JPH10330734A - Silicon carbide composited silicon nitride abrasive and its preparation - Google Patents

Silicon carbide composited silicon nitride abrasive and its preparation

Info

Publication number
JPH10330734A
JPH10330734A JP9160602A JP16060297A JPH10330734A JP H10330734 A JPH10330734 A JP H10330734A JP 9160602 A JP9160602 A JP 9160602A JP 16060297 A JP16060297 A JP 16060297A JP H10330734 A JPH10330734 A JP H10330734A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon carbide
abrasive
grain size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9160602A
Other languages
Japanese (ja)
Inventor
Hideyuki Tomita
秀幸 富田
Misao Iwata
美佐男 岩田
Kenji Ito
健二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP9160602A priority Critical patent/JPH10330734A/en
Publication of JPH10330734A publication Critical patent/JPH10330734A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low-cost silicon carbide composite silicon nitride abrasive having high hardness and being useful in high performance precision grinding. SOLUTION: This material is prepared by mixing 60-92 wt.% silicon nitride powder having a mean crystal grain diameter of 1 μm or below with 3-10 wt.% Al2 O3 having a mean crystal grain diameter of 1 μm or below and, at least one rare earth oxide and Y2 O3 , and 5-30 wt.% silicon carbide powder having a mean crystal grain diameter of 1 μm or below and firing the mixture and has a Vickers hardness of above 22 GPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【0002】本発明は、研削砥石、研磨布紙等として利
用される炭化珪素複合窒化珪素質研磨材及びその製法に
関するものである。
[0002] The present invention relates to a silicon carbide composite silicon nitride based abrasive used as a grinding wheel, abrasive cloth or the like, and a method for producing the same.

【0003】[0003]

【従来の技術】窒化珪素焼結体は、耐熱性、耐摩耗性、
耐食性、破壊靭性等に優れていることから、金属材料に
代わる構造材料として期待され目覚ましい発展を遂げて
いる。例えば、構造材料として使用することを目的とし
て、破壊靱性の向上を目的に窒化珪素特有の柱状結晶を
成長させる技術に注力され、柱状結晶を制御することで
高強度、高靱性を実現した窒化珪素が開発されている
(「組織制御によるSi34セラミックスの多様化」窒
化珪素セラミックス(2)135〜146頁)。
2. Description of the Related Art A silicon nitride sintered body has heat resistance, wear resistance,
Because of its excellent corrosion resistance, fracture toughness, etc., it is expected to be used as a structural material in place of metal materials, and has achieved remarkable development. For example, silicon nitride focused on technology for growing columnar crystals peculiar to silicon nitride for the purpose of improving fracture toughness for the purpose of using it as a structural material, and achieving high strength and high toughness by controlling the columnar crystals (“Diversification of Si 3 N 4 ceramics by controlling the structure”, silicon nitride ceramics (2), pages 135 to 146).

【0004】しかし、研磨材として必要な硬度に注目す
ると、結晶粒の成長は結晶間距離を遠ざけて結晶間結合
力を低下させるため、他の特性値程優れた値となってい
ない。ビッカース硬度はせいぜい18GPa程度であ
り、アルミナ焼結体より若干低い。そのため、研削砥石
や研磨布紙等に使用される高硬度の研磨材としては、従
来の窒化珪素焼結体では性能が不十分で、アルミナ質、
炭化珪素質が使用されている。
However, when attention is paid to the hardness required as an abrasive, the growth of crystal grains is not as excellent as other characteristic values, because the distance between the crystals is increased to reduce the intercrystalline bonding force. Vickers hardness is at most about 18 GPa, which is slightly lower than that of the alumina sintered body. Therefore, as a high-hardness abrasive used for a grinding wheel, abrasive cloth, etc., the performance of a conventional silicon nitride sintered body is insufficient, and alumina,
Silicon carbide is used.

【0005】また、近年のより高精度の精密研削加工に
対応するための超硬度研磨材として、ダイヤモンド、立
方晶窒化ホウ素(cBN)の使用が増加してきている。
Further, in recent years, diamond and cubic boron nitride (cBN) have been increasingly used as ultra-hard abrasives for higher precision grinding.

【0006】アルミナ質の研磨材の硬度は、精密研削加
工に対応するには不十分であり、炭化珪素質の研磨材
は、鉄と反応し易いため鉄を含んだ被削材に使用できな
いという重大な欠点がある。一方、ダイヤモンド、立方
晶窒化ホウ素(cBN)は、超硬度研磨材としての性能
は十分であるが、アルミナ質、炭化珪素質といった一般
研磨材に比ベ価格が100〜200倍と非常に高価であ
る。そのため、精密研削加工にも十分対応できる一般研
磨材の改良、開発が熱望されている。
[0006] The hardness of the alumina-based abrasive is insufficient to cope with precision grinding, and the silicon-carbide-based abrasive is liable to react with iron and cannot be used as a work material containing iron. There are serious drawbacks. On the other hand, diamond and cubic boron nitride (cBN) have a sufficient performance as a super-hard abrasive, but are very expensive, 100 to 200 times as expensive as general abrasives such as alumina and silicon carbide. is there. Therefore, improvement and development of general abrasives that can sufficiently cope with precision grinding are desired.

