JPH10325797A - Measuring apparatus for concentration of fluid - Google Patents

Measuring apparatus for concentration of fluid

Info

Publication number
JPH10325797A
JPH10325797A JP13492097A JP13492097A JPH10325797A JP H10325797 A JPH10325797 A JP H10325797A JP 13492097 A JP13492097 A JP 13492097A JP 13492097 A JP13492097 A JP 13492097A JP H10325797 A JPH10325797 A JP H10325797A
Authority
JP
Japan
Prior art keywords
light
fluid
concentration
pipe
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13492097A
Other languages
Japanese (ja)
Inventor
Kazuo Nakajima
和男 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP13492097A priority Critical patent/JPH10325797A/en
Publication of JPH10325797A publication Critical patent/JPH10325797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring apparatus by which the concentration of a fluid as a sample can be measured with good accuracy according to the property of the fluid. SOLUTION: A first measuring body 21a, a second measuring body 21b and a third measuring body 21c are connected to a treatment-liquid supply pipe 6 via couplings 20 and intermediation pipes 6a at prescribed intervals in a direction in which a treatment liquid flows. Light transmission parts 22 in which the length of the optical path of light to be transmitted is made different are installed at them. According to a concentration which is set by a concentration setting device, a first optical-path changeover mechanism 15 is changed over, only one out of the light transmission parts 22 at the first, second and third measuring bodies 21a, 21b, 21c is irradiated with light from a light source, and the light which is transmitted through the light transmission part 22 is incident on a photodetector 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウエハなどの基
板を処理するために薬液と純水とを混合した処理液や薬
液等の各種の流体の濃度を測定する流体濃度測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid concentration measuring device for measuring the concentration of various kinds of fluids such as a treatment solution obtained by mixing a chemical solution and pure water or a chemical solution for treating a substrate such as a semiconductor wafer.

【0002】[0002]

【従来の技術】従来の流体濃度測定装置では、例えば、
特開平8−78380号公報に示すように構成されてい
た。
2. Description of the Related Art In a conventional fluid concentration measuring device, for example,
It was configured as shown in JP-A-8-78380.

【0003】すなわち、まず、所定の光路長を有すると
ともに試料となる流体である処理液を流す試料セルと、
純水を充填した参照セルとを設け、それらの試料セルと
参照セルとに光源からの光を光分岐部を介して照射し、
その試料セルおよび参照セルのそれぞれを透過した光を
光路切換部を介して光検出器に入射する。
That is, first, a sample cell having a predetermined optical path length and flowing a processing liquid which is a fluid serving as a sample,
A reference cell filled with pure water is provided, and the sample cell and the reference cell are irradiated with light from a light source through a light branching unit,
Light transmitted through each of the sample cell and the reference cell is incident on a photodetector via an optical path switching unit.

【0004】光検出器では、試料セルおよび参照セルを
透過した光を検出して透過光強度に応じた信号を出力す
る。そして、その信号をランベルト−ベール(Lambert-
Beer)の法則に従い、下記のような吸光度Aの関係式に
よって処理し、処理液の濃度を測定する。
[0004] The photodetector detects light transmitted through the sample cell and the reference cell and outputs a signal corresponding to the transmitted light intensity. And the signal is Lambert-Veil (Lambert-
According to Beer's law, treatment is performed by the following relational expression of absorbance A, and the concentration of the treatment solution is measured.

【0005】吸光度A=log(IO /I)−log(IO /I
S ) =ε・d・C IO :処理液に透過する前の光強度、I:処理液を透過
した後の透過光強度、IS :溶媒(純水)を透過した後
の光強度、ε:吸光係数(比例定数)、d:透過光路の
長さ、C:濃度
Absorbance A = log (I O / I) −log (I O / I
S ) = ε · d · C IO : light intensity before passing through the processing solution, I: light intensity after passing through the processing solution, I S : light intensity after passing through the solvent (pure water), ε: absorption coefficient (proportional constant), d: length of transmitted light path, C: concentration

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来例
の場合には、次のような問題がある。すなわち、吸光度
Aは濃度に比例した量として観測され、低濃度では吸光
度Aの絶対値が小さくなる。逆に、高濃度では、透過光
強度Iが小さくなるために、混入気泡等の外乱の影響を
受けやすくなる。このように、濃度の高低によってS/
N比を低下させるため、濃度の測定可能な範囲が限定さ
れる欠点があった。
However, the conventional example has the following problems. That is, the absorbance A is observed as an amount proportional to the concentration, and the absolute value of the absorbance A decreases at a low concentration. On the other hand, at a high concentration, the transmitted light intensity I becomes small, so that it becomes susceptible to disturbances such as mixed bubbles. Thus, depending on the level of the concentration, S /
There is a drawback that the measurable range of the concentration is limited because the N ratio is lowered.

【0007】本発明は、このような事情に鑑みてなされ
たものであって、試料である流体の性質に応じ、精度良
く濃度を測定できるようにすることを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to make it possible to accurately measure a concentration according to the properties of a fluid as a sample.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明は、
上述のような目的を達成するために、流体の濃度を測定
する流体濃度測定装置であって、流体が流される配管に
設けられ、前記配管内の流体に光を透過させるための光
透過部を有する複数の測定部と、前記光透過部に光を照
射する光源と、前記光透過部を透過した光を検出する光
検出手段とを備え、前記光透過部は、前記測定部ごとに
前記配管内の流体を透過する光の光路の長さが異なって
おり、前記光検出手段で検出された光に基づいて流体の
濃度を測定するものである。
The invention according to claim 1 is
In order to achieve the object as described above, a fluid concentration measurement device that measures the concentration of a fluid, provided in a pipe through which the fluid flows, and a light transmission unit for transmitting light to the fluid in the pipe. A plurality of measurement units, a light source that irradiates the light transmission unit with light, and a light detection unit that detects light transmitted through the light transmission unit, wherein the light transmission unit includes the pipe for each of the measurement units. The optical path of the light passing through the fluid inside is different in length, and the concentration of the fluid is measured based on the light detected by the light detecting means.

【0009】また、請求項2に係る発明は、請求項1に
記載の流体濃度測定装置であって、前記配管は複数の分
岐配管を備え、前記分岐配管ごとに前記測定部が設けら
れている。
The invention according to claim 2 is the fluid concentration measuring device according to claim 1, wherein the pipe has a plurality of branch pipes, and the measuring section is provided for each of the branch pipes. .

【0010】また、請求項3に係る発明は、流体の濃度
を測定する流体濃度測定装置であって、流体が流される
配管に設けられ、前記配管内の流体を透過する光の光路
の長さが各々異なっている複数の光透過部を有する測定
部と、前記光透過部に光を照射する光源と、前記光透過
部を透過した光を検出する光検出手段とを備え、前記光
検出手段で検出された光に基づいて流体の濃度を測定す
るものである。
According to a third aspect of the present invention, there is provided a fluid concentration measuring device for measuring the concentration of a fluid, wherein the length of the optical path of light passing through the fluid in the piping is provided in a pipe through which the fluid flows. A light source that irradiates light to the light transmitting unit, and a light detecting unit that detects light transmitted through the light transmitting unit, wherein the light detecting unit Is to measure the concentration of the fluid based on the light detected in the step (1).

