JPH10340731A - Solid polymer-based electrolyte type fuel cell - Google Patents

Solid polymer-based electrolyte type fuel cell

Info

Publication number
JPH10340731A
JPH10340731A JP9159325A JP15932597A JPH10340731A JP H10340731 A JPH10340731 A JP H10340731A JP 9159325 A JP9159325 A JP 9159325A JP 15932597 A JP15932597 A JP 15932597A JP H10340731 A JPH10340731 A JP H10340731A
Authority
JP
Japan
Prior art keywords
solid polymer
fuel cell
carbon
polymer electrolyte
catalytically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9159325A
Other languages
Japanese (ja)
Inventor
Jun Mukoyama
純 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to JP9159325A priority Critical patent/JPH10340731A/en
Publication of JPH10340731A publication Critical patent/JPH10340731A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide superior battery output properties of a solid polymer-based electrolyte type fuel cell by adjusting the wettability of an ion-exchange fluoro polymer solvent-containing solution with a carbon-supporting body on which a catalytically active particle is carried and improving the utilization factor of the catalyst and the ion conductivity. SOLUTION: A solid polymer-based electrolyte type fuel cell is constituted of electrodes and solid polymer electrolytic substance members, and each of the electrodes comprises a carbon supporting body for supporting a particle having catalytically active property, a catalytic layer formed by immobilizing a mixture of a solvent having 5 degree or smaller contact angle to the carbon supporting body to support a catalytically active particle and a solid polymer electrolytic substance on the carbon supporting body, and a diffusion layer contacting the catalytic layer and each of the membranes is jointed to the electrodes to compose a membrane-electrode jointed body. Consequently, the contact surface area of the catalytic particle and the electrolytic substance is kept wide, and the utilization factor of the catalytically active particle and ion conductivity are improved and superior battery output can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料及び酸化剤か
ら電気エネルギーを直接に発生するための触媒活性粒子
から製造されるガス拡散電極と、イオン交換膜とによっ
て構成される膜電極接合体からなる固体高分子電解質型
燃料電池に関するものであり、特に固体高分子電解質を
含む触媒層中のイオン伝導性と触媒活性粒子の利用率を
改善したイオン交換膜を使用した膜電極接合体に関する
ものである。
The present invention relates to a membrane electrode assembly comprising a gas diffusion electrode produced from catalytically active particles for directly generating electric energy from a fuel and an oxidant, and an ion exchange membrane. The present invention relates to a solid polymer electrolyte fuel cell, and more particularly to a membrane electrode assembly using an ion exchange membrane having improved ion conductivity and utilization of catalytically active particles in a catalyst layer containing a solid polymer electrolyte. is there.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、互いに
対向して配設されたガス拡散電極のカソード及びアノー
ドと、両電極に接触しながらその間に介在し、保持され
ている電解質を実質的に通過させず、イオンを選択的に
通過させるイオン交換膜とから構成される膜電極接合体
によって構成される単位電池を、ガス流通手段を設けた
バイポーラプレートを介して交互に複数個積層され構成
されている。この燃料電池において、水素等の燃料ガス
及び酸素等の酸化剤のそれぞれが、ガス拡散電極のアノ
ード側またはカソード側に供給されることによって起る
電気化学反応を利用して、すなわち燃料が電気触媒的に
酸化されると同時に酸化剤が電気触媒的に還元されて、
化学反応エネルギーが直接電気エネルギーに変換される
ことによって発電されるものである。
2. Description of the Related Art In a solid polymer electrolyte fuel cell, a cathode and an anode of a gas diffusion electrode which are disposed opposite to each other, and the electrolyte which is interposed between the electrodes while being in contact with both electrodes, are substantially retained. A plurality of unit cells each composed of a membrane electrode assembly composed of an ion exchange membrane that selectively allows ions to pass without passing through the battery, and a plurality of unit cells are alternately stacked via a bipolar plate provided with a gas flow unit. Have been. In this fuel cell, a fuel gas such as hydrogen and an oxidant such as oxygen are supplied to an anode side or a cathode side of a gas diffusion electrode, respectively. Oxidizing agent is electrocatalytically reduced at the same time as oxidation
Electric power is generated by converting chemical reaction energy directly into electrical energy.