【0007】かかる状況において、本願発明者はすで
に、窒化けい素粉末にアルミナ、希土類酸化物から選択
される焼結助剤粉末を添加して、これを成形、圧潰、焼
成した研摩材を開発し、これを研削砥石等に利用した場
合、精密研削加工特に湿式研削において従来の一般砥粒
では到底達成できない著しく高い研削比を実現できる旨
を開示している(特開平3−287687)。
Under these circumstances, the present inventor has already developed an abrasive obtained by adding a sintering aid powder selected from alumina and rare earth oxides to silicon nitride powder, molding, crushing and firing. It is disclosed that when this is used for a grinding wheel or the like, an extremely high grinding ratio, which cannot be achieved with conventional general abrasive grains, can be realized in precision grinding, particularly wet grinding (Japanese Patent Laid-Open No. 3-287687).

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の発明
(特開平3−287687)をさらに改良して、高硬度
を有することにより高性能な精密研削加工に有用で、か
つ低コストを実現する炭化珪素複合窒化珪素質研磨材、
及びその製造方法を提供することを課題とする。
The present invention is a further improvement of the above invention (Japanese Patent Application Laid-Open No. 3-287687), which has high hardness and is useful for high-performance precision grinding, and realizes low cost. Silicon carbide composite silicon nitride abrasive,
And a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記の発明
(特開平3−287687)を改良するために鋭意検討
を重ねた結果、窒化珪素粉末に、A123粉末及び希土
類酸化物粉末の1種類以上と、Y23粉末と、さらに炭
化珪素粉末とを混合、焼成した焼結体が、高い硬度を有
することを見出し、これを発明として完成させた。
The present inventors Means for Solving the Problems], the above invention (Japanese Patent Laid-Open 3-287687) As a result of intensive studies in order to improve, the silicon nitride powder, A1 2 0 3 powder and rare earth oxides It has been found that a sintered body obtained by mixing and firing one or more kinds of powder, Y 2 O 3 powder, and further silicon carbide powder has high hardness, and has completed this invention.

【0010】すなわち、本発明による炭化珪素複合窒化
珪素質研磨材は、窒化珪素を主体とし、補助成分として
A123及び希土類酸化物の1種類以上とY23とを含
み、さらに炭化珪素を構成成分として本質上有し、ビッ
カース硬度が22GPaより大きいことを特徴とする。
特に、1μm以下の平均結晶粒径を有する窒化珪素粉末
が60〜92重量%、1μm以下の平均結晶粒径を有す
るA123及び希土類酸化物の1種類以上とY23が3
〜10重量%、1μm以下の平均結晶粒径を有する炭化
珪素粉末が5〜30重量%(好ましくは10〜20重量
%)、の成分比で混合され焼成されたことを特徴とす
る。
[0010] Namely, the present invention according carbide composite silicon nitride abrasive silicon nitride as a main component, and a one or more and Y 2 O 3 of A1 2 0 3 and rare earth oxide as an auxiliary component, further carbonized It is essentially characterized by having silicon as a constituent and having a Vickers hardness of greater than 22 GPa.
In particular, 60 to 92 wt% silicon nitride powder having an average grain size below 1 [mu] m, A1 2 0 3 and one or more rare earth oxides having an average grain size below 1 [mu] m and Y 2 O 3 is 3
It is characterized in that silicon carbide powder having an average crystal grain size of 1 to 10% by weight is mixed and fired at a component ratio of 5 to 30% by weight (preferably 10 to 20% by weight).

【0011】この場合、焼成温度は1500〜1800
℃で焼成でき、さらに1550〜1750℃が好まし
く、より好ましくは1700℃以下、1600℃以上が
好ましい。焼成条件は加圧焼成によって行われることが
好ましい。
In this case, the firing temperature is 1500 to 1800
It can be fired at a temperature of 1550C, more preferably 1550C to 1750C, and more preferably 1700C or lower and 1600C or higher. The firing conditions are preferably performed by pressure firing.

【0012】さらに、炭化珪素複合窒化珪素質研磨材は
1μm以下の微細組織を有することを特徴とする。
Further, the silicon carbide composite silicon nitride abrasive has a microstructure of 1 μm or less.

【0013】[0013]

【発明の実施の形態】本発明の新規な炭化珪素複合窒化
珪素質研磨材を得るにあたり、補助成分、即ち焼結助剤
としてAl23 (アルミナ)及び希土類酸化物から選
択される成分一種以上と、Y23(イットリア)とを合
わせて3重量%(以下「%」という)以上となるように
添加する。希土類酸化物としては、Nd、Pr、Ce、
Gdその他の希土類酸化物(原子番号57〜71のラン
タノイド)の酸化物ないしこれらの混合物を用いること
ができる。一方、この助剤の添加によっても精密研削加
工用の研磨材として充分な高温高強度、高硬度を有し得
ることが必要である。そのため、補助成分(焼結助剤)
の合計量は10%以下とする。特に、アルミナ対イット
リアの比は約1対1とすることが好ましい。アルミナ対
イットリア1:1とすることが好ましく、(Si34
Al23+Y23)3成分内の比において、夫々1〜1
0%が好ましく、3〜8%がより好ましく、4〜5%が
最も好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In obtaining a novel silicon carbide composite silicon nitride based abrasive of the present invention, an auxiliary component, that is, a component selected from Al 2 O 3 (alumina) and a rare earth oxide as a sintering aid. The above and Y 2 O 3 (yttria) are added so that the total amount is 3% by weight (hereinafter referred to as “%”) or more. Rare earth oxides include Nd, Pr, Ce,
Oxides of Gd and other rare earth oxides (lanthanoids with atomic numbers 57 to 71) or mixtures thereof can be used. On the other hand, even with the addition of this auxiliary agent, it is necessary that the abrasive can have sufficient high temperature, high strength and high hardness as an abrasive for precision grinding. Therefore, auxiliary components (sintering aids)
Is 10% or less. In particular, the ratio of alumina to yttria is preferably about 1: 1. It is preferable that the ratio of alumina to yttria be 1: 1, (Si 3 N 4 +
Al 2 O 3 + Y 2 O 3 )
0% is preferable, 3 to 8% is more preferable, and 4 to 5% is most preferable.

【0014】さらに本発明の炭化珪素複合窒化珪素質研
磨材を得るために、炭化珪素を5%以上添加することが
好ましい。炭化珪素の有意量の添加によって、焼結体の
硬度を増大させることができ、ビッカース硬度22GP
aより大とすることができる。一方、炭化珪素の量が多
すぎると、窒化珪素との熱膨張率の違いの影響から構造
欠陥が生じるため、炭化珪素の量は30%以下とする。
炭化珪素は10〜25%が好ましく、10〜20%が特
に好ましい。窒化珪素は、Si34+Al23+Y23
三成分の比において、80〜98%が好ましく、より好
ましくは84〜94%、最も好ましくは88〜90%の
比とする。
Further, in order to obtain the silicon carbide composite silicon nitride based abrasive of the present invention, it is preferable to add 5% or more of silicon carbide. By adding a significant amount of silicon carbide, the hardness of the sintered body can be increased, and the Vickers hardness is 22GP.
It can be larger than a. On the other hand, if the amount of silicon carbide is too large, structural defects occur due to a difference in the coefficient of thermal expansion from silicon nitride, so the amount of silicon carbide is set to 30% or less.
Silicon carbide is preferably from 10 to 25%, particularly preferably from 10 to 20%. Silicon nitride is Si 3 N 4 + Al 2 O 3 + Y 2 O 3
The ratio of the three components is preferably 80 to 98%, more preferably 84 to 94%, and most preferably 88 to 90%.

【0015】この原料粉末の平均結晶粒径は、主成分た
る窒化珪素、副成分たるAl23及び希土類酸化物、Y
23、炭化珪素のいずれについても1μm以下とされ
る。これによって得られる炭化珪素複合窒化珪素質焼結
粒が1μm以下の微細結晶構造となり、これが研摩材と
して高い研削比を発現する。原料粉末の平均粒径は、好
ましくは 0.2〜 0.4μmがよい。
The average crystal grain size of this raw material powder is as follows: silicon nitride as a main component, Al 2 O 3 and a sub-component
Each of 2 O 3 and silicon carbide has a thickness of 1 μm or less. The resulting silicon carbide composite silicon nitride-based sintered grains have a fine crystal structure of 1 μm or less, and exhibit a high grinding ratio as an abrasive. The average particle size of the raw material powder is preferably 0.2 to 0.4 μm.

【0016】原料混合後の成形は、公知の種々の方法、
例えば加圧成形、スリップキャスティングを目的に応じ
て選択して使用できる。冷間成形品はその後かつ焼成前
に圧潰される。従って、成形物の形状についても塊状、
シ―ト状更にはひも状など特に問わない。
The molding after mixing the raw materials can be performed by various known methods,
For example, pressure molding and slip casting can be selected and used according to the purpose. The cold formed article is subsequently crushed and before firing. Therefore, the shape of the molded product is massive,
There is no particular limitation on the shape of a sheet or a string.

【0017】成形物は、研磨材として適した粒径に略相
当する粒径まで粉砕(圧潰)される。鋼の精密研削の場
合、例えば250μm〜350μm(#60〜#80)程度
にすることが好ましい。
The molded product is pulverized (crushed) to a particle size substantially corresponding to a particle size suitable as an abrasive. In the case of precision grinding of steel, for example, it is preferably about 250 μm to 350 μm (# 60 to # 80).

【0018】この粉砕物を焼成するにあたり、各粉末に
均一な圧力をかけ、かつ砥粒として所期の粒度の焼結粒
を得るため、固体の圧媒を混在させる。この固体圧媒と
しては低硬度で反応性が低くかつ安価な六方晶窒化ホウ
素(hBN) が好ましく、その平均粒径は特に限定さ
れないが1〜5μm(さらには3.5μm以下、ないし
2μm以下)が好ましく、その混在量は上記粉砕物に対
して80〜120重量%程度にするとよい。焼成方法と
しては常圧焼結、加圧焼結のいずれでもよいが、焼結性
を高めて高密度、高硬度の研磨材を得るためには、加圧
焼結即ちホットプレス(HP)焼結、静水圧ホットプレ
ス(HIP) 焼結、或いは所定の窒素分圧(例えば9
kg/cm2以上)で行なう雰囲気加圧焼結が好ましい。
焼成温度は窒化珪素の粒成長を防止する見地から170
0℃以下とすることが好ましい。
In firing the pulverized material, a solid pressure medium is mixed in order to apply uniform pressure to each powder and obtain sintered particles having desired particle size as abrasive particles. As the solid pressure medium, hexagonal boron nitride (hBN) having low hardness, low reactivity and low cost is preferable, and its average particle size is not particularly limited, but is 1 to 5 μm (further, 3.5 μm or less, or 2 μm or less). It is preferable that the mixed amount is about 80 to 120% by weight based on the above pulverized material. The sintering method may be either normal pressure sintering or pressure sintering. However, in order to increase the sinterability and obtain a high-density, high-hardness abrasive, pressure sintering, that is, hot pressing (HP) sintering, is employed. Sintering, isostatic hot pressing (HIP) sintering, or a predetermined nitrogen partial pressure (for example, 9
kg / cm 2 ).
The firing temperature is 170 from the viewpoint of preventing the growth of silicon nitride grains.
The temperature is preferably set to 0 ° C. or lower.

