、台枠1の上にX軸アクチエ−タ
10、Y軸アクチエ−タ20が配置される。アクチエ−
タ10及び20の圧電素子11及び21の一端はそれぞ
れ台枠1上の支持ブロツク3に接着固定され、圧電素子
11及び21の他の端には駆動軸13及び23が接着固
定され、それぞれブロツク12及び22によりX軸に平
行な方向及びY軸に平行な方向に移動可能に支持されて
いる。
A driving device for the correction lens L will be described. FIG.
As shown in FIGS. 6 to 6, an X-axis actuator 10 and a Y-axis actuator 20 are arranged on the underframe 1. Actie
One end of each of the piezoelectric elements 11 and 21 of the heaters 10 and 20 is bonded and fixed to a support block 3 on the underframe 1, and the other ends of the piezoelectric elements 11 and 21 are bonded and fixed to drive shafts 13 and 23, respectively. They are supported by 12 and 22 so as to be movable in a direction parallel to the X axis and in a direction parallel to the Y axis.

【0019】台枠1はフオ−カスガイド軸4が貫通する
穴3aを備え、台枠1は前記穴3aを貫通するフオ−カ
スガイド軸4により光軸に対する位置を規制しつつ光軸
方向に移動可能に支持される。
The underframe 1 has a hole 3a through which the focus guide shaft 4 penetrates. The underframe 1 is movable in the optical axis direction while regulating the position with respect to the optical axis by the focus guide shaft 4 penetrating the hole 3a. Supported by

【0020】[0020]

【実施例】以下、この発明の実施例について説明する。
図1はこの発明を適用したカメラの手ぶれ補正装置の構
成を示す斜視図、図2はその正面図、図3は補正レンズ
Lの鏡筒を示す正面図、図4は図2のA−A線に沿つた
断面図、図5は図2のB−B線に沿つた断面図、図6は
図2におけるX軸アクチエ−タ10の要部を拡大し、一
部を切欠いた断面図である。図1乃至図6において、1
は補正レンズの駆動機構を支える台枠で、その中央部分
には開口1aが設けられている。2は補正レンズLの鏡
筒で、台枠1の中央部分の開口1a部分に位置し、後述
するX軸アクチエ−タ10及びY軸アクチエ−タ20に
より、光軸(Z軸)に対して垂直な平面上をX軸方向及
びY軸方向に移動可能に支持されている。台枠1の上に
はX軸アクチエ−タ10及びY軸アクチエ−タ20の圧
電素子が接着固定される支持ブロツク3が設けられてい
る。
Embodiments of the present invention will be described below.
FIG. 1 is a perspective view showing the configuration of a camera shake correction apparatus to which the present invention is applied, FIG. 2 is a front view thereof, FIG. 3 is a front view showing a lens barrel of a correction lens L, and FIG. 5, FIG. 5 is a cross-sectional view taken along the line BB of FIG. 2, and FIG. 6 is a cross-sectional view in which a main part of the X-axis actuator 10 in FIG. is there. 1 to 6, 1
Is an underframe for supporting a driving mechanism of the correction lens, and an opening 1a is provided in a central portion thereof. Reference numeral 2 denotes a lens barrel of the correction lens L, which is located at an opening 1a in the center of the underframe 1, and is moved with respect to the optical axis (Z-axis) by an X-axis actuator 10 and a Y-axis actuator 20, which will be described later. It is supported movably on a vertical plane in the X-axis direction and the Y-axis direction. Provided on the underframe 1 is a support block 3 to which the piezoelectric elements of the X-axis actuator 10 and the Y-axis actuator 20 are adhered and fixed.

【0021】台枠1は、図示しない鏡筒内に配置され
る。台枠1を光軸方向に移動させるとき、光軸に対する
台枠1の位置を規制しつつ光軸方向に移動させるため、
鏡筒内には光軸に対して平行に配置されたフオ−カスガ
イド軸4が配置され、支持ブロツク3にはこのフオ−カ
スガイド軸4が貫通する穴3aが設けられている。
The underframe 1 is disposed in a lens barrel (not shown). When the underframe 1 is moved in the optical axis direction, the underframe 1 is moved in the optical axis direction while regulating the position of the underframe 1 with respect to the optical axis.
A focus guide shaft 4 arranged parallel to the optical axis is disposed in the lens barrel, and a hole 3a through which the focus guide shaft 4 penetrates is provided in the support block 3.

【0022】図3を参照すると明かなように、補正レン
ズLの鏡筒2には台枠1に対する鏡筒2の位置を保持す
るため、放射状に延びた3本のア−ム2a、2b、2c
が形成されている。図4を参照すると明かなように、ア
−ム2a、2b、2cには、それぞれ、その表面及び裏
面に突起2p及び2qが設けられていて、円盤状の押圧
板5により鏡筒2のア−ム2a、2b、2cを台枠1に
向けて押圧すると、突起2p及び2qがそれぞれ台枠1
と押圧板5に接触し、台枠1に対する鏡筒2の位置を保
持することができる。台枠1に対する鏡筒2の僅かな傾
きなどは、突起2pの高さを調整することで補正するこ
とができる。
As is clear from FIG. 3, the lens barrel 2 of the correction lens L has three radially extending arms 2a, 2b, 2a, 2b, 2c to hold the position of the lens barrel 2 with respect to the underframe 1. 2c
Are formed. As is apparent from FIG. 4, the arms 2a, 2b, and 2c are provided with protrusions 2p and 2q on the front and back surfaces thereof, respectively. When the rubber members 2a, 2b, and 2c are pressed toward the underframe 1, the protrusions 2p and 2q
And the pressing plate 5, and the position of the lens barrel 2 with respect to the underframe 1 can be maintained. A slight inclination of the lens barrel 2 with respect to the underframe 1 can be corrected by adjusting the height of the projection 2p.