【0011】また、請求項4に係る発明は、請求項1、
請求項2、請求項3のいずれかに記載の流体濃度測定装
置であって、前記複数の光透過部のうち光を透過させる
べき光透過部を選択する選択手段と、前記配管に流され
る流体の吸光度が大きい場合、前記選択手段に光路の長
さが短い光透過部を選択させ、前記配管に流される流体
の吸光度が小さい場合、前記選択手段に光路の長さの長
い光透過部を選択させり制御手段と、をさらに備えるも
のである。
Further, the invention according to claim 4 is based on claim 1,
4. The fluid concentration measuring device according to claim 2, wherein: a selecting unit that selects a light transmitting unit to transmit light from among the plurality of light transmitting units; and a fluid flowing through the pipe. 5. If the absorbance is large, the selecting means selects a light transmitting portion having a short optical path length, and if the absorbance of the fluid flowing through the pipe is small, the selecting means selects a light transmitting portion having a long optical path length. And rasp control means.

【0012】また、請求項5に係る発明は、請求項1、
請求項2、請求項3のいずれかに記載の流体濃度測定装
置であって、前記配管に流される流体の吸光度が大きい
場合、前記光検出手段で検出された光のうち、光路の長
さが短い光透過部を透過した光のデータを選択し、前記
配管に流される流体の吸光度が小さい場合、前記光検出
手段で検出された光のうち、光路の長い光透過部を透過
した光のデータを選択するデータ選択手段をさらに備
え、前記データ選択手段により選択された光のデータに
基づいて流体の濃度を測定するものである。
[0012] The invention according to claim 5 is based on claim 1,
4. The fluid concentration measurement device according to claim 2, wherein, when the absorbance of the fluid flowing through the pipe is large, the length of the optical path of the light detected by the light detection unit is reduced. 5. Data of the light transmitted through the short light transmitting portion is selected, and when the absorbance of the fluid flowing through the pipe is small, of the light detected by the light detecting means, the data of the light transmitted through the light transmitting portion having a long optical path. And data concentration means for measuring the concentration of the fluid based on the data of the light selected by the data selection means.

【0013】[0013]

【作用】請求項1に係る発明によれば、流体が流される
配管に設けられた複数の測定部が、配管内の流体を透過
する光の光路の長さが異なった光透過部を有しているの
で、流体の性質に応じて使用される測定部を変えて、光
検出手段で検出された光に基づいて流体の濃度が測定さ
れる。
According to the first aspect of the present invention, the plurality of measuring sections provided on the pipe through which the fluid flows have light transmitting sections having different optical paths of light passing through the fluid in the pipe. Therefore, the concentration of the fluid is measured based on the light detected by the light detection means while changing the measurement unit used according to the properties of the fluid.

【0014】また、請求項2に係る発明によれば、配管
が備える複数の分岐配管ごとに測定部が設けられている
ので、流体濃度測定装置事態が流体の流れる方向に短
く、かつコンパクトになる。
According to the second aspect of the present invention, since the measuring unit is provided for each of the plurality of branch pipes provided in the pipe, the fluid concentration measuring device is short and compact in the direction in which the fluid flows. .

【0015】また、請求項3に係る発明によれば、流体
が流される配管に設けられた測定部が、配管内の流体を
透過する光の光路の長さが異なった複数の光透過部を有
しているので、流体の性質に応じて使用される光透過部
を変えて、光検出手段で検出された光に基づいて流体の
濃度が測定される。
According to the third aspect of the present invention, the measuring section provided in the pipe through which the fluid flows has a plurality of light transmitting sections having different optical paths of light passing through the fluid in the pipe. Therefore, the concentration of the fluid is measured based on the light detected by the light detecting means while changing the light transmitting portion used according to the properties of the fluid.

【0016】また、請求項4に係る発明によれば、制御
手段が選択手段を制御することにより、配管に流される
流体の吸光度が大きい場合、選択手段に光路の長さが短
い光透過部を選択させ、配管に流される流体の吸光度が
小さい場合、選択手段に光路の長さの長い光透過部を選
択させているので、流体の吸光度に応じた光透過部が選
択される。
According to the fourth aspect of the present invention, the control means controls the selection means, so that when the absorbance of the fluid flowing through the pipe is large, the selection means is provided with a light transmitting portion having a short optical path length. When the absorbance of the fluid flowing through the pipe is small, the selection unit selects the light transmission unit having a long optical path, so that the light transmission unit corresponding to the absorbance of the fluid is selected.

【0017】また、請求項5に係る発明によれば、デー
タ選択手段が、配管に流される流体の吸光度が大きい場
合、光検出手段で検出された光のうち、光路の長さが短
い光透過部を透過した光のデータを選択し、配管に流さ
れる流体の吸光度が小さい場合、光検出手段で検出され
た光のうち、光路の長い光透過部を透過した光のデータ
を選択しているので、流体の吸光度に応じた流体の濃度
が測定される。なお、ここでいう光のデータとは、透過
光強度などのことをいう。
According to the fifth aspect of the present invention, when the absorbance of the fluid flowing through the pipe is large, the data selecting means transmits light having a short optical path length out of the light detected by the light detecting means. When data of light transmitted through the portion is selected, and when the absorbance of the fluid flowing through the pipe is small, data of light transmitted through the light transmitting portion having a long optical path is selected from among the light detected by the light detecting means. Therefore, the concentration of the fluid according to the absorbance of the fluid is measured. Note that the light data here refers to transmitted light intensity and the like.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて詳細に説明する。図1は、本発明に係る第1実施
例の流体濃度測定装置を用いた基板処理装置の概略構成
を示した図であり、この基板処理装置では、半導体ウエ
ハなどの基板を複数枚収納した図示しないウエハキャリ
アが浸漬される処理槽1の周囲に、処理槽1から溢れた
処理液を滞留するためのオーバーフロー槽2が設けられ
ている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a substrate processing apparatus using a fluid concentration measuring apparatus according to a first embodiment of the present invention. In this substrate processing apparatus, a plurality of substrates such as semiconductor wafers are stored. An overflow tank 2 for retaining the processing liquid overflowing from the processing tank 1 is provided around the processing tank 1 in which a wafer carrier not to be immersed is immersed.

【0019】処理槽1には、第1の流量調整弁V1を介
装した純水供給配管3を介して純水供給源(図示せず)
が接続され、処理槽1内に純水が所定圧力で供給され
る。一方、オーバーフロー槽2には、第2の流量調整弁
V2を介装した薬液供給配管4を介して薬液タンク5が
接続され、薬液タンク5からオーバーフロー槽2内へ所
定量の薬液が供給される。
A pure water supply source (not shown) is supplied to the processing tank 1 via a pure water supply pipe 3 provided with a first flow control valve V1.
Is connected, and pure water is supplied into the processing tank 1 at a predetermined pressure. On the other hand, a chemical liquid tank 5 is connected to the overflow tank 2 via a chemical liquid supply pipe 4 provided with a second flow control valve V2, and a predetermined amount of the chemical liquid is supplied from the chemical liquid tank 5 into the overflow tank 2. .