【0019】こうして得られた炭化珪素複合窒化珪素質
焼結粒は1μm以下、特に0.2〜0.5μm程度の極
微細な平均結晶粒径を有する多結晶体であり、液相焼結
によって助剤を主たる構成成分とする粒界相が存在す
る。この粒界相は例えばSi34−nY23−mAl2
3で表わされる化合物からなる結晶相や、窒化ガラス
等のガラス相となって存在する。
The silicon carbide composite silicon nitride-based sintered particles thus obtained are polycrystals having an extremely fine average crystal grain size of 1 μm or less, particularly about 0.2 to 0.5 μm. There is a grain boundary phase mainly composed of an auxiliary. This grain boundary phase is, for example, Si 3 N 4 —nY 2 O 3 —mAl 2
It exists as a crystal phase composed of the compound represented by O 3 or a glass phase such as nitrided glass.

【0020】なお、本発明では成形物を焼結する前に予
め圧潰し、固体圧媒の存在下で焼結させるため、焼結体
を、例えば200〜300μm程度の粒径の極めて緻密
な焼結粒として得ることができる。そのため、高破壊エ
ネルギを要する焼結体の粉砕を、別途行う必要はない。
In the present invention, the compact is crushed in advance before sintering and sintered in the presence of a solid pressurized medium. Therefore, the sintered body is sintered very densely with a particle size of, for example, about 200 to 300 μm. It can be obtained as aggregates. Therefore, it is not necessary to separately pulverize the sintered body that requires high breaking energy.

【0021】かかる炭化珪素複合窒化珪素質研磨材を用
い、慣用の方法に従って研削砥石、研摩布紙を製造す
る。本発明の目的である精密研削加工用の研削砥石とし
て一般的なビトリファイド砥石を製造する場合、焼成温
度約1000℃のガラス質結合剤を使用するとよい。こ
うして得られた研削砥石は、従来の一般研摩材(アルミ
ナ質、炭化珪素質)を用いてなる研削砥石に比して同等
以上の研削性能を有する。被削材としては金属一般に適
用でき、特に耐熱合金や超工具鋼に対して有効である。
炭化珪素を成分として含んでいるが、鉄に対しても本研
磨材が溶着しにくいことは勿論である。
Using the silicon carbide composite silicon nitride-based abrasive, a grinding wheel and abrasive cloth are manufactured according to a conventional method. When manufacturing a general vitrified grinding wheel as a grinding wheel for precision grinding, which is the object of the present invention, it is preferable to use a vitreous binder having a firing temperature of about 1000 ° C. The grinding wheel thus obtained has a grinding performance equal to or higher than that of a grinding wheel using conventional general abrasives (alumina, silicon carbide). As a work material, it can be applied to metals in general, and is particularly effective for heat-resistant alloys and super tool steels.
Although it contains silicon carbide as a component, it is needless to say that the present abrasive is difficult to weld to iron.

【0022】[0022]

【実施例】【Example】

[第1実施例]第1実施例として、以下の原料を、以下
の調合割合で混合した。 使用原料 窒化珪素:宇部興産(株)E−10(平均粒径0・3μm) 焼結助剤:住友化学(株)A123 (平均粒径0・4μm) 三菱化成(株)Y23 (平均粒径0・8μm) 炭化珪素:イビデン(株)UltraFine(平均粒径0.3μm) 原料の調合割合 Si34:A123: Y23:SiC =81: 4.5:4.5:10(重量%)
[First Example] As a first example, the following raw materials were mixed at the following mixing ratio. Using raw silicon nitride: (Ube Industries, Ltd.) E-10 (average particle size 0 · 3 [mu] m) Sintering: Sumitomo Chemical (Co.) A1 2 0 3 (average particle size 0 · 4 [mu] m) Mitsubishi Chemical (Co.) Y 2 0 3 (average particle size 0 · 8 [mu] m) silicon carbide: Ibiden (Ltd.) UltraFine (average particle size 0.3 [mu] m) blended proportion of the raw material Si 3 N 4: A1 2 0 3: Y 2 0 3: SiC = 81: 4 5.5: 4.5: 10 (% by weight)

【0023】上記の原料組成からなる混合物40gを、
直方体金型(底面60mm×25mm)に入れ面圧30
0kg/cm2で一軸プレスして予備成形し、該成形物を
冷間静水圧加圧成形(C.I.P.)用のビニ―ル袋の
中につめ、脱気して真空パックを施した。そして、真空
パックの袋ごと2000kg/cm2の圧力をかけC.
I.P.した。
40 g of a mixture comprising the above-mentioned raw material composition was
Put into a rectangular parallelepiped mold (bottom 60 mm x 25 mm) and have a surface pressure of 30
The molded product is preformed by uniaxial pressing at 0 kg / cm 2 , and the molded product is packed in a vinyl bag for cold isostatic pressing (CIP), evacuated, and a vacuum pack is formed. gave. Then, a pressure of 2000 kg / cm 2 was applied to each of the bags of the vacuum pack, and C.I.
I. P. did.