【0023】次に、X軸アクチエ−タ10及びY軸アク
チエ−タ20について説明する。まず、X軸アクチエ−
タ10から説明する。台枠1上の支持ブロツク3にはX
軸アクチエ−タ10の圧電素子11の一端が接着固定さ
れ、圧電素子11の他の端には駆動軸13が接着固定さ
れており、駆動軸13の一端はブロツク12によりX軸
に平行な方向に移動可能に支持されている。駆動軸13
には移動部材14の摩擦結合部14aがX軸に平行な方
向に移動可能に、適当な摩擦力で摩擦結合している。ま
た、移動部材14から延長された延長部14bは補正レ
ンズLの鏡筒2に形成された作用部材15のY軸に平行
な方向に延びた溝15aに係合し、作用部材15に対し
付勢バネ16により圧接されている。付勢バネ16によ
る延長部14bの圧接力は移動部材14がX軸方向へ移
動する力よりも十分に大きく設定されている。
Next, the X-axis actuator 10 and the Y-axis actuator 20 will be described. First, the X-axis actier
The operation will be described from the data 10. X is attached to the support block 3 on the underframe 1.
One end of the piezoelectric element 11 of the shaft actuator 10 is bonded and fixed, and the other end of the piezoelectric element 11 is bonded and fixed to a drive shaft 13. One end of the drive shaft 13 is in a direction parallel to the X axis by a block 12. It is movably supported. Drive shaft 13
, The frictional coupling portion 14a of the moving member 14 is frictionally coupled with an appropriate frictional force so as to be movable in a direction parallel to the X axis. The extension 14b extended from the moving member 14 is engaged with a groove 15a extending in a direction parallel to the Y axis of the operation member 15 formed in the lens barrel 2 of the correction lens L, and is attached to the operation member 15. It is pressed by a spring 16. The pressing force of the urging spring 16 against the extension portion 14b is set to be sufficiently larger than the force of the moving member 14 moving in the X-axis direction.

【0024】延長部14bは作用部材15の溝15aに
係合してY軸方向に移動可能であるから、補正レンズL
の鏡筒2がY軸方向に移動するとき、延長部14bは作
用部材15の溝上をY軸方向に移動し、鏡筒2のY軸方
向の移動を妨げない。
Since the extension 14b is movable in the Y-axis direction by engaging with the groove 15a of the action member 15, the correction lens L
When the lens barrel 2 moves in the Y-axis direction, the extension portion 14b moves on the groove of the action member 15 in the Y-axis direction, and does not hinder the movement of the lens barrel 2 in the Y-axis direction.

【0025】図4及び図5を参照すると、上記したX軸
アクチエ−タ10における移動部材14の延長部14b
が作用部材15の溝15aに係合している部分の構成が
良く分かる。また、図2におけるX軸アクチエ−タ10
の要部を拡大し、一部を切欠いた断面を示す図6を参照
すると、移動部材14から延長された延長部14bが補
正レンズLの鏡筒2に形成された作用部材15の溝15
aに係合し、延長部14bが作用部材15に対して付勢
バネ16により圧接されている状態が良く分かる。
Referring to FIGS. 4 and 5, an extension 14b of the moving member 14 in the X-axis actuator 10 described above.
The structure of the portion of the action member 15 which is engaged with the groove 15a can be clearly understood. The X-axis actuator 10 in FIG.
Referring to FIG. 6 which is an enlarged view of a main part of FIG. 6 and shows a partially cut-out cross section, an extension 14 b extended from the moving member 14 has a groove 15 of an action member 15 formed in the lens barrel 2 of the correction lens L.
a, the state in which the extension portion 14b is pressed against the action member 15 by the urging spring 16 can be clearly seen.

【0026】次に、Y軸アクチエ−タ20について説明
する。台枠1上の支持ブロツク3にはY軸アクチエ−タ
20の圧電素子21の一端が接着固定され、圧電素子2
1の他の端には駆動軸23が接着固定されており、駆動
軸23の一端はブロツク22によりY軸に平行な方向に
移動可能に支持されている。
Next, the Y-axis actuator 20 will be described. One end of a piezoelectric element 21 of a Y-axis actuator 20 is adhered and fixed to a support block 3 on the underframe 1.
A drive shaft 23 is adhesively fixed to the other end of the drive shaft 23. One end of the drive shaft 23 is supported by a block 22 so as to be movable in a direction parallel to the Y axis.

【0027】以下説明するY軸アクチエ−タ20の構成
はX軸アクチエ−タ10と同様の構成であり、図示を省
略した部分があるが、X軸アクチエ−タを説明する図面
における各部材の符号番号を20番台に読み替えて理解
してほしい。
The configuration of the Y-axis actuator 20 described below is the same as the configuration of the X-axis actuator 10, and although some parts are not shown in the drawings, each member in the drawings describing the X-axis actuator will be described. Please read the code numbers in the 20s and understand.