【0020】また、処理槽1の底部とオーバーフロー槽
2とが、滞留している処理液を循環させるための処理液
供給配管6を介して接続されている。この処理液供給配
管6には、試料となる流体である処理液を循環させるた
めのポンプ7と、循環している処理液を加熱するヒータ
ー8と、処理液の温度を測定する温度センサ9と、循環
している処理液中のパーティクルなどを除去するフィル
ター10とが介装されている。
The bottom of the processing tank 1 and the overflow tank 2 are connected via a processing liquid supply pipe 6 for circulating the remaining processing liquid. The processing liquid supply pipe 6 includes a pump 7 for circulating a processing liquid which is a sample fluid, a heater 8 for heating the circulating processing liquid, and a temperature sensor 9 for measuring the temperature of the processing liquid. And a filter 10 for removing particles and the like in the circulating treatment liquid.

【0021】上記構成により、目的に応じた薬液と純水
とを所定比率で混合調整して所定の濃度にした処理液
に、例えば、半導体ウエハなどの基板を浸漬させること
によって基板が洗浄処理される。
With the above structure, a substrate such as a semiconductor wafer is cleaned by immersing a substrate such as a semiconductor wafer in a processing solution having a predetermined concentration by mixing and adjusting a chemical solution and pure water according to a purpose at a predetermined ratio. You.

【0022】次に、流体濃度測定装置について説明す
る。すなわち、処理液供給配管6に、フィルター10と
処理槽1との間において、流されている処理液に光を透
過させる光透過機構11が介装され、その光透過機構1
1の近傍に、純水を充填した参照セル12が配置されて
いる。
Next, the fluid concentration measuring device will be described. That is, a light transmission mechanism 11 for transmitting light to the flowing processing liquid is interposed between the filter 10 and the processing tank 1 in the processing liquid supply pipe 6.
In the vicinity of 1, a reference cell 12 filled with pure water is arranged.

【0023】ハロゲンランプなどの光源13からの照射
光が光分岐手段14を介して分岐され、その分岐された
照射光が第1および第2の光路切換機構15,16によ
り光透過機構11と参照セル12とに選択的に照射され
る。
Irradiation light from a light source 13 such as a halogen lamp is branched via a light branching means 14, and the branched irradiation light is referred to the light transmission mechanism 11 by first and second optical path switching mechanisms 15 and 16. The cell 12 is selectively irradiated.

【0024】光透過機構11および参照セル12を透過
した光は、ライトガイド17を介して光検出手段である
光検出器18に入射され、光検出器18では入射光の光
強度に応じた信号をマイクロコンピュータ19に出力す
る。
The light transmitted through the light transmission mechanism 11 and the reference cell 12 enters a light detector 18 as light detecting means via a light guide 17, and the light detector 18 outputs a signal corresponding to the light intensity of the incident light. Is output to the microcomputer 19.

【0025】図2は、光透過機構の展開構成図を示して
いる。処理液供給配管6には、処理液の流される方向に
所定間隔を隔てて、継手20と中継配管6aとを介して
測定部となる3個の第1、第2および第3の測定体21
a,21b,21cが接続されている。
FIG. 2 is a developed configuration diagram of the light transmission mechanism. The first, second, and third measurement bodies 21 serving as measurement units are provided at the processing liquid supply pipe 6 via the joint 20 and the relay pipe 6a at predetermined intervals in the direction in which the processing liquid flows.
a, 21b and 21c are connected.

【0026】第1、第2および第3の測定体21a,2
1b,21cそれぞれには、処理液を透過する光の光路
の長さを各々異ならせた(例えば、1mm、 1.5mm、2mm
など)光透過部22が設けられるとともに、処理液の流
される方向の両端それぞれに、継手20を螺合する接続
部23が形成されている。なお、図2では、光透過部2
2における光路の長さの差を判りやすくするために誇張
して示している。
First, second and third measuring objects 21a, 21a
Each of 1b and 21c has a different optical path length of light passing through the processing liquid (for example, 1 mm, 1.5 mm, 2 mm).
Etc.) A light transmitting portion 22 is provided, and connection portions 23 for screwing the joint 20 are formed at both ends in the direction in which the processing liquid flows. Note that, in FIG.
2 is exaggerated for easy understanding of the difference in optical path length.

【0027】図3は、光分岐手段の要部の構成図、およ
び、図4は、光分岐手段の要部の側面図を示している。
図3および図4に示すように、光分岐手段14は、光源
13からの照射光を平行光にする第1のコリメータレン
ズ24と、その第1のコリメータレンズ24からの照射
光を四つに分岐する第1、第2、第3および第4の集光
レンズ25a,25b,25c,26とを備えている。
FIG. 3 is a structural view of a main part of the optical branching unit, and FIG. 4 is a side view of a main part of the optical branching unit.
As shown in FIGS. 3 and 4, the light branching unit 14 includes a first collimator lens 24 that converts the irradiation light from the light source 13 into parallel light, and the irradiation light from the first collimator lens 24 into four. There are provided first, second, third and fourth condensing lenses 25a, 25b, 25c and 26 which are branched.

【0028】第1、第2、第3および第4の集光レンズ
25a,25b,25c,26で分岐された光は、図2
に示すように、第1、第2、第3および第4の光ファイ
バー27a,27b,27c,28と、第2、第3、第
4および第5のコリメータレンズ29a,29b,29
c,30とを介して第1、第2および第3の測定体21
a,21b,21cそれぞれの光透過部22および参照
セル12に照射される。
The light split by the first, second, third and fourth condenser lenses 25a, 25b, 25c and 26 is shown in FIG.
As shown in the figure, first, second, third and fourth optical fibers 27a, 27b, 27c and 28, and second, third, fourth and fifth collimator lenses 29a, 29b and 29 are provided.
c, 30 and the first, second and third measuring objects 21
Irradiation is performed on the light transmitting portions 22 and the reference cells 12 of the respective a, 21b, and 21c.

【0029】また、第1、第2および第3の測定体21
a,21b,21cのそれぞれの光透過部22および参
照セル12を透過した光は、第5、第6、第7および第
8の集光レンズ31a,31b,31c,32と、第
5、第6、第7および第8の光ファイバー33a,33
b,33c,34とを介してライトガイド17に入射さ
れる。
The first, second and third measuring bodies 21
The light transmitted through the respective light transmitting portions 22 and the reference cells 12 of the a, 21b, and 21c is transmitted to the fifth, sixth, seventh, and eighth condenser lenses 31a, 31b, 31c, and 32, and the fifth and fifth condenser lenses. 6, seventh and eighth optical fibers 33a, 33
b, 33c, and 34, and is incident on the light guide 17.

【0030】第1の光路切換機構15は、第1、第2お
よび第3の集光レンズ25a,25b,25cと、第
1、第2および第3の光ファイバー27a,27b,2
7cのそれぞれへの入射端との間に3つ設けられてい
る。この第1の光路切換機構15は、第1、第2および
第3のエアシリンダ36a,36b,36cによって透
過状態と遮光状態とに切り換える第1、第2および第3
のシャッター37a,37b,37cを備えている。
The first optical path switching mechanism 15 includes first, second and third condenser lenses 25a, 25b and 25c, and first, second and third optical fibers 27a, 27b and 2
7c are provided between each of the light-receiving ends 7c and 7c. The first optical path switching mechanism 15 switches between a transmitting state and a light blocking state by first, second, and third air cylinders 36a, 36b, 36c.
Shutters 37a, 37b and 37c.

