JPH1033511A - Non-invasion biological measuring instrument - Google Patents

Non-invasion biological measuring instrument

Info

Publication number
JPH1033511A
JPH1033511A JP8197290A JP19729096A JPH1033511A JP H1033511 A JPH1033511 A JP H1033511A JP 8197290 A JP8197290 A JP 8197290A JP 19729096 A JP19729096 A JP 19729096A JP H1033511 A JPH1033511 A JP H1033511A
Authority
JP
Japan
Prior art keywords
light source
photodetector
light
rotating structure
diameter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8197290A
Other languages
Japanese (ja)
Inventor
Masao Kan
正男 管
Yuji Miyahara
裕二 宮原
Tsuyoshi Sonehara
剛志 曽根原
Tomoharu Kajiyama
智晴 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8197290A priority Critical patent/JPH1033511A/en
Publication of JPH1033511A publication Critical patent/JPH1033511A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve accuracy for measurement by installing a light source, for which a semiconductor laser or an LED is used, at a rotary structural body and bringing it into light contact with a living body. SOLUTION: The rotary structural body is composed of a short diameter side rotary structural body 1 to be inserted into an earhole and a long diameter side rotary structural body 2 to be functioned as a stopper for preventing this structural body 1 from being inserted into the earhole too much. The short diameter side rotary structural body 1 is composed of a substrate section 15 for installing a photodetector 4 and a transparent body section 16 made of such as acrylic resin for protecting the photodetector 4. A light source 3 is installed on the plane of the long diameter side rotary structural body 3 on the side of the earhole vertically to its rotary axis. The light source 3 and the photodetector 4 and be installed while reversing their positions as well. The cross sections of the light source 3 and the photodetector 4 can be made elliptical as well. Since the light source 3 is tightly adhered to the ear and the photodetector 4 is located inside the earhole, high-accuracy measurement is enabled without being affected by the external ambient temperature or stray light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は医療用生化学分析装
置に係り、特に血液中のグルコース濃度を無侵襲計測す
るための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biochemical analyzer for medical use, and more particularly to an apparatus for non-invasively measuring glucose concentration in blood.

【0002】[0002]

【従来の技術】近赤外光を用い生体情報を計測する装置
が、特開平3−173535 号「グルコース無侵襲計測方法」
に記載されている。上記従来技術はグルコースによる吸
収波長帯域を1600〜1750nm,グルコースによ
らない基準波長帯域を1200〜1300nmに設定
し、両近赤外光を生体組織に照射し、両透過エネルギー
の差異を演算処理することにより生体組織中のグルコー
ス濃度を求める方法である。これは光源より照射された
光の一部を直接に、他の一部を凹面反射鏡により反射さ
せて、生体組織に照射し、その透過光をPbSセンサに
より検出している。
2. Description of the Related Art An apparatus for measuring biological information using near-infrared light is disclosed in Japanese Unexamined Patent Publication No. 3-173535, "Non-invasive glucose measuring method".
It is described in. In the above prior art, the absorption wavelength band by glucose is set to 1600 to 1750 nm, and the reference wavelength band not by glucose is set to 1200 to 1300 nm, and both near-infrared lights are irradiated on the living tissue to calculate the difference between both transmitted energies. This is a method for determining the glucose concentration in the living tissue. In this method, a part of light emitted from a light source is directly reflected, and another part is reflected by a concave reflecting mirror to irradiate a living tissue, and the transmitted light is detected by a PbS sensor.

【0003】[0003]

【発明が解決しようとする課題】近赤外光を直接生体に
照射し、その透過,拡散した光の強度を検出し、その検
出結果に基づき、生体成分を測定する装置において、光
源に半導体レーザ又はLEDを使用する場合、外気温度
の変化に基づく影響のため光出力が安定しない。このた
め光源から照射される光を生体に照射し、得られた透
過,拡散光の強度に誤差が生じていた。また光検出器が
外部に露出している場合、光検出器への迷光の影響によ
る誤差も生じていた。上記従来技術では、光源の外気温
度変化による光出力変化を安定化させる工夫は開示され
ていない。また、生体に照射し透過,散乱した光を検出
する検出器に迷光の進入を防ぐ工夫も開示されていな
い。
SUMMARY OF THE INVENTION In an apparatus for directly irradiating near-infrared light to a living body, detecting the intensity of transmitted and diffused light, and measuring biological components based on the detection result, a semiconductor laser is used as a light source. Alternatively, when an LED is used, the light output is not stable due to an influence based on a change in the outside air temperature. For this reason, the light emitted from the light source is applied to the living body, and an error occurs in the intensity of the obtained transmitted and diffused light. Further, when the photodetector is exposed to the outside, an error due to the influence of stray light on the photodetector has occurred. The above prior art does not disclose a device for stabilizing a change in light output due to a change in outside air temperature of the light source. Further, there is no disclosure of a device for preventing stray light from entering a detector that detects light transmitted and scattered by irradiating a living body.

【0004】本発明の目的は、光源及び光検出器を回転
構造体に設置し、外気温度の変化及び迷光の影響に基づ
く計測誤差をなくすことにより、高精度な無侵襲生化学
計測装置を提供することである。
An object of the present invention is to provide a high-precision noninvasive biochemical measurement apparatus by installing a light source and a photodetector on a rotating structure to eliminate measurement errors due to changes in outside air temperature and the effects of stray light. It is to be.

【0005】[0005]

【課題を解決するための手段】上記目的は、光源に半導
体レーザ又はLEDを使用し、光源を回転構造体に設置
して、生体に密着させることにより、外気温度の変化の
影響に基づく計測誤差をなくすこと、及び、光検出器を
回転構造体に設置して、生体の耳の穴に挿入することに
より、光検出器を暗室状態におくことで、迷光の影響に
基づく計測誤差をなくすことにより、高精度な計測を達
成する。
The object of the present invention is to use a semiconductor laser or an LED as a light source, install the light source on a rotating structure, and bring the light source into close contact with a living body, thereby obtaining a measurement error based on the influence of a change in the outside air temperature. And eliminate the measurement error based on the influence of stray light by installing the photodetector on the rotating structure and inserting it into the hole of the ear of the living body to keep the photodetector in a dark room. Achieves highly accurate measurement.

【0006】[0006]

【発明の実施の形態】近赤外領域は分子振動の基本音ス
ペクトル(中赤外)と原子や分子の電子スペクトル(可
視,紫外)との間にあたり、本来透明な波長領域である
が、分子運動の倍音,高調音,結合音のスペクトルが現
われる。このため、特定分子の定性及び定量分析に近赤
外光を用いることができる。また、近赤外領域は生体透
過性が比較的大きく、無侵襲に生体内の情報を取得する
のに適している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The near-infrared region is between the fundamental sound spectrum of molecular vibration (middle infrared) and the electronic spectrum of atoms and molecules (visible and ultraviolet), and is a wavelength region which is originally transparent. The spectrum of the overtones, harmonics and combined sounds of the movement appears. Therefore, near-infrared light can be used for qualitative and quantitative analysis of a specific molecule. The near-infrared region has relatively high biological permeability and is suitable for non-invasively acquiring information in a living body.

【0007】生体に近赤外光を照射すると、一部は表面
で反射し、他は生体中を拡散して透過する。その際、近
赤外光の一部は生体物質に吸収される。入射光強度I0
と透過光強度Itとの間には数1で示されるLambert-Be
erの法則が成り立つと考えられる。
When a living body is irradiated with near-infrared light, a part of the light is reflected on the surface, and the other part is diffused and transmitted through the living body. At that time, part of the near-infrared light is absorbed by the biological material. Incident light intensity I0
Lambert-Be expressed by Equation 1 between the transmitted light intensity It and
It is thought that er's law holds.