【0003】ガス拡散電極は、白金、ルテニウム、ロジ
ウム、イリジウム、スズ及びモリブデンならびにそれら
の合金等の触媒を担持させた炭素支持体の表面に、イオ
ン交換膜であるパーフルオロビニルエーテルとテトラフ
ルオロエチレンの共重合体からなるパーフルオロカーボ
ンスルホン酸樹脂膜を固定した触媒層を具備する。触媒
層は、燃料ガス及び酸化剤ガスに接し易くするように、
通常カーボンペーパー等のような多孔質基材の拡散層上
に支持されている。触媒担持炭素材料は本来疎水性の材
料である一方、イオン交換ポリマーとして用いられる固
体高分子電解質溶液は、従来から炭化水素溶媒と水との
溶液中にフッ化スルホン酸ポリマーを含むものであり、
水を約25%〜45%程度含有している。従って、電極
の炭素支持体に対する前記電解質溶液の接触角が大きく
なっていた。すなわち、触媒担持炭素支持体上で、白金
等の触媒粒子が堆積されていない部分及び触媒粒子が堆
積している部分の前記電解質溶液への濡れ性が低下し、
前記触媒がイオン交換フッ素ポリマーからなる電解質に
よって十分に覆われなくなる。ここで、接触角とは電解
質溶媒の液滴の表面が固体の炭素支持体の表面と交わる
点で液滴面に引いた接線と前記炭素支持体表面とのなす
角で表される。
A gas diffusion electrode is formed on a carbon support on which a catalyst such as platinum, ruthenium, rhodium, iridium, tin, molybdenum, or an alloy thereof is supported, on the surface of an ion exchange membrane of perfluorovinyl ether and tetrafluoroethylene. It has a catalyst layer to which a perfluorocarbon sulfonic acid resin membrane made of a copolymer is fixed. The catalyst layer is designed to facilitate contact with the fuel gas and the oxidizing gas,
Usually, it is supported on a diffusion layer of a porous substrate such as carbon paper. While the catalyst-supporting carbon material is originally a hydrophobic material, the solid polymer electrolyte solution used as the ion exchange polymer has conventionally contained a fluorosulfonic acid polymer in a solution of a hydrocarbon solvent and water,
Contains about 25% to 45% of water. Therefore, the contact angle of the electrolyte solution with respect to the carbon support of the electrode has been increased. That is, on the catalyst-supporting carbon support, the wettability to the electrolyte solution of the portion where the catalyst particles such as platinum are not deposited and the portion where the catalyst particles are deposited is reduced,
The catalyst is not sufficiently covered by the electrolyte comprising the ion-exchanged fluoropolymer. Here, the contact angle is represented by an angle between a tangent drawn on the droplet surface at a point where the surface of the droplet of the electrolyte solvent intersects the surface of the solid carbon support and the surface of the carbon support.