【0031】また、第2の光路切換機構16は、第4の
集光レンズ26と第4の光ファイバー28への入射端と
の間に1つ設けられている。この第2の光路切換機構1
6は、第4のエアシリンダ38によって透過状態と遮光
状態とに切り換える第4のシャッター39を備えてい
る。
The second optical path switching mechanism 16 is provided between the fourth condenser lens 26 and the incident end to the fourth optical fiber 28. This second optical path switching mechanism 1
Reference numeral 6 includes a fourth shutter 39 which is switched between a transmitting state and a light shielding state by a fourth air cylinder 38.

【0032】第1、第2、第3および第4のエアシリン
ダ36a,36b,36c,38のそれぞれは単動式エ
アシリンダで構成され、図示しないが、加圧空気の供給
管に設けた電磁開閉弁を閉じてエアーを加圧供給しない
自然状態で、内蔵の圧縮コイルスプリング(図示せず)
により伸長して遮光状態になり、一方、電磁開閉弁を開
いてエアーを加圧供給することにより短縮して遮光状態
に切り換えられる。
Each of the first, second, third, and fourth air cylinders 36a, 36b, 36c, and 38 is constituted by a single-acting air cylinder. Built-in compression coil spring (not shown) in a natural state where the on-off valve is closed and air is not supplied under pressure
, The light-shielding state is achieved. On the other hand, the electromagnetic switching valve is opened and the air is pressurized and supplied to shorten the light-shielding state.

【0033】図1に示すように、光を透過させる光透過
部22を択一的に選択するために、第1、第2および第
3のエアシリンダ36a,36b,36cの電磁開閉弁
に対する信号線が切換手段40を介してマイクロコンピ
ュータ19内の光路切換制御部44に接続されている。
この切換手段40には濃度設定器41が接続され、濃度
設定器41で設定される濃度範囲に応じて切換手段40
を自動的に切り換える。
As shown in FIG. 1, in order to alternatively select the light transmitting portion 22 for transmitting light, a signal to the electromagnetic on-off valves of the first, second and third air cylinders 36a, 36b, 36c is provided. The line is connected to an optical path switching control unit 44 in the microcomputer 19 via the switching means 40.
A density setting device 41 is connected to the switching device 40, and the switching device 40 is switched according to the density range set by the density setting device 41.
Is automatically switched.

【0034】例えば、最大設定濃度範囲(60〜80%) で
は、光路の短い第1の測定体21aの光透過部22を選
択し、中間設定濃度範囲(45〜60%) では、光路長さが
中間の第2の測定体21bの光透過部22を選択し、そ
して、最小設定濃度範囲(30〜45%) では、光路の長い
第3の測定体21cの光透過部22を選択するように切
換手段40が切り換えられる。なお、本発明の選択手段
は、第1の光路切換機構15、第2の光路切換機構16
および切換手段40に該当する。
For example, in the maximum set density range (60 to 80%), the light transmitting portion 22 of the first measuring object 21a having a short optical path is selected, and in the intermediate set density range (45 to 60%), the optical path length is selected. Selects the light transmitting portion 22 of the intermediate second measuring object 21b, and selects the light transmitting portion 22 of the third measuring object 21c having a long optical path in the minimum set density range (30 to 45%). The switching means 40 is switched. The selection means of the present invention includes a first optical path switching mechanism 15 and a second optical path switching mechanism 16.
And switching means 40.

【0035】マイクロコンピュータ19には、透過光強
度測定部42と濃度算出部43と光路切換制御部44
と、温調部45と、フィードバック制御部46と、供給
量制御部47とが備えられている。透過光強度測定部4
2では、光路切換制御部44による切換信号に応答した
所定のタイミングで光検出器18からの信号を入力し、
その信号に基づいて、選択された光透過部22および参
照セル12それぞれを透過した光の強度を測定する。
The microcomputer 19 includes a transmitted light intensity measuring section 42, a density calculating section 43, and an optical path switching control section 44.
, A temperature control unit 45, a feedback control unit 46, and a supply amount control unit 47. Transmitted light intensity measurement unit 4
In 2, the signal from the photodetector 18 is input at a predetermined timing in response to the switching signal from the optical path switching control unit 44,
Based on the signal, the intensity of light transmitted through each of the selected light transmitting unit 22 and reference cell 12 is measured.

【0036】濃度算出部43では、処理液に対する透過
光強度と参照セル12の透過光強度の比により透過率を
算出するとともにこの透過率に基づいて、処理液の濃度
を算出測定する。
The density calculator 43 calculates the transmittance based on the ratio of the transmitted light intensity to the processing liquid and the transmitted light intensity of the reference cell 12, and calculates and measures the density of the processing liquid based on the transmittance.

【0037】以上の構成により、濃度設定器41による
濃度の初期設定に応じて、最も好適な長さの光路を有す
る光透過部22を自動的に選択し、その光透過部22と
参照セル12とに交互に光を照射し、処理液に対する透
過光強度と参照セル12の透過光強度とにより、処理液
の濃度を精度良く算出測定できる。
With the above configuration, the light transmitting section 22 having the optical path of the most suitable length is automatically selected according to the initial setting of the density by the density setting device 41, and the light transmitting section 22 and the reference cell 12 are selected. The light is alternately irradiated with the light, and the concentration of the processing liquid can be accurately calculated and measured based on the transmitted light intensity with respect to the processing liquid and the transmitted light intensity of the reference cell 12.

【0038】温調部45では、処理液を循環させなが
ら、温度センサ9で測定される温度と目標温度とを比較
し、その比較結果に基づいてヒーター8をON・OFF
し、処理液の温度を目標温度に維持している。
The temperature control section 45 compares the temperature measured by the temperature sensor 9 with the target temperature while circulating the processing liquid, and turns ON / OFF the heater 8 based on the comparison result.
Then, the temperature of the processing liquid is maintained at the target temperature.

【0039】処理液の温度が所定温度になったことを透
過光強度測定部42が確認した後、光路切換制御部44
に指令信号を出力し、光路切換制御部44から第1およ
び第2の光路切換手段15,16に前述したタイミング
で開き信号と閉じ信号とを出力る。
After the transmitted light intensity measuring section 42 confirms that the temperature of the processing liquid has reached the predetermined temperature, the optical path switching control section 44
The optical path switching control section 44 outputs an opening signal and a closing signal to the first and second optical path switching means 15 and 16 at the above-described timing.

【0040】フィードバック制御部46では、濃度設定
器41によって設定された目標濃度を記憶しており、ポ
ンプ7により、処理液供給配管6を通じてオーバーフロ
ー槽2から処理槽1へと処理液を循環させながら、目標
濃度と濃度算出部43が算出した濃度とを比較し、この
差分に応じた制御信号を供給量制御部47へ出力する。
The feedback control section 46 stores the target concentration set by the concentration setting device 41 and circulates the processing liquid from the overflow tank 2 to the processing tank 1 through the processing liquid supply pipe 6 by the pump 7. Then, the target density is compared with the density calculated by the density calculator 43, and a control signal corresponding to the difference is output to the supply amount controller 47.

【0041】供給量制御部47では、フィードバック制
御部46からの制御信号に応じて純水供給配管3の第1
の流量調整弁V1または薬液供給配管4の第2の流量調
整弁V2を調整し、処理層1内の処理液の濃度を調整す
る。これらの動作を繰り返すことにより、処理液の濃度
を目標濃度に調整できる。
In the supply amount control unit 47, the first pure water supply pipe 3 is controlled in accordance with a control signal from the feedback control unit 46.
Or the second flow control valve V2 of the chemical liquid supply pipe 4 is adjusted to adjust the concentration of the processing liquid in the processing layer 1. By repeating these operations, the concentration of the processing solution can be adjusted to the target concentration.

【0042】図5は、第2実施例を示す光透過機構の要
部の断面図である。この光透過機構11には、測定部と
なるひとつの測定体51に、処理液の流動方向に間隔を
隔てた状態で、処理液を透過する光の光路の長さを各々
異ならせた3個の第1、第2および第3の光透過部52
a,52b,52cが備えられるとともに、測定体51
の処理液の流動方向両端それぞれに、処理液供給配管6
に継手20を介して接続する接続部53が付設されてい
る。光源からの光を照射する構成や、透過した光を光検
出器に入射する構成などの他の構成は第1実施例と同じ
であり、省略する。
FIG. 5 is a sectional view of a main part of a light transmission mechanism according to a second embodiment. The light transmission mechanism 11 includes three measurement bodies 51 each serving as a measurement unit, each having a different optical path length of light passing through the processing liquid while being spaced apart in the flow direction of the processing liquid. First, second and third light transmitting portions 52
a, 52b, 52c are provided, and
A processing liquid supply pipe 6 is provided at each end of the processing liquid in the flow direction.
Is provided with a connecting portion 53 connected to the joint via the joint 20. Other configurations, such as a configuration for irradiating light from a light source and a configuration for transmitting transmitted light to a photodetector, are the same as those in the first embodiment, and will not be described.

【0043】図6は、第3実施例を示す光透過機構の要
部の断面図であり、この光透過機構11には、処理液供
給配管6の途中箇所が定量分配弁61と合流弁62とを
介して3本に分岐され、その第1、第2および第3の分
岐配管63a,63b,63cのそれぞれに、1個づつ
の第1、第2および第3の測定体64a,64b,64
cが設けられている。
FIG. 6 is a cross-sectional view of a main part of a light transmission mechanism showing a third embodiment. , And each of the first, second, and third branch pipes 63a, 63b, 63c is provided with one first, second, and third measurement body 64a, 64b, 64
c is provided.

【0044】第1、第2および第3の測定体64a,6
4b,64cには、光路の長さを各々異ならせたひとつ
づつの第1、第2および第3の光透過部65a,65
b,65cが備えられるとともに、処理液の流動方向両
端それぞれに、第1、第2および第3の分岐配管63
a,63b,63cに継手20を介して接続する接続部
が付設されている。光源からの光を照射する構成や、透
過した光を光検出器に入射する構成などの他の構成は第
1実施例と同じであり、省略する。
First, second and third measuring bodies 64a, 6
4b and 64c have first, second and third light transmitting portions 65a and 65 each having a different optical path length.
b, 65c, and first, second and third branch pipes 63 at both ends in the flow direction of the processing liquid.
A connecting portion is connected to each of the connectors a, 63b, and 63c through the joint 20. Other configurations, such as a configuration for irradiating light from a light source and a configuration for transmitting transmitted light to a photodetector, are the same as those in the first embodiment, and a description thereof will be omitted.

【0045】図7は、本発明に係る流体濃度測定装置の
第4実施例を示す概略構成図である。この流体濃度測定
装置では、第1実施例と同じ光透過機構11が用いら
れ、第1、第2および第3の測定体21a,21b,2
1cの光透過部22それぞれに対して、3つの光源71
からの光をコリメータレンズ72を介して照射し、か
つ、透過した光を集光レンズ73を介して3つの光検出
器74に入射する。また、参照セル12に対しても、光
源71と同一性能を有する光源75からの光をコリメー
タレンズ76を介して照射し、かつ、透過した光を集光
レンズ77を介して個別の光検出器78に入射する。
FIG. 7 is a schematic diagram showing a fourth embodiment of the fluid concentration measuring device according to the present invention. In this fluid concentration measuring device, the same light transmission mechanism 11 as in the first embodiment is used, and the first, second and third measuring bodies 21a, 21b, 2
The three light sources 71 for each of the light transmitting portions 22 of 1c
Is irradiated through a collimator lens 72, and the transmitted light is incident on three photodetectors 74 via a condenser lens 73. Also, the reference cell 12 is irradiated with light from a light source 75 having the same performance as the light source 71 through a collimator lens 76, and transmits the transmitted light through a condenser lens 77 to an individual photodetector. At 78.

【0046】3つの光検出器74のそれぞれがデータ選
択手段79に接続されるとともに、そのデータ選択手段
79に濃度設定器41aが接続されている。そして、す
べての光透過部22を透過した光のデータをデータ選択
手段79に採取するとともに、濃度設定器41aによる
濃度の初期設定に応じて、最も好適な長さの光路を有す
る光透過部22を透過した光のデータ(透過光強度)を
自動的に選択する。
Each of the three photodetectors 74 is connected to the data selecting means 79, and the data setting means 79 is connected to the density setting device 41a. The data of the light transmitted through all the light transmitting portions 22 is collected by the data selecting means 79, and the light transmitting portion 22 having the most suitable length of the optical path is selected according to the initial setting of the density by the density setting device 41a. Automatically selects the data of transmitted light (transmitted light intensity).

【0047】データ選択手段79と光検出器78とが濃
度算出部80に接続され、データ選択手段79で選択さ
れた処理液に対する透過光強度と参照セル12の透過光
強度とを濃度算出部80に入力し、それらの透過光強度
の比により透過率を算出するとともにこの透過率に基づ
いて処理液の濃度を算出測定する。
The data selecting means 79 and the photodetector 78 are connected to the concentration calculating section 80, and the transmitted light intensity for the treatment liquid selected by the data selecting means 79 and the transmitted light intensity of the reference cell 12 are calculated by the density calculating section 80. To calculate the transmittance based on the ratio of the transmitted light intensities, and calculate and measure the concentration of the processing liquid based on the transmittance.

【0048】図8は、本発明に係る流体濃度測定装置を
適用した別の基板処理装置の概略構成を示した概略構成
図であり、先の基板処理装置と異なるところは、次の通
りである。
FIG. 8 is a schematic configuration diagram showing a schematic configuration of another substrate processing apparatus to which the fluid concentration measuring apparatus according to the present invention is applied. The difference from the previous substrate processing apparatus is as follows. .

【0049】すなわち、処理液供給配管81に、第3の
流量調整弁V3を介装した純水供給配管82を介して純
水供給源(図示せず)が接続され、所定圧力で純水が供
給される。更に、処理液供給配管81に、複数個の薬液
タンク83a,83b,83cが、第4、第5および第
6の流量調整弁V4,V5,V6を介装した薬液配管8
4a,84b,84cを介して接続され、所定の薬液を
選択して純水と混合し、所定温度と所定濃度に調整され
た処理液を処理槽1に供給する。なお、オーバーフロー
槽2にはドレン配管85が接続されている。
That is, a pure water supply source (not shown) is connected to the processing liquid supply pipe 81 via a pure water supply pipe 82 provided with a third flow control valve V3, and pure water is supplied at a predetermined pressure. Supplied. Further, a plurality of chemical liquid tanks 83a, 83b, 83c are provided in the processing liquid supply pipe 81 with a chemical liquid pipe 8 having fourth, fifth and sixth flow rate regulating valves V4, V5, V6 interposed therebetween.
4a, 84b, and 84c are connected, and a predetermined chemical solution is selected and mixed with pure water, and a processing solution adjusted to a predetermined temperature and a predetermined concentration is supplied to the processing tank 1. Note that a drain pipe 85 is connected to the overflow tank 2.

【0050】供給量制御部47からは、第3の流量調整
弁V3と、第4、第5および第6の流量調整弁V4,V
5,V6のうちの所定のものに信号を出力し、処理液の
濃度を目標濃度に調整する。流体濃度測定装置の構成と
他の構成は先の基板処理装置と同じであり、同一図番を
付して説明は省略する。
From the supply amount control unit 47, the third flow control valve V3 and the fourth, fifth, and sixth flow control valves V4, V
A signal is output to a predetermined one of V5 and V6 to adjust the concentration of the processing solution to a target concentration. The configuration of the fluid concentration measuring device and other configurations are the same as those of the above-described substrate processing device, and the same reference numerals are assigned and the description is omitted.

【0051】この別の基板処理装置に第1、第2および
第3実施例を適用する場合において、薬液によって吸光
係数が比較的大幅に異なるようなとき、供給する薬液を
選択する薬液選択手段を前記切換手段40に接続し、吸
光係数の大きい薬液を選択するとき、すなわち、試料流
体の吸光度が大きい場合には、光路の短い光透過部に光
源13からの光を透過させる。一方、吸光係数の小さい
薬液を選択するとき、すなわち、吸光度が小さい場合に
は、光路の長い光透過部に光源13からの光を透過させ
るようにすれば良い。要するに、薬液の吸光度に応じ
て、吸光度が小さい程光路の長い光透過部を選択するよ
うに切り換えるように構成すればよい。
In the case where the first, second and third embodiments are applied to this another substrate processing apparatus, when the extinction coefficient is relatively significantly different depending on the chemical, a chemical selecting means for selecting the chemical to be supplied is provided. When the liquid medicine is connected to the switching means 40 and a chemical solution having a large absorption coefficient is selected, that is, when the absorbance of the sample fluid is large, the light from the light source 13 is transmitted through the light transmission portion having a short optical path. On the other hand, when a chemical solution having a small absorption coefficient is selected, that is, when the absorbance is small, the light from the light source 13 may be transmitted through the light transmission portion having a long optical path. In short, the configuration may be such that, in accordance with the absorbance of the chemical solution, switching is performed so as to select a light transmitting portion having a longer optical path as the absorbance is smaller.

【0052】また、上述の別の基板処理装置に第4実施
例を適用する場合においては、処理液の吸光度に応じ
て、吸光度が小さい程透過光路の長い光透過部を透過し
た光のデータを選択するように切り換えるように構成す
ればよい。
In the case where the fourth embodiment is applied to the above-mentioned another substrate processing apparatus, the data of the light transmitted through the light transmitting portion having a longer transmission optical path as the absorbance is smaller is determined in accordance with the absorbance of the processing solution. What is necessary is just to comprise so that it may be switched so that it may be selected.

【0053】また、本発明としては、上記第1、第2お
よび第3実施例において、濃度設定器41を設けずに、
例えば、先ず、ひとつの光透過部に光源からの光を照射
し、それによって処理液の濃度を測定し、その測定濃度
と予め設定された濃度範囲とを比較し、いずれの濃度範
囲になるかを判別し、該当する濃度範囲に対応する光透
過部に光を照射するように自動的に切り換えるように構
成してもよい。
According to the present invention, in the first, second and third embodiments, the density setting device 41 is not provided.
For example, first, one light transmitting part is irradiated with light from a light source, thereby measuring the concentration of the processing solution, comparing the measured concentration with a preset concentration range, and determining which concentration range the concentration range falls in. May be automatically switched to irradiate light to the light transmitting portion corresponding to the corresponding density range.

【0054】上記第1、第2および第3実施例では、光
源13と光透過機構11との間に第1の光路切換手段1
5を設けているが、本発明としては、光透過機構11と
光検出器18との間に第1の光路切換手段15を設ける
ように構成してもよい。
In the first, second and third embodiments, the first optical path switching means 1 is provided between the light source 13 and the light transmitting mechanism 11.
However, the present invention may be configured such that the first optical path switching means 15 is provided between the light transmission mechanism 11 and the photodetector 18.

【0055】光源13としては、赤外線を放射するハロ
ゲンランプに限らず、紫外線を放射する重水素ランプあ
るいはキセノンランプなども適用できる。
The light source 13 is not limited to a halogen lamp that emits infrared rays, but may be a deuterium lamp or a xenon lamp that emits ultraviolet rays.

【0056】また、本発明としては、純水と薬液からな
る処理液、すなわち、液体の濃度を測定する場合に限ら
ず、例えば、窒素酸化物NOxや硫黄酸化物SOxとい
った気体など、各種の流体の濃度を測定する場合に適用
できる。
Further, the present invention is not limited to the case of measuring the concentration of a treatment liquid consisting of pure water and a chemical solution, that is, a liquid such as a gas such as nitrogen oxides NOx and sulfur oxides SOx. Can be applied when measuring the concentration of

【0057】上記実施例では、純水を充填した参照セル
12を用いているが、例えば、所定の吸光係数を有する
光学フィルターを用いるなど、要するに、一定の吸光係
数を有するものであればよい。
In the above-described embodiment, the reference cell 12 filled with pure water is used. However, the reference cell 12 may be any one having a constant light absorption coefficient, for example, using an optical filter having a predetermined light absorption coefficient.

【0058】[0058]

【発明の効果】以上の説明から明らかなように、請求項
1に係る発明によれば、流体が流される配管に設けられ
た複数の測定部が、配管内の流体を透過する光の光路の
長さが異なった光透過部を有しているので、例えば、流
体の吸光度などの流体の性質に応じて使用される測定部
を変えて、光検出手段で検出された光に基づいて流体の
濃度を精度良く測定できる。
As is apparent from the above description, according to the first aspect of the present invention, a plurality of measuring units provided in a pipe through which a fluid flows are provided with a plurality of measuring sections for transmitting light through the fluid in the pipe. Since it has light transmitting portions having different lengths, for example, by changing the measuring portion used in accordance with the properties of the fluid such as the absorbance of the fluid, the fluid is detected based on the light detected by the light detecting means. The concentration can be measured accurately.

【0059】また、請求項2に係る発明によれば、配管
が備える複数の分岐配管ごとに測定部が設けられている
ので、流体の流れる方向に短く、かつコンパクトな構成
の流体濃度測定装置を提供できる。
According to the second aspect of the present invention, since the measuring section is provided for each of the plurality of branch pipes provided in the pipe, a fluid concentration measuring apparatus which is short and compact in the direction in which the fluid flows can be provided. Can be provided.