【0028】駆動軸23には移動部材24の摩擦結合部
24aがY軸に平行な方向に移動可能に、適当な摩擦力
で摩擦結合している。また、移動部材24から延長され
た延長部24bは補正レンズLの鏡筒2に形成された作
用部材25のX軸に平行な方向に延びた溝25aに係合
し、作用部材25に対し付勢バネ26により圧接されて
いる。付勢バネ26による延長部24bの圧接力は移動
部材24がY軸方向へ移動する力よりも十分に大きく設
定されている。
A friction coupling portion 24a of a moving member 24 is frictionally coupled to the drive shaft 23 with an appropriate frictional force so as to be movable in a direction parallel to the Y axis. The extension 24b extended from the moving member 24 engages with a groove 25a extending in a direction parallel to the X axis of an operation member 25 formed in the lens barrel 2 of the correction lens L, and is attached to the operation member 25. It is pressed by the urging spring 26. The pressing force of the urging spring 26 against the extension 24b is set to be sufficiently larger than the force of the moving member 24 moving in the Y-axis direction.

【0029】延長部24bは作用部材25の溝に係合し
てX軸方向に移動可能であるから、補正レンズLの鏡筒
2がX軸方向に移動するとき、延長部24bは作用部材
25の溝25a上をX軸方向に移動し、鏡筒2のX軸方
向の移動を妨げない。
Since the extension 24b is movable in the X-axis direction by engaging with the groove of the operation member 25, when the lens barrel 2 of the correction lens L moves in the X-axis direction, the extension 24b is On the groove 25a in the X-axis direction, and does not hinder the movement of the lens barrel 2 in the X-axis direction.

【0030】次に、図2を参照して動作を説明する。X
軸アクチエ−タ10及びY軸アクチエ−タ20はほぼ同
一の構成を備えているから、ここではX軸アクチエ−タ
10の動作について説明し、Y軸アクチエ−タ20の動
作の説明は省略する。
Next, the operation will be described with reference to FIG. X
Since the axis actuator 10 and the Y axis actuator 20 have substantially the same configuration, the operation of the X axis actuator 10 will be described here, and the description of the operation of the Y axis actuator 20 will be omitted. .

【0031】圧電素子11に図14に示すような緩やか
な立ち上がり部とこれに続く急速な立ち下がり部からな
る波形の駆動パルスを印加すると、駆動パルスの緩やか
な立ち上がり部では、圧電素子11が緩やかに厚み方向
の伸び変位を生じ、駆動軸13は矢印aで示す方向に変
位する。このため、駆動軸13に摩擦結合部14aで摩
擦結合している移動部材14及びその延長部14bも矢
印a方向へ移動する。延長部14bと作用部材15とは
付勢バネ16により圧接されており、その圧接力は、移
動部材14の軸方向へ移動する力よりも十分に大きく設
定されているから、延長部14bと作用部材15とは一
体となり矢印a方向へ移動するので、作用部材15に結
合されている補正レンズLの鏡筒2は矢印a方向(ここ
ではX軸正方向)に移動する。
When a drive pulse having a waveform consisting of a gentle rising portion and a rapid falling portion as shown in FIG. 14 is applied to the piezoelectric element 11, the piezoelectric element 11 becomes gentle at the gentle rising portion of the driving pulse. The drive shaft 13 is displaced in the direction indicated by the arrow a. Therefore, the moving member 14 frictionally coupled to the drive shaft 13 at the friction coupling portion 14a and the extension 14b thereof also move in the direction of arrow a. The extension portion 14b and the operating member 15 are pressed against each other by the urging spring 16, and the pressing force is set sufficiently larger than the force of the moving member 14 to move in the axial direction. The lens barrel 2 of the correction lens L coupled to the operating member 15 moves in the direction of the arrow a (here, the positive direction of the X-axis) because it moves together with the member 15 in the direction of the arrow a.

【0032】駆動パルスの急速な立ち下がり部では、圧
電素子11が急速に厚み方向の縮み変位を生じ、駆動軸
13も矢印aと反対方向へ変位する。このとき、駆動軸
13に摩擦結合部14aで摩擦結合している移動部材1
4及びその延長部14bは、その慣性力により駆動軸1
3との間の摩擦結合力に打ち勝つて実質的にその位置に
留まるので、補正レンズLの鏡筒2は移動しない。
At the rapid falling portion of the drive pulse, the piezoelectric element 11 rapidly contracts in the thickness direction, and the drive shaft 13 is also displaced in the direction opposite to the arrow a. At this time, the moving member 1 frictionally coupled to the drive shaft 13 by the friction coupling portion 14a.
4 and its extension 14b are connected to the drive shaft 1 by its inertia.
The lens barrel 2 of the correction lens L does not move because it overcomes the frictional coupling force between the lens 3 and the lens 3 and remains substantially at that position.

【0033】なお、ここでいう実質的とは、矢印a方向
と、これと反対方向のいずれにおいても駆動軸13と移
動部材14との間に滑りを生じつつ追動し、駆動時間の
差によつて全体として矢印a方向に移動するものも含む
ことを意味している。どのような移動形態になるかは、
与えられた摩擦条件に応じて決定される。
The term “substantially” as used herein means that, in both the direction of the arrow a and the direction opposite thereto, the drive shaft 13 and the moving member 14 follow each other while slipping, and the difference in drive time Therefore, it includes that which moves in the direction of arrow a as a whole. What kind of movement will be
Determined according to given friction conditions.