【0008】[0008]

【数1】 It=I0exp(−ckd) …(1) ここで、cは吸収物質の濃度、kは吸光係数、dは吸収
物質の厚さを表す。
## EQU1 ## where c is the concentration of the absorbing substance, k is the extinction coefficient, and d is the thickness of the absorbing substance.

【0009】これより目的物質の吸収波長に合わせたレ
ーザを用い、試料の厚さを一定にすれば、透過光強度の
測定により目的物質の濃度を求めることができる。例え
ば、血液中のグルコース濃度は糖尿病の指標になり、臨
床検査上重要な検査項目である。グルコースは1560
nm,2076nm,2272nmに特徴的な吸収を有
するので、上記いずれかの波長の半導体レーザ及び光検
出器を用いれば、生体中、主に血液中のグルコース濃度
を採血せずに定量することができる。生体中では光の散
乱が大きいため、厚い生体試料の測定には高出力のレー
ザを用いる必要がある。例えば波長1560nm,出力
10mWの半導体レーザを用いれば、約1.5mm の厚さ
の生体を測定することができ、また、100mWのレー
ザを用いると約8mmの厚さの生体を測定することができ
る。
Thus, if the thickness of the sample is kept constant by using a laser adjusted to the absorption wavelength of the target substance, the concentration of the target substance can be determined by measuring the transmitted light intensity. For example, the glucose concentration in blood serves as an indicator of diabetes and is an important test item in clinical tests. Glucose is 1560
Since it has characteristic absorption at nm, 2076 nm, and 2272 nm, the concentration of glucose in a living body and mainly in blood can be quantified without collecting blood by using a semiconductor laser and a photodetector having any of the above wavelengths. . Since light is greatly scattered in a living body, it is necessary to use a high-power laser for measuring a thick biological sample. For example, when a semiconductor laser having a wavelength of 1560 nm and an output of 10 mW is used, a living body having a thickness of about 1.5 mm can be measured, and a laser having a wavelength of 100 mW can be used to measure a living body having a thickness of about 8 mm. .

【0010】このような近赤外光の特長を有する半導体
レーザ又はLEDを、無侵襲生化学計測に適用した例に
ついて説明する。
An example in which a semiconductor laser or LED having such a characteristic of near-infrared light is applied to noninvasive biochemical measurement will be described.

【0011】図1に本発明の第1の実施例を示す。これ
はイヤホン型無侵襲生化学計測装置である。図1(a)
は本実施例の全体図、図1(b),(c)は光源3及び光
検出器4からなる信号検出ブロックの拡大図である。
FIG. 1 shows a first embodiment of the present invention. This is an earphone type non-invasive biochemical measurement device. FIG. 1 (a)
1 is an overall view of the present embodiment, and FIGS. 1B and 1C are enlarged views of a signal detection block including a light source 3 and a photodetector 4. FIG.

【0012】図1(a)を用いて本実施例の全体の構成を
説明する。半導体レーザ又はLEDよりなる光源3を光
源駆動電流供給装置5で駆動し、光源3から照射した光
を生体(耳)13へ照射する。その透過,拡散した光
は、光を電気信号に変換する受光素子などで構成される
光検出器4で検出し、増幅部6で増幅して、コンピュー
タから構成される生体信号演算処理装置7に送られる。
生体信号演算処理装置7で演算処理により吸光度や透過
特性などに変換して、その演算結果を表示装置10に表
示、また記憶装置11に記録する。
The overall configuration of the present embodiment will be described with reference to FIG. The light source 3 made of a semiconductor laser or an LED is driven by the light source drive current supply device 5, and the light emitted from the light source 3 is applied to the living body (ear) 13. The transmitted and diffused light is detected by a photodetector 4 composed of a light receiving element or the like for converting the light into an electric signal, amplified by an amplifying unit 6, and sent to a biological signal arithmetic processing unit 7 composed of a computer. Sent.
The biological signal arithmetic processing unit 7 converts the data into absorbance, transmission characteristics, and the like by arithmetic processing, displays the arithmetic result on the display device 10, and records the arithmetic result in the storage device 11.

【0013】本実施例は光源3,光検出器4を小型にし
て一つのブロックとする信号検出ブロックと、光源駆動
電流供給装置5,増幅部6,生体信号演算処理装置7,
制御部8,表示装置10,記憶装置11を小型にして一
つのブロックに納めた演算処理ブロック14を分離し、
その間をフレキシブルな信号線により接続する。信号検
出ブロック及び演算処理ブロック14を分離することに
より、被検者の時間を拘束することなしに、被検者の生
体信号を無侵襲に連続計測することができ、また、小型
にすることで携帯可能とする。
In this embodiment, a light source 3, a signal detection block which makes the photodetector 4 small and made into one block, a light source drive current supply device 5, an amplifying unit 6, a biological signal operation processing device 7,
The control unit 8, the display device 10, and the storage device 11 are reduced in size and the arithmetic processing block 14 housed in one block is separated.
The space between them is connected by a flexible signal line. By separating the signal detection block and the arithmetic processing block 14, the biological signal of the subject can be continuously measured non-invasively without restraining the time of the subject, and by reducing the size, Be portable.

【0014】図1(b),(c)を用いて光源3及び光検
出器4からなる信号検出ブロックを詳細に説明する。図
1(b)は細径側回転構造体1を断面17で切った断面
図、同図(c)は検出ブロック全体の斜視図である。細
径側回転構造体1は耳の穴に挿入される部分、太径側回
転構造体2は耳の穴に入り過ぎないようにストッパーの
役割をする部分である。細径側回転構造体1は、光源3
を設置する基板部分15と、アクリルやガラス材質でで
きた透明体部分16により構成され、透明体部分16は
光の透過と光検出器4の保護の役割を担う。光源3及び
光検出器4は図1(b)の様に設置する。光源3は太径
側回転構造体2の回転軸に垂直で耳の穴側の面に設置
し、光検出器4は細径側回転構造体1の基板15上に設
置する。光源3及び光検出器4は逆に、光源3を細径側
回転構造体1に、光検出器4を太径側回転構造体2に設
置してもよい。また、光源3及び光検出器4を設置する
回転構造体は断面が楕円形の構造体であってもよいこと
は言うまでもない。光源3が耳に密着し、光検出器4が
耳の穴にあることにより、外気温度の影響及び迷光の影
響を受けず、高精度な計測が可能となる。また、光は光
検出器4に入射する前に透明体16を透過するため、透
明体16の透過及び反射率を考慮した演算を行うことに
より、高精度な計測ができる。
The signal detection block including the light source 3 and the photodetector 4 will be described in detail with reference to FIGS. 1B and 1C. FIG. 1B is a sectional view of the small-diameter-side rotating structure 1 taken along a section 17, and FIG. 1C is a perspective view of the entire detection block. The small-diameter side rotating structure 1 is a portion inserted into the ear hole, and the large-diameter side rotating structure 2 is a portion serving as a stopper so as not to excessively enter the ear hole. The small-diameter-side rotating structure 1 includes a light source 3
And a transparent portion 16 made of acrylic or glass material. The transparent portion 16 has a role of transmitting light and protecting the photodetector 4. The light source 3 and the photodetector 4 are installed as shown in FIG. The light source 3 is installed on the surface of the ear hole side perpendicular to the rotation axis of the large-diameter rotating structure 2, and the photodetector 4 is installed on the substrate 15 of the small-diameter rotating structure 1. Conversely, the light source 3 and the light detector 4 may be installed on the small-diameter rotating structure 1 and the light detector 4 may be installed on the large-diameter rotating structure 2. Needless to say, the rotating structure on which the light source 3 and the photodetector 4 are installed may be a structure having an elliptical cross section. Since the light source 3 is in close contact with the ear and the light detector 4 is located in the ear hole, high-precision measurement can be performed without being affected by the outside air temperature and the influence of stray light. Further, since the light passes through the transparent body 16 before entering the photodetector 4, high-precision measurement can be performed by performing an operation in consideration of the transmittance and the reflectance of the transparent body 16.