【0024】C.I.P.後、当該成形物をビニ―ル袋
より取り出し、アルミナ乳鉢等で圧潰し、所望の粒径に
ふるい分けた。選別する粒径は、250〜350μmと
した。最終的に200〜300μm程度の粒径の研磨材
を得るため、焼成による収縮を見込んだものである。
C. I. P. Thereafter, the molded product was taken out of the plastic bag, crushed in an alumina mortar or the like, and sieved to a desired particle size. The particle size to be selected was 250 to 350 μm. In order to finally obtain an abrasive having a particle size of about 200 to 300 μm, shrinkage due to firing is expected.

【0025】この所望の粒径にふるい分けた成形粉末
と、圧媒としての平均粒径3.5μmの六方晶窒化ホウ
素(hBN)粉末とを、各100gづつ混合した。この
混合粉体を直方体黒鉛型(底面90mm×50mm)に
充てんし、これをホットプレス焼成炉(富士電波工業
(株)製)にセットして13℃/minの昇温速度で160
0℃迄加熱し、同温度で一軸機械加圧力 400kg/c
m2をかけ、60分間加圧焼成した。その後、5℃/min
の降温速度で1000℃迄降温し、以降室温まで放冷し
た。
The molding powder sieved to the desired particle size and hexagonal boron nitride (hBN) powder having an average particle size of 3.5 μm as a pressure medium were mixed in an amount of 100 g each. This mixed powder is filled in a rectangular parallelepiped graphite mold (bottom surface 90 mm x 50 mm), and the hot press firing furnace (Fuji Denki Kogyo Co., Ltd.)
(Manufactured by Co., Ltd.) at a heating rate of 13 ° C./min.
Heat to 0 ℃, uniaxial mechanical pressure 400kg / c at the same temperature
m 2 and baked under pressure for 60 minutes. Then 5 ℃ / min
The temperature was lowered to 1000 ° C. at the temperature lowering rate, and then allowed to cool to room temperature.

【0026】次いで、当該焼成体をアルミナ乳鉢で軽く
粉砕した。六方晶窒化ホウ素(hBN)は反応性が低い
ため、粉砕は容易である。その後、ふるい分けによっ
て、さらに超音波洗浄器での洗浄によって、六方晶窒化
ホウ素(hBN)を完全に除去した。洗浄には水を用い
てもよいが、洗浄剤を用いるのが好ましい。洗浄した焼
結粒は、乾燥機にて乾燥して完全に水分を除去し、ふる
い分けによって平均250μm(#60程度)の粒子を
選別して第1実施例の研磨材とした。
Next, the fired body was lightly ground in an alumina mortar. Since hexagonal boron nitride (hBN) has low reactivity, it is easy to grind. After that, hexagonal boron nitride (hBN) was completely removed by sieving and further washing with an ultrasonic cleaner. Although water may be used for washing, it is preferable to use a detergent. The washed sintered particles were dried in a drier to completely remove water, and particles having an average of 250 μm (about # 60) were selected by sieving to obtain an abrasive of the first embodiment.

【0027】この研磨材は、平均結晶粒径0.5μmの
微結晶の構造組織(微細組織)を有し、ビッカ―ス硬度
は24GPaであった。比較のため、炭化珪素を含まな
い組成(重量%比で、Si34:A123:Y23=9
0:5:5)について、上記工程に従って作製された研
磨材を比較例1とし、さらに比較例1と同様の組成であ
って焼成温度を変えた研磨材を比較例2として、これら
のビッカース硬度を表1に示す。
This abrasive had a microcrystalline structure (fine structure) having an average crystal grain size of 0.5 μm, and had a Vickers hardness of 24 GPa. For comparison, a composition (weight% ratio that does not contain silicon carbide, Si 3 N 4: A1 2 0 3: Y 2 0 3 = 9
0: 5: 5), the Vickers hardness of these abrasives was determined as Comparative Example 1, and the abrasives having the same composition as Comparative Example 1 but having different firing temperatures were defined as Comparative Example 2. Are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】上記第1実施例の研磨材を用いてビトリフ
ァイド研削砥石(第1研削砥石とする)を作製し、一
方、上記比較例1、比較例2、さらに従来より公知の溶
融型アルミナ単結晶研磨材(太平洋ランダム(株)製;32
A)、焼結型アルミナ多結晶研磨材(3M製;Cubitron
321)を用いた研削砥石(比較研削砥石1〜4とす
る)をも作成した。具体的には、研削砥石は、砥粒8
8.1重量部にセラミック結合剤成分11.9重量部、
デキストリンを3.1重量部加え混合した後、加圧して
成形密度1.88g/cm3に成形した。次に、この焼成
前の生の砥石を電気炉において50℃/Hrで1000℃
迄加熱した。セラミック質結合剤は長石と粘土とフリッ
トガラスで成るものを用いた。焼成後の研削砥石は、研
磨材(砥粒)47.2体積%、結合剤8.9体積%であ
った。表2に研削試験用砥石の性状を示す。尚、砥石の
寸法は外径178mm×厚み12.7mm×内径76.
2mmとした。
A vitrified grinding wheel (referred to as a first grinding wheel) was prepared using the abrasive of the first embodiment. On the other hand, the comparative examples 1 and 2 and a conventionally known fused alumina single crystal were prepared. Abrasives (Pacific Random Co., Ltd .; 32
A), Sintered alumina polycrystalline abrasive (3M; Cubitron)
321) was also prepared (comparative grinding wheels 1 to 4). Specifically, the grinding wheel is composed of abrasive grains 8
8.1 parts by weight of ceramic binder component 11.9 parts by weight,
After adding and mixing 3.1 parts by weight of dextrin, the mixture was pressurized to form a molding density of 1.88 g / cm 3 . Next, the raw whetstone before firing is heated at 50 ° C./Hr in an electric furnace at 1000 ° C.
Until heated. The ceramic binder used was composed of feldspar, clay and frit glass. The grindstone after firing was 47.2% by volume of the abrasive (abrasive) and 8.9% by volume of the binder. Table 2 shows the properties of the grinding test whetstone. The dimensions of the grindstone were 178 mm in outer diameter × 12.7 mm in thickness × 76.
It was 2 mm.