【0034】上記波形の駆動パルスを連続して圧電素子
11に印加することにより、補正レンズLをX軸正方向
へ連続して移動させることができる。補正レンズLをX
軸負方向へ移動させるときは、急速な立ち上がり部とこ
れに続く緩やかな立ち下がり部からなる波形の駆動パル
スを圧電素子11に印加することで達成できる。
By continuously applying the drive pulse having the above-described waveform to the piezoelectric element 11, the correction lens L can be continuously moved in the positive X-axis direction. Correction lens L is X
The movement in the negative axis direction can be achieved by applying a drive pulse having a waveform composed of a rapid rising portion and a gentle falling portion following the rising portion to the piezoelectric element 11.

【0035】Y軸アクチエ−タ20もX軸アクチエ−タ
10と同様に動作し、補正レンズLをY軸方向へ連続し
て移動させることができる。
The Y-axis actuator 20 operates similarly to the X-axis actuator 10, and can continuously move the correction lens L in the Y-axis direction.

【0036】移動部材14(移動部材24も同じ)は、
前記した構成では図7に示すように、一枚の金属などの
弾性材料の板から摩擦結合部14a及び延長部14bを
形成している。特に、摩擦結合部14aは駆動軸13の
径よりも小さい径を持つ一部が開いた略円筒型(C型)
断面に形成して摩擦結合部を構成し、それ自体の弾性力
で駆動軸13に摩擦結合させるように構成している。し
かし、移動部材14の摩擦結合部14aは前記構成のほ
か、例えば図8に示すような三角形断面、図9に示すよ
うな四角形断面などとし、それ自体の弾性力で摩擦結合
させるようにしてもよい。
The moving member 14 (same for the moving member 24)
In the above-described configuration, as shown in FIG. 7, the friction coupling portion 14a and the extension portion 14b are formed from one sheet of an elastic material such as metal. In particular, the friction coupling portion 14a has a diameter smaller than the diameter of the drive shaft 13 and is a substantially cylindrical type (C type) having an open part.
The friction coupling portion is formed by forming a cross section, and is configured to be frictionally coupled to the drive shaft 13 by its own elastic force. However, in addition to the above-described configuration, the friction coupling portion 14a of the moving member 14 may have a triangular cross section as shown in FIG. 8 or a rectangular cross section as shown in FIG. 9 and may be frictionally coupled by its own elastic force. Good.

【0037】手ぶれ補正のためにX軸方向及びY軸方向
に移動させる補正レンズLの位置は、先に従来例で説明
した公知の磁気抵抗式センサなどが利用できるが、この
実施例では補正レンズLの鏡筒2にLED(発光ダイ−
ド)を取り付け、LEDから投射される光を台枠1に取
り付けた2次元PSD(ホトダイ−ド)で検出し、補正
レンズLのX軸方向及びY軸方向の位置を検出するよう
に構成したレンズ位置検出センサを使用した。これによ
り部品点数を減らし、構成を簡素なものにすることがで
きる。
For the position of the correction lens L to be moved in the X-axis direction and the Y-axis direction for camera shake correction, a known magnetoresistive sensor or the like described in the prior art can be used. In this embodiment, the correction lens is used. LED (light emitting die-)
And the light projected from the LED is detected by a two-dimensional PSD (photo diode) mounted on the underframe 1, and the position of the correction lens L in the X-axis direction and the Y-axis direction is detected. A lens position detection sensor was used. Thereby, the number of parts can be reduced and the configuration can be simplified.

【0038】また、カメラには手ぶれ検出センサが設置
されており、カメラに発生する手ぶれ量を検出するよう
に構成されている。手ぶれ検出センサは、カメラのX軸
方向及びY軸方向の加速度Ax、Ayを検出する加速度
センサから構成され、検出された加速度Ax、Ayを後
述する手ぶれ補正の制御を行うCPU52で2回積分す
ることにより、手ぶれ量Mx、Myを検出することがで
きる。
A camera shake detection sensor is provided in the camera, and is configured to detect a camera shake amount occurring in the camera. The camera shake detection sensor is configured by an acceleration sensor that detects accelerations Ax and Ay in the X-axis direction and the Y-axis direction of the camera, and the detected accelerations Ax and Ay are integrated twice by the CPU 52 that controls camera shake correction described below. Thus, the camera shake amounts Mx and My can be detected.

【0039】次に、制御回路について説明する。図10
は、カメラのシヤツタの駆動、及び補正レンズによる手
ぶれ補正を行う制御回路50のブロツク図である。制御
回路50はシヤツタの駆動制御を行うCPU51と、C
PU51の入力ポ−トに接続されたシヤツタボタンS
H、及び出力ポ−トに接続されたシヤツタユニツト60
を備える。
Next, the control circuit will be described. FIG.
FIG. 3 is a block diagram of a control circuit 50 for driving a camera shutter and performing camera shake correction using a correction lens. The control circuit 50 includes a CPU 51 for controlling the drive of the shutter,
Shutter button S connected to the input port of PU51
H and a shutter unit 60 connected to the output port
Is provided.