【0004】前記電極を構成する触媒が十分に電解質に
覆われないために、その触媒利用効率が影響を受け、電
極に供給される燃料ガス、酸化剤ガスとの電気化学反応
が効率良く、安定して進行せず、よって電池の出力特性
が得られない。
Since the catalyst constituting the electrode is not sufficiently covered with the electrolyte, the utilization efficiency of the catalyst is affected, and the electrochemical reaction with the fuel gas and the oxidizing gas supplied to the electrode is efficient and stable. Therefore, the output characteristics of the battery cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】ところが、前記イオン
交換フッ素ポリマーを溶解する必要性及び水との親和性
に基づく要求から、前述のとおりイオン交換フッ素ポリ
マーの溶媒溶液として、例えばプロパノール、エタノー
ルまたはブタノール等のアルコールと水との混合溶液が
使用されていた。すなわち、このイオン交換フッ素ポリ
マーの溶媒溶液については、触媒利用効率の向上、イオ
ン交換性能の維持を達成する目的で、触媒活性粒子が担
持される炭素支持体に対する濡れ性の調整が行われてい
なかった。そこで、イオン交換フッ素ポリマーを当該分
野で公知である方法により溶解することができ、イオン
交換フッ素フィルムまたは膜を形成するためのポリマー
溶液を製造でき、且つ触媒活性粒子を担持する炭素支持
体に対する濡れ性をも改善することができる溶媒が必要
とされている。
However, due to the necessity of dissolving the ion-exchanged fluoropolymer and the requirement based on the affinity for water, as described above, the solvent solution of the ion-exchanged fluoropolymer is, for example, propanol, ethanol or butanol. A mixed solution of alcohol and water was used. That is, for the solvent solution of the ion-exchanged fluoropolymer, the wettability of the carbon support on which the catalytically active particles are supported has not been adjusted for the purpose of improving the catalyst use efficiency and maintaining the ion exchange performance. Was. Thus, the ion-exchanged fluoropolymer can be dissolved by methods known in the art, a polymer solution for forming the ion-exchanged fluorine film or membrane can be produced, and the wetting of the carbon support carrying the catalytically active particles can be achieved. There is a need for a solvent that can also improve the properties.

【0006】本発明者は、上記課題について種々検討し
た結果、上記アルコールと水混合溶液中のアルコールと
水との混合比を以って、炭素支持体に対するイオン交換
フッ素ポリマーを溶解した溶液の接触角を調整し、前記
炭素支持体に対するその濡れ性を改善することができ、
結果として電池の出力特性を向上することを見出し、本
発明を完成するに至った。本発明の固体高分子電解質型
燃料電池は、触媒活性を示す粒子を支持する炭素支持体
と前記触媒活性粒子を支持する炭素支持体に対する接触
角が5度以下となる溶媒と固体高分子電解質の混合物を
用いて前記炭素支持体上に固定することによって形成し
た触媒層と、前記触媒層と接触する拡散層とから成る拡
散電極と、前記電極と接合して膜電極接合体を構成する
固体高分子電解質膜とから構成する。本願の第2の発明
に固体高分子電解質型燃料電池は、第1の発明における
前記固体高分子電解質がパーフルオロスルホン酸ポリマ
ーとしたことを特徴とする。
As a result of various studies on the above-mentioned problems, the present inventor has found that the contact ratio of the solution in which the ion-exchanged fluoropolymer is dissolved to the carbon support is determined by the mixing ratio of the alcohol and water in the alcohol-water mixed solution. Adjusting the angle to improve its wettability to the carbon support,
As a result, they found that the output characteristics of the battery were improved, and completed the present invention. The solid polymer electrolyte fuel cell of the present invention comprises a carbon support supporting particles exhibiting catalytic activity, a solvent having a contact angle of not more than 5 degrees with respect to the carbon support supporting the catalyst active particles, and a solid polymer electrolyte. A diffusion electrode comprising a catalyst layer formed by fixing the mixture on the carbon support using the mixture, a diffusion layer in contact with the catalyst layer, and a solid electrode which is joined to the electrode to form a membrane electrode assembly. And a molecular electrolyte membrane. A solid polymer electrolyte fuel cell according to a second invention of the present application is characterized in that the solid polymer electrolyte in the first invention is a perfluorosulfonic acid polymer.

【0007】[0007]