【0030】[0030]

【表2】 [Table 2]

【0031】次に、この表2の研削砥石について、研削
試験を行なった。研削試験条件は次の通りである。 機械 : 岡本平研CFG−52AN 砥石周速: 2000m/min 切込み : ΔR20μm/pass の乾式プランジダウンカット 被削材 : SKD−1(HRC60:工具鋼) (寸法 ): 長さ100×高さ50×幅10(mm) (被削幅): 100mm ドレス : 単石ドレッサー
Next, a grinding test was performed on the grinding wheels shown in Table 2. The grinding test conditions are as follows. Machine: Okamoto TairaKen CFG-52AN grindstone peripheral speed: 2000 m / min cut: Δ R 20μm / pass dry plunge cut down Workpiece: SKD-1 (HRC60: tool steel) (dimension): Length 100 × height 50 x width 10 (mm) (cut width): 100mm Dress: single stone dresser

【0032】この結果を表3に示す。Table 3 shows the results.

【0033】[0033]

【表3】 [Table 3]

【0034】表3から明らかな様に、炭化珪素を添加し
ない以外は実施例と同一の成分比として作製した窒化珪
素質研磨材(比較例1)を使用した比較研削砥石1と比
較しても1.7倍の研削比が得られる。
As is clear from Table 3, even when compared with the comparative grinding wheel 1 using the silicon nitride abrasive (Comparative Example 1) produced with the same component ratio as in the example except that silicon carbide was not added. A grinding ratio of 1.7 times is obtained.

【0035】さらに、構造材料を目的に結晶粒を成長さ
せた従来の窒化珪素質研磨材、公知の溶融型アルミナ単
結晶研磨材(32A)、焼結型アルミナ多結晶研磨材
(Cubitron 321)を使用した比較研削砥石2〜4と
比べると、4〜10倍もの研削比が得られる。
Further, a conventional silicon nitride abrasive having crystal grains grown for the purpose of structural material, a known fused alumina single crystal abrasive (32A), and a sintered alumina polycrystalline abrasive (Cubitron 321) are used. As compared with the comparative grinding wheels 2 to 4 used, a grinding ratio of 4 to 10 times can be obtained.

【0036】[第2〜4実施例]さらに、上記第1実施
例と同様の原料を、以下の調合割合で混合して第2実施
例、第3実施例、及び第4実施例を作成した。 第2実施例の原料の調合割合 Si34:A123:Y23:SiC=85.5:4.
75:4.75:5重量% 第3実施例の原料の調合割合 Si34:A123:Y23:SiC=72:4:4:
20重量% 第4実施例の原料の調合割合 Si34:A123:Y23:SiC=63:3.5:
3.5:30重量%
[Second to Fourth Embodiments] Further, the same raw materials as in the first embodiment were mixed at the following mixing ratios to prepare the second, third and fourth embodiments. . Formulation ratio of the raw material of the second embodiment Si 3 N 4: A1 2 0 3: Y 2 0 3: SiC = 85.5: 4.
75: 4.75: 5 wt% third formulation ratio of the raw material of Example Si 3 N 4: A1 2 0 3: Y 2 0 3: SiC = 72: 4: 4:
Formulation proportion of 20 wt% raw materials fourth embodiment Si 3 N 4: A1 2 0 3: Y 2 0 3: SiC = 63: 3.5:
3.5: 30% by weight

【0037】上記の原料組成からなる混合物40gを、
第1実施例と同様の方法で、成形、圧潰、焼成、粉砕、
洗浄して研磨材とし、ビトリファイド研削砥石を作成し
て、研削試験を行った。各条件は、上記した第1実施例
の場合と同様である。研磨材の硬度について表4に、研
削砥石の研削比について表5に、それぞれ第1実施例の
結果と併せて示す。
40 g of the mixture having the above-mentioned raw material composition was
Forming, crushing, firing, crushing,
After washing to obtain an abrasive, a vitrified grinding wheel was prepared and a grinding test was performed. Each condition is the same as in the first embodiment. Table 4 shows the hardness of the abrasive, and Table 5 shows the grinding ratio of the grinding wheel, together with the results of the first embodiment.

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】表4、表5から明らかな様に、第2実施
例、第3実施例、及び第4実施例はいずれも、第1実施
例と同様に研磨材として高い性能を実現している。
As is clear from Tables 4 and 5, all of the second, third, and fourth embodiments achieve high performance as an abrasive similarly to the first embodiment. .