【0060】また、請求項3に係る発明によれば、流体
が流される配管に設けられた測定部が、配管内の流体を
透過する光の光路の長さが異なった複数の光透過部を有
しているので、例えば、流体の吸光度などの流体の性質
に応じて使用される光透過部を変えて、光検出手段で検
出された光に基づいて流体の濃度を精度良く測定でき
る。
Further, according to the third aspect of the present invention, the measuring section provided in the pipe through which the fluid flows has a plurality of light transmitting sections having different optical paths of light passing through the fluid in the pipe. For example, the concentration of the fluid can be accurately measured based on the light detected by the light detection unit by changing the used light transmitting portion according to the properties of the fluid such as the absorbance of the fluid.

【0061】また、請求項4に係る発明によれば、制御
手段が選択手段を制御することにより、配管に流される
流体の吸光度が大きい場合、選択手段に光路の長さが短
い光透過部を選択させ、配管に流される流体の吸光度が
小さい場合、選択手段に光路の長さの長い光透過部を選
択させているので、流体の吸光度に応じた光透過部を選
択でき、その結果、流体の濃度を精度良く測定できる。
According to the fourth aspect of the present invention, the control means controls the selection means so that when the absorbance of the fluid flowing through the pipe is large, the selection means is provided with a light transmitting portion having a short optical path length. When the absorbance of the fluid flowing through the pipe is small, the selection unit selects the light transmission unit having a long optical path, so that the light transmission unit according to the absorbance of the fluid can be selected. Can be accurately measured.

【0062】また、請求項5に係る発明によれば、デー
タ選択手段が、配管に流される流体の吸光度が大きい場
合、光検出手段で検出された光のうち、光路の長さが短
い光透過部を透過した光のデータを選択し、配管に流さ
れる流体の吸光度が小さい場合、光検出手段で検出され
た光のうち、光路の長い光透過部を透過した光のデータ
を選択しているので、流体の吸光度に応じた光のデータ
を選択でき、その結果、流体の濃度を精度良く測定する
ことができる。
According to the fifth aspect of the present invention, when the absorbance of the fluid flowing through the pipe is large, the data selection means transmits light having a short optical path length out of the light detected by the light detection means. When data of light transmitted through the portion is selected, and when the absorbance of the fluid flowing through the pipe is small, data of light transmitted through the light transmitting portion having a long optical path is selected from among the light detected by the light detecting means. Therefore, light data according to the absorbance of the fluid can be selected, and as a result, the concentration of the fluid can be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1実施例の流体濃度測定装置を
用いた基板処理装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a substrate processing apparatus using a fluid concentration measuring device of a first embodiment according to the present invention.

【図2】光透過機構の展開構成図である。FIG. 2 is a developed configuration diagram of a light transmission mechanism.

【図3】光分岐手段の要部の構成図である。FIG. 3 is a configuration diagram of a main part of an optical branching unit.

【図4】図3の光分岐手段の要部の側面図である。FIG. 4 is a side view of a main part of the optical branching unit of FIG. 3;

【図5】第2実施例を示す光透過機構の要部の断面図で
ある。
FIG. 5 is a sectional view of a main part of a light transmission mechanism according to a second embodiment.

【図6】第3実施例を示す光透過機構の要部の断面図で
ある。
FIG. 6 is a sectional view of a main part of a light transmission mechanism according to a third embodiment.

【図7】本発明に係る流体濃度測定装置の第4実施例を
示す概略構成図である。
FIG. 7 is a schematic configuration diagram showing a fourth embodiment of the fluid concentration measuring device according to the present invention.

【図8】本発明に係る流体濃度測定装置を適用した別の
基板処理装置の概略構成図である。
FIG. 8 is a schematic configuration diagram of another substrate processing apparatus to which the fluid concentration measuring device according to the present invention is applied.

【符号の説明】[Explanation of symbols]

6…処理液供給配管 13…光源 15…第1の光路切換機構 16…第2の光路切換機構 18…光検出器 21a…第1の測定体 21b…第2の測定体 21c…第3の測定体 22…光透過部 23…接続部 40…切換手段 41…濃度設定器 51…測定体 52…光透過部 53…接続部 64a…第1の測定体 64b…第2の測定体 64c…第3の測定体 65a…第1の光透過部 65b…第2の光透過部 65c…第3の光透過部 66…接続部 71…光源 74…光検出器 79…データ選択手段 81…処理液供給配管 6 Processing liquid supply pipe 13 Light source 15 First optical path switching mechanism 16 Second optical path switching mechanism 18 Photodetector 21a First measuring body 21b Second measuring body 21c Third measurement Body 22 ... Light transmitting part 23 ... Connecting part 40 ... Switching means 41 ... Density setting device 51 ... Measuring body 52 ... Light transmitting part 53 ... Connecting part 64a ... First measuring body 64b ... Second measuring body 64c ... Third Measurement body 65a: first light transmitting portion 65b: second light transmitting portion 65c: third light transmitting portion 66: connecting portion 71: light source 74: photodetector 79: data selection means 81: processing liquid supply pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 流体の濃度を測定する流体濃度測定装置
であって、 流体が流される配管に設けられ、前記配管内の流体に光
を透過させるための光透過部を有する複数の測定部と、 前記光透過部に光を照射する光源と、 前記光透過部を透過した光を検出する光検出手段とを備
え、 前記光透過部は、前記測定部ごとに前記配管内の流体を
透過する光の光路の長さが異なっており、 前記光検出手段で検出された光に基づいて流体の濃度を
測定することを特徴とする流体濃度測定装置。
1. A fluid concentration measuring device for measuring the concentration of a fluid, comprising: a plurality of measuring units provided on a pipe through which the fluid flows, and having a light transmitting unit for transmitting light to the fluid in the pipe; A light source that irradiates light to the light transmitting unit; and a light detection unit that detects light transmitted through the light transmitting unit, wherein the light transmitting unit transmits a fluid in the pipe for each of the measuring units. A fluid concentration measuring device, wherein the optical path of light is different, and the concentration of the fluid is measured based on the light detected by the light detecting means.
【請求項2】 請求項1に記載の流体濃度測定装置であ
って、 前記配管は複数の分岐配管を備え、 前記分岐配管ごとに前記測定部が設けられていることを
特徴とする流体濃度測定装置。
2. The fluid concentration measurement device according to claim 1, wherein the pipe includes a plurality of branch pipes, and the measurement unit is provided for each of the branch pipes. apparatus.
【請求項3】 流体の濃度を測定する流体濃度測定装置
であって、 流体が流される配管に設けられ、前記配管内の流体を透
過する光の光路の長さが各々異なっている複数の光透過
部を有する測定部と、 前記光透過部に光を照射する光源と、 前記光透過部を透過した光を検出する光検出手段とを備
え、 前記光検出手段で検出された光に基づいて流体の濃度を
測定することを特徴とする流体濃度測定装置。
3. A fluid concentration measuring device for measuring a concentration of a fluid, wherein the plurality of lights are provided on a pipe through which the fluid flows, and have different optical path lengths of the light passing through the fluid in the pipe. A measurement unit having a transmission unit, a light source that irradiates the light transmission unit with light, and a light detection unit that detects light transmitted through the light transmission unit, based on the light detected by the light detection unit. A fluid concentration measuring device for measuring the concentration of a fluid.
【請求項4】 請求項1、請求項2、請求項3のいずれ
かに記載の流体濃度測定装置であって、 前記複数の光透過部のうち光を透過させるべき光透過部
を選択する選択手段と、 前記配管に流される流体の吸光度が大きい場合、前記選
択手段に光路の長さが短い光透過部を選択させ、前記配
管に流される流体の吸光度が小さい場合、前記選択手段
に光路の長さの長い光透過部を選択させり制御手段と、
をさらに備えることを特徴とする流体濃度測定装置。
4. The fluid concentration measurement device according to claim 1, wherein the light transmitting unit that transmits light is selected from the plurality of light transmitting units. Means, when the absorbance of the fluid flowing through the pipe is large, the selecting means selects a light transmitting portion having a short optical path length, and when the absorbance of the fluid flowing through the pipe is small, the selecting means Control means for selecting a light transmitting portion having a long length,
A fluid concentration measurement device, further comprising:
【請求項5】 請求項1、請求項2、請求項3のいずれ
かに記載の流体濃度測定装置であって、 前記配管に流される流体の吸光度が大きい場合、前記光
検出手段で検出された光のうち、光路の長さが短い光透
過部を透過した光のデータを選択し、前記配管に流され
る流体の吸光度が小さい場合、前記光検出手段で検出さ
れた光のうち、光路の長い光透過部を透過した光のデー
タを選択するデータ選択手段をさらに備え、 前記データ選択手段により選択された光のデータに基づ
いて流体の濃度を測定することを特徴とする流体濃度測
定装置。
5. The fluid concentration measurement device according to claim 1, wherein the light detected by the light detection unit is large when the absorbance of the fluid flowing through the pipe is large. Of the light, data of light transmitted through the light transmitting portion having a short optical path length is selected, and when the absorbance of the fluid flowing through the pipe is small, of the light detected by the light detection unit, the light path having a long optical path is selected. A fluid concentration measurement device, further comprising data selection means for selecting data of light transmitted through the light transmission part, wherein the concentration of the fluid is measured based on the data of light selected by the data selection means.
JP13492097A 1997-05-26 1997-05-26 Measuring apparatus for concentration of fluid Pending JPH10325797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13492097A JPH10325797A (en) 1997-05-26 1997-05-26 Measuring apparatus for concentration of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13492097A JPH10325797A (en) 1997-05-26 1997-05-26 Measuring apparatus for concentration of fluid