【0015】図2〜図9に本発明の第2〜第9の実施例
を示す。各図は第1の実施例に示したイヤホン型無侵襲
生化学計測装置の光源3及び光検出器4からなる信号検
出ブロック部を示したものである。各図において、
(a)は細径側回転構造体1を断面17で切った断面
図、(b)は検出ブロックの全体を示す斜視図である。
FIGS. 2 to 9 show second to ninth embodiments of the present invention. Each of the drawings shows a signal detection block unit including the light source 3 and the photodetector 4 of the earphone type noninvasive biochemical measurement device shown in the first embodiment. In each figure,
(A) is a sectional view of the small-diameter-side rotating structure 1 taken along a section 17, and (b) is a perspective view showing the entire detection block.

【0016】図2を用いて光源3及び光検出器4からな
る信号検出ブロックを詳細に説明する。本実施例は光検
出器4を複数個使用した例である。細径側回転構造体1
は耳の穴に挿入される部分、太径側回転構造体2は耳の
穴に入り過ぎないようにストッパーの役割をする部分で
ある。細径側回転構造体1は、光源3を設置する基板部
分15と、アクリルやガラス材質でできた透明体部分1
6により構成され、透明体部分16は光の透過と光検出
器4の保護の役割を担う。光源3及び光検出器4は図2
の様に設置する。光源3は太径側回転構造体2の回転軸
に垂直で耳の穴側の面に設置し、光検出器4は細径側回
転構造体1の基板15上に設置する。光検出器4は同一
特性の検出器を複数個使用し、光源3から照射された光
を効率よく検出して、S/N比の向上を可能とする。光
源3及び光検出器4は逆に、光源3を細径側回転構造体
1に、光検出器4を太径側回転構造体2に設置してもよ
い。また、光源3及び光検出器4を設置する回転構造体
は断面が楕円形の構造体であってもよいことは言うまで
もない。光源3が耳に密着し、光検出器4が耳の穴にあ
ることにより、外気温度の影響及び迷光の影響を受け
ず、高精度な計測が可能となる。また、光は光検出器4
に入射する前に透明体16を透過するため、透明体16
の透過及び反射率を考慮した演算を行うことにより、高
精度な計測ができる。
The signal detection block including the light source 3 and the photodetector 4 will be described in detail with reference to FIG. This embodiment is an example in which a plurality of photodetectors 4 are used. Small-diameter rotating structure 1
Is a portion to be inserted into the ear hole, and the large-diameter-side rotating structure 2 is a portion serving as a stopper so as not to excessively enter the ear hole. The small-diameter-side rotating structure 1 includes a substrate portion 15 on which the light source 3 is installed, and a transparent portion 1 made of acrylic or glass material.
The transparent body portion 16 plays a role of transmitting light and protecting the photodetector 4. The light source 3 and the light detector 4 are shown in FIG.
Install as shown. The light source 3 is installed on the surface of the ear hole side perpendicular to the rotation axis of the large-diameter rotating structure 2, and the photodetector 4 is installed on the substrate 15 of the small-diameter rotating structure 1. The photodetector 4 uses a plurality of detectors having the same characteristics, detects the light emitted from the light source 3 efficiently, and improves the S / N ratio. Conversely, the light source 3 and the light detector 4 may be installed on the small-diameter rotating structure 1 and the light detector 4 may be installed on the large-diameter rotating structure 2. Needless to say, the rotating structure on which the light source 3 and the photodetector 4 are installed may be a structure having an elliptical cross section. Since the light source 3 is in close contact with the ear and the light detector 4 is located in the ear hole, high-precision measurement can be performed without being affected by the outside air temperature and the influence of stray light. In addition, light is emitted from the photodetector 4.
Since the light passes through the transparent body 16 before being incident on the
By performing the calculation in consideration of the transmittance and the reflectance of the object, highly accurate measurement can be performed.

【0017】図3に本発明の第3の実施例を示す。これ
は第1の実施例に示したイヤホン型無侵襲生化学計測装
置の信号検出ブロックにおいて、光源3及び光検出器4
を複数個使用した例である。
FIG. 3 shows a third embodiment of the present invention. In the signal detection block of the earphone type non-invasive biochemical measurement device shown in the first embodiment, the light source 3 and the photodetector 4
Is an example of using a plurality of.

【0018】図3を用いて光源3及び光検出器4からな
る信号検出ブロックを詳細に説明する。細径側回転構造
体1は耳の穴に挿入される部分、太径側回転構造体2は
耳の穴に入り過ぎないようにストッパーの役割をする部
分である。細径側回転構造体1は、光源3を設置する基
板部分15と、アクリルやガラス材質でできた透明体部
分16により構成され、透明体部分16は光の透過と光
検出器4の保護の役割を担う。光源3及び光検出器4は
図3の様に設置する。光源3は太径側回転構造体2の回
転軸に垂直で耳の穴側の面に設置し、光検出器4は細径
側回転構造体1の基板15上に設置する。光源3は光強
度を増すために、また、光検出器4は微弱な信号を効率
よく検出するために同一特性の光源3及び光検出器4を
複数個使用し、S/N比の向上を可能とする。光源3及
び光検出器4は逆に、光源3を細径側回転構造体1に、
光検出器4を太径側回転構造体2に設置してもよい。ま
た、光源3及び光検出器4を設置する回転構造体は断面
が楕円形の構造体であってもよいことは言うまでもな
い。光源3が耳に密着し、光検出器4が耳の穴にあるこ
とにより、外気温度の影響及び迷光の影響を受けず、高
精度な計測が可能となる。また、光は光検出器4に入射
する前に透明体16を透過するため、透明体16の透過
及び反射率を考慮した演算を行うことにより、高精度な
計測ができる。
The signal detection block including the light source 3 and the photodetector 4 will be described in detail with reference to FIG. The small-diameter side rotating structure 1 is a portion inserted into the ear hole, and the large-diameter side rotating structure 2 is a portion serving as a stopper so as not to excessively enter the ear hole. The small-diameter rotating structure 1 is composed of a substrate portion 15 on which the light source 3 is installed, and a transparent portion 16 made of acrylic or glass material. The transparent portion 16 protects light transmission and protection of the photodetector 4. Take a role. The light source 3 and the light detector 4 are installed as shown in FIG. The light source 3 is installed on the surface of the ear hole side perpendicular to the rotation axis of the large-diameter rotating structure 2, and the photodetector 4 is installed on the substrate 15 of the small-diameter rotating structure 1. The light source 3 uses a plurality of light sources 3 and photodetectors 4 having the same characteristics to increase the light intensity and the photodetector 4 to detect a weak signal efficiently, thereby improving the S / N ratio. Make it possible. On the contrary, the light source 3 and the photodetector 4 convert the light source 3 into the small-diameter-side rotating structure 1,
The photodetector 4 may be installed on the large-diameter rotary structure 2. Needless to say, the rotating structure on which the light source 3 and the photodetector 4 are installed may be a structure having an elliptical cross section. Since the light source 3 is in close contact with the ear and the light detector 4 is located in the ear hole, high-precision measurement can be performed without being affected by the outside air temperature and the influence of stray light. Further, since the light passes through the transparent body 16 before entering the photodetector 4, high-precision measurement can be performed by performing an operation in consideration of the transmittance and the reflectance of the transparent body 16.

【0019】図4に本発明の第4の実施例を示す。これ
は光検出器4を複数個使用した他の例である。
FIG. 4 shows a fourth embodiment of the present invention. This is another example in which a plurality of photodetectors 4 are used.