【0041】[第5実施例]SiC添加量とビッカース
硬度の関係を調べるため、Si34、Al23、Y23
の比を90:5:5wt%に保ち、その混合物に、0〜
33wt%のSiCを表6に示すとおり配合して、その
他第1実施例と同様にして研磨材を製造し、ビッカース
硬度を測定した。その結果を表6に示す。
Fifth Embodiment In order to examine the relationship between the amount of added SiC and Vickers hardness, Si 3 N 4 , Al 2 O 3 , and Y 2 O 3 were used.
Is maintained at 90: 5: 5 wt%, and the mixture
33% by weight of SiC was blended as shown in Table 6, and an abrasive was produced in the same manner as in the first example, and Vickers hardness was measured. Table 6 shows the results.

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【発明の効果】本発明によって、高硬度で微細な結晶を
もつ緻密な炭化珪素複合窒化珪素質研磨材が得られる。
かかる研磨材を用いてなる研削砥石は、耐熱合金等から
成る工具、ダイス等の精密研削に好適に利用でき、従来
の研削砥石と比較してきわめて優れた性能を示す。従っ
て、精密研削において、大変高価な超硬度研磨材に代わ
れる研磨材として極めて有用である。特に本発明はSi
C成分を含有するにも拘わらず、工具鋼等の難削性鉄基
鋼の研削に有効であることが判明した。このことは驚く
べきことである。
According to the present invention, a dense silicon carbide composite silicon nitride abrasive having high hardness and fine crystals can be obtained.
A grinding wheel using such an abrasive can be suitably used for precision grinding of tools, dies, and the like made of heat-resistant alloys and the like, and exhibits extremely excellent performance as compared with conventional grinding wheels. Therefore, in precision grinding, it is extremely useful as a polishing material to replace a very expensive super-hard polishing material. In particular, the present invention relates to Si
Despite containing the C component, it was found to be effective for grinding hard-to-cut iron-based steel such as tool steel. This is surprising.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施例の製法を示すフロ―チャ
―トである。
FIG. 1 is a flowchart showing a manufacturing method according to an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 健二 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kenji Ito 3-36 Noritake Shinmachi, Nishi-ku, Nagoya-shi, Aichi Prefecture Noritake Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を主体とし、補助成分としてA1
23及び希土類酸化物の1種類以上とY23とを含み、
さらに炭化珪素を構成成分として本質上有し、ビッカー
ス硬度が22GPaより大きいことを特徴とする炭化珪
素複合窒化珪素質研磨材。
1. A method according to claim 1, wherein the main component is silicon nitride, and A1
2 0 3 and includes a one or more and Y 2 O 3 of a rare earth oxide,
Furthermore, a silicon carbide composite silicon nitride-based abrasive characterized by essentially having silicon carbide as a constituent component and having a Vickers hardness of greater than 22 GPa.
【請求項2】1μm以下の平均結晶粒径を有する窒化珪
素粉末が60〜92重量%、1μm以下の平均結晶粒径
を有するA123及び希土類酸化物の1種類以上とY2
3が3〜10重量%、1μm以下の平均結晶粒径を有
する炭化珪素粉末が5〜30重量%、である成分比で混
合され、焼成されたことを特徴とする炭化珪素複合窒化
珪素質研磨材。
2. A 1μm or less in average crystal grain size of silicon nitride powder 60 to 92 wt% with one or more A1 2 0 3 and rare earth oxide having an average grain size below 1μm and Y 2
A silicon carbide composite silicon nitride material characterized in that O3 is mixed at a component ratio of 3 to 10% by weight, silicon carbide powder having an average crystal grain size of 1 [mu] m or less at 5 to 30% by weight, and fired. Abrasive material.
【請求項3】1μm以下の微細組織を有する請求項1ま
たは請求項2に記載の炭化珪素複合窒化珪素質研磨材。
3. The silicon carbide composite silicon nitride based abrasive according to claim 1, which has a microstructure of 1 μm or less.
【請求項4】請求項1から3のいずれかの研磨材を用い
てなることを特徴とする研磨砥石または研磨布紙。
4. A polishing whetstone or abrasive cloth made by using the abrasive according to claim 1.
【請求項5】1μm以下の平均結晶粒径を有する窒化珪
素粉末が60〜92重量%、1μm以下の平均結晶粒径
を有するA123及び希土類酸化物の1種類以上とY2
3が3〜10重量%、1μm以下の平均結晶粒径を有
する炭化珪素粉末が5〜30重量%、の成分比で混合
し、該混合物を焼成することを特徴とする炭化珪素複合
窒化珪素質研磨材の製造方法。
5. 1μm or less in average crystal grain size of silicon nitride powder 60 to 92 wt% with one or more A1 2 0 3 and rare earth oxide having an average grain size below 1μm and Y 2
A silicon carbide composite silicon nitride characterized in that silicon carbide powder having an O 3 content of 3 to 10% by weight and an average crystal grain size of 1 μm or less is mixed at a component ratio of 5 to 30% by weight, and the mixture is fired. Method for producing high quality abrasives.
【請求項6】焼成温度が、1700℃以下であることを
特徴とする請求項5に記載の炭化珪素複合窒化珪素質研
磨材の製造方法。
6. The method according to claim 5, wherein the firing temperature is 1700 ° C. or less.
【請求項7】焼成を、加圧焼成によって行うことを特徴
とする請求項5または請求項6に記載の炭化珪素複合窒
化珪素質研磨材の製造方法。
7. The method for producing a silicon carbide composite silicon nitride based abrasive according to claim 5, wherein the firing is performed by pressure firing.
JP9160602A 1997-06-03 1997-06-03 Silicon carbide composited silicon nitride abrasive and its preparation Withdrawn JPH10330734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9160602A JPH10330734A (en) 1997-06-03 1997-06-03 Silicon carbide composited silicon nitride abrasive and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9160602A JPH10330734A (en) 1997-06-03 1997-06-03 Silicon carbide composited silicon nitride abrasive and its preparation