【0040】また制御回路50は、補正レンズによる手
ぶれ補正の制御を行うCPU52と、CPU52の入力
ポ−トに接続されたレンズのX軸方向及びY軸方向の位
置を検出するレンズ位置検出センサ57、及びカメラの
手ぶれ量を検出する手ぶれ検出センサ58、CPU52
の出力ポ−トに接続された駆動パルス発生部53、スイ
ツチング部56を備える。なお、駆動パルス発生部53
は波形生成部54と昇圧部55から構成され、スイツチ
ング部56にはX軸アクチエ−タ10とY軸アクチエ−
タ20が接続される。CPU51とCPU52とは相互
に信号の交換が可能なように接続されている。また、制
御回路50は1つの電源59が備えられ、シヤツタユニ
ツト60、X軸アクチエ−タ10、Y軸アクチエ−タ2
0はこの1つの電源から電力が供給され、駆動されるよ
うに構成されている。
Further, the control circuit 50 includes a CPU 52 for controlling camera shake correction by a correction lens, and a lens position detection sensor 57 for detecting the positions of the lens connected to the input port of the CPU 52 in the X-axis direction and the Y-axis direction. , And a camera shake detection sensor 58 for detecting a camera shake amount, a CPU 52
A driving pulse generator 53 and a switching unit 56 are connected to the output ports of the above. The drive pulse generator 53
Is composed of a waveform generator 54 and a booster 55, and a switching unit 56 has an X-axis actuator 10 and a Y-axis actuator.
Data 20 is connected. The CPU 51 and the CPU 52 are connected so that signals can be exchanged with each other. The control circuit 50 is provided with one power supply 59, and includes a shutter unit 60, an X-axis actuator 10, and a Y-axis actuator 2.
Numeral 0 is configured so that power is supplied from this one power source and driven.

【0041】次に、制御回路50の制御動作を、図10
の制御回路ブロツク図、図11及び図12のフロ−チヤ
−トを参照して説明する。CPU51は図示しないカメ
ラのシヤツタボタンSHの操作を示すシヤツタ信号を受
けると、シヤツタユニツト60のステツピングモ−タ
(図示せず)を駆動制御してシヤツタを初期状態から所
定の設定開口位置まで開く(ステツプP1、図11参
照)。シヤツタの開口状態はステツピングモ−タの停止
トルクにより維持できるので、シヤツタを開いた後はス
テツピングモ−タへの電力の供給を停止し(ステツプP
2)、補正レンズの駆動のため、駆動パルス発生部53
及びスイツチング部56を経てX軸アクチエ−タ及びY
軸アクチエ−タへ電力を供給する(ステツプP3)。
Next, the control operation of the control circuit 50 will be described with reference to FIG.
This will be described with reference to the block diagram of the control circuit shown in FIG. When receiving a shutter signal indicating the operation of the shutter button SH of the camera (not shown), the CPU 51 drives and controls a stepping motor (not shown) of the shutter unit 60 to open the shutter from an initial state to a predetermined set opening position (step P1, See FIG. 11). Since the open state of the shutter can be maintained by the stopping torque of the stepping motor, the supply of power to the stepping motor is stopped after the shutter is opened (step P).
2), a driving pulse generator 53 for driving the correction lens
And an X-axis actuator and Y through a switching section 56.
Electric power is supplied to the shaft actuator (step P3).

【0042】露出量に応じた時間だけシヤツタを開口状
態に維持した後は、X軸アクチエ−タ、Y軸アクチエ−
タへの電力の供給を停止し(ステツプP4)、シヤツタ
ユニツト60への電力の供給を再開し、ステツピングモ
−タを駆動してシヤツタを閉じる(ステツプP5)。
After the shutter is kept open for a time corresponding to the exposure amount, the X-axis actuator and the Y-axis actuator are maintained.
The supply of power to the shutter unit is stopped (step P4), the supply of power to the shutter unit 60 is restarted, and the stepping motor is driven to close the shutter (step P5).

【0043】次に、CPU52による手ぶれ補正の制御
について説明する。CPU52は図示しないカメラに設
置されている手ぶれ検出センサ58から出力されたX軸
方向及びY軸方向の加速度Ax、Ayを示す信号が入力
されると、入力された加速度Ax、Ayを2回積分して
手ぶれ量Mx、My及びその方向を決定する(ステツプ
P11、図12参照)。
Next, control of camera shake correction by the CPU 52 will be described. When a signal indicating accelerations Ax and Ay in the X-axis direction and the Y-axis direction output from a camera shake detection sensor 58 installed in a camera (not shown) is input, the CPU 52 integrates the input accelerations Ax and Ay twice. Then, the camera shake amounts Mx and My and their directions are determined (Step P11, see FIG. 12).

【0044】次に、決定された手ぶれ量Mx、My及び
その方向、レンズ位置検出センサ57から出力されたレ
ンズ位置などのレンズ位置補正情報に基づいて、補正レ
ンズのX軸方向及びY軸方向の駆動量を演算し(ステツ
プP12)、X軸アクチエ−タ及びY軸アクチエ−タの
駆動時間の比率を決定する(ステツプP13)。
Next, based on the determined camera shake amounts Mx and My and their directions, and lens position correction information such as the lens position output from the lens position detection sensor 57, the correction lens in the X-axis direction and the Y-axis direction is obtained. The driving amount is calculated (Step P12), and the ratio of the driving time of the X-axis actuator to the Y-axis actuator is determined (Step P13).