【0020】図4を用いて光源3及び光検出器4からな
る信号検出ブロックを詳細に説明する。細径側回転構造
体1は耳の穴に挿入される部分、太径側回転構造体2は
耳の穴に入り過ぎないようにストッパーの役割をする部
分である。細径側回転構造体1は、光源3を設置する基
板部分15と、アクリルやガラス材質でできた透明体部
分16により構成され、透明体部分16は光の透過と光
検出器4の保護の役割を担う。光源3及び光検出器4は
図4の様に設置する。
The signal detection block including the light source 3 and the photodetector 4 will be described in detail with reference to FIG. The small-diameter side rotating structure 1 is a portion inserted into the ear hole, and the large-diameter side rotating structure 2 is a portion serving as a stopper so as not to excessively enter the ear hole. The small-diameter rotating structure 1 is composed of a substrate portion 15 on which the light source 3 is installed, and a transparent portion 16 made of acrylic or glass material. The transparent portion 16 protects light transmission and protection of the photodetector 4. Take a role. The light source 3 and the light detector 4 are installed as shown in FIG.

【0021】光源3は太径側回転構造体2の回転軸に垂
直で耳の穴側の面に設置し、光検出器4は細径側回転構
造体1の基板15上に設置する。光検出器4は光源3の
光出射点を中心とする同一円周上に同一特性の検出器を
複数個配置し、光源3から照射された光を効率よく検出
して、S/N比の向上を可能とする。光源3及び光検出
器4は逆に、光源3を細径側回転構造体1に、光検出器
4を太径側回転構造体2に設置してもよい。また、光源
3及び光検出器4を設置する回転構造体は断面が楕円形
の構造体であってもよいことは言うまでもない。光源3
が耳に密着し、光検出器4が耳の穴にあることにより、
外気温度の影響及び迷光の影響を受けず、高精度な計測
が可能となる。また、光は光検出器4に入射する前に透
明体16を透過するため、透明体16の透過及び反射率
を考慮した演算を行うことにより、高精度な計測ができ
る。
The light source 3 is installed on the surface of the ear hole side perpendicular to the rotation axis of the large-diameter rotary structure 2, and the photodetector 4 is installed on the substrate 15 of the small-diameter rotary structure 1. The photodetector 4 is provided with a plurality of detectors having the same characteristics on the same circumference centered on the light emission point of the light source 3, detects light emitted from the light source 3 efficiently, and increases the S / N ratio. Enables improvement. Conversely, the light source 3 and the light detector 4 may be installed on the small-diameter rotating structure 1 and the light detector 4 may be installed on the large-diameter rotating structure 2. Needless to say, the rotating structure on which the light source 3 and the photodetector 4 are installed may be a structure having an elliptical cross section. Light source 3
Is in close contact with the ear and the photodetector 4 is in the hole in the ear,
High-precision measurement is possible without being affected by the outside air temperature and the influence of stray light. Further, since the light passes through the transparent body 16 before entering the photodetector 4, high-precision measurement can be performed by performing an operation in consideration of the transmittance and the reflectance of the transparent body 16.

【0022】図5に本発明の第5の実施例を示す。これ
は光源3及び光検出器4を複数個使用した他の例であ
る。
FIG. 5 shows a fifth embodiment of the present invention. This is another example in which a plurality of light sources 3 and photodetectors 4 are used.

【0023】図5を用いて光源3及び光検出器4からな
る信号検出ブロックを詳細に説明する。細径側回転構造
体1は耳の穴に挿入される部分、太径側回転構造体2は
耳の穴に入り過ぎないようにストッパーの役割をする部
分である。細径側回転構造体1は、光源3を設置する基
板部分15と、アクリルやガラス材質でできた透明体部
分16により構成され、透明体部分16は光の透過と光
検出器4の保護の役割を担う。光源3及び光検出器4は
図5の様に設置する。
The signal detection block including the light source 3 and the photodetector 4 will be described in detail with reference to FIG. The small-diameter side rotating structure 1 is a portion inserted into the ear hole, and the large-diameter side rotating structure 2 is a portion serving as a stopper so as not to excessively enter the ear hole. The small-diameter rotating structure 1 is composed of a substrate portion 15 on which the light source 3 is installed, and a transparent portion 16 made of acrylic or glass material. The transparent portion 16 protects light transmission and protection of the photodetector 4. Take a role. The light source 3 and the light detector 4 are installed as shown in FIG.

【0024】光源3は太径側回転構造体2の回転軸に垂
直で耳の穴側の面に設置し、光検出器4は細径側回転構
造体1の基板15上に設置する。光検出器4は図5の様
にそれぞれに対応する光源3の光出射点を中心とする同
一円周上に同一特性の光検出器を複数個配置する。光源
3は光強度を増すために、また、光検出器4は微弱な信
号を効率よく検出するために同一特性の光源3及び光検
出器4を複数個使用し、S/N比の向上を可能とする。
光源3及び光検出器4は逆に、光源3を細径側回転構造
体1に、光検出器4を太径側回転構造体2に設置しても
よい。また、光源3及び光検出器4を設置する回転構造
体は断面が楕円形の構造体であってもよいことは言うま
でもない。光源3が耳に密着し、光検出器4が耳の穴に
あることにより、外気温度の影響及び迷光の影響を受け
ず、高精度な計測が可能となる。また、光は光検出器4
に入射する前に透明体16を透過するため、透明体16
の透過及び反射率を考慮した演算を行うことにより、高
精度な計測ができる。
The light source 3 is installed on the surface of the ear hole side perpendicular to the rotation axis of the large-diameter rotating structure 2, and the photodetector 4 is installed on the substrate 15 of the small-diameter rotating structure 1. As shown in FIG. 5, a plurality of photodetectors 4 having the same characteristics are arranged on the same circumference around the light emission point of the corresponding light source 3 as shown in FIG. The light source 3 uses a plurality of light sources 3 and photodetectors 4 having the same characteristics to increase the light intensity and the photodetector 4 to detect a weak signal efficiently, thereby improving the S / N ratio. Make it possible.
Conversely, the light source 3 and the light detector 4 may be installed on the small-diameter rotating structure 1 and the light detector 4 may be installed on the large-diameter rotating structure 2. Needless to say, the rotating structure on which the light source 3 and the photodetector 4 are installed may be a structure having an elliptical cross section. Since the light source 3 is in close contact with the ear and the light detector 4 is located in the ear hole, high-precision measurement can be performed without being affected by the outside air temperature and the influence of stray light. In addition, light is emitted from the photodetector 4.
Since the light passes through the transparent body 16 before being incident on the
By performing the calculation in consideration of the transmittance and the reflectance of the object, highly accurate measurement can be performed.

【0025】図6に本発明の第6の実施例を示す。これ
は光源3及び光検出器4の配置を換えた例である。
FIG. 6 shows a sixth embodiment of the present invention. This is an example in which the arrangement of the light source 3 and the photodetector 4 is changed.

【0026】図6を用いて光源3及び光検出器4からな
る信号検出ブロックを詳細に説明する。細径側回転構造
体1は耳の穴に挿入される部分、太径側回転構造体2は
耳の穴に入り過ぎないようにストッパーの役割をする部
分である。細径側回転構造体1は、光源3及び光検出器
4を設置する基板部分15と、アクリルやガラス材質で
できた透明体部分16により構成され、透明体部分16
は光の透過と光源3及び光検出器4の保護の役割を担
う。本実施例では光源3及び光検出器4は細径側回転構
造体1の基板15上にそれぞれ一つずつ設置してある。
光源3及び光検出器4は逆に、太径側回転構造体2の回
転軸に垂直で耳の穴側の面に設置してもよい。また、光
源3及び光検出器4を設置する回転構造体は断面が楕円
形の構造体であってもよいことは言うまでもない。
The signal detection block including the light source 3 and the photodetector 4 will be described in detail with reference to FIG. The small-diameter side rotating structure 1 is a portion inserted into the ear hole, and the large-diameter side rotating structure 2 is a portion serving as a stopper so as not to excessively enter the ear hole. The small-diameter rotating structure 1 is composed of a substrate portion 15 on which the light source 3 and the photodetector 4 are installed, and a transparent portion 16 made of acrylic or glass material.
Plays a role of transmitting light and protecting the light source 3 and the photodetector 4. In the present embodiment, one light source 3 and one light detector 4 are provided on the substrate 15 of the small-diameter-side rotating structure 1, respectively.
Conversely, the light source 3 and the photodetector 4 may be installed on the surface of the ear hole side perpendicular to the rotation axis of the large-diameter-side rotating structure 2. Needless to say, the rotating structure on which the light source 3 and the photodetector 4 are installed may be a structure having an elliptical cross section.