【発明の実施の形態】本発明による固体高分子電解質型
燃料電池の電極は、前記触媒層と拡散層によって構成さ
れる。この触媒層は、炭素支持体上に白金が備わってい
る触媒と、溶剤にパーフルオロカーボンスルホン酸樹脂
を溶解した溶液とのインク組成物を当該技術分野におい
て公知の塗布、スプレーまたは他の方法により、カーボ
ンペーパーまたはカーボンクロス等の拡散層上またはイ
オン交換膜上にコートして得るか、または白金等の触媒
を担持している炭素粉末を当該技術分野で公知の方法を
利用して、あらかじめコートしたものの上に、前記フッ
素ポリマー溶液を塗布またはスプレーすることによって
得ることができる。前記白金族金属を担持する炭素支持
体は、粒子径が0.01〜数μmの炭素粉末粒子であ
る。この場合、本発明の固体高分子電解質型燃料電池
は、1〜50μm程度の厚みを有する触媒層を用いるこ
とが要求されている。本発明においては、触媒粒子が、
触媒層中に約0.01mg/cm2〜約1mg/cm2及びそれ以
上の範囲で堆積されることが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION An electrode of a solid polymer electrolyte fuel cell according to the present invention is constituted by the catalyst layer and the diffusion layer. This catalyst layer is formed by coating, spraying or other methods known in the art with an ink composition of a catalyst comprising platinum on a carbon support and a solution of a perfluorocarbon sulfonic acid resin dissolved in a solvent. Obtained by coating on a diffusion layer such as carbon paper or carbon cloth or on an ion exchange membrane, or previously coated with a carbon powder carrying a catalyst such as platinum using a method known in the art. It can be obtained by applying or spraying the fluoropolymer solution on an object. The carbon support supporting the platinum group metal is a carbon powder particle having a particle diameter of 0.01 to several μm. In this case, the polymer electrolyte fuel cell of the present invention is required to use a catalyst layer having a thickness of about 1 to 50 μm. In the present invention, the catalyst particles,
Desirably, from about 0.01 mg / cm 2 to about 1 mg / cm 2 and more is deposited in the catalyst layer.

【0008】本発明の固体高分子電解質となるイオン交
換膜の官能基を有する成分としては、含むフッ素高分子
を骨格とし、官能基として、スルホン酸基、カルボン酸
基及びリン酸基のいずれか一つまたは複数を有するもの
が挙げられる。一般には、パーフルオロビニルエーテル
とテトラフルオロエチレンの共重合体からなるパーフル
オロカーボンスルホン酸樹脂が好適に採用されている。
尚、前記官能基を有するフルオロカーボン重合体を構成
するモノマーであるテトラフルオロエチレンの代わりに
ヘキサフルオロプロピレン、クロロトリフルオロエチレ
ン、パーフルオロアルコキシビニルエーテルのようなパ
ーフルオロオレフィンを用いることも可能である。共重
合後、必要であれば、例えば加水分解等の後処理によっ
てプロトン移動性の官能基へと変換することもできる。
官能基を有する成分の交換容量は、1g当たりの官能基
のモル数で定義され、通常、滴定法により測定される。
一般的に官能基を有する成分の交換容量は、0.8〜2
ミリ当量/gであり、好ましくは0.9〜2ミリ当量/
gである。0.8ミリ当量/gより小さいと抵抗が大き
くなり性能が低下し、2ミリ当量/gより大きいと膜の
構造物としての強度低下が大きくなる。このパーフルオ
ロカーボンスルホン酸樹脂イオン交換ポリマーとして
は、米国イー・アイ・デュポン・ドウ・ヌムール・アン
ド・カンパニーのNAFION(登録商標)溶液があ
る。
The component having a functional group of the ion exchange membrane serving as the solid polymer electrolyte of the present invention has a fluorinated polymer as a skeleton, and the functional group may be any one of a sulfonic acid group, a carboxylic acid group and a phosphoric acid group. One having one or a plurality is included. Generally, a perfluorocarbon sulfonic acid resin made of a copolymer of perfluorovinyl ether and tetrafluoroethylene is suitably used.
It is also possible to use a perfluoroolefin such as hexafluoropropylene, chlorotrifluoroethylene or perfluoroalkoxyvinyl ether instead of tetrafluoroethylene which is a monomer constituting the fluorocarbon polymer having a functional group. After the copolymerization, if necessary, it can be converted into a proton-transporting functional group by post-treatment such as hydrolysis.
The exchange capacity of a component having a functional group is defined as the number of moles of the functional group per gram, and is usually measured by a titration method.
Generally, the exchange capacity of the component having a functional group is 0.8 to 2
Meq / g, preferably 0.9 to 2 meq / g
g. If it is less than 0.8 meq / g, the resistance is increased and the performance is reduced. If it is more than 2 meq / g, the strength of the film as a structure is greatly reduced. As the perfluorocarbon sulfonic acid resin ion exchange polymer, there is NAFION (registered trademark) solution of I. D. Du Pont de Nemours and Company, USA.

【0009】本発明において、イオン交換フッ素ポリマ
ー溶液中のポリマー濃度は、一般的に約1重量%〜10
重量%であり、その溶液は、パーフルオロビニルエーテ
ルとテトラフルオロエチレンの共重合体であるフッ素ポ
リマーと新規な溶媒とから製造される。溶液の調製は、
次の通りである。振盪チューブ等の容器中に水と有機溶
剤の混合溶媒とフッ素ポリマー、例えばパーフルオロビ
ニルエーテルとテトラフルオロエチレン共重合体との混
合物を添加し、約180〜250℃の範囲内の温度で、
少なくとも0.5時間接触させる。その接触は、閉鎖さ
れた圧力容器を振動させるか振盪させることにより通常
撹拌しながら行なう。そして冷却することによって、イ
オン交換フッ素ポリマーが得られる。
In the present invention, the polymer concentration in the ion-exchanged fluoropolymer solution is generally about 1% by weight to 10% by weight.
% By weight, and the solution is prepared from a fluoropolymer which is a copolymer of perfluorovinyl ether and tetrafluoroethylene and a novel solvent. Preparation of the solution
It is as follows. A mixture of water and an organic solvent and a fluoropolymer, for example, a mixture of perfluorovinyl ether and tetrafluoroethylene copolymer are added to a container such as a shaking tube at a temperature in the range of about 180 to 250 ° C.
Contact for at least 0.5 hours. The contacting is effected, usually with stirring, by shaking or shaking the closed pressure vessel. By cooling, an ion-exchanged fluoropolymer is obtained.

【0010】前記イオン交換フッ素ポリマーの溶液は、
ポリマーをアルコール溶液、例えばプロパノールまたは
イソプロピルアルコール、あるいは他のアルコール類、
例えばエタノールまたはブタノールとの溶液内に溶解し
たものである。本発明においては、メタノール、プロパ
ノール、イソプロパノール、ブチルアルコール、イソブ
チルアルコール、メトキシエタノール、メトキシプロパ
ノール、エトキシエタノール、メチルエチルケトン等の
水溶性の有機溶剤のうち、少なくとも一つまたは複数を
混合した有機溶剤を用いることもできる。その水溶性有
機溶剤と水との混合比は、有機溶剤が80重量%〜10
0重量%、水が0重量%〜20重量%であり、好ましく
は有機溶剤が85重量%〜100重量%、水が0重量%
〜15重量%であり、特に好ましくは、有機溶剤が90
〜100、水が0〜10である。この混合溶媒の前記炭
素支持体に対する接触角は、5°以下の範囲である。混
合溶媒中の有機溶剤が80重量%より少ないと、その混
合溶媒の前記炭素支持体に対する接触角が、5°を超
え、更にその有機溶剤が含まれる量の減少とともに、そ
れぞれの場合の接触角は大きくなる傾向がある。この接
触角が、5°を超える場合、イオン交換ポリマー溶液と
触媒粒子との接触面積が急激に減少し、イオン伝導性が
低下することがわかった。
The solution of the ion exchange fluoropolymer is
The polymer is dissolved in an alcohol solution, such as propanol or isopropyl alcohol, or other alcohols,
For example, it is dissolved in a solution with ethanol or butanol. In the present invention, an organic solvent obtained by mixing at least one or a plurality of water-soluble organic solvents such as methanol, propanol, isopropanol, butyl alcohol, isobutyl alcohol, methoxyethanol, methoxypropanol, ethoxyethanol, and methyl ethyl ketone is used. Can also. The mixing ratio of the water-soluble organic solvent and water is such that the organic solvent is 80% by weight to 10% by weight.
0% by weight, 0% to 20% by weight of water, preferably 85% to 100% by weight of an organic solvent, and 0% by weight of water
To 15% by weight, particularly preferably 90 to 90% by weight of the organic solvent.
-100, water is 0-10. The contact angle of the mixed solvent with the carbon support is in the range of 5 ° or less. When the amount of the organic solvent in the mixed solvent is less than 80% by weight, the contact angle of the mixed solvent to the carbon support exceeds 5 °, and the contact angle in each case decreases with the amount of the organic solvent contained. Tends to be large. When this contact angle exceeds 5 °, it was found that the contact area between the ion-exchange polymer solution and the catalyst particles sharply decreased, and the ionic conductivity decreased.

【0011】[0011]

【実施例】以下、本発明の実施例について説明する。 (実施例)E−TEK社製電極(炭素支持体上の白金担
持量0.5mg/cm2)に、炭素担持体に対する接触角が
1.8度であるようなエチルアルコール/水の混合溶媒
とプロトンを選択的に透過する米国デュポン社製のNA
FION(登録商標)溶液を、例えばはけ処理または噴
霧によって塗布し、十分に乾燥した後、この電極層とパ
ーフルオロビニルエーテルとテトラフルオロエチレンの
共重合体からなるイオン交換膜として、既に加水分解を
終了した膜厚50μmの米国デュポン社製NAFION
(登録商標)NF 112とによって、135℃、50k
g/cm2、2分間の条件で電極層と膜とを熱圧着し膜電極
接合体を作製した。この膜電極接合体が内部に固定され
た、サーペンタイン型の溝を有し、電極面積が25cm2
であるカーボンブロックと面ヒーターを使用した実験用
燃料セル内を、50℃のもとで外部供給源からそれぞれ
燃料ガスとしての水素ガスを、酸化剤ガスとして酸素を
供給して運転し、この膜電極接合体の電圧と電流密度を
測定する。その結果を図1に報告する。
Embodiments of the present invention will be described below. (Embodiment) A mixed solvent of ethyl alcohol / water having a contact angle with the carbon support of 1.8 degrees was applied to an electrode (0.5 mg / cm 2 of platinum supported on the carbon support) manufactured by E-TEK. Made by Dupont in the United States that selectively permeates protons and protons
The FION (registered trademark) solution is applied, for example, by brushing or spraying, and after being sufficiently dried, the electrode layer and an ion exchange membrane composed of a copolymer of perfluorovinyl ether and tetrafluoroethylene have already been subjected to hydrolysis. Finished 50 µm thick NAFION manufactured by DuPont
(Registered trademark) NF112, 135 ° C, 50k
The electrode layer and the membrane were thermocompression-bonded under the conditions of g / cm 2 and 2 minutes to produce a membrane / electrode assembly. This membrane electrode assembly has a serpentine type groove fixed inside, and the electrode area is 25 cm 2.
The experimental fuel cell using a carbon block and a surface heater is operated at 50 ° C. by supplying hydrogen gas as a fuel gas and oxygen as an oxidant gas from an external source at 50 ° C., respectively. Measure the voltage and current density of the electrode assembly. The results are reported in FIG.

【0012】(比較例)E−TEK社製電極(炭素支持
体上の白金担持量0.5mg/cm2)に、炭素担持基体に対
する接触角が38度であるプロピルアルコール/水の混
合溶媒とプロトンを選択的に透過する米国デュポン社製
のNAFION(登録商標)溶液を、実施例同様、塗布
し、十分に乾燥した後、この電極層と既に加水分解を終
了した膜厚50μmの米国デュポン社製NAFION
(登録商標)NF 112とによって、135℃、50k
g/cm2、2分間の条件で電極層と膜とを熱圧着し膜電極
接合体を作製した。得られた膜電極接合体を実施例同様
に実験用燃料セル内に固定して、この膜電極接合体の電
圧と電流密度を測定する。その結果を図1に報告する。
Comparative Example An electrode manufactured by E-TEK (platinum supported on carbon support 0.5 mg / cm 2 ) was mixed with a mixed solvent of propyl alcohol / water having a contact angle of 38 degrees with the carbon-supported substrate. A solution of NAFION (registered trademark) manufactured by Dupont, USA, which selectively transmits protons, was applied and dried sufficiently in the same manner as in the example. Made NAFION
(Registered trademark) NF112, 135 ° C, 50k
The electrode layer and the membrane were thermocompression-bonded under the conditions of g / cm 2 and 2 minutes to produce a membrane / electrode assembly. The obtained membrane electrode assembly is fixed in an experimental fuel cell in the same manner as in the example, and the voltage and current density of the membrane electrode assembly are measured. The results are reported in FIG.

【0013】図1に、本発明の実施例及び比較例の膜電
極接合体の電圧−電流特性をそれぞれ示した。本発明の
実施例の溶媒を用いた膜電極接合体の電流電圧曲線は曲
線Aの通りであり、電流密度2A/cm2において、電池
電圧0.38Vを示した。一方、比較例の膜電極接合体
の電流電圧曲線は曲線Bの通りであり、電流密度2A/
cm2において、電池電圧0.2Vを示した。
FIG. 1 shows the voltage-current characteristics of the membrane electrode assemblies according to the examples of the present invention and the comparative example. The current-voltage curve of the membrane / electrode assembly using the solvent of the example of the present invention was as shown by curve A, and the battery voltage was 0.38 V at a current density of 2 A / cm 2 . On the other hand, the current-voltage curve of the membrane electrode assembly of the comparative example is as shown by curve B, and the current density was 2 A /
In cm 2 , the battery voltage was 0.2 V.

【0014】図1から、固体高分子電解質型燃料電池を
構成する固体高分子電解質溶液の溶媒の触媒担持炭素支
持体に対する接触角を調整し、触媒粒子が電解質によっ
て十分覆われる本発明の固体高分子電解質型燃料電池
が、その接触角を調整していない従来の固体高分子電解
質型燃料電池にくらべ、その電池出力に優れていること
が分かった。その触媒担持炭素支持体に対する接触角が
5°以下となるような溶媒を用いた固体高分子電解質溶
液によって本発明の効果が得られることがわかった。
FIG. 1 shows that the contact angle of the solvent of the solid polymer electrolyte solution constituting the solid polymer electrolyte fuel cell with respect to the catalyst-supporting carbon support is adjusted so that the catalyst particles of the present invention are sufficiently covered with the electrolyte. The molecular electrolyte fuel cell was found to be superior in the cell output to the conventional solid polymer electrolyte fuel cell in which the contact angle was not adjusted. It has been found that the effects of the present invention can be obtained by using a solid polymer electrolyte solution using a solvent whose contact angle with the catalyst-supporting carbon support is 5 ° or less.

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば、膜
電極接合体を構成する触媒層の固体高分子電解質を触媒
活性粒子を担持した炭素支持基体と接触するように形成
する際、その固体高分子電解質溶液の前記炭素支持基体
に対する接触角を調整することによって、固体高分子電
解質が前記炭素支持体に固定、接合する面積を増大させ
る結果、その触媒層中での触媒活性粒子の利用効率及び
イオン伝導率が向上することによって、優れた電池出力
特性を得ることができる。
As described above, according to the present invention, when the solid polymer electrolyte of the catalyst layer constituting the membrane electrode assembly is formed so as to be in contact with the carbon support substrate carrying the catalytically active particles, By adjusting the contact angle of the solid polymer electrolyte solution with respect to the carbon support substrate, the solid polymer electrolyte is fixed to the carbon support, and as a result, the area of the catalyst active particles in the catalyst layer is increased. By improving utilization efficiency and ionic conductivity, excellent battery output characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体高分子電解質型燃料電池の膜電極接合体の
電極層において、導電性を示す触媒活性粒子を支持する
炭素支持体と触媒層を形成する固体高分子電解質溶液の
溶媒の前記炭素支持体に対する接触角と燃料電池の電流
−電圧特性変化を示すグラフである。
FIG. 1 shows a carbon support for supporting catalytically active particles exhibiting conductivity in the electrode layer of a membrane electrode assembly of a solid polymer electrolyte fuel cell, and the carbon of a solvent of a solid polymer electrolyte solution forming a catalyst layer. 5 is a graph showing a contact angle with respect to a support and a change in current-voltage characteristics of a fuel cell.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 触媒活性を示す粒子を支持する炭素支持
体と、前記触媒活性粒子を支持する炭素支持体に対する
接触角が5度以下となる溶媒と固体高分子電解質の混合
物を用いて前記炭素支持体上に固定することによって形
成した触媒層と、前記触媒層と接触する拡散層とから成
る電極と、前記電極と接合して膜電極接合体を構成する
固体高分子電解質膜とから構成することを特徴とする固
体高分子電解質型燃料電池。
1. A method for preparing a carbon support using a mixture of a carbon support for supporting particles exhibiting catalytic activity, a solvent having a contact angle of not more than 5 degrees with the carbon support for supporting the catalyst active particles, and a solid polymer electrolyte. An electrode comprising a catalyst layer formed by fixing on a support, a diffusion layer in contact with the catalyst layer, and a solid polymer electrolyte membrane which is joined to the electrode to constitute a membrane electrode assembly. A solid polymer electrolyte fuel cell characterized by the above-mentioned.
【請求項2】 前記固体高分子電解質がパーフルオロス
ルホン酸ポリマーとしたことを特徴とする請求項1に記
載の固体高分子電解質型燃料電池。
2. The solid polymer electrolyte fuel cell according to claim 1, wherein the solid polymer electrolyte is a perfluorosulfonic acid polymer.
JP9159325A 1997-06-03 1997-06-03 Solid polymer-based electrolyte type fuel cell Pending JPH10340731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9159325A JPH10340731A (en) 1997-06-03 1997-06-03 Solid polymer-based electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9159325A JPH10340731A (en) 1997-06-03 1997-06-03 Solid polymer-based electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH10340731A true JPH10340731A (en) 1998-12-22