【0045】駆動パルス発生部53の波形生成部54を
作動させ、X軸方向の駆動量と駆動方向に基づいて適切
な駆動パルス波形を決定し、昇圧部55に出力するよう
指示する(ステツプP14)。さらに、スイツチング部
56を作動させ、昇圧部55から出力される駆動パルス
をX軸アクチエ−タ10に出力するように切換え、先に
決定した駆動時間の比率に基づいてX軸アクチエ−タ1
0を駆動し(ステツプP15)、駆動時間経過後はスイ
ツチング部56を作動させ、昇圧部55からX軸及びY
軸アクチエ−タを切り離す(ステツプP16)。
The waveform generator 54 of the drive pulse generator 53 is operated to determine an appropriate drive pulse waveform based on the drive amount and drive direction in the X-axis direction, and instruct the booster 55 to output the waveform (step P14). ). Further, the switching section 56 is operated to switch the driving pulse output from the boosting section 55 to output to the X-axis actuator 10, and the X-axis actuator 1 is switched based on the previously determined driving time ratio.
0 (Step P15), and after the drive time has elapsed, the switching unit 56 is operated, and the X-axis and Y-
The shaft actuator is disconnected (step P16).

【0046】波形生成部54を作動させ、Y軸方向の駆
動量と駆動方向に基づいて適切な駆動パルス波形を決定
し、昇圧部55に出力するよう指示する(ステツプP1
7)。さらに、スイツチング部56を作動させ、昇圧部
55から出力される駆動パルスをY軸アクチエ−タ20
に出力するように切換え、先に決定した駆動時間の比率
に基づいてY軸アクチエ−タ20を駆動し(ステツプP
18)、駆動時間経過後はスイツチング部56を作動さ
せ、昇圧部55からX軸及びY軸アクチエ−タを切り離
す(ステツプP19)。
The waveform generator 54 is operated to determine an appropriate drive pulse waveform based on the drive amount and drive direction in the Y-axis direction, and instruct the booster 55 to output the waveform (step P1).
7). Further, the switching unit 56 is operated, and the driving pulse output from the boosting unit 55 is applied to the Y-axis actuator 20.
And drives the Y-axis actuator 20 based on the previously determined ratio of the driving time (step P).
18) After the lapse of the driving time, the switching unit 56 is operated to disconnect the X-axis and Y-axis actuators from the boosting unit 55 (step P19).

【0047】カメラのシヤツタが開いている間、前記し
た手ぶれ量の検出からアクチエ−タの駆動までの処理
を、手ぶれ量Mx、Myが零になるまで高速で繰り返し
(ステツプP20)、補正レンズを手ぶれ量を補正する
方向に高速で変位させることでフイルム面上の像のぶれ
を防ぐ。
While the camera shutter is open, the processing from the detection of the camera shake amount to the drive of the actuator is repeated at high speed until the camera shake amounts Mx and My become zero (step P20), and the correction lens is moved. The image is prevented from being blurred on the film surface by being displaced at high speed in the direction in which the amount of camera shake is corrected.

【0048】上記した制御回路によれば、単一の電源を
補正レンズの駆動とシヤツタの駆動に共用することがで
き、また、X軸アクチエ−タとY軸アクチエ−タの駆動
のための回路を共用することができるから回路部品の点
数を減らすことができるほか、電池の電流容量を小さく
することができるからカメラ内部の配置スペ−スを節約
することができる。
According to the above-described control circuit, a single power supply can be shared for driving the correction lens and the shutter, and a circuit for driving the X-axis actuator and the Y-axis actuator. Can be shared, the number of circuit components can be reduced, and the current capacity of the battery can be reduced, so that the layout space inside the camera can be saved.

【0049】以上説明した実施例は、この発明をカメラ
の手ぶれ補正装置に適用した例であるが、この発明はカ
メラの手ぶれ補正装置ばかりでなく、双眼鏡やプロジェ
クタなどの光学装置におけるレンズの揺れによる像ぶれ
の補正に適用することができる。また、上記実施例で説
明したアクチエ−タは、光学装置におけるレンズの駆動
ばかりでなく、その他の一般機器の駆動装置としても適
用することができることは言うまでもない。
The above-described embodiment is an example in which the present invention is applied to a camera shake correction device. However, the present invention is not limited to a camera shake correction device, but may be caused by a lens shake in an optical device such as a binocular or a projector. This can be applied to correction of image blur. Further, it goes without saying that the actuator described in the above embodiment can be applied not only to the driving of the lens in the optical device but also to the driving device of other general equipment.

【0050】[0050]

【発明の効果】以上説明したとおり、この発明は、光学
装置の手ぶれ量に対応するレンズ位置補正情報に基づい
てレンズ駆動手段を駆動し、光軸に対して垂直な面で移
動可能に配置された補正レンズの位置を制御する光学装
置の手ぶれ補正装置において、レンズ駆動手段を光軸に
対して垂直な面を有する台枠と、台枠上に配置された補
正レンズをX軸方向及びY軸方向に移動させる2組のレ
ンズ駆動機構から構成し、前記台枠には、フオ−カスガ
イド軸が貫通する穴を設け、台枠を前記穴を貫通するフ
オ−カスガイド軸により光軸に対する位置を規制しつつ
光軸方向に移動可能に支持したものであるから、手ぶれ
補正装置全体を少ない部品で小型軽量に纏めることがで
き、高品質の光学装置の手ぶれ補正装置を提供すること
ができる。
As described above, according to the present invention, the lens driving means is driven based on the lens position correction information corresponding to the amount of camera shake of the optical device, and is arranged so as to be movable on a plane perpendicular to the optical axis. In a camera shake correction apparatus for an optical device that controls the position of a correction lens, a lens driving unit is provided with a frame having a surface perpendicular to an optical axis, and a correction lens disposed on the frame is moved in an X-axis direction and a Y-axis. And a pair of lens driving mechanisms for moving the frame in the direction. The underframe is provided with a hole through which the focus guide shaft passes, and the position of the underframe with respect to the optical axis is regulated by the focus guide shaft passing through the hole. In addition, since the camera shake correction device is supported so as to be movable in the optical axis direction, the entire camera shake correction device can be reduced in size and weight with a small number of components, and a camera shake correction device for a high-quality optical device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】手ぶれ補正装置の構成を示す斜視図。FIG. 1 is a perspective view showing the configuration of a camera shake correction device.

【図2】図1に示す補正レンズ駆動機構の正面図。FIG. 2 is a front view of the correction lens driving mechanism shown in FIG.

【図3】図1に示す補正レンズの鏡筒を示す正面図。FIG. 3 is a front view showing a lens barrel of the correction lens shown in FIG. 1;

【図4】図2のA−A線に沿つた断面図。FIG. 4 is a sectional view taken along the line AA in FIG. 2;

【図5】図2のB−B線に沿つた断面図。FIG. 5 is a sectional view taken along the line BB of FIG. 2;

【図6】図2におけるX軸アクチエ−タの要部を拡大し
た正面図。
FIG. 6 is an enlarged front view of a main part of the X-axis actuator in FIG. 2;

【図7】移動部材の摩擦結合部分の構成を説明する斜視
図。
FIG. 7 is a perspective view illustrating a configuration of a frictional coupling portion of the moving member.

【図8】移動部材の摩擦結合部分の構成の他の例を説明
する斜視図(その1)。
FIG. 8 is a perspective view (part 1) illustrating another example of the configuration of the frictional coupling portion of the moving member.

【図9】移動部材の摩擦結合部分の構成の他の例を説明
する斜視図(その2)。
FIG. 9 is a perspective view (part 2) illustrating another example of the configuration of the friction coupling portion of the moving member.

【図10】制御回路のブロツク図。FIG. 10 is a block diagram of a control circuit.

【図11】制御回路の制御動作を説明するフロ−チヤ−
ト(その1)。
FIG. 11 is a flowchart for explaining a control operation of the control circuit.
To (part 1).

【図12】制御回路の制御動作を説明するフロ−チヤ−
ト(その2)。
FIG. 12 is a flowchart for explaining the control operation of the control circuit.
To (Part 2).

【図13】従来のカメラの手ぶれ補正装置の構成を説明
する斜視図。
FIG. 13 is a perspective view illustrating the configuration of a conventional camera shake correction apparatus.

【図14】電気機械変換素子に印加する駆動パルスの波
形の一例を示す図。
FIG. 14 is a diagram illustrating an example of a waveform of a drive pulse applied to an electromechanical transducer.

【符号の説明】[Explanation of symbols]

1 台枠 2 鏡筒 3 支持ブロツク 4 フオ−カスガイド軸 10 X軸アクチエ−タ 20 Y軸アクチエ−タ 11、21 圧電素子 13、23 駆動軸 14、24 移動部材 14a、24a 摩擦結合部 14b、24b 延長部 15、25 作用部材 50 制御回路 51、52 CPU 53 駆動パルス発生部 54 波形生成部 55 昇圧部 56 スイツチング部 57 レンズ位置検出センサ 58 手ぶれ検出センサ 59 電源 60 シヤツタユニツト L 補正レンズ SH シヤツタ釦 DESCRIPTION OF SYMBOLS 1 Underframe 2 Lens barrel 3 Support block 4 Focus guide shaft 10 X-axis actuator 20 Y-axis actuator 11, 21 Piezoelectric element 13, 23 Drive shaft 14, 24 Moving member 14a, 24a Friction coupling portion 14b, 24b Extension unit 15, 25 Working member 50 Control circuit 51, 52 CPU 53 Drive pulse generation unit 54 Waveform generation unit 55 Boosting unit 56 Switching unit 57 Lens position detection sensor 58 Camera shake detection sensor 59 Power supply 60 Shutter unit L Correction lens SH Shutter button