【0027】光源3から照射された光は、生体(耳)1
3で反射して光検出器4で検出される。太径側回転構造
体2が耳に密着し、光源3及び光検出器4が耳の穴にあ
ることにより、外気温度の影響及び迷光の影響を受け
ず、高精度な計測が可能となる。また、光は光検出器4
に入射する前に透明体16を透過するため、透明体16
の透過及び反射率を考慮した演算を行うことにより、高
精度な計測ができる。
Light emitted from the light source 3 is applied to the living body (ear) 1.
The light is reflected by 3 and detected by the photodetector 4. Since the large-diameter-side rotating structure 2 is in close contact with the ear and the light source 3 and the photodetector 4 are located in the ear holes, high-precision measurement can be performed without being affected by the outside air temperature and stray light. In addition, light is emitted from the photodetector 4.
Since the light passes through the transparent body 16 before being incident on the
By performing the calculation in consideration of the transmittance and the reflectance of the object, highly accurate measurement can be performed.

【0028】図7に本発明の第7の実施例を示す。光源
3及び光検出器4の配置を換え、光源3及び光検出器4
を複数個使用した例である。
FIG. 7 shows a seventh embodiment of the present invention. The arrangement of the light source 3 and the photodetector 4 is changed, and the light source 3 and the photodetector 4 are changed.
Is an example of using a plurality of.

【0029】図7を用いて光源3及び光検出器4からな
る信号検出ブロックを詳細に説明する。細径側回転構造
体1は耳の穴に挿入される部分、太径側回転構造体2は
耳の穴に入り過ぎないようにストッパーの役割をする部
分である。細径側回転構造体1は、光源3及び光検出器
4を設置する基板部分15と、アクリルやガラス材質で
できた透明体部分16により構成され、透明体部分16
は光の透過と光源3及び光検出器4の保護の役割を担
う。図7は中心に光源3を一つ、その周りに同一特性の
光検出器4を四つ配置した例である。本実施例ではそれ
ぞれ同一特性の光源3及び光検出器4を複数個使用して
いる。光源3は光強度を増すために、また、光検出器4
は微弱な信号を効率よく検出するために同一特性の光源
3及び光検出器4を複数個使用し、S/N比の向上を可
能とする。光源3及び光検出器4は逆に、太径側回転構
造体2の回転軸に垂直で耳の穴側の面に設置してもよ
い。また、光源3及び光検出器4を設置する回転構造体
は断面が楕円形の構造体であってもよいことは言うまで
もない。
The signal detection block including the light source 3 and the photodetector 4 will be described in detail with reference to FIG. The small-diameter side rotating structure 1 is a portion inserted into the ear hole, and the large-diameter side rotating structure 2 is a portion serving as a stopper so as not to excessively enter the ear hole. The small-diameter rotating structure 1 is composed of a substrate portion 15 on which the light source 3 and the photodetector 4 are installed, and a transparent portion 16 made of acrylic or glass material.
Plays a role of transmitting light and protecting the light source 3 and the photodetector 4. FIG. 7 shows an example in which one light source 3 is disposed at the center and four photodetectors 4 having the same characteristics are arranged around the light source 3. In this embodiment, a plurality of light sources 3 and photodetectors 4 having the same characteristics are used. The light source 3 is used to increase the light intensity and the light detector 4
Uses a plurality of light sources 3 and photodetectors 4 having the same characteristics in order to efficiently detect a weak signal, thereby improving the S / N ratio. Conversely, the light source 3 and the photodetector 4 may be installed on the surface of the ear hole side perpendicular to the rotation axis of the large-diameter-side rotating structure 2. Needless to say, the rotating structure on which the light source 3 and the photodetector 4 are installed may be a structure having an elliptical cross section.

【0030】光源3から照射された光は、生体(耳)1
3で反射して光検出器4で検出される。太径側回転構造
体2が耳に密着し、光源3及び光検出器4が耳の穴にあ
ることにより、外気温度の影響及び迷光の影響を受け
ず、高精度な計測が可能となる。また、光は光検出器4
に入射する前に透明体16を透過するため、透明体16
の透過及び反射率を考慮した演算を行うことにより、高
精度な計測ができる。
Light emitted from the light source 3 is applied to the living body (ear) 1.
The light is reflected by 3 and detected by the photodetector 4. Since the large-diameter-side rotating structure 2 is in close contact with the ear and the light source 3 and the photodetector 4 are located in the ear holes, high-precision measurement can be performed without being affected by the outside air temperature and stray light. In addition, light is emitted from the photodetector 4.
Since the light passes through the transparent body 16 before being incident on the
By performing the calculation in consideration of the transmittance and the reflectance of the object, highly accurate measurement can be performed.

【0031】図8に本発明の第8の実施例を示す。これ
は光源3及び光検出器4の配置を換えた例である。
FIG. 8 shows an eighth embodiment of the present invention. This is an example in which the arrangement of the light source 3 and the photodetector 4 is changed.

【0032】図8を用いて光源3及び光検出器4からな
る信号検出ブロックを詳細に説明する。細径側回転構造
体1は耳の穴に挿入される部分、太径側回転構造体2は
耳の穴に入り過ぎないようにストッパーの役割をする部
分である。細径側回転構造体1は、光源3及び光検出器
4を設置する基板部分15と、アクリルやガラス材質で
できた透明体部分16により構成され、透明体部分16
は光の透過と光源3及び光検出器4の保護の役割を担
う。本実施例では光源3及び光検出器4は細径側回転構
造体1の基板15上にそれぞれ一つずつ設置してある。
The signal detection block including the light source 3 and the photodetector 4 will be described in detail with reference to FIG. The small-diameter side rotating structure 1 is a portion inserted into the ear hole, and the large-diameter side rotating structure 2 is a portion serving as a stopper so as not to excessively enter the ear hole. The small-diameter rotating structure 1 is composed of a substrate portion 15 on which the light source 3 and the photodetector 4 are installed, and a transparent portion 16 made of acrylic or glass material.
Plays a role of transmitting light and protecting the light source 3 and the photodetector 4. In the present embodiment, one light source 3 and one light detector 4 are provided on the substrate 15 of the small-diameter-side rotating structure 1, respectively.