Publications (1)

Publication Number Publication Date
JPH10325797A true JPH10325797A (en) 1998-12-08

Family

ID=15139638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13492097A Pending JPH10325797A (en) 1997-05-26 1997-05-26 Measuring apparatus for concentration of fluid

Country Status (1)

Country Link
JP (1) JPH10325797A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243632A (en) * 2001-02-20 2002-08-28 Kurabo Ind Ltd Flow cell, detection device, and liquid sample-measuring instrument
JP2003515124A (en) * 1999-11-19 2003-04-22 ハッチ カンパニー Turbidimeter
JP2010112961A (en) * 1998-11-20 2010-05-20 Waters Investments Ltd Flow cell
JP2011006720A (en) * 2009-06-23 2011-01-13 Sharp Corp Treatment apparatus and treating method
WO2014170985A1 (en) 2013-04-18 2014-10-23 ニプロ株式会社 Fluid concentration measuring device
JP2016164534A (en) * 2015-03-06 2016-09-08 三菱重工業株式会社 Solution absorption spectrometry tool and solution component analyzer
WO2018100055A1 (en) * 2016-11-30 2018-06-07 Ge Healthcare Bio-Sciences Ab Optical flow cell
JP2019174338A (en) * 2018-03-29 2019-10-10 株式会社日立製作所 Analysis system, bypass for analysis, and analysis method
WO2021249725A1 (en) * 2020-06-08 2021-12-16 Cytiva Sweden Ab Method and apparatus for determining optical density of a solution

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112961A (en) * 1998-11-20 2010-05-20 Waters Investments Ltd Flow cell
JP2003515124A (en) * 1999-11-19 2003-04-22 ハッチ カンパニー Turbidimeter
JP2002243632A (en) * 2001-02-20 2002-08-28 Kurabo Ind Ltd Flow cell, detection device, and liquid sample-measuring instrument
JP2011006720A (en) * 2009-06-23 2011-01-13 Sharp Corp Treatment apparatus and treating method
WO2014170985A1 (en) 2013-04-18 2014-10-23 ニプロ株式会社 Fluid concentration measuring device
US9562858B2 (en) 2013-04-18 2017-02-07 Nipro Corporation Fluid concentration measuring device
JP2016164534A (en) * 2015-03-06 2016-09-08 三菱重工業株式会社 Solution absorption spectrometry tool and solution component analyzer
WO2018100055A1 (en) * 2016-11-30 2018-06-07 Ge Healthcare Bio-Sciences Ab Optical flow cell
CN110199189A (en) * 2016-11-30 2019-09-03 通用电气健康护理生物科学股份公司 Optical flow cell
JP2020501139A (en) * 2016-11-30 2020-01-16 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Optical flow cell
JP2019174338A (en) * 2018-03-29 2019-10-10 株式会社日立製作所 Analysis system, bypass for analysis, and analysis method
WO2021249725A1 (en) * 2020-06-08 2021-12-16 Cytiva Sweden Ab Method and apparatus for determining optical density of a solution

Similar Documents

Publication Publication Date Title
US5715173A (en) Concentration controlling method and a substate treating apparatus utilizing same
CN103155113B (en) Substrate board treatment
EP0531468B1 (en) On-line process control monitoring system
JPH10325797A (en) Measuring apparatus for concentration of fluid
EP1478913A1 (en) An opaque additive to block stray light in teflon af light-guiding flowcells
CN102495013A (en) Online digestion and luminosity detection device for water quality
CN103630638B (en) Flow cell
GB2312278A (en) Organic and/or biological pollution monitor
JP3609029B2 (en) Detector and liquid sample measuring device
KR101108561B1 (en) Apparatus for measuring pH by using absorptiometric analysis and measuring method using the same
US5815276A (en) Long-path absorbance-cell imaging system with decreased system element parameter change based sensitivity and method of use
CN205484020U (en) Measured flow leads to pond
JPH01244341A (en) Light absorbing type ozone concentration measuring device
CN116148200B (en) Water quality analyzer
US20070070333A1 (en) Light returning target for a photometer
JP3078199B2 (en) Concentration control method and substrate processing apparatus using the same
FI65332C (en) FARING EQUIPMENT FOR THE MAINTENANCE OF THE TV PROVIDING AVAILABILITY OF OPTICAL CAPACITY EQUIPMENT FOR RELEASE
JPH0815146A (en) Concentration controller for fluid
JPH10318921A (en) Fluid concentration measuring device
CN202486047U (en) Water quality on-line digestion and luminosity detection device
KR102393658B1 (en) Apparatus and method for measuring concentration using absorption photometry
Ellis et al. A versatile total internal reflection photometric detection cell for flow analysis
JPH0324441A (en) Method and apparatus for measuring concentration
JP2002340787A (en) Apparatus for measuring absorbance
CN219675816U (en) Cold atom optical path absorption cell device for mercury detector