Publications (1)

Publication Number Publication Date
JPH10330734A true JPH10330734A (en) 1998-12-15

Family

ID=15718500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9160602A Withdrawn JPH10330734A (en) 1997-06-03 1997-06-03 Silicon carbide composited silicon nitride abrasive and its preparation

Country Status (1)

Country Link
JP (1) JPH10330734A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US8840695B2 (en) 2011-12-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8986409B2 (en) 2011-06-30 2015-03-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9017439B2 (en) 2010-12-31 2015-04-28 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9238768B2 (en) 2012-01-10 2016-01-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
JP2016026903A (en) * 2011-12-30 2016-02-18 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article, and forming method therefor
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9457453B2 (en) 2013-03-29 2016-10-04 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
US9566689B2 (en) 2013-12-31 2017-02-14 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10711171B2 (en) 2015-06-11 2020-07-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017439B2 (en) 2010-12-31 2015-04-28 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US8986409B2 (en) 2011-06-30 2015-03-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9598620B2 (en) 2011-06-30 2017-03-21 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9303196B2 (en) 2011-06-30 2016-04-05 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
US8840695B2 (en) 2011-12-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US10428255B2 (en) 2011-12-30 2019-10-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US9765249B2 (en) 2011-12-30 2017-09-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
JP2016026903A (en) * 2011-12-30 2016-02-18 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article, and forming method therefor
US11649388B2 (en) 2012-01-10 2023-05-16 Saint-Gobain Cermaics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9771506B2 (en) 2012-01-10 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11859120B2 (en) 2012-01-10 2024-01-02 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having an elongated body comprising a twist along an axis of the body
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9567505B2 (en) 2012-01-10 2017-02-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US10106715B2 (en) 2012-01-10 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9238768B2 (en) 2012-01-10 2016-01-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US10364383B2 (en) 2012-01-10 2019-07-30 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11142673B2 (en) 2012-01-10 2021-10-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9676980B2 (en) 2012-01-10 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
US9688893B2 (en) 2012-05-23 2017-06-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9428681B2 (en) 2012-05-23 2016-08-30 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10000676B2 (en) 2012-05-23 2018-06-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11148254B2 (en) 2012-10-15 2021-10-19 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11154964B2 (en) 2012-10-15 2021-10-26 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10286523B2 (en) 2012-10-15 2019-05-14 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9676982B2 (en) 2012-12-31 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US10179391B2 (en) 2013-03-29 2019-01-15 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9457453B2 (en) 2013-03-29 2016-10-04 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US10668598B2 (en) 2013-03-29 2020-06-02 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563106B2 (en) 2013-09-30 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US11091678B2 (en) 2013-12-31 2021-08-17 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9566689B2 (en) 2013-12-31 2017-02-14 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US10597568B2 (en) 2014-01-31 2020-03-24 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US10351745B2 (en) 2014-12-23 2019-07-16 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11926780B2 (en) 2014-12-23 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10358589B2 (en) 2015-03-31 2019-07-23 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10711171B2 (en) 2015-06-11 2020-07-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11549040B2 (en) 2017-01-31 2023-01-10 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles having a tooth portion on a surface
US11932802B2 (en) 2017-01-31 2024-03-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles comprising a particular toothed body
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same

Similar Documents

Publication Publication Date Title
JPH10330734A (en) Silicon carbide composited silicon nitride abrasive and its preparation
JP2779252B2 (en) Silicon nitride sintered abrasive and its manufacturing method
JP2671945B2 (en) Superplastic silicon carbide sintered body and method for producing the same
JPH10113875A (en) Super abrasive grain abrasive grindstone
JP3262301B2 (en) Silica carbide wire sintered abrasive particles and method for producing the same
WO1995003370A1 (en) Silicon carbide grain
JP2011131379A (en) Grinding tool and method of manufacturing the same
EP0428621A4 (en) Method of preparing abrasive articles
EP1019338B1 (en) A method for producing abrasive grains and the abrasive grains produced by this method
US4944773A (en) Bonded abrasive tools with combination of finely microcrystalline aluminous abrasive and a superabrasive
JPS61201751A (en) High hardness sintered body and its manufacture
JP5340028B2 (en) Cutting tools
KR102011586B1 (en) Polycrystalline abrasive structure
JPH1087371A (en) Silicon nitride cutting tool material
JP2972487B2 (en) Sintered composite abrasive grits, their production and use
WO1989002344A1 (en) Bonded abrasive
EP0492161B1 (en) Cubic boron nitride/cubic boron nitride composite masses and their preparation
JPH1095671A (en) Dense sintered compact, its production and substrate composed of the sintered compact for producing hard disk memory
JPS62251077A (en) Vitrifide grinding element
JP4110338B2 (en) Cubic boron nitride sintered body
JPH0577730B2 (en)
JP3050371B2 (en) Superabrasive grindstone and method of manufacturing the same
Onishi et al. Fabrication of porous cast-iron bonded diamond grinding wheels and their evaluation to grind hard-to-grind ceramics
JP2779041B2 (en) Alumina sintered abrasive with microcrystalline structure to which chromium oxide is added and its manufacturing method
JPH11335175A (en) Cubic boron nitride sintered compact

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803