【0033】光源3から照射された光は、生体(耳)1
3で反射して光検出器4で検出される。光源3から照射
された光は生体(耳)の例えば血管などの点から反射さ
れることを仮定し、光源3及び光検出器4は光のある反
射点を中心とした同一円周上に配置する。光源3及び光
検出器4は逆に、太径側回転構造体2の回転軸に垂直で
耳の穴側の面に設置してもよい。また、光源3及び光検
出器4を設置する回転構造体は断面が楕円形の構造体で
あってもよいことは言うまでもない。光源3が耳に密着
し、光検出器4が耳の穴にあることにより、外気温度の
影響及び迷光の影響を受けず、高精度な計測が可能とな
る。また、光は光検出器4に入射する前に透明体16を
透過するため、透明体16の透過及び反射率を考慮した
演算を行うことにより、高精度な計測ができる。
The light emitted from the light source 3 is applied to the living body (ear) 1
The light is reflected by 3 and detected by the photodetector 4. It is assumed that the light emitted from the light source 3 is reflected from a point such as a blood vessel of a living body (ear), and the light source 3 and the photodetector 4 are arranged on the same circumference centering on a certain reflection point of the light. I do. Conversely, the light source 3 and the photodetector 4 may be installed on the surface of the ear hole side perpendicular to the rotation axis of the large-diameter-side rotating structure 2. Needless to say, the rotating structure on which the light source 3 and the photodetector 4 are installed may be a structure having an elliptical cross section. Since the light source 3 is in close contact with the ear and the light detector 4 is located in the ear hole, high-precision measurement can be performed without being affected by the outside air temperature and the influence of stray light. Further, since the light passes through the transparent body 16 before entering the photodetector 4, high-precision measurement can be performed by performing an operation in consideration of the transmittance and the reflectance of the transparent body 16.

【0034】図9に本発明の第9の実施例を示す。これ
は光源3及び光検出器4の配置を換え、光源3及び光検
出器4を複数個使用した例である。
FIG. 9 shows a ninth embodiment of the present invention. This is an example in which the arrangement of the light source 3 and the photodetector 4 is changed and a plurality of the light sources 3 and the photodetectors 4 are used.

【0035】図9を用いて光源3及び光検出器4からな
る信号検出ブロックを詳細に説明する。細径側回転構造
体1は耳の穴に挿入される部分、太径側回転構造体2は
耳の穴に入り過ぎないようにストッパーの役割をする部
分である。細径側回転構造体1は、光源3及び光検出器
4を設置する基板部分15と、アクリルやガラス材質で
できた透明体部分16により構成され、透明体部分16
は光の透過と光源3及び光検出器4の保護の役割を担
う。図9は中心に光源3を一つ、その周りに同一特性の
光検出器4を四つ配置した例である。
The signal detection block including the light source 3 and the photodetector 4 will be described in detail with reference to FIG. The small-diameter side rotating structure 1 is a portion inserted into the ear hole, and the large-diameter side rotating structure 2 is a portion serving as a stopper so as not to excessively enter the ear hole. The small-diameter rotating structure 1 is composed of a substrate portion 15 on which the light source 3 and the photodetector 4 are installed, and a transparent portion 16 made of acrylic or glass material.
Plays a role of transmitting light and protecting the light source 3 and the photodetector 4. FIG. 9 shows an example in which one light source 3 is arranged at the center and four photodetectors 4 having the same characteristics are arranged around the light source 3.

【0036】光源3から照射された光は、生体(耳)1
3で反射して光検出器4で検出される。光源3から照射
された光は生体(耳)の例えば血管などの点から反射さ
れることを仮定し、光源3及び光検出器4は光のある反
射点を中心とした同一円周上に配置する。本実施例では
それぞれ同一特性の光源3及び光検出器4を複数個使用
している。光源3は光強度を増すために、また、光検出
器4は微弱な信号を効率よく検出するために同一特性の
光源3及び光検出器4を複数個使用し、S/N比の向上
を可能とする。光源3及び光検出器4は逆に、太径側回
転構造体2の回転軸に垂直で耳の穴側の面に設置しても
よい。また、光源3及び光検出器4を設置する回転構造
体は断面が楕円形の構造体であってもよいことは言うま
でもない。太径側回転構造体2が耳に密着し、光源3及
び光検出器4が耳の穴にあることにより、外気温度の影
響及び迷光の影響を受けず、高精度な計測が可能とな
る。また、光は光検出器4に入射する前に透明体16を
透過するため、透明体16の透過及び反射率を考慮した
演算を行うことにより、高精度な計測ができる。
Light emitted from the light source 3 is applied to the living body (ear) 1
The light is reflected by 3 and detected by the photodetector 4. It is assumed that the light emitted from the light source 3 is reflected from a point such as a blood vessel of a living body (ear), and the light source 3 and the photodetector 4 are arranged on the same circumference centering on a certain reflection point of the light. I do. In this embodiment, a plurality of light sources 3 and photodetectors 4 having the same characteristics are used. The light source 3 uses a plurality of light sources 3 and photodetectors 4 having the same characteristics to increase the light intensity and the photodetector 4 to detect a weak signal efficiently, thereby improving the S / N ratio. Make it possible. Conversely, the light source 3 and the photodetector 4 may be installed on the surface of the ear hole side perpendicular to the rotation axis of the large-diameter-side rotating structure 2. Needless to say, the rotating structure on which the light source 3 and the photodetector 4 are installed may be a structure having an elliptical cross section. Since the large-diameter-side rotating structure 2 is in close contact with the ear and the light source 3 and the photodetector 4 are located in the ear holes, high-precision measurement can be performed without being affected by the outside air temperature and stray light. Further, since the light passes through the transparent body 16 before entering the photodetector 4, high-precision measurement can be performed by performing an operation in consideration of the transmittance and the reflectance of the transparent body 16.

【0037】図10に本発明の第10の実施例を示す。
これはスピーカ内蔵イヤホン型無侵襲生化学計測装置で
ある。図10(a)は本実施例の全体図、図10(b),
(c)は光源3,光検出器4及びスピーカ12からなる
信号検出ブロックの拡大図である。
FIG. 10 shows a tenth embodiment of the present invention.
This is a non-invasive biochemical measurement device with built-in speaker. FIG. 10A is an overall view of the present embodiment, and FIGS.
(c) is an enlarged view of a signal detection block including the light source 3, the photodetector 4, and the speaker 12.

【0038】図10(a)を用いて本実施例の全体の構
成を説明する。半導体レーザ又はLEDよりなる光源3
を光源駆動電流供給装置5で駆動し、光源3から照射し
た光を生体(耳)13へ照射する。その透過,拡散した
光は、光を電気信号に変換する受光素子などで構成され
る光検出器4で検出し、増幅部6で増幅して、コンピュ
ータから構成される生体信号演算処理装置7に送られ
る。生体信号演算処理装置7で演算処理により吸光度や
透過特性などに変換して、その演算結果を表示装置10
に表示、また記憶装置11に記録、また音声処理回路9
を介し、スピーカ12により利用者に案内する。本実施
例は光源3,光検出器4,スピーカ12を小型にして一
つのブロックとする信号検出ブロックと、光源駆動電流
供給装置5,増幅部6,生体信号演算処理装置7,制御
部8,音声処理回路9,表示装置10,記憶装置11を
小型にして一つのブロックに納めた演算処理ブロックを
分離し、その間をフレキシブルな信号線により接続す
る。信号検出ブロック及び演算処理ブロック14を分離
することにより、被検者の時間を拘束することなしに、
被検者の生体信号を無侵襲に連続計測することができ、
また、小型にすることで携帯可能とする。
The overall configuration of the present embodiment will be described with reference to FIG. Light source 3 composed of semiconductor laser or LED
Is driven by the light source drive current supply device 5 to irradiate the light emitted from the light source 3 to the living body (ear) 13. The transmitted and diffused light is detected by a photodetector 4 composed of a light receiving element or the like for converting the light into an electric signal, amplified by an amplifying unit 6, and sent to a biological signal arithmetic processing unit 7 composed of a computer. Sent. The biological signal arithmetic processing unit 7 converts the data into absorbance, transmission characteristics, and the like by arithmetic processing, and displays the arithmetic result on the display device 10.
, Recorded in the storage device 11, and the audio processing circuit 9
Through the speaker 12 to the user. In this embodiment, a light source 3, a photodetector 4, a signal detection block which makes the speaker 12 small and forms one block, a light source driving current supply device 5, an amplifying unit 6, a biological signal arithmetic processing unit 7, a control unit 8, The audio processing circuit 9, the display device 10, and the storage device 11 are miniaturized to separate operation processing blocks housed in one block, and these are connected by flexible signal lines. By separating the signal detection block and the arithmetic processing block 14, without binding the time of the subject,
The patient's biological signals can be continuously measured non-invasively,
In addition, it is made portable by making it compact.