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学装置の手ぶれ量に対応するレンズ位
置補正情報に基づいてレンズ駆動手段を駆動し、光軸に
対して垂直な面で移動可能に配置された補正レンズの位
置を制御する光学装置の手ぶれ補正装置において、 前記レンズ駆動手段は、光軸に対して垂直な面を有する
台枠と、台枠上に配置された補正レンズをX軸方向及び
Y軸方向に移動させる2組のレンズ駆動機構から構成さ
れ、 前記台枠は、光軸に平行に配置されたフオ−カスガイド
軸により光軸方向に移動可能に支持されていることを特
徴とする光学装置の手ぶれ補正装置。
1. An optical system for driving a lens driving unit based on lens position correction information corresponding to a camera shake amount of an optical device to control a position of a correction lens movably disposed on a plane perpendicular to an optical axis. In the image stabilizing device of the apparatus, the lens driving unit includes: a frame having a surface perpendicular to an optical axis; and two sets for moving a correction lens disposed on the frame in the X-axis direction and the Y-axis direction. A camera shake correction device for an optical device, comprising a lens driving mechanism, wherein the underframe is movably supported in the optical axis direction by a focus guide shaft arranged parallel to the optical axis.
【請求項2】 前記台枠はフオ−カスガイド軸が貫通す
る穴を備え、前記台枠は前記穴を貫通するフオ−カスガ
イド軸により光軸に対する位置が規制されつつ光軸方向
に移動可能に支持されていることを特徴とする請求項1
記載の光学装置の手ぶれ補正装置。
2. The underframe has a hole through which a focus guide shaft penetrates, and the underframe is supported so as to be movable in the optical axis direction while its position with respect to the optical axis is regulated by the focus guide shaft penetrating through the hole. 2. The method according to claim 1, wherein
A camera shake correction device for an optical device according to claim 1.
JP21217796A 1996-07-24 1996-07-24 Hand shake correcting device for optical device Pending JPH1039350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21217796A JPH1039350A (en) 1996-07-24 1996-07-24 Hand shake correcting device for optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21217796A JPH1039350A (en) 1996-07-24 1996-07-24 Hand shake correcting device for optical device

Publications (1)

Publication Number Publication Date
JPH1039350A true JPH1039350A (en) 1998-02-13

Family

ID=16618194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21217796A Pending JPH1039350A (en) 1996-07-24 1996-07-24 Hand shake correcting device for optical device

Country Status (1)

Country Link
JP (1) JPH1039350A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1727358A2 (en) 2005-05-26 2006-11-29 Samsung Electronics Co., Ltd. Optical image stabilizer for camera lens assembly
EP1729509A2 (en) 2005-05-31 2006-12-06 Samsung Electronics Co., Ltd. Optical image stabilizer for camera lens assembly
EP1906233A1 (en) 2006-09-29 2008-04-02 Fujinon Corporation Imaging device
JP2009047842A (en) * 2007-08-17 2009-03-05 Sony Corp Driving device and imaging apparatus
EP2141539A1 (en) * 2007-04-09 2010-01-06 Nikon Corporation Blurring correction device and optical apparatus
US7840127B2 (en) 2006-09-29 2010-11-23 Fujinon Corporation Imaging device with T-shaped shake compensation actuator arrangement
US9081203B2 (en) 2008-11-28 2015-07-14 Samsung Electronics Co., Ltd Optical image stabilizer for camera lens assembly

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1727358A2 (en) 2005-05-26 2006-11-29 Samsung Electronics Co., Ltd. Optical image stabilizer for camera lens assembly
EP1729509A2 (en) 2005-05-31 2006-12-06 Samsung Electronics Co., Ltd. Optical image stabilizer for camera lens assembly
US7505677B2 (en) * 2005-05-31 2009-03-17 Samsung Electronics Co., Ltd. Optical image stabilizer for camera lens assembly
EP1906233A1 (en) 2006-09-29 2008-04-02 Fujinon Corporation Imaging device
US7840127B2 (en) 2006-09-29 2010-11-23 Fujinon Corporation Imaging device with T-shaped shake compensation actuator arrangement
EP2141539A1 (en) * 2007-04-09 2010-01-06 Nikon Corporation Blurring correction device and optical apparatus
EP2141539A4 (en) * 2007-04-09 2010-12-29 Nikon Corp Blurring correction device and optical apparatus
US8446672B2 (en) 2007-04-09 2013-05-21 Nikon Corporation Vibration reduction apparatus with a center of gravity adjusting member to reduce detection errors and optical apparatus
JP2009047842A (en) * 2007-08-17 2009-03-05 Sony Corp Driving device and imaging apparatus
US9081203B2 (en) 2008-11-28 2015-07-14 Samsung Electronics Co., Ltd Optical image stabilizer for camera lens assembly

Similar Documents

Publication Publication Date Title
JP3728094B2 (en) Image blur correction device, optical device, lens barrel and photographing device
US5986826A (en) Drive device using electromechanical conversion element
JPH0843872A (en) Lens driving device using electro/mechanical conversion element
JP5185684B2 (en) Driving device and imaging device
JP4981484B2 (en) Drive device
EP2202570B1 (en) Driving apparatus and image pickup apparatus using the same
JP5230994B2 (en) Driving device and imaging device
JP5132295B2 (en) Imaging apparatus and optical apparatus
US5842053A (en) Image shake correction device for optical system and apparatus having image shake correction device optical system
JP2001174857A (en) Driving device
JPH1144899A (en) Driving device using elecromechanical conversion element
JP2005352033A (en) Lens drive mechanism and imaging device
JPH1039350A (en) Hand shake correcting device for optical device
US5930042A (en) Optical lens barrel with an optical lens group shiftable perpendicular to and parallel with an optical axis and method of use
JPH1039351A (en) Lens supporting mechanism and shake correcting camera
JPH1039354A (en) Hand shake correcting device for optical device
JPH1039356A (en) Hand shake correcting device for optical device
JP3424454B2 (en) Optical image stabilization device and optical device provided with the device
JPH1039355A (en) Hand shake correcting device for optical device
JPH1039359A (en) Camera provided with hand shake correcting device
JPH10325971A (en) Lens driving controller and equipment provided with lens driving controller
JP3266025B2 (en) Driving device using electromechanical transducer
JPH10309086A (en) Actuator
JPH1042581A (en) Drive device with electromechanical converting element
JPH10254019A (en) Image blurring correction device