Family

ID=15691350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9159325A Pending JPH10340731A (en) 1997-06-03 1997-06-03 Solid polymer-based electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH10340731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390528B2 (en) 2003-03-31 2008-06-24 Seiko Epson Corporation Method for forming functional porous layer, method for manufacturing fuel cell, electronic device, and automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390528B2 (en) 2003-03-31 2008-06-24 Seiko Epson Corporation Method for forming functional porous layer, method for manufacturing fuel cell, electronic device, and automobile

Similar Documents

Publication Publication Date Title
US5346780A (en) Fuel cell and method for producing an electrode used therefor
JP3453125B2 (en) Electrochemical fuel cell
US6416898B1 (en) Fuel cell comprising an inorganic glass layer
US7332241B2 (en) Cathode layer structure for a solid polymer fuel cell and fuel cell incorporating such structure
JP4283857B2 (en) Gas diffusion electrode
US8597856B2 (en) Direct methanol fuel cell
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
US9799903B2 (en) Electrocatalyst for solid polymer fuel cell
KR20050083660A (en) Fuel cell electrode
JPH0652862A (en) Porous electrode and its manufacture
JP2000106203A (en) Solid polymer electrolyte membrane, electrode for fuel cell, and solid polymer electrolyte fuel cell
JPH11288727A (en) Solid high polymer fuel cell film/electrode junction body
US20080118808A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
RU2414772C2 (en) Structures for gas diffusion electrodes
KR20010092913A (en) Reinforced compositie ion conducting polymer membrane and fuel cell adopting the same
JP4987857B2 (en) Polymer dispersion and electrocatalyst ink
US20100068591A1 (en) Fuel cell catalyst, fuel cell cathode and polymer electrolyte fuel cell including the same
CA2427036C (en) A cathode layer structure for a solid polymer fuel cell and fuel cell incorporating such structure
JPH10334923A (en) Solid high polymer fuel cell film/electrode connecting body
US20050287413A1 (en) Separator for fuel cell, method of preparing same, and fuel cell comprising same
JP4846371B2 (en) Membrane-electrode assembly for fuel cell and fuel cell system including the same
CN101978536B (en) Membrane electrode assembly and fuel cell
KR101117630B1 (en) Membrane-electrode assembly for fuel cell and method for preparating the same
JPH09120827A (en) Solid polymer electrolyte fuel cell
USH2240H1 (en) Membrane electrode assemblies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060526