【0039】図10(b),(c)を用いて光源3及び
光検出器4からなる信号検出ブロックを詳細に説明す
る。図1(b)左図は細径側回転構造体1を断面17で
切った断面図、同図(c)は検出ブロックの斜視図であ
る。細径側回転構造体1は耳の穴に挿入される部分、太
径側回転構造体2は耳の穴に入り過ぎないようにストッ
パーの役割をする部分である。細径側回転構造体1は、
光源3を設置する基板部分15と、アクリルやガラス材
質でできた透明体部分16により構成され、透明体部分
16は光の透過と光検出器4の保護の役割を担う。
The signal detection block including the light source 3 and the photodetector 4 will be described in detail with reference to FIGS. 1B is a cross-sectional view of the small-diameter rotary structure 1 taken along a cross section 17, and FIG. 1C is a perspective view of a detection block. The small-diameter side rotating structure 1 is a portion inserted into the ear hole, and the large-diameter side rotating structure 2 is a portion serving as a stopper so as not to excessively enter the ear hole. The small diameter side rotating structure 1 is
It is composed of a substrate portion 15 on which the light source 3 is installed and a transparent portion 16 made of acrylic or glass material. The transparent portion 16 plays a role of transmitting light and protecting the photodetector 4.

【0040】光源3及び光検出器4は図10(b),
(c)の様に設置する。光源3は太径側回転構造体2の
回転軸に垂直で耳の穴側の面に設置し、光検出器4は細
径側回転構造体1の基板15上に設置する。光源3及び
光検出器4は逆に、光源3を細径側回転構造体1に、光
検出器4を太径側回転構造体2に設置してもよい。ま
た、光源3及び光検出器4を設置する回転構造体は断面
が楕円形の構造体であってもよいことは言うまでもな
い。基板15の内部には、スピーカ12を内蔵する。ス
ピーカ12の設置場所は耳の穴の奥に近い側が望まし
い。本実施例は細径側回転構造体1に内蔵されたスピー
カ12により、本装置の使用手順や生体信号演算処理装
置7で演算処理により変換された吸光度や透過特性など
の計測結果を利用者に案内する機能を有する。利用者に
計測結果を案内する方法は、例えば血糖値を案内する場
合、血糖値を直接音声により案内する方法や、パルス音
を用い正常な血糖値の範囲や前回計測した血糖値と比較
して血糖値が上昇して行くとパルス音の間隔を速く、下
降して行くとパルス音の間隔を遅くする方法などにより
案内する。この回転構造体1に内蔵されたスピーカ12
から利用者に計測手順及び計測結果を案内することによ
り簡単かつ便利に使用することができる。また、光源3
が耳に密着し、光検出器4が耳の穴にあることにより、
外気温度の影響及び迷光の影響を受けず、高精度な計測
が可能となる。また、光は光検出器4に入射する前に透
明体16を透過するため、透明体16の透過及び反射率
を考慮した演算を行うことにより、高精度な計測ができ
る。
The light source 3 and the light detector 4 are shown in FIG.
Install as shown in (c). The light source 3 is installed on the surface of the ear hole side perpendicular to the rotation axis of the large-diameter rotating structure 2, and the photodetector 4 is installed on the substrate 15 of the small-diameter rotating structure 1. Conversely, the light source 3 and the light detector 4 may be installed on the small-diameter rotating structure 1 and the light detector 4 may be installed on the large-diameter rotating structure 2. Needless to say, the rotating structure on which the light source 3 and the photodetector 4 are installed may be a structure having an elliptical cross section. The speaker 12 is built in the substrate 15. The speaker 12 is desirably installed on the side near the back of the ear hole. In the present embodiment, a speaker 12 built in the small-diameter-side rotating structure 1 provides a user with the use procedure of the present apparatus and measurement results such as absorbance and transmission characteristics converted by the arithmetic processing in the biological signal arithmetic processing unit 7 to the user. It has a function to guide. The method of guiding the measurement result to the user is, for example, when guiding the blood glucose level, a method of directly guiding the blood glucose level by voice, or comparing the blood glucose level with a normal blood glucose level range using the pulse sound and the previously measured blood glucose level. When the blood sugar level increases, the interval between the pulse sounds is increased, and when the blood sugar level decreases, the interval between the pulse sounds is decreased. The speaker 12 built in the rotating structure 1
By guiding the user to the measurement procedure and the measurement result, the user can use the device simply and conveniently. Light source 3
Is in close contact with the ear and the photodetector 4 is in the hole in the ear,
High-precision measurement is possible without being affected by the outside air temperature and the influence of stray light. Further, since the light passes through the transparent body 16 before entering the photodetector 4, high-precision measurement can be performed by performing an operation in consideration of the transmittance and the reflectance of the transparent body 16.

【0041】[0041]

【発明の効果】本発明によれば、外気温度の影響及び迷
光の影響による計測誤差をなくすことができ、高精度な
計測を行なうことができる。また利用者に計測手順及び
計測結果を案内することにより簡単かつ便利に使用する
ことができる無侵襲生化学計測装置を提供できる。
According to the present invention, measurement errors due to the influence of the outside air temperature and the influence of stray light can be eliminated, and highly accurate measurement can be performed. In addition, it is possible to provide a noninvasive biochemical measurement device that can be used simply and conveniently by guiding the user to measurement procedures and measurement results.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のイヤホン型無侵襲生化学計
測装置を示した概略図。
FIG. 1 is a schematic diagram showing an earphone-type noninvasive biochemical measurement device according to one embodiment of the present invention.

【図2】本発明の実施に用いるイヤホン型の信号検出ブ
ロック部の断面図および斜視図。
FIG. 2 is a cross-sectional view and a perspective view of an earphone-type signal detection block used in the embodiment of the present invention.

【図3】本発明の実施に用いるイヤホン型の信号検出ブ
ロック部の断面図および斜視図。
FIG. 3 is a cross-sectional view and a perspective view of an earphone-type signal detection block unit used in the embodiment of the present invention.

【図4】本発明の実施に用いるイヤホン型の信号検出ブ
ロック部の断面図および斜視図。
FIG. 4 is a cross-sectional view and a perspective view of an earphone-type signal detection block unit used in the embodiment of the present invention.

【図5】本発明の実施に用いるイヤホン型の信号検出ブ
ロック部の断面図および斜視図。
FIG. 5 is a cross-sectional view and a perspective view of an earphone-type signal detection block unit used in the embodiment of the present invention.

【図6】本発明の実施に用いるイヤホン型の信号検出ブ
ロック部の断面図および斜視図。
FIG. 6 is a cross-sectional view and a perspective view of an earphone-type signal detection block unit used in the embodiment of the present invention.

【図7】本発明の実施に用いるイヤホン型の信号検出ブ
ロック部の断面図および斜視図。
FIG. 7 is a cross-sectional view and a perspective view of an earphone-type signal detection block unit used in the embodiment of the present invention.

【図8】本発明の実施に用いるイヤホン型の信号検出ブ
ロック部の断面図および斜視図。
FIG. 8 is a cross-sectional view and a perspective view of an earphone-type signal detection block unit used in the embodiment of the present invention.

【図9】本発明の実施に用いるイヤホン型の信号検出ブ
ロック部の断面図および斜視図。
FIG. 9 is a cross-sectional view and a perspective view of an earphone-type signal detection block unit used in the embodiment of the present invention.

【図10】本発明の一実施例のイヤホン型無侵襲生化学
計測装置を示した概略図。
FIG. 10 is a schematic diagram showing an earphone-type noninvasive biochemical measurement device according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…回転構造体(細径側)、2…回転構造体(太径
側)、3…光源(半導体レーザもしくはLED)、4…
光検出器、5…光源駆動電流供給装置、6…増幅部、7
…生体信号演算処理装置、8…制御部、9…音声処理装
置、10…表示装置、11…記憶装置、12…スピー
カ、13…生体(耳)、14…演算処理ブロック、15
…基板、16…透明体(アクリル,ガラスなど)。
1 ... rotating structure (small diameter side), 2 ... rotating structure (large diameter side), 3 ... light source (semiconductor laser or LED), 4 ...
Photodetector, 5 ... Light source drive current supply device, 6 ... Amplifier, 7
... biological signal arithmetic processing device, 8 ... control unit, 9 ... audio processing device, 10 ... display device, 11 ... storage device, 12 ... speaker, 13 ... biological body (ear), 14 ... arithmetic processing block, 15
... substrate, 16 ... transparent body (acrylic, glass, etc.).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶山 智晴 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomoharu Kajiyama 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一つの光源,光検出器からな
り、光源から出射される光を、直接生体に照射し、その
透過,拡散,反射した光の強度を光検出器により検出
し、その検出結果に基づき、生体成分を測定する装置で
あり、光源に半導体レーザ又はLEDを用い、径の異な
る二つの回転構造体が回転軸を等しく連なった構造を持
つ回転構造体に、光源及び光検出器を設置することを特
徴とする無侵襲生化学計測装置。
A living body is directly illuminated with light emitted from a light source, and the intensity of transmitted, diffused and reflected light is detected by a photodetector, and the detection is performed. Based on the results, it is a device for measuring biological components, using a semiconductor laser or LED as a light source, a rotating structure having a structure in which two rotating structures having different diameters are connected to the rotating axis equally, a light source and a photodetector. A non-invasive biochemical measurement device characterized by installing a.
【請求項2】請求項1に記載の光源及び光検出器を設置
した径の異なる二つの回転構造体が回転軸を等しく連な
った構造を持つ回転構造体は、回転構造体の細径側を耳
の穴に挿入し、回転構造体の太径側をストッパーとし
て、生体の耳に装着して使用することを特徴とする無侵
襲生化学計測装置。
2. A rotating structure having a structure in which two rotating structures having different diameters, in which the light source and the photodetector according to claim 1 are installed, are arranged so that their rotation axes are equal. A non-invasive biochemical measurement device which is inserted into an ear hole and is used by being attached to a biological ear using a large diameter side of a rotating structure as a stopper.
【請求項3】請求項1に記載の光源は回転構造体の太径
側の回転軸に垂直な面に、光検出器は回転構造体の細径
側の回転軸に平行な面に設置する、又は逆に光源は回転
構造体の細径側の回転軸に平行な面に、光検出器は回転
構造体の太径側の回転軸に垂直な面に設置することを特
徴とする無侵襲生化学計測装置。
3. The light source according to claim 1, which is mounted on a plane perpendicular to the rotation axis on the large diameter side of the rotating structure, and the photodetector is mounted on a plane parallel to the rotation axis on the small diameter side of the rotating structure. Inversely, the light source is installed on a plane parallel to the rotation axis on the small diameter side of the rotating structure, and the photodetector is installed on a surface perpendicular to the rotation axis on the large diameter side of the rotating structure. Biochemical measurement device.
【請求項4】請求項1に記載の光源及び光検出器は回転
構造体の細径側の回転軸に平行な面に設置することを特
徴とする無侵襲生化学計測装置。
4. A non-invasive biochemical measurement apparatus, wherein the light source and the photodetector according to claim 1 are installed on a plane parallel to a rotation axis on a smaller diameter side of the rotating structure.
【請求項5】請求項1に記載の光源及び光検出器はそれ
ぞれ同一特性の光源及び光検出器を複数個設置すること
を特徴とする無侵襲生化学計測装置。
5. A non-invasive biochemical measurement apparatus according to claim 1, wherein the light source and the photodetector according to claim 1 are each provided with a plurality of light sources and photodetectors having the same characteristics.
【請求項6】請求項5に記載の複数個使用する光源及び
光検出器の設置方法は、一つの光源の光出射点を中心と
する同一円周上に複数個の光検出器を設置することを特
徴とする無侵襲生化学計測装置。
6. A method for installing a plurality of light sources and light detectors according to claim 5, wherein the plurality of light detectors are installed on the same circumference centering on the light emission point of one light source. A non-invasive biochemical measurement device, characterized in that:
【請求項7】請求項1に記載の回転構造体はスピーカを
内蔵して、計測手順及び計測結果を利用者に案内する機
構を設けることを特徴とする無侵襲生化学計測装置。
7. The non-invasive biochemical measurement apparatus according to claim 1, wherein the rotating structure has a built-in speaker and a mechanism for guiding a measurement procedure and a measurement result to a user.
JP8197290A 1996-07-26 1996-07-26 Non-invasion biological measuring instrument Pending JPH1033511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8197290A JPH1033511A (en) 1996-07-26 1996-07-26 Non-invasion biological measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8197290A JPH1033511A (en) 1996-07-26 1996-07-26 Non-invasion biological measuring instrument

Publications (1)

Publication Number Publication Date
JPH1033511A true JPH1033511A (en) 1998-02-10

Family

ID=16372012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8197290A Pending JPH1033511A (en) 1996-07-26 1996-07-26 Non-invasion biological measuring instrument

Country Status (1)

Country Link
JP (1) JPH1033511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209775B2 (en) 2003-05-09 2007-04-24 Samsung Electronics Co., Ltd. Ear type apparatus for measuring a bio signal and measuring method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209775B2 (en) 2003-05-09 2007-04-24 Samsung Electronics Co., Ltd. Ear type apparatus for measuring a bio signal and measuring method therefor

Similar Documents

Publication Publication Date Title
US4509522A (en) Infrared optical measurement of blood gas concentrations and fiber optic catheter
JP3579686B2 (en) Measuring position reproducing method, measuring position reproducing device, and optical measuring device using the same
US5218207A (en) Using led harmonic wavelengths for near-infrared quantitative
US9915608B2 (en) Optical sensor for determining the concentration of an analyte
JPH07505215A (en) Method and device for measuring glucose concentration
US20130041237A1 (en) Living body information measuring apparatus
CN101969838B (en) Apparatus and method for non-invasive measurement of the concentration of a substance in subject's blood
JPH0347099B2 (en)
CN101969837B (en) Apparatus and method using light retro-reflected from a retina to non-invasively measure the blood concentration of a substance
JP2001503999A (en) Measurement of tissue analytes by infrared
US5151590A (en) Photoacoustic cell and photoacoustic measuring device
JPH0558735B2 (en)
CA2331996A1 (en) Apparatus and method for noninvasive glucose measurement
JPH11506652A (en) Active pulse blood component monitoring system
JPH03114441A (en) Method and apparatus for determining similarity of organism material to be analyzed by model made of known organism fluid
US6928311B1 (en) Compact device for measuring, tissue analytes
JPH11183377A (en) Optical content meter
JPH09308623A (en) Non-invasive biochemical measuring instrument
WO2005120361A1 (en) Living body information measuring instrument, standard element, and method of using living body information measuring instrument
JPH1080416A (en) Noninvasive biochemical measurement instrument
US4624572A (en) Non-invasive reflectance spectrophotometric apparatus
JPH1033511A (en) Non-invasion biological measuring instrument
JPH09187442A (en) Non-invasion biochemical sensor
JP2002065645A (en) Non-invasive blood sugar measuring device
JPH10305025A (en) Non-infiltrative biological measuring instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees