JPH103302A - Method for controlling model prediction - Google Patents

Method for controlling model prediction

Info

Publication number
JPH103302A
JPH103302A JP15507396A JP15507396A JPH103302A JP H103302 A JPH103302 A JP H103302A JP 15507396 A JP15507396 A JP 15507396A JP 15507396 A JP15507396 A JP 15507396A JP H103302 A JPH103302 A JP H103302A
Authority
JP
Japan
Prior art keywords
control
prediction
change
amount
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15507396A
Other languages
Japanese (ja)
Inventor
Masami Takano
正心 高野
Masaya Murakami
賢哉 村上
Tomoji Sugano
智司 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp filed Critical Fuji Electric Co Ltd
Priority to JP15507396A priority Critical patent/JPH103302A/en
Publication of JPH103302A publication Critical patent/JPH103302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize model prediction control where desired responsiveness is provided with few calculation loads by dividing controlled variable into the one with quick change and the one with slow change and executing the thinning of a prediction time concerning the latter so as to incorporate it in an evaluation function. SOLUTION: The manipulate variable of a controlled object 1 is adopted as u1 and u2 and its controlled variable is as yF and yS. High-speed response is required in yF but convergence is executed to a set value by slow response in yS. A controlled variable predicting means 2 calculates the past values of yF and yS and the prediction value pre-fixed portions yF*' and yS*' of yF and yS based on the past values of change quantities >=u1 and Δu2 in manipulated variable. The dimension of yF' is the number of sampling times within a prediction section. Since yS' is thinned, its dimension becomes aboust 1/K as compared with a case without thinning. A manipulated variable change quantity optimizing means 3 substitutes the obtained prediction value pre-fixed portions of yF and yS for the evaluation function so as to obtain the future values of the manipulated variable change quantities by applying a min. square method algorithm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業システムの制
御の分野で、従来のモデル予測制御では計算負荷が大き
いために、利用可能なコントローラの資源では制御の実
現が困難な制御系へのモデル予測制御の適用に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of control of industrial systems. The present invention relates to a model for a control system in which it is difficult to realize control using available controller resources due to a large calculation load in conventional model predictive control. Related to the application of predictive control.

【0002】[0002]

【従来の技術】従来、PID制御等の簡単な制御方式で
は不可能な高度な制御性能の実現の手段として、モデル
予測制御がプロセス制御の分野を中心に実用に供されて
いる。モデル予測制御は制御対象の動特性モデルに基づ
き入出力変数の未来値に関し、評価関数Jを数1のよう
に定めて、これを最小化する操作量を最適化計算を行っ
て求めている。なお、以下では制御量を予測ならびに評
価する時間区間を予測区間と呼び、操作量の最適化の対
象とする時間区間を操作区間と呼ぶ。
2. Description of the Related Art Conventionally, model predictive control has been put to practical use mainly in the field of process control as a means for realizing high control performance which cannot be achieved by a simple control method such as PID control. In the model predictive control, an evaluation function J is determined as shown in Expression 1 with respect to future values of input / output variables based on a dynamic characteristic model of a control target, and an operation amount for minimizing the evaluation function J is obtained by performing an optimization calculation. In the following, a time section in which the control amount is predicted and evaluated is referred to as a prediction section, and a time section in which the operation amount is optimized is referred to as an operation section.

【0003】[0003]

【数1】 ここで、ri ’は予測区間における設定値のサンプリン
グ周期毎の未来値を並べて構成するベクトル、yi ’は
制御量yi の予測区間におけるサンプリング周期毎の予
測値を並べて構成するベクトル、Δui ’は操作量の変
化量の操作区間におけるサンプリング周期毎の未来値を
並べて構成するベクトル、Weiは制御偏差の大きさに課
す重み係数、Wuiは操作量変化量の大きさに課す重み係
数、iは各変数番号、N y は制御量の数、N u は操作量
の数、である。
(Equation 1) Here, r i ′ is a vector configured by arranging the future values of the set values in the prediction section for each sampling cycle, y i ′ is a vector configured by arranging the predicted values of the control amount y i for each sampling cycle in the prediction section, Δu i 'is a vector constructed by arranging the future value of each sampling period in the operation amount of the change amount of the operation section, W ei weighting factor imposed on the magnitude of the control deviation, W ui the weight imposed on the magnitude of the operating amount change amount The coefficient, i is each variable number, Ny is the number of control amounts, and Nu is the number of operation amounts.

【0004】予測区間は現時刻以降の時間領域に設定す
る。操作区間の始点は現時刻とし、操作区間終点以後は
操作量はホールドするものとする。記号|…|はノルム
(つまり大きさ)を表し、ユークリッドノルム等が用い
られる。制御系の応答は、予測区間と操作区間および重
み係数を適当な値に設定するか、操作量変化量の重み係
数は0として、外部から与えられた設定値と現時刻の制
御量の値に基づいて設定する内部的な設定値(参照軌道
と呼ぶ)の設定の仕方と予測区間、操作区間および制御
偏差の重み係数を適当に定めることにより調整する。
[0004] The prediction section is set in a time region after the current time. The start point of the operation section is the current time, and the operation amount is held after the end point of the operation section. The symbol | ... | represents a norm (that is, size), and a Euclidean norm or the like is used. For the response of the control system, the prediction section, the operation section, and the weight coefficient are set to appropriate values, or the weight coefficient of the manipulated variable change amount is set to 0, and the set value given from the outside and the value of the control amount at the current time are used. The adjustment is performed by appropriately setting an internal setting value (referred to as a reference trajectory) to be set on the basis of the setting value and appropriately setting a weighting coefficient of a prediction section, an operation section, and a control deviation.

【0005】[0005]

【発明が解決しようとする課題】従来のモデル予測制御
では、全ての制御量の予測区間内の全てのサンプリング
時刻における制御偏差、つまり設定値と制御量の差を評
価関数に組み込んで最適化計算を行っている。制御変数
の数、あるいは予測区間内のサンプリングステップ数が
多くなるほど、最適化計算の規模が大きくなり、実現の
ために必要なコントローラの資源(メモリ領域、処理能
力など)が多く必要となる。そのため高価なハードウェ
アが必要、あるいは利用可能な資源では事実上実現が不
可能となり、適用範囲が制限される。
In the conventional model predictive control, a control deviation at all sampling times in a prediction section of all control amounts, that is, a difference between a set value and a control amount is incorporated into an evaluation function to perform optimization calculation. It is carried out. As the number of control variables or the number of sampling steps in the prediction section increases, the scale of the optimization calculation increases, and the resources (memory area, processing capacity, etc.) of the controller required for realization are increased. This requires expensive hardware or is virtually impossible to implement with available resources, limiting its scope.

【0006】本発明はこれらの課題を解決するためのも
ので、少ない計算負荷で所望の応答性を有するモデル予
測制御を実現することを目的とする。
The present invention has been made to solve these problems, and has as its object to realize a model predictive control having a desired responsiveness with a small calculation load.

【0007】[0007]

【課題を解決するための手段】本発明による方法では、
制御量を変化の速いものと、緩慢なものに分ける。前者
については従来の方法と同様に評価関数に組み込み、後
者に関しては予測時刻の間引きを行って評価関数に組み
入れる。つまり、評価関数を数2のように設定する。
According to the method of the present invention,
The control amount is divided into those that change quickly and those that change slowly. The former is incorporated into the evaluation function as in the conventional method, and the latter is thinned out at the predicted time and incorporated into the evaluation function. That is, the evaluation function is set as shown in Expression 2.

【0008】[0008]

【数2】 ここで、rFi’は変化の速い制御量yFiに対し与えられ
る設定値の予測区間における1サンプリング周期毎の予
定値を並べて構成するベクトル、yFi’は変化の速い制
御量yFiの予測区間における1サンプリング周期毎の予
測値を並べて構成するベクトル、rSi’は変化の緩慢な
制御量ySiに対し与えられる設定値の予測区間における
kサンプリング周期毎の予定値を並べて構成するベクト
ル、ySi’は変化の緩慢な制御量ySiの予測区間におけ
るkサンプリング周期毎の予測値を並べて構成するベク
トル、Δui ’は操作量の変化量の操作区間におけるサ
ンプリング周期毎の未来値を並べて構成するベクトル、
Fei は変化の速い制御量の制御偏差の大きさに課す重
み係数、WSei は変化の緩慢な制御量の制御偏差の大き
さに課す重み係数、Wui は操作量変化量の大きさに課
す重み係数、iは各変数番号、N yfは変化の速い制御量
の数、N ySは変化の緩慢な制御量の数、N u は操作量の
数、kはyFi、ySiの応答の速さに応じ適当に定める整
数である。
(Equation 2) Here, r Fi ′ is a vector configured by arranging scheduled values for each sampling period in the prediction section of the set value given to the fast-changing control amount y Fi , and y Fi ′ is a prediction of the fast-changing control amount y Fi A vector configured by arranging predicted values for each sampling cycle in the section, r Si ′ is a vector configured by arranging scheduled values for k sampling cycles in a prediction section of a set value given for a control amount y Si that changes slowly, y Si ′ is a vector configured by arranging predicted values for each k sampling periods in the prediction section of the slowly changing control amount y Si , and Δu i ′ is a vector arranging future values for each sampling cycle in the operation section of the operation amount change amount The constituent vectors,
W Fei weighting factor imposed on the size of the fast control amount of the control deviation of change, W Sei weighting factor imposed on the magnitude of the control deviation of the slow control the amount of change, the magnitude of the Wu i is MV change amount weighting factors impose, i is the variable number, N yf is the number of fast control amount of change, N yS is the number of slow control the amount of change, N u is the number of manipulated variables, k is y Fi, response y Si Is an integer appropriately determined according to the speed of

【0009】予測区間は現時刻以降の時間領域に設定す
る。操作区間の始点は現時刻とし、操作区間終点以後は
操作量はホールドするものとする。記号|…|はノルム
を表しユークリッドノルムなどを用いる。制御量を設定
値に収束させるという制御目的に適合していれば、その
他のノルムを採用しても良い。以後の展開は従来のモデ
ル予測制御と同様である。制御系の特性は重み係数W
Fei 、WSei 、Wuiを変えることにより調整する。
[0009] The prediction section is set in a time region after the current time. The start point of the operation section is the current time, and the operation amount is held after the end point of the operation section. Symbols... | Represent norms, such as Euclidean norms. Other norms may be employed as long as they are suitable for the control purpose of converging the control amount to the set value. The subsequent development is the same as that of the conventional model predictive control. The characteristic of the control system is the weight coefficient W
Adjust by changing Fei , W Sei and W ui .

【0010】数2より、制御量yFiは予測区間内の全サ
ンプリング時刻の制御偏差が評価されるので、従来のモ
デル予測制御と同様の作用により制御偏差が抑制され、
設定値に収束する。一方、ySiはkステップ毎の値しか
評価の対象にならないので、間引かれた時刻で制御偏差
が大きくなるような場合にこれを抑制するような作用は
得られない。しかし、ySiの変化は緩慢なので、間引か
れた時刻の制御偏差とkステップ毎の評価関数に組み入
れられた時刻の制御偏差の差は小さい。したがって、k
ステップ毎の時刻の制御偏差が小さくなれば、間引かれ
た時刻の制御偏差も小さくなる。このため、当該の制御
量に関しては、kステップ毎の時刻の値で代表させて制
御偏差を評価することができる。こうして、当該変数の
応答性も他の制御量と同様に調整が可能となる。一方、
以上により、評価関数に組み入れる変数の数は間引きに
より少なくなるので、最適化計算の規模が小さくなり、
制御実現のための計算負荷が小さくなる。
[0010] From Equation 2, the control deviation of all the sampling times in the prediction section is evaluated for the control amount y Fi, so that the control deviation is suppressed by the same operation as the conventional model prediction control.
It converges to the set value. On the other hand, y Si is k since only values for each step not subject to evaluation, the effect that suppresses this if the control deviation at the time decimated such increase is not obtained. However, since the change in y Si is slow, the difference between the control deviation at the thinned time and the control deviation at the time incorporated in the evaluation function for each k steps is small. Therefore, k
If the control deviation at the time for each step is small, the control deviation at the thinned time is also small. For this reason, the control deviation can be evaluated with respect to the control amount by representing the value of the time at every k steps. Thus, the responsiveness of the variable can be adjusted in the same manner as the other control amounts. on the other hand,
As described above, since the number of variables to be incorporated in the evaluation function is reduced by thinning, the scale of the optimization calculation is reduced,
The calculation load for realizing control is reduced.

【0011】[0011]

【発明の実施の形態】図1に本発明の実施例を示す。制
御対象1の操作量をu1 、u2 とし、制御量をyF 、y
S とする。yF には高速の応答が要求されているが、y
S はゆるやかな応答で設定値に収束すればよく、これを
急激に変化させることは過大な操作を行うこととなり、
これは経済上あるいは安全上好ましくないものとする。
また、yS 自身、緩慢な動特性しか有さないものとす
る。
FIG. 1 shows an embodiment of the present invention. The operation amounts of the control target 1 are u 1 and u 2 , and the control amounts are y F and y
S. Although the y F fast response is required, y
S only needs to converge to the set value with a gentle response, and suddenly changing this will result in an excessive operation,
This is undesirable for economic or safety reasons.
It is also assumed that y S itself has only slow dynamic characteristics.

【0012】このような制御対象1に対し、制御量予測
手段2と操作量変化量最適化手段3と操作量算出手段4
を制御装置上に実現し、モデル予測制御系を構成する。
制御量予測手段2では、yF 、yS の過去値および、操
作量の変化量Δu1 、Δu2 の過去値に基づくyF 、y
S の予測値既定分yF*’、yS*’を算出する。この演算
は数3の第2項に基づいて行う。
For such a controlled object 1, control amount predicting means 2, operation amount change amount optimizing means 3, and operation amount calculating means 4
Is implemented on the control device to constitute a model predictive control system.
The control amount predicting means 2, y F, past values and the y S, the operation amount of the variation Δu 1, y F based on historical values of Delta] u 2, y
Predicted value of S default content y F * ', y S * ' is calculated. This calculation is performed based on the second term of Expression 3.

【0013】[0013]

【数3】 ここで、yF * は未来値の予測に必要なyF の現時刻の
値と過去値を並べて構成するベクトル、yS * は未来値
の予測に必要なyS の現時刻の値と過去値を並べて構成
するベクトル、Δu1 * 、Δu2 * は未来値の予測に必
要なu1 、u2 の変化量(当該時刻と前時刻の値の差)
の過去値を並べて構成するベクトル、yF ’は予測区間
内yF の予測値を並べて構成するベクトル、yS ’は予
測区間内yS の予測値を並べて構成するベクトル、Δu
1 ’、Δu2 ’はu1 、u2 の変化量の操作区間内の未
来(現時刻を含む)値を並べて構成するベクトル、であ
る。
(Equation 3) Here, y F * is a vector configured by arranging the current time value and the past value of y F necessary for predicting the future value, and y S * is the current time value and the past value of y S required for predicting the future value. The vectors, Δu 1 * and Δu 2 * , arranged by arranging the values are the change amounts of u 1 and u 2 required for predicting the future value (difference between the value of the relevant time and the value of the previous time).
Of vectors constituting side by side past values, y F 'is a vector which constitutes side by side a prediction value of the prediction interval in y F, y S' is a vector constructed by arranging a prediction value of the prediction interval in y S, Delta] u
1 ′ and Δu 2 ′ are vectors configured by arranging future (including the current time) values in the operation section of the change amounts of u 1 and u 2 .

【0014】yF ’の次元は予測区間内のサンプリング
時刻の数であるが、yS ’は間引きをしているので、そ
の次元は間引きを行わない場合の約1/kとなる。
1 、G2 、F1 、F2 は制御対象1のモデルに基づい
て定まる定数行列で、G1 とF1 は従来のモデル予測制
御と同じ方法で求まり、G2 とF2 は従来のモデル予測
制御と同じ方法で得た行列からk行毎に行を抜き取って
得られる。したがって、制御量予測手段2におけるyS
の予測値既定分yS*’を得るための計算量は、従来のモ
デル予測制御の約1/kとなる。
The dimension of y F ′ is the number of sampling times in the prediction section, but since y S ′ is thinned out, its dimension is about 1 / k of that when no thinning is performed.
G 1 , G 2 , F 1 , and F 2 are constant matrices determined based on the model of the control target 1. G 1 and F 1 are obtained by the same method as the conventional model predictive control, and G 2 and F 2 are the conventional ones. It is obtained by extracting rows every k rows from a matrix obtained in the same manner as in model predictive control. Therefore, y S in the control amount prediction means 2
Calculation amount for obtaining a predicted value default content y S * 'is about 1 / k of the conventional model predictive control.

【0015】操作量変化量最適化手段3では、以上によ
り得られたyF 、yS の予測値既定分を数4の評価関数
に代入し、最小2乗法のアルゴリズムを適用して操作量
変化量の未来値ΔU’=〔Δu1 T Δu2 T T
求める。
The manipulated variable change amount optimizing means 3 substitutes the predetermined values of the predicted values of y F and y S obtained above into the evaluation function of Equation 4, and applies an algorithm of the least squares method to change the manipulated variable. The future value of the quantity ΔU ′ = [Δu 1T Δu 2T ] T is obtained.

【0016】[0016]

【数4】 ここで、rF ’はyF に対する予測区間内の設定値未来
値をyF ’に対応させて並べて構成するベクトル、
S ’はyS に対する予測区間内の設定値未来値を
S ’に対応させて並べて構成するベクトル、yF*
S*’は制御量予測手段2で数3の第2項により求めた
予測区間内の予測値既定分を並べて構成するベクトル、
である。
(Equation 4) Here, r F 'is a set value future value in the prediction interval for y F y F' constituting side by side in correspondence with the vector,
r S 'is a set value future value in the prediction interval for y S y S' vectors constituting side by side so as to correspond to, y F * '
y S * ′ is a vector configured by arranging predetermined values of predicted values in the prediction section obtained by the control amount predicting means 2 by the second term of Expression 3;
It is.

【0017】数4の第2項の( ) 内の次元が従来のモデ
ル予測制御の約1/kとなるので、最小2乗法による計
算の規模もそれに応じて小さくなる。重みWFe、WSe
u1、Wu2は計算機によるシミュレーションを行って調
整する。操作量算出手段4では、ΔU’の中の現時刻分
を前ステップのu1 、u2 に加算し、現時刻におけるu
1 、u2 を算出する。これを制御対象1に与える。
Since the dimension in the parentheses of the second term in Equation 4 is about 1 / k of the conventional model predictive control, the scale of calculation by the least squares method is correspondingly reduced. Weights W Fe , W Se ,
W u1 and W u2 are adjusted by performing a computer simulation. The operation amount calculating means 4 adds the current time in ΔU ′ to u 1 and u 2 of the previous step, and calculates u at the current time.
1, to calculate the u 2. This is given to the control target 1.

【0018】なお、制御量予測手段2と操作量変化量最
適化手段3は一体化して実現してもよい。
The control amount predicting means 2 and the manipulated variable change amount optimizing means 3 may be integrally realized.

【0019】[0019]

【発明の効果】以上のように、制御量を変化の速いもの
と緩慢なものに分け、後者の予測時刻の間引きを行うこ
とにより、モデル予測制御の予測および最適化計算の規
模を小さくでき、コントローラの計算負荷を低減するこ
とができる。
As described above, by dividing the control amount into a fast change and a slow change, and by thinning out the latter prediction time, it is possible to reduce the scale of the prediction and optimization calculation of the model prediction control. The calculation load on the controller can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す構成図FIG. 1 is a block diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…制御対象、2…制御量予測手段、3…操作量変化量
最適化手段、4…操作量算出手段。
DESCRIPTION OF SYMBOLS 1 ... Control target, 2 ... Control amount prediction means, 3 ... Operation amount change amount optimization means, 4 ... Operation amount calculation means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅野 智司 東京都日野市富士町1番地 富士ファコム 制御株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomoji Kanno 1 Fujimachi, Hino-shi, Tokyo Fujifacom Control Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】他の変数の応答に比べ緩慢なモードしか持
たない制御量を有する多変数制御系のモデル予測制御方
法において、当該制御量以外の各制御量の1サンプリン
グ周期毎の制御偏差未来値の大きさと、当該制御量の複
数サンプリング周期毎の制御偏差未来値の大きさと、現
時刻以後の操作量の変化量の大きさとの加重和を評価関
数とし、これを最小化する操作量を制御対象の動特性モ
デルより導出した予測式に基づく最適化計算により算出
することを特徴としたモデル予測制御方法
In a model predictive control method for a multivariable control system having a control amount having only a mode slower than the response of another variable, a control deviation of each control amount other than the control amount for each sampling cycle is obtained. The weighted sum of the magnitude of the value, the magnitude of the control deviation future value for each of a plurality of sampling cycles of the control quantity, and the magnitude of the change amount of the manipulated variable after the current time is used as an evaluation function, and the manipulated variable that minimizes this is the Model predictive control method characterized by calculation by optimization calculation based on prediction formula derived from dynamic characteristic model of controlled object
JP15507396A 1996-06-17 1996-06-17 Method for controlling model prediction Pending JPH103302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15507396A JPH103302A (en) 1996-06-17 1996-06-17 Method for controlling model prediction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15507396A JPH103302A (en) 1996-06-17 1996-06-17 Method for controlling model prediction

Publications (1)

Publication Number Publication Date
JPH103302A true JPH103302A (en) 1998-01-06

Family

ID=15598070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15507396A Pending JPH103302A (en) 1996-06-17 1996-06-17 Method for controlling model prediction

Country Status (1)

Country Link
JP (1) JPH103302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194960A (en) * 2011-02-28 2012-10-11 Fujitsu Ltd Matrix generation program, method, and device, and plant control program, method, and device
JP2013137628A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Model prediction control method and model prediction control program
JP2016053824A (en) * 2014-09-03 2016-04-14 株式会社国際電気通信基礎技術研究所 Drive system
KR20160128036A (en) * 2015-04-28 2016-11-07 한국과학기술정보연구원 Apparatus and method for predicting computer simulation necessary resource

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194960A (en) * 2011-02-28 2012-10-11 Fujitsu Ltd Matrix generation program, method, and device, and plant control program, method, and device
JP2013137628A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Model prediction control method and model prediction control program
JP2016053824A (en) * 2014-09-03 2016-04-14 株式会社国際電気通信基礎技術研究所 Drive system
KR20160128036A (en) * 2015-04-28 2016-11-07 한국과학기술정보연구원 Apparatus and method for predicting computer simulation necessary resource

Similar Documents

Publication Publication Date Title
US4663703A (en) Predictive model reference adaptive controller
US5404289A (en) Controller apparatus having improved transient response speed by means of self-tuning variable set point weighting
JPH08505973A (en) Multivariate predictive control method using range control method
KR20040070399A (en) A Being Most Suitable Gain Selection Method of PID Controller
JPH10509542A (en) Model predictive control apparatus and method
JPH0786783B2 (en) Furnace temperature controller by adjusting input
Maggiore et al. A separation principle for a class of non-UCO systems
WO2020148808A1 (en) Control device for power converter
US5988848A (en) Method and arrangement for adapting a sliding mode fuzzy controller
Mendes et al. Self-tuning PID controllers in pursuit of plug and play capacity
JP3061450B2 (en) Model predictive controller
JPH103302A (en) Method for controlling model prediction
JP5581528B1 (en) Control parameter determination apparatus, method, and program, and controller and optimization control system
JP3852072B2 (en) Hydraulic servo type material testing machine
Insperger et al. Increasing the accuracy of digital force control process using the act-and-wait concept
Döll et al. A robust self-scheduled missile autopilot: design by multi-model eigenstructure assignment
Puralachetty et al. Comparison of different optimization algorithms with two stage initialization for PID controller tuning in automatic voltage regulator system
Robert et al. Synthesis of a sampling period dependent controller using LPV approach
JPS60142404A (en) Constituting method of control system
JPH0272404A (en) Deciding method for membership function
CN110707967A (en) Self-adaptive control method of brushless direct current motor
JP7409343B2 (en) Controller, control method and control program
JPS62241002A (en) Auto-tuning controller
JP2775968B2 (en) Process control equipment
JPH09217701A (en) Vibration control